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Metabolic coupling of Mycobacterium tuberculosis to its host is foundational to its pathogenesis.

Computational genome-scale metabolic models have shown utility in integrating -omic as well as

physiologic data for systemic, mechanistic analysis of metabolism. To date, integrative analysis of

host–pathogen interactions using in silico mass-balanced, genome-scale models has not been

performed. We, therefore, constructed a cell-specific alveolar macrophage model, iAB-AMØ-1410,

from the global human metabolic reconstruction, Recon 1. The model successfully predicted

experimentally verified ATPand nitric oxide production rates inmacrophages. This model was then

integrated with an M. tuberculosis H37Rv model, iNJ661, to build an integrated host–pathogen

genome-scale reconstruction, iAB-AMØ-1410-Mt-661. The integrated host–pathogen network

enables simulation of the metabolic changes during infection. The resulting reaction activity and

gene essentiality targets of the integrated model represent an altered infectious state. High-

throughput data from infected macrophages were mapped onto the host–pathogen network and

were able to describe three distinct pathological states. Integrated host–pathogen reconstructions

thus form a foundation upon which understanding the biology and pathophysiology of infections

can be developed.
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Introduction

Mycobacterium tuberculosis (M. tb) is a highly persistent

pathogen that primarily affects the third world. About one-

third of the world’s population is infected, with 9.27 million

new cases and 1.76 million deaths in 2007 (WHO, 2009).

Furthermore, the development of multidrug-resistant tubercu-

losis and extensively drug-resistant tuberculosis, which are

infections that cannot be treated with first-line and second-line

drugs, respectively, continue to keep M. tb a concern in

developed countries.

A key aspect of M. tb’s pathogenicity is its ability to

dramatically change its metabolism in different states. After

infecting an alveolar macrophage, M. tb shifts into an

infectious state, stopping biomass accumulation. M. tb also

accumulates mycolic and fatty acids on its cell wall in

order to survive a very hostile phagosome environment

that is nutrient poor, hypoxic, nitrosative, and oxidative

(Schnappinger et al, 2003). The mycolic and fatty acids

are essential to M. tb’s resistance to drug therapies (Barkan

et al, 2009). Under a latent state, the pathogen cannot be

spread and the patient is not in danger. However, latent

tuberculosis can activate in the lungs (75% of cases) or other

parts of the body.

The lack of proper experimental M. tb models that provide

a mechanistic understanding of in vivo conditions hinders

a better understanding of the infection process (Boshoff

and Barry, 2005). It is not only difficult to work with M. tb

because of its slow growth rate, but most in vitro models

are inaccurate simulations of in vivo conditions. In vivo

animal models better characterize the disease, but there is

less control over experimental conditions.

Genome-scale metabolic reconstructions are useful for

increasing the understanding of the genotype/phenotype
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relationship in organisms (Oberhardt et al, 2009). These

networks are built in a bottom–up manner in which the

nodes (metabolites) are connected by links (biochemical

transformations and reactions) as defined by genetic and

physiological data (Palsson, 2004; Reed et al, 2006). There are

now genome-scale reconstructions for numerous prokaryotes

(Thiele et al, 2005; Feist et al, 2007), including two such

networks for M. tb (Beste et al, 2007; Jamshidi and Palsson,

2007) and eukaryotes (Duarte et al, 2004; Sheikh et al, 2005).

In addition, the global humanmetabolic network, Recon 1, has

been reconstructed (Duarte et al, 2007) containing all the

annotated biochemical reactions for human cells. Recon 1 has

sparked interest in building specific networks for different

human tissues and cells.

As the number of genome-scale reconstructions increases,

there has been interest in building networks that characterize

the metabolic interaction between multiple organisms. In this

study, we looked to increase the understanding of the meta-

bolic changes in both the host (alveolar macrophage) and the

pathogen (M. tb) during infection through the use of a host–

pathogen genome-scale reconstruction. We did this by first

building a manually curated cell-specific human network for

the alveolar macrophage. We then integrated the host model

(HM) with the pathogen model (PM) (iNJ661) to form the

host–pathogen model (HPM). We used established constraint-

based analysis methods (Becker et al, 2007) and published

gene expression data for M. tb infections to further our

understanding of macrophage and M. tb metabolic functions.

Results

Interrogation of the interactions between an HM and PM

required completing four steps: (1) construction of the

alveolar macrophage HM, (2) adaptation of the M. tb PM,

(3) integration of the two into an HPM, and (4) analysis

of the resulting HPM in different contexts. These analyses

led to three general observations,

(1) Integration of the PM into the HM both reduced the

size and altered the solution space of both models.

The changes in the PM were primarily because of

the interfacial constraints set on the network.

(2) Analysis of the PM portion of the HPM improved gene

essentiality predictions.

(3) The HPM enabled analysis of complex data sets from

complex experimental conditions and was able to high-

light differences in metabolism through the comparison

of the three infectious states.

Constructing the HM: human alveolar
macrophage, iAB-AMØ-1410

Reconstruction of the global alveolar macrophage network

was a time intensive two-step process beginning with

algorithmic tailoring of Recon 1 followed by a set of manual

curation steps (Figure 1). Using gene expression data from

inactive macrophages, maximum enzyme fluxes, and ex-

change data for the macrophage (see Supplementary informa-

tion), two preliminary models were built using two different

previously published algorithms (Becker and Palsson, 2008;

Shlomi et al, 2008). These algorithms produced context-

specific, not global, models that were the best fit of reaction

flux and pathway length to the gene expression and exchange

data. All other inactive and dead-end reactions were removed

by these algorithms. Unfortunately, macrophages are known

to have varied gene expression states, such as during infection

and inflammation; therefore, the algorithms do not take into

account other potential states. In fact, both algorithms failed to

include nitric oxide synthase, which is critical for nitric oxide

production. This is due to the initial gene expression data used

RECON1

Model building

algorithms

(GIMME/Shlomi-NBT-08)

Preliminary AM models

iAB-AMØ-1410

Manual curation

steps

• Gene expression data from GEO

• Exchange reactions from primary literature

• Primary protein literature databases (HPRD, BRENDA)

• Immunohistological staining (Human Protein Atlas)

• Transporter databases (HMTD)

• Primary literature (110+)

• Network debugging

Figure 1 Workflow of building the cell-specific model iAB-AMØ-1410. Gene expression data for alveolar macrophages and macrophage-specific exchanges were fed
into two model building algorithms (GIMME and Shlomi-NBT-08) to build two preliminary context-specific alveolar macrophage networks. Using enzyme databases
(BRENDA and HPRD), immunohistological staining databases (Human Protein Atlas), transporter databases (HMTD), primary literature (see Supplementary
information), and network features, the preliminary models were reconciled and manually curated into the final iAB-AMØ-1410.
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for inactive alveolar macrophages. Hence, a global, consensus

model was constructed through manual curation and reconci-

liation of the two models. Manual curation was conducted

using primary literature, enzyme, and immunohistological

databases, and network structure and requirements. The

global model included all inactive and dead-end reactions to

provide opportunities for further research with different

exchange constraints and to allow for future gap filling,

respectively. The resulting HMwas named iAB-AMØ-1410 for i

(in silico), AB (the primary author’s initials), AMØ (alveolar

macrophage), 1410 (number of open reading frames).

Characterizing the HM, iAB-AMØ-1410

The iAB-AMØ-1410 model has many of the capabilities of

Recon 1 because of its high number of reactions (intracellular:

3012) and active genes (1410) (Figure 2A). In addition, the HM

maintains a high reaction count from all major subsystems

(Figure 2B). Macrophages are known to be highly metaboli-

cally active as well as have many different metabolic states

because of varied patterns of gene expression (Gordon, 2007).

A biomass maintenance function was formulated (see

Materials and methods) and used to constrain the HM. The

metabolic components of the biomass maintenance function

are detailed in the Supplementary information. As macro-

phages do not readily multiply, the biomass maintenance

function used here represents cellular maintenance require-

ments, such as lipid, protein, mRNA turnover, DNA repair, and

ATP maintenance.

A series of tests were used to validate the macrophage

model. We first tested ATP production of the macrophage

model. We optimized the HM for ATP production yielding a
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92%
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0

Miscellaneous

Transporters

iAB-AMØ-1410

RECON1

4%

24%

52%

63%

33%

87%

82%

43%

0

Miscellaneous

iAB-AMØ-1410

RECON1
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C

RECON1

Genes
Reactions (intracellular)
Reactions (exchange)
Gene associated reactions
Metabolites

1496

3402

416
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2785
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382

69.3%

2583

iAB-AMØ-1410

Polysaccharide metabolism

Nucleotide metabolism

Lipid metabolism

Cofactor metabolism

Central metabolism

Carbohydrate metabolism

Amino-acid metabolism

Number of reactions

140012001000800600400200

Number of metabolic functions
12010080604020

Amino-acid metabolism

Carbohydrate metabolism

Central metabolism

Cofactor metabolism

Lipid metabolism

Nucleotide metabolism

Polysaccharide metabolism

Figure 2 Comparison of reactions and network capabilities of iAB-AMØ-1410 and the global human network (Recon 1). (A) The overall gene and reaction counts
of Recon 1 and iAB- AMØ-1410 are provided. The majority of genes and reactions are preserved. (B) Most reactions were included in the final macrophage network.
The largest reductions in number of reactions by subsystem were in amino-acid, lipid, and polysaccharide metabolism. Carbohydrate and central metabolism were
well preserved as expected. (C) In stark contrast to the number of reactions included, the network capabilities of iAB-AMØ-1410 are much reduced as compared with
Recon 1. Large reductions of metabolic functions occurred in polysaccharide, cofactor, amino-acid, and nucleotide metabolism. This is due in part to removing key
reactions from Recon 1, but more importantly to the exchange constraints of the model.
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flux of 0.6843mmol/h/g cell DW (4C). In vitro experiments

with macrophages yielded an ATP generation rate of

0.7121mmol/h/g cell DW (Newsholme et al, 1999). This puts

the HM at a production accuracy of 96.1%. Second, we

simulated nitric oxide production, which is another important

metabolic capacity of macrophages. Maximum nitric oxide

production in silico was 0.0359mmol/h/g cell DW, which is

1.7% lower than themaximum in vitro rate of 0.0365mmol/h/

g cell DW (Griscavage et al, 1993). The macrophage is also

highly anaerobic in its growth despite its uptake of oxygen

(Newsholme et al, 1999). Macrophages have high production

rates of lactate (Burke and Lewis, 2002) because of high

glucose oxidation very similar to theWarburg effect (Warburg,

1956). Consistent with this phenotype, the HM predicts a high

glucose oxidation rate and produces 0.3093mmol/h/g cell DW

of lactate.

Recon 1 was characterized and validated by showing its

potential in accomplishing 288 metabolic functions with the

proper exchange constraints. A similar assessment of the HM

was performed using the same 288 metabolic functions of

Recon 1 (see Supplementary information). Unlike the reaction

count (Figure 2B), the HM does not preserve the comprehen-

sive metabolic functions of Recon 1 (Figure 2C), as would be

expected. Important metabolic functions dealing with carbo-

hydrate and central metabolism are well preserved. However,

several peripheral metabolic functions such as amino-acid,

lipid, cofactor, and nucleotide metabolismwere not preserved.

There are two reasons for this. First, removing a few reactions

from Recon 1 to build the HM does not significantly affect the

reaction count, but it can have significant effects on functional

pathways. Second, the 288metabolic functions were originally

characterized in Recon 1 using open exchange constraints. In

this study, we ran all simulations using the macrophage

exchange constraints, which can have substantive effects

on output. For example, most metabolic functions in the

miscellaneous category dealt with growth under different

substrates. As there was no literature support for the

macrophage to import some of these metabolites, the

simulations were deemed as failures.

Infection in silico, the HPM: iAB-AMØ-1410-Mt-661

The alveolar macrophage network, iAB-AMØ-1410, was

integrated with the M. tb network, iNJ661. The integration

involved three steps: mathematical integration, setting inter-

facial constraints, and revision of the objective function

(Figure 3). Integration had a few preparatory steps. We

renamed reactions and metabolites for proper compartmenta-

lization, added transporter reactions that linked the alveolar

macrophage cytosolwith a newphagosome compartment, and

modified iNJ661 to uptake metabolites from the phagosome

rather than the extracellular compartment.M. tb blocks certain

signaling pathways to hinder maturation of the phagosome

into the phagolysosome (Pieters, 2008).Without the formation

iAB-AMØ-1410 iNJ661

iAB-AMØ-1410-Mt-661

w/iNJ661 TB BM

Integration

  

Iterative

revision of

BM

 

iAB-AMØ-1410-Mt-661

w/revised TB OF

Gene expression tests

• Renaming reaction and metabolite components

• Adding physiologically relevant transport

reactions connecting host cytoplasm to

phagosome for in vivo exchange

• Adding sinks for components not available

in host model

• Characterize each BM

component independently

• Use linear regression to

remove or weight BM

components

• Run gene expression tests

and update BM components

accordingly

• Choose best fit as final TB OF

iAB-AMØ-1410-Mt-661

w/final TB OF

Figure 3 Workflow of building the host–pathogen model, iAB-AMØ-1410-Mt-661. Integration involved combining the two stoichiometric matrices,
recompartmentalizing the metabolites and reactions, and creating a relevant phagosome environment through transport and sink reactions. In order to characterize
the model under in vivo conditions, the biomass objective function was revised. Using gene expression data from infectious states in vitro and in vivo, the objective
function was iteratively modified to match gene expression tests completed by sampling the solution space. The new objective function better represents the metabolic
activity of the pathogen under in vivo conditions.
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of the phagolysosome, M. tb is able to survive within the

phagosome. After these preparatory steps, the two stoichio-

metric matrices were mathematically combined. In doing so,

we created a modularized network with M. tb residing in the

macrophage phagosome, using resources from its host

(Figure 4A). The final model was named iAB-AMØ-1410-Mt-

661, which added the first letter of the genus and species name

(Mt) of the pathogen and 661 for the number of open reading

frames.

Upon integration, it was readily apparent that a proper

infectious state could not be simulated unless interfacial

constraints were set between the HM and PM, as the PMwould

take up any metabolite from the HM. Thus, we set interfacial

exchange constraints based on literature. In the phagosome,

M. tb is under hypoxic conditions (Honer zu Bentrup and

Russell, 2001) and oxidative stress from metabolites such as

nitric oxide (Schnappinger et al, 2003). In addition, glucose is

depleted and the pathogen is dependent on glycerol and fatty

acids (McKinney et al, 2000; Schnappinger et al, 2003) as a

carbon source. Interestingly, the PM would not grow in silico

unless there was a minimal oxygen uptake, consistent with

functional hypoxia as opposed to anoxia. M. tb biomass

productionwas comparedwithM. tb oxygen uptake showing a

linear dependence on oxygen until an uptake of 0.129mmol/

h/g cell DW was reached, in which additional oxygen did not

increase the biomass value (Supplementary Figure S1). The

uptake represented 13.2% of the in vitro uptake rate (Jamshidi

and Palsson, 2007), which was used for simulations. The

oxygen M. tb biomass curve is consistent with existing

knowledge that reduced oxygen is associated with slowed

Alveolar macrophage (am)
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B

A

iAB-AMØ-1410 iNJ661 iAB-AMØ-1410-Mt-661

Genes 1410 661 2071

Reactions (intracellular) 3012 939 3951

Reactions (exchange) 382 88

Gene associated reactions 69.3% 77% 71.1%

Metabolites 2572 828 3400

AMØ max biomass 0.0270 –

AMØ max ATP production 0.6843 –

AMØ max NO production 0.0359 – 0.0163

AMØ max NADH production 1.7806 – 0.5054

Original Mtb max biomass – 0.0522 0.0021

538

0.0238

0.1703

C

Figure 4 Schematic of the integration and results of the alveolar macrophage (iAB-AMØ-1410) and Mycobacterium tuberculosis (iNJ661) reconstructions.
(A) Metabolic links between the extracellular space (e), alveolar macrophage (am), phagosome (ph), and Mycobacterium tuberculosis (mt) in iAB-AMØ-1410-Mt-661.
The model is compartmentalized using the abbreviations as shown. The major carbon sources of the alveolar macrophage are glucose and glutamine. The macrophage
is also aerobic and requires the essential amino acids. Albeit its use of oxygen, the macrophage exhibits anaerobic respiration and produces much lactate. The major
carbon sources available for M. tb in the phagosome environment are glycerol and fatty acids. The phagosome environment is also functionally hypoxic. (B) The flux
span of iAB-AMØ-1410-Mt-661 is significantly reduced (51%) compared with iAB-AMØ-1410. This shows a stricter definition of the alveolar macrophage solution space
without adding additional constraints on the alveolar macrophage portion of the network. (C) Reaction, metabolite, and gene properties of the three reconstructions.
Maximum production rates of ATP, nitric oxide, redox potential (NADH), and biomass are shown.
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M. tb growth and disease progression (Rustad et al, 2009).

In addition, in vitro studies lowering partial pressure of

oxygen below 1% of normal conditions have shown to fully

halt M. tb replication (Yuan et al, 1998). A detailed listing

of the exchange constraints of in vitro (iNJ661) and in vivo

(iAB-AMØ-1410-Mt-661) networks for M. tb is provided in the

Supplementary information.

The third integration step involved revision of the iNJ661

objective function (biomass) to better represent an acute

infection. The original biomass function for the PM was

formulated to represent rapid growth in mid-log phase.

In mid-log phase, the pathogen tries to accumulate biomass

by dividing rapidly. However, under in vivo conditions, the

pathogen survives in the phagosome’s harsh environment,

resulting in an altered metabolic state. In order to build a

new objective function, we used M. tb gene expression data

derived from in vivo mouse model studies (Talaat et al, 2004;

Shi et al, 2005) as well as infection simulated in vitro studies

(Bacon et al, 2004; Hampshire et al, 2004; Voskuil et al, 2004).

Though the in vivo expression profiling studies came from

mouse and in vitro simulated models, the studies represent

the best available transcriptional profiling of M. tb during

an infectious state. There have been some noted differences,

especially in nitric oxide production mechanisms between

murine and humanmacrophages (Schneemann and Schoeden,

2007), but the human alveolar macrophage is able to produce

nitric oxide in a similar manner to murine macrophages

(Rich et al, 1997).

The biomass reaction is a demand function that pulls

resources from the metabolic model. Each metabolite in the

biomass affects reaction activity and hence, the final solution

space. We hypothesized that by using the known differential

reaction activity determined by differentially expressed genes,

an altered infection-specific solution space could be defined by

tailoring the PM’s biomass objective function. Using rando-

mized sampling, we characterized the solution space for each

metabolic component in the biomass function, individually.

Using linear regression in an iterative manner, we added and

removed metabolic components of the biomass objective

function to develop a new objective function (Table I) with a

solution space that best fit the gene expression data.

Particularly, we removed phenolic glycolipids from the M. tb

infection objective function. These computationally driven

revisions were confirmed with established experimental data

that showed thatM. tb H37Rv clinical strains lack biosynthesis

of phenolic glycolipids (Constant et al, 2002).

Characterizing the metabolism of the HPM

The macrophage component of the integrated HPM is similar

to iAB-AMØ-1410, with an M. tb component, which is starkly

different from iNJ661. The integration radically affected the

major objective function fluxes of the macrophage and M. tb

components (Figure 4C). The maximum macrophage biomass

was slightly reduced (B12%), while maximum ATP, nitric

oxide, and NADH production were significantly reduced

(B75,B55, andB70%, respectively). Such a large reduction

in ATP, nitric oxide, and NADH production points toward a

weakened or compromised alveolar macrophage. The M. tb

biomass function was also greatly reduced. We then compared

the size of the macrophage solution space in the HM and the

HPM (Figure 4B). There was a significant reduction in the size

of the solution space (51% reduction of the mean reaction flux

span). By adding the M. tb model to the alveolar macrophage

reconstruction, we were able to substantially decrease the

solution space without adding any additional constraints

on the internal reactions of the macrophage portion of

the network. Only two reactions had a larger flux span: the

exchanges of sulfate and phosphate. The reactions with the

largest flux span reduction (470%) dealt with fatty acid, lipid,

and proteoglycan metabolism as well as transport reactions.

The M. tb network tightened the flexibility of these reactions

because of its need for fatty acids and glycerol.

Changes in reaction activity of
iAB-AMØ-1410-Mt-661

Using randomized sampling, we identified the distribution of

all feasible steady states for each reaction in iAB-AMØ-1410,

iNJ661, and iAB-AMØ-1410-Mt-661. Statistically significant up-

and down-regulated reactions in the integrated HPM were

identified after in silico phagocytosis of M. tb. The majority of

differences are seen in the M. tb portion of the integrated

model, which was expected because of the changes in

exchange constraints and revised objective function. However,

there are also some differences in the alveolar macrophage

portion of the network.

The changes in flux states of the M. tb portion of the HPM

show a shift in carbon uptake and overall usage. There are

major shifts in flux states in central metabolism. Glycolysis is

suppressed (Figure 5, ENO) with the production of acetyl-CoA

coming from fatty acids through the glyoxylate shunt (Figure 5,

ICL). In addition, glucose is generated from gluconeogenesis

(Figure 5, FBP). Beyond central metabolism, there are several

changes. For example, there is an up-regulation of fatty acid

oxidation pathways, as fatty acids become a major carbon

source. In addition, there is a shift toward mycobactin and

mycolic acid synthesis. Production of nucleotides, peptidogly-

cans, and phenolic glycolipids is also reduced. Thus, themodel

more accurately described an infectious state for M. tb.

Overall, 75 reactions were up-regulated, while 128 reactions

were suppressed. A full listing of reactions, associated genes,

and their flux states are provided in the Supplementary

information.

There are fewer changes in the alveolar macrophage portion

of the integrated model. Only 8 reactions were up-regulated

and 46 reactions were down-regulated. There is a higher

Table I Modifications of the original iNJ661 biomass objective function
to produce the final infectious state Mycobacterium tuberculosis objective
function

Infectious state Mycobacterium tuberculosis objective function
components

Original Increased Reduced Removed

RNA Amino acids ATP maintenance Peptidoglycans
Mycobactin DNA Phenolic glycolipids
Mycocerosates Fatty acids
Mycolic acids Phospholipids
Sugars
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reliance on glycolysis as reported by a much greater activity

through phosphoglycerate mutase and enolase. In addition,

reactions in the pathways for nitric oxide production are

up-regulated. However, the majority of the changes were

down-regulations of ATP production, nucleotide synthesis,

and amino-acid metabolism. The changes in flux states of the

alveolar macrophage during infection point toward a sup-

pressed metabolic state that has a high reliance on glucose

oxidation.

Gene essentiality predictions

Interestingly, by modeling the host and pathogen together, we

were able to increase the accuracy of gene deletion tests. Single

gene essentiality predictions were completed for the M. tb

portion of the HPM and compared with the results from

iNJ661. Model predictions were improved for essential as well

as non-essential genes when compared with experimental

data. In total, the PM predicts 188 essential metabolic genes,

while the HPM predicts 162. Predictions from the two

networks overlap with 153 similarly predicted genes (see

Supplementary information). The non-overlapping predic-

tions are shown in Tables II and III.

The changes in gene essentiality were compared with

published in vivo experimental data (Sassetti and Rubin,

2003). Using Transposon Site Hybridization (TraSH), Sassetti

and Rubin identifiedM. tb genes that are essential for survival

in a mouse lung model. A total of 374 of 2972 M. tb genes
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Figure 5 Topological map of the metabolites and reactions in the central metabolism ofM. tb. The map shows predicted change of expression states when comparing
in vivo (iAB-AMØ-1410-Mt-661) and in vitro (iNJ661) conditions. The expression states were determined from the change in the solution space by randomized sampling.
Reactions that were up-regulated in iAB-AMØ-1410-Mt-661 are labeled in green, while down-regulated reactions are labeled in red. Pathways pertaining to glyoxylate
metabolism were up-regulated while glycolysis is down-regulated. The sampling results of three key reactions of central metabolism are shown. Isocitrate lyase (ICL) and
fructose bisphosphatase (FBP) are up-regulated in iAB-AMØ-1410-Mt-661, while enolase (ENO) is down-regulated. It is important to note that the results are absolute
values of the normalized values. The flux state of enolase in iAB-AMØ-1410-Mt-661 is negative suggesting gluconeogenesis.
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assessed using TraSH overlap with the metabolic models used

here. For the nine genes that were predicted as essential solely

in the HPM, two are supported by the TraSH data, while five

contradict it. Four of the contradictions are components of

nitrate reductase (narGHIJ). Though the TraSH data does not

support it, Sohaskey (2008) has shown that nitrate reduction

enhancesM. tb survival under sudden stresses of hypoxia and

nitric oxide, whichM. tb is under during the infectious state. In

addition, our gene essentiality results are further validated by

in vitro M. tb tests (Pinto et al, 2007) of the essentiality of

sulfite reduction (sirA).

Thirty-five genes are predicted to be essential in the PM,

but non-essential in the HPM. Of the 35 genes, 12 are also

non-essential in TraSH. Only two genes (murI, embA) conflict

with the TraSH data. The majority of the genes deal with

peptidoglycanmetabolism andmembranemetabolism. Such a

change from in vitro conditions shows a shift fromdivision and

production of biomass to a more specific infectious state

dealing with a harsh phagosome environment. Hence, genes

that deal with membrane and cell wall components are less

likely to affect the survival of M. tb in vivo.

The changes in our newobjective function (Table I) deduced

by gene expression data is key for the non-essential predic-

tions. The 35 genes are predicted as non-essential only in the

HPM with the revised objective function forM. tb. Removal of

peptidoglycan and phenolic glycolipid components of the

objective function increased prediction accuracywith the HPM

as evidenced with better correspondence with in vivo data

(TraSH), which also further supported the condition-specific

objective function reformulation.

Host–pathogen interactions in different infectious
states

M. tb is an insidious pathogen and can remain latent for many

years before actively infecting a host. Furthermore, its clinical

presentation can be extremely varying and it can infect every

organ system. Antibiotic treatment regimens are often tailored

for different types of tissue infections, based on their ability to

penetrate different tissues. In an analogous manner, infections

in different tissues may involve activation of different

metabolic pathways in the host and pathogen. Hence,

depending on the nature of the infection and the type of tissue

affected, different treatment regimentsmay be appropriate.We

sought to determine the activity of metabolic pathways in both

the macrophage and M. tb in order to better understand M. tb

infections and predict potential drug targets. In this study, we

analyzed differences between active infections in two different

tissues as well as latent tuberculosis.

An important application of genome-scale metabolic net-

work reconstructions is to provide a biologically meaningful

context for the analysis of large data sets, that is a ‘context

for content’ (Oberhardt et al, 2009). High-throughput data

such as gene expression profiles can be mapped to the recon-

structions and subsequently analyzed to evaluate functional

consequences of changes in expressions levels of genes.

We mapped expression data (Thuong et al, 2008) of macro-

phages from different M. tb infectious states (latent, pulmon-

ary, meningeal) onto the HPM (iAB-AMØ-1410-Mt-661) and

Table III Genes predicted to be unessential in iAB-AMØ-1410-Mt-661

ID Gene Function/reaction TraSH
support

Rv0334 rmlA Nucleotidyl transferase
Rv0482 murB Aminosugars metabolism Yes
Rv1011 ispE Terpenoid biosynthesis
Rv1018c glmU Nucleotidyl transferase Yes
Rv1086 — Geranyltranstransferase Yes
Rv1302 rfe Peptidoglycan metabolism Yes
Rv1315 murA UDP-N-acetylglucosamine

1-carboxyvinyltransferase
Rv1338 murI Glutamate racemase No
Rv1512 epiA Nucleotide-sugar epimerase
Rv2136c — (Un)decaprenyl-diphosphatase Yes
Rv2152c murC UDP-N-acetylmuramate-alanine

ligase
Rv2153c murG N-acetylglucosamine transferase
Rv2155c murD UDP-N-acetylmuramoylalanine-

D-glutamate ligase
Rv2156c murX Phospho-N-acetylmuramoyl-

pentappeptidetransferase
Rv2157c murF UDP-N-acetylmuramoyl-tripeptide-

D-alanyl-D-alanine ligase
Rv2158c murE UDP-N-acetylmuramoylalanyl-

D-glutamate-2,6-diaminopimelat
E ligase

Rv2163c pbpB Peptidoglycan subunit synthesis
Rv2870c dxr 1-deoxy-D-xylulose 5-phosphate

reductoisomerase
Yes

Rv2957 — Glycosyltransferase Yes
Rv2958c — Glycosyltransferase Yes
Rv2962c — Glycosyltransferase Yes
Rv2981c ddlA D-alanine-D-alanine ligase No
Rv3265c wbbL1 Rhamnosyltransferase Yes
Rv3266c rmlD dTDP-6-deoxy-L-lyxo-4-hexulose

reductase
Yes

Rv3398c idsA1 Dimethylallyltranstransferase
Rv3423c alr Alanine racemase
Rv3436c glmS Glutamine-fructose-6-phosphate

transaminase
Rv3465 rmlC dTDP-4-dehydrorhamnose

3,5-epimerase
Rv3581c ispF 2-C-methyl-D-erythritol

2,4-cyclodiphosphate synthase
Rv3582c ispD 2-C-methyl-D-erythritol

4-phosphate cytidylyltransferase
Rv3792 — Arabinofuranosyl transferase
Rv3793 embC Arabinofuranosyl extension
Rv3794 embA Arabinofuranosyl extension No
Rv3795 embB Arabinofuranosyl extension
Rv3808c glfT Galactofuranose transferase
Rv3809c glf UDP-galactopyranose mutase Yes
Rv3818 — UDP-MurNAc hydroxylase

Table II Genes predicted to be essential in iAB-AMØ-1410-Mt-661

ID Gene Function/reaction TraSH
support

Rv0252 nirB Nitrite reductase No
Rv0253 nirD Nitrite reductase —
Rv0363c fba Fructose-bisphosphate aldolase —
Rv0946c pgi Glucose-6-phosphate isomerase —
Rv1099c Fructose-bisphosphatase Yes
Rv1161 narG Nitrate reductase Noa

Rv1162 narH Nitrate reductase Noa

Rv1163 narJ Nitrate reductase Noa

Rv1164 narI Nitrate reductase Noa

Rv1475c acn Aconitase —
Rv2391 sirA Sulfite reductase Yes

aDenotes genes that were shown to be essential in other experimental
publications.
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built three infection-specific models: iAB-AMØ-1410-Mt-661L

(HPM-L), iAB-AMØ-1410-Mt-661P (HPM-P), and iAB-AMØ-

1410-Mt-661M (HPM-M), which can then be compared based

on the differentially active and inactive reactions in the three

states in both the macrophage and M. tb determined by flux

variability analysis (Figure 6). A full detailing of the approach

is provided in Materials and methods.

The majority of differences in active reactions were found in

the macrophage (Figure 6B and C). This is expected because

of the expression profile data coming from the macrophage.

We saw two main discrepancies in active macrophage

reactions between the three different types of infections.

First, hyaluronan synthesis and exchange was active only

in the HPM-P. This suggests that hyaluronan is produced

and secreted into the extracellular space. Hyaluronan is

important for cell proliferation, especially for progression of

some malignant tumors (Itano et al, 2008). It seems that

hyaluronan could have an important function as a carbon

source for pulmonary M. tb. In fact, it has been shown

that hyaluronan synthase is active and important for extra-

cellular replication of M. tb (Hirayama et al, 2009). As

hyaluronan synthase is not critical for macrophage survival,

inhibiting hyaluronan synthase (has123) could be a potential

method for stopping activation of M. tb from a latent to active

pulmonary state.

Second, we saw activation of vitamin D and folate

metabolism in the active infectious states (HPM-P and HPM-

M). Vitamin D injections were once used as a pre-antibiotic

era treatment for tuberculosis (Martineau et al, 2007). It is

proposed that vitamin D is crucial for increasing nitric oxide

production in the macrophage. In the active infectious states,

the macrophage is readily fighting the infection and hence has

active vitamin Dmetabolism. Folate is important as an enzyme

cofactor for DNA synthesis and repair. It has been shown to be

up-regulated during activation of macrophages for arthro-

sclerosis (Antohe et al, 2005). The HPM-P and HPM-M predict

that this also occurs for active M. tb infection.

Finally, we saw fewer but interesting changes in reaction

activity of theM. tb portion of the three context-specific HPMs

(Figure 6B and C). Polyprenyl metabolism was only active in

the HPM-L and de novo synthesis of nicotinamide cofactors

was active in latent andmeningealM. tb infections. Polyprenyl

metabolism is important for the cell wall and it makes sense

that it is active in the latent state when M. tb builds up its cell

wall. Both of these pathways have beenmentioned as potential

drug targets for tuberculosis (Eoh et al, 2007; Boshoff et al,

2008). The lack of activity of the polyprenyl and nicotinamide

pathways in the HPM-P and the polyprenyl pathway in the

HPM-M suggests that such drug targets would not be as

effective in eradicating the pathogen in a pulmonary or

meningeal infection. However, the activity of these two

pathways in the HPM-L suggests that such drug targets could

be potentially viable for latent infections. Using high-

throughput data from only one organism in the host–patho-

gen network, we were able to infer resulting changes in the

other organism through simulations. This is critical for host–

pathogen interactions in which high-throughput data cannot

be properly attained for one of the organisms. A listing of all

the reactions in each of the three infection-specific models is

provided in the Supplementary information.

Discussion

There has been growing interest in genome-scale metabolic

reconstructions and constraint-based analysis over the past 10

years. Development of a global human metabolic reconstruc-

tion, Recon 1, as well as reconstructions of multiple human

pathogens enabled us to simulate how metabolism in the host

and pathogen changes as a result of infection.

In order to carry out this study, a manually curated human

alveolar macrophagemodel of cellular metabolism, iAB-AMØ-

1410, was created using Recon 1. Purely algorithmic ap-

proaches were inadequate to achieve a physiologically

relevant model, hence extensive manual curation was used.

Flux predictions for ATP and NO production for the macro-

phage were within 5–10% of experimental measurements. In

addition, the in silico model exhibited high glucose oxidation

and lactate production, also seen experimentally.

The HM was then integrated with an M. tb reconstruction,

resulting in an HPM. We compared the two reconstructions to

different experimental data sets for macrophages and M. tb to

validate our models. Interestingly, integration of the pathogen

with the host immediately shrunk the solution space without

the imposition of additional internal constraints. As the

objective function ofM. tb in the infectious state is necessarily

different than the biomass growth function, gene expression

data was used to help define the metabolic objectives in the

infectious state. These predictions were validated through

comparison with in vivo gene essentiality studies (TraSH).

Among the observations of the HPM, it was noted that there

was a higher reliance on glycerol and fatty acids in a hypoxic

environment that relied on gluconeogenesis to produce sugars.

The integrated model was reliant on the glyoxylate shunt. In

addition, nucleotide synthesis was suppressed with increased

mycolic acid synthesis. As with in vitro simulations, blocking

nitrogen and sulfur reduction pathways were shown to

significantly affect survival rates of the pathogen. Analysis of

the HPM model also showed improved gene essentiality

predictions compared with the PM alone.

We used gene expression data to specify the context for

analysis of three different types of M. tb infection: latent,

pulmonary, andmeningeal. Therewere key differences in both

the metabolism of the macrophage and M. tb in the different

infection types. iAB-AMØ-1410-Mt-661 predicted hyaluronan

synthase in the macrophage to be a potential drug target for

inhibiting pulmonary M. tb infection. In addition, we showed

that mapping high-throughput data on one reconstruction of a

host–pathogen network can elucidate physiologically relevant

differences on the other reconstruction in the network. Polyprenyl

metabolism and certain nicotinamide pathwayswere shown to be

only active in latent and meningeal infections. Drug targets for

these pathways have been discussed previously and should be

only looked into for latent M. tb infections. A recent growing

amount of evidence has shown M. tb to actively metabolize

cholesterol (Brzostek et al, 2009; Hu et al, 2010). Interestingly,

some reactions involved in cholesterol metabolism were high-

lighted by the model. As these pathways have not yet been

fully characterized and were not in the current PM, the

significance and interpretation of these findings were not clear

at this point, but point to an area worth expanding the scope

of the model and directing further future investigation.
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Figure 6 Reaction comparison of the three infection-specific models of iAB-AMØ-1410-Mt-661 for latent, pulmonary, and meningeal tuberculosis. (A) We used
macrophage gene expression data from three types of M. tb infections to build context-specific models of iAB-AMØ-1410-Mt-661 for latent (L), pulmonary (P), and
meningeal (M) tuberculosis. The models had significant differences in reactions for the macrophage and surprisinglyM. tb. (B) There were many reactions with disparate
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shows the active macrophage reactions in each model.
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Metabolic network reconstructions have many different

uses and can be viewed as platforms for data interpretation,

analysis, and prediction. Metabolism is being increasingly

recognized as important in the role of pathogenicity (Kafsack

and Llinas, 2010). Thus, metabolic HPMs are essential for

detailing the molecular interaction between human cells and

pathogens because of the importance of metabolic changes in

both the human host cell and the pathogen. Host–pathogen

reconstructions have several applications including providing

a context for content analysis, biological discovery, and

predictive power. Such reconstructions can serve as scaffolds

for mapping high-throughput data onto the host or pathogen

and then determining the changes in the other organism.

In addition, discrepancies in experimental data and in silico

predictions can help elucidate unknown interfacial interac-

tions between the host and pathogen. For example, we showed

that some oxygen uptake was necessary for M. tb infection,

consistent with functional hypoxia, as opposed to strictly

anaerobic versus aerobic conditional dependence. Finally,

host–pathogen reconstructions take a step toward being a

more biologically faithful platform for predicting potential

drug targets as the network better represents in vivo condi-

tions. For example, the models can be used to serve as

platforms for understanding the host–pathogen interactions

through dual perturbation experiments in silico (Jamshidi and

Palsson, 2009) for screening responses to different drugs

simultaneously with different growth conditions, which

could then be complemented with in vitro or even ex vivo

experiments.

There are numerous opportunities for improvement and

discovery in HPMs. The host and pathogen integration was

performed in a modularized manner, thus allowing for

replacement of the M. tb component with other bacterial

pathogens that infect macrophages such as Salmonella

typhimurium (AbuOun et al, 2009) or viral pathogens such

as the human immunodeficiency virus. In addition, future

revisions of the M. tb reconstruction that further expand the

scope of the metabolic processes included in the current

model, transcription/translation machinery, and/or Toll-

like receptors (Li et al, 2009) can be fitted within this

framework. Another interesting application of the integration

framework involves building bacterial community networks

that show the interaction between more than two organisms

in different environments, such as the gut. We hope that this

successful demonstration of the integration of two genome-

scale models will spur future computational explorations

into multi-organism models to complement experiments and

drive forward mechanistic understanding as well as generate

new hypotheses.

Materials and methods

Construction of iAB-AMØ-1410

The reconstruction is derived from the global human metabolic
network, Recon 1. Recon 1 consists of 1496 ORFs accounting for 3012
intracellular reactions and 2583 metabolites (Figure 2A). Recon 1 was
used as described in Duarte et al (2007), with a few revisions. The
originally described Complex IV reaction was replaced with three
reactions. This was performed to ensure that the reaction was charge
balanced, at the cost of decoupling superoxide production from the

cytochrome c oxidase reaction (i.e. any coupling would have to be
fixed by the modeler adjusting the relative constraints on the
equations). In addition, the trans-mitochondrial phosphate trans-
porter was re-written in the electroneutral form. The reaction formulas
are explicitly shown in the Supplementary information.

An overview of the model building process is shown in Figure 1.
Cell-specific gene expression data for healthy, inactivated alveolar
macrophage was obtained from Gene Expression Omnibus. The
specific gene expression study (Kazeros et al, 2008) had a healthy
patient sample size of n ¼ 11. Presence/absence calls were made for
the gene expression data using the PANP software package in the R
computing platform. The PANP algorithm used signal intensities to
determine the presence of transcripts. Exchange constraints as well as
upper bounds for fluxes of major pathways of central metabolismwere
set from literature (Newsholme et al, 1986, 1999; Sato et al, 1987; Curi
et al, 1988). The expression datawas thenmapped to the reactions and
using two separate algorithms, GIMME (Becker and Palsson, 2008) and
Shlomi-NBT-08 (Shlomi et al, 2008), we built two preliminary cell-
specific models. The two preliminary models were reconciled with
primary literature databases (BRENDA (Chang et al, 2009) and HPRD
(Keshava Prasad et al, 2009)), immunohistological staining data
(Human Protein Atlas (Berglund et al, 2008)), transporter databases
(HMTD (Yan and Sadee, 2000)), primary literature (see Supplementary
information), and network stoichiometry to build a final, fully curated
reconstruction.

Biomass composition

The biomass was formulated similar to the methods described in
previous eukaryotic reconstructions of Saccharomyces cerevisiae and
Mus musculus (Famili et al, 2003; Sheikh et al, 2005). The biomass
component percentages were determined from literature (protein/su-
gar (Iyengar and Vakil, 1985), lipid (Schmien et al, 1974), and DNA
(Grutman and Orgel, 1970)) and are presented in the Supplementary
information. The total composition of each biomass element with
respect to the whole cell, except for RNA, was found in literature for
macrophages. The total RNA content was adapted from the yeast and
mouse reconstructions. All components were found in macrophages,
but the RNA amount was adapted from the yeast and mouse
reconstructions. DNA composition was set to 41% GC content. RNA
and protein composition was determined by averaging the sequence
composition of expressed transcripts from the gene expression data
used to build the HM. Sugar was assumed to be stored solely as
glycogen. Lipid components were adapted from studies on human
alveolar macrophages (Sahu and Lynn, 1977). ATP maintenance
requirements were calculated similar to the method for the mouse
reconstruction. All calculations for biomass formulation are provided
in the Supplementary information. The biomass reaction was not used
as the objective function. Instead, a lower bound was set as a
maintenance requirement for the HM at physiologically relevant levels
(Mbawuike and Herscowitz, 1989) for all computational tests.
Objective functions used for the HM include ATP and nitric oxide
production.

Integration of iAB-AMØ-1410 and iNJ661

The integration workflow is shown in Figure 3. Before integrating iAB-
AMØ-1410 and iNJ661, the reactions and metabolites were renamed to
delineate between organisms and compartments. Once the reactions
and metabolites were recompartmentalized, the stoichiometric matrix
of the PM was added to the right-hand side of the HM. The external
environment of the PM was renamed as the phagosome environment.
Transporter reactions were added that connected the cytoplasm of the
HM with the phagosome environment for the exchange metabolites.
The PM’s exchange reactions were set to zero, except for ferric ion,
copper ion, and hydrogen. Thesemetabolites are not present in the HM
and the exchanges were used as sinks because of the PM’s need.
The transporter reactions provided metabolites known to be in the
phagosome to the PM, including ions (Wagner et al, 2005), nitric oxide,
fatty acids, traces of glycerol, and oxygen (10% of iNJ661). A full list of
metabolites available in the phagosome is provided in the Supple-
mentary information.
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Flux-balance analysis

The reconstructions were represented mathematically using the
stoichiometric matrix (S). The matrix is m by n, containing m
metabolites and n reactions. The relationship of reactions and the
concentration time derivatives is as shown:

dx

dt
¼ S � v

where x and v denote the concentrations of metabolites and fluxes of
reactions, respectively. Steady-state flux-balance analysis is accom-
plished using the following linear optimization problem:

maximize ðcT � vÞ

subject to S � v ¼ 0

lbovoub

The optimization problem is constrained by thermodynamic
and enzyme kinetics using upper and lower bounds (ub, lb) on
the fluxes of reactions. The optimization vector (c) is a zero-
vector except for a one assigned to the reaction or function to be
optimized for. A full description of flux-balance analysis and its
biological uses can be found in earlier publications (Varma and
Palsson, 1994).

The flux span is calculated by the difference of the maximization
and minimization of the linear optimization problem above for all
reactions in the models. Reactions that carried no flux and were
perceived to be involved in thermodynamically infeasible loops were
not considered when calculating the flux span.

Characterizing the macrophage’s metabolic
functions

The global human metabolic network contained 288 metabolic
functions. Sink reactions were added for the metabolite being
produced in each metabolic function. Flux-balance analysis was
completed using the SimPheny software platform and the pathways
were detected by manual inspection of flux maps. The original
exchange constraints for iAB-AMØ-1410 were used for all simulations.
A listing of all the simulations and results are provided in the
Supplementary information.

Reaction activity tests

iAB-AMØ-1410, iNJ661, and iAB-AMØ-1410-Mt-661 were randomly
sampled using aMonte Carlo method detailed below. The macrophage
objective functions were maintained at the aforementioned physiolo-
gically relevant levels. The tuberculosis objectives were maintained at
75% of the maximum values.

As substrate uptake rates for in vitro versus in vivo M. tb
are significantly different, the sampling results required normaliza-
tion to properly predict differential expression of metabolic path-
ways. We assumed that the cells will use a slightly different set
of reactions for the two growth conditions. In addition, the total
flux through all pathways will be constrained by the amount of
enzyme, assuming there is adequate substrate. To represent this,
we normalized the sample points to have the same median total
network flux level by summing the absolute flux through all
tuberculosis reactions for each sample point. All points are scaled
by the median network flux.

Differential reaction activity was determined under the assump-
tion that if the distributions of candidate flux states, from sampling,
for the same reaction under two different conditions do not
significantly overlap, then the cell will have to adjust the gene
expression to compensate for the complete shift in the solution
space. For each tuberculosis reaction, a P-value was computed,
comparing the distributions of normalized sample points of the
two models. Significance of change was determined at a false
discovery rate of 0.05 (Storey and Tibshirani, 2003). The genes
of the significantly changed reactions were determined from the
gene–protein reaction association data and compared with published
gene expression data.

Monte Carlo sampling

Monte Carlo sampling was used to generate a set of uniform, feasible
flux distributions (points). The method is a modified version of the
artificially centered hit and run (ACHR) algorithm (Kaufman and
Smith, 1998). Initially, a set of non-uniform pseudo-random points,
called warmup points, is generated. In a series of iterations, each point
is moved in a randommanner to a new point, always remaining within
the solution space. This is performed by (1) choosing a random
direction, (2) computing the limits of how far one can travel in that
direction and (3) choosing a new point randomly along this line. After
many iterations, the set of points will be mixed and approach a
uniform random sample of the solution space.

Warmup points are generated by linear programming. For each
point, the objective coefficients are set to a random vector with values
in [�1,1]. This generates a point at random corners in the solution
space. The direction of movement is chosen as described in Kaufman
and Smith (1998). The center point of all points is computed and the
direction is the difference of a randomly selected point and the center
point. This has the effect of biasing the directions in the longer
directions of the solution space and speeds up the rate of mixing while
maintaining sample uniformity.

One of the problemswith the ACHR is that the termination condition
is not clearly defined. Here, we introduce the concept of the mixed
fraction as a measure of howmany iterations are required until proper
mixing. A partition is created over the set of points by drawing a line at
the median value with half the points on either side of the line. The
mixed fraction is a count of how many points cross this line between
the beginning of sampling and the end as a fraction of the total number
of points. Initially, the mixed fraction is 1 as all points are on the same
side of the partition.When perfect mixing is achieved, each point has a
50% chance of crossing the partition line so the mixed fraction will be
close to 0.5. This value is approached asymptotically and a threshold
of 0.53 was used for sampling.

Infectious state M. tb objective function
formulation

The initial build of iAB-AMØ-1410-Mt-661 used the original tubercu-
losis biomass objective function of iNJ661. To build an objective
function more specific to in vivo conditions of M. tb, the PM objective
function was modified according to gene expression data. The original
biomass was split into major metabolite components (Table I). Each
component was randomly sampled to determine averages of reaction
fluxes. In an iterative manner using linear regression, the components
were either removed or weighted and sampling was redone. This
process was continued till the sampling results from the specific
objective function best fit the gene expression data.

Gene essentiality tests

Gene essentiality tests were completed by systematically setting all
reaction fluxes associated with a gene to an upper and lower bound of
zero. Flux-balance analysis was then computed to determine the
change, if any, of phenotypic state. Only tuberculosis geneswere tested
in the PM and the HPM. We set 0.2 of the maximal biomass as the
threshold for essentiality.

Building M. tb infection specific models

We used gene expression profiling data from ex vivo macro-
phages infected with M. tb (Thuong et al, 2008). The study had
three types of macrophages: derived from nurses with latent
tuberculosis and treated patients of pulmonary and meningeal
tuberculosis. The expression data was used to build three context-
specific models using the PANP software package and GIMME
algorithm. All reactions were deemed active in the models that were
able to carry a non-zero steady-state flux. This was performed using
flux variability analysis, in which the minimum and maximum fluxes
are independently calculated for each reaction in an iterative manner
(Reed and Palsson, 2004).
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