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Insight into potential mechanisms of
hypobaric hypoxia–induced learning
and memory deficit – Lessons from
rat studies
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Abstract
Impairment of memory is one of the most frequently reported symptoms during sudden hypoxia exposure in
human. Cortical atrophy has been linked to the impaired memory function and is suggested to occur with
chronic high-altitude exposure. However, the precise molecular mechanism(s) of hypoxia-induced memory
impairment remains an enigma. In this work, we review hypoxia-induced learning and memory deficit in human
and rat studies. Based on data from rat studies using different protocols of continuous hypoxia, we try to elicit
potential mechanisms of hypobaric hypoxia–induced memory deficit.
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Introduction

Hypoxia is defined as inadequate oxygen supply to

the cells and tissues of the body. In this review, the

term ‘hypoxia’ refers to ‘hypoxic hypoxia’, which is

also the most common type of hypoxia and is due to

low arterial oxygen concentration or hypoxemia. Low

arterial oxygen concentration is first detected by sen-

sory receptors in the carotid or aortic body and

impulses are sent to cardiorespiratory centre in the

medulla.1 The body responds to normalize the

decrease in the oxygen arterial concentration by acti-

vation of the sympathetic nervous system which leads

to increased heart rate, blood pressure, ventilation and

the production of stress hormones.2–4 However, in the

case of very low arterial oxygen concentration, the

body will fail to normalize.

Hypoxia has long been known to diminish brain

function in humans and animals.5–7 In humans, the

degree of hypoxia required to impair performance,

and the task most sensitive to it, is controversial.7 It

has been reported that the earliest cognitive signs and

symptoms of hypoxia are typically experienced

around 15–16% of oxygen concentration,8 and com-

plex information processing and learning are among

the most sensitive processes to be affected.9

Impairment of memory is one of the most fre-

quently reported symptoms during sudden hypoxia

exposure, for instance, during hypoxia-awareness

training of aircrews or after an in-flight hypoxic inci-

dent.10 However, the effects of acute hypoxia on

memory have only been sporadically studied in

laboratory-controlled conditions, mainly for military

aviation10 and even less for civilian aviation. With

more severe hypoxia, critical judgement declines, and

this proceeds to stupor, coma and, finally, death if the

hypoxia is not reversed.11
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Materials and methods

All articles indexed to MEDLINE and books were

searched using the following key words: hypoxia,

hypobaric, normobaric, learning and memory. This

review mainly aims to look into how different proto-

cols of continuous hypoxia induced by hypobaric/nor-

mobaric hypoxic chamber affect the learning and

memory of adult rats. Results from brain hypoxia

induced by invasive procedures such as ligation of

arterial supply to the brain12 or by chemical induction

such as carbon monoxide hypoxia13 are not included.

The effects of different hypoxia protocols on learning

and memory in rats are summarized in Table 1.

Hypoxia and memory impairment
in human

Studies on the effects of hypoxia in life sciences are

generally performed either by decreasing barometric

pressure (PB), leading to hypobaric hypoxia as shown

by Bert,39 or by decreasing oxygen fraction (FIO2)

without changing PB as shown by Barcroft40 in his

‘Glass House’ experiment (normobaric hypoxia

(NH)). It has been shown that exposure to hypobaric

hypoxia (FIO2 < 20.9%; PB < 760 mmHg) and NH

(FIO2 < 20.9%; PB ¼ 760 mmHg) may or may not

result in different physiological responses in human

subjects.41–43

In a study by Shukitt-Hale et al.,44 23 non-

acclimatized males were exposed to 500, 4200 or

4700 m in an altitude chamber for 4–5 h. The study

demonstrated that the higher the altitude and the lon-

ger the duration of exposure, the more severe mood

and memory impairment. A similar study was later

conducted by Du et al.45 involving 18 healthy young

male subjects exposed to 300 m (control group), 2800,

3600 and 4400 m altitude in hypobaric chamber.

Compared to control group, after exposure to 2800 m

for 1 h, only the performance of continuous recogni-

tion memory decreased significantly. After exposure

to 3600 m, total reaction time in all tests increased

significantly and performance decreased, but the

error rates in memory scanning and space memory

test were unchanged. During exposure to 4400 m,

performance of memory test decreased further and

error rates also increased significantly. It was con-

cluded that the performance of human short-term

memory deteriorates after exposure to acute mild and

moderate hypobaric hypoxia for 1 h, and these effects

are aggravated with the increase in altitude as seen in

another study.46 In a study by Malle et al.10 involving

a bigger number of participants, 28 subjects in the

experimental group were exposed to a simulated alti-

tude level of 10,000 m (31,000 ft) in a hypobaric

chamber, while 29 subjects in the control group

stayed at sea level. The short-term (working) memory

assessed using paced auditory serial addition test

(PASAT) showed that performance was strongly

impaired in the hypoxic group with increased mean

error frequency rate. While working memory perfor-

mance decreased linearly with hypoxemia, peripheral

oxygen saturation (SpO2) was found to be a weak

predictor of PASAT performance and vice versa.

Structural brain alterations following exposure to

high altitude may include brain swelling,47 increase in

the number of white matter hyperintensities48 and

grey and white matter atrophy,49–51 contributing to a

reduction in total brain volume. Hemosiderin deposits

(microhaemorrhages) have also been reported in sub-

jects who have experienced high-altitude cerebral

edema.52 Cortical atrophy is linked to impaired cog-

nitive function and has been suggested to occur with

chronic high-altitude exposure.53 However, human

studies shed little light on the precise molecular

mechanism(s) of hypoxia-induced memory

impairment.

Animal studies related to hypoxia

It has been established that the brain is highly sensi-

tive to hypoxia and that some areas, such as the hip-

pocampus, are especially vulnerable to hypoxic

damage.54 Compared to human brain, the brain of

smaller animal (such as rat) is more resistant to

hypoxia because of its higher capillary density, that

is, much more severe hypoxic condition must be

applied to overtly damage its brain tissues relative

to human.17 Male rats are more susceptible to hypoxia

compared to female rats; hence, most hypobaric

hypoxia studies were conducted on male rats to obtain

better and more conclusive results.55–56

Depending on the objectives of the study, smaller

animals are either exposed to continuous or intermit-

tent hypoxia. Continuous hypoxia with or without low

PB rat model is commonly used to study the effect of

acute mountain sickness, diseases associated with

limited oxygen supply to the brain such as chronic

obstructive pulmonary disease and acute respiratory

distress syndrome, medication and drugs, concussion

or changes in air quality, for example, in a nuclear

power plant. Intermittent hypoxia rat model, on the

other hand, is commonly used to study the effects of
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obstructive sleep apnoea. Furthermore, understanding

how hypoxia alters brain function has implications

for understanding other metabolic encephalopathies

as well as aging and age-related disorders, such as

Alzheimer’s disease.57

Hypoxia and memory impairment
in rats

Groo et al.15 used spontaneously hypertensive rats

(SHRs) to study avoidance response to hypoxia as

they were reported to be more sensitive to stressful

stimuli58,59 and showed greater hypoxic vulnerability

than normotensive Wistar rats. The SHRs were

exposed to either NH (6% oxygen) or normoxic con-

ditions. Lowering the oxygen contents of inspired air

to 6% impaired acquisition of the avoidance response,

and the difference between the performance (in per-

centage of conditioned avoidance response) of ani-

mals kept under normoxic and hypoxic conditions

was significant on day 3 (at 69.2% and 38.0%,

respectively). Hypoxia was also found to increase

the incidence of escape failures. These findings are

in agreement with earlier study findings by Saligaut

et al.,14 where the acquisition of a conditioned avoid-

ance response was also impaired in hypobaric

hypoxia at 300 Torr (7180 m; equivalent to 8%
oxygen content).

Hippocampal damage

Direct correlation between working memory impair-

ment and level of altitude was evidenced in a study

involving Fischer male rats exposed to various alti-

tudes equivalent to sea levels 5500, 5950 and 6400 m,

for 2 and 6 h.16 In a later study by the same group of

researchers, two groups of rats were exposed to 6400 m

altitude for either 72 or 144 h. It was found that the

longer the time of exposure, the more noticeable the

hippocampal damage (delayed neurotoxicity) as

shown by 78% neuronal damage after 144 h com-

pared to 50% after 72 h of exposure.53 Titus et al.19

showed that hippocampal-dependent spatial learning

in rats was affected marginally following 2 days of

exposure to simulated hypobaric hypoxia at 6000 m,

while 7 days of exposure severely affected learning

of partially baited radial-arm maze (RAM) task. The

study also found that exposure for 2 days to hypo-

baric hypoxia resulted in minimal deleterious effects

on the CA1 pyramidal neurons, while exposure for

7 days caused a significant decrease in the number of

branching points, intersections and dendritic length.

Unlike the CA1 pyramidal neurons, CA3 neurons

exhibited dendritic atrophy following both 2 and

7 days of hypobaric hypoxia exposure. Thus, CA3

neurons are more vulnerable to hypoxic insult com-

pared to CA1 neurons.23,60,61 Findings by Titus et al.

are in agreement with the observation of neuronal

degeneration in rat hippocampus exposed to hypoba-

ric hypoxia in previous studies23,53 as well as a later

study by Prasad et al.33

Maiti et al.24 investigated spatial memory functions

and dendritic changes in CA1, CA3 and entorhinal

cortex of hippocampus, and layer II of prefrontal cor-

tex (PFC) in rats exposed to simulated hypobaric

hypoxia at 6100 m, but with different durations of

hypobaric hypoxia exposure, that is, 3, 7, 14 and

21 days. There was impairment of spatial memory

after 3 and 7 days, but slight improvement of spatial

memory was noted after 14 and 21 days of exposure.

The study suggested that hypobaric hypoxia induces

dendritic plasticity of PFC and hippocampal pyrami-

dal neurons of rat brain, which may be associated

with improvement of spatial memory function after

21 days of hypobaric hypoxia exposure. These find-

ings are in contrast with a recently published data on

the adverse effects of hypobaric hypoxia on the brain

which became more severe after 4 weeks compared to

2 days of exposure. The total brain weight and oxida-

tive stress in all three brain regions (striatum, hippo-

campus and cortex) were significantly increased after

4 weeks compared to after 2 days of hypobaric

hypoxia. The study, however, did not assess cognitive

function.62 Further studies are necessary to attest to

the possibility of compensatory stage after 2–3 weeks

of hypobaric hypoxia exposure followed by a decom-

pensated stage after 4 weeks.

Brain oxidative stress

Liu et al.63 reported that oxidative damage to hippo-

campus impairs spatial memory of rats. Rats showed

impairment of working memory but no change in ref-

erence memory after 3 days of exposure to simulated

hypobaric hypoxia at 6100 m.18,20 The study revealed

a significant decrease in reduced glutathione (GSH)

levels with concomitant increase in oxidized glu-

tathione (GSSG) in the hypoxic rats. The increased

generation of free radicals might have resulted in

increased utilization of GSH, thus leading to

increased GSSG synthesis. The increase in GSH uti-

lization is further accompanied by decreased GSH

4 Human and Experimental Toxicology



synthesis as evidenced by decreased GSH reductase

activity, thus depleting antioxidant status. This might

have been triggered through low levels of NADPH,

which is a cofactor for GSH reductase to convert

GSSG to GSH. Increased generation of free radicals

during hypobaric hypoxia is due to low oxygen avail-

ability, and this may be explained by leakage of free

electrons triggering a chain reaction resulting in the

formation of hydrogen peroxide and reactive hydro-

xyl radicals.64 These reactive oxygen species (ROS)

have a high affinity for membrane lipids,65 especially

in the brain, as it is rich in polyunsaturated fatty acids.

The ROS leads to lipid peroxidation and membrane

damage.66 In addition, there is deterioration in the

antioxidant defence mechanism that under normal

physiological conditions scavenges the free radicals

produced in the cell as by-products of various meta-

bolic pathways. Similar findings were noted by Hota

et al.21,22 in studies on hypobaric hypoxia and oxida-

tive stress. In these studies, however, acclimatization

to oxidative stress occurred after prolonged hypobaric

hypoxia exposure, that is, 14 days. The study also

pointed towards the crucial role that glutamate might

play in causing the hypobaric hypoxia–induced oxi-

dative stress. Since numerous biochemical and mole-

cular pathways are involved in the stress response of

the cells, the precise mechanism responsible for the

onset of acclimatization to oxidative stress still

remains to be elucidated.

A study by Shi et al.31 supported earlier findings

on the oxidative stress and apoptosis associated with

memory impairment in rats exposed to hypobaric

hypoxia. The study showed that exposure to simu-

lated hypobaric hypoxia at 6000 m for 5 days caused

spatial memory impairment as well as oxidative

stress (increased lactate dehydrogenase activity,

decreased GSH level, decreased superoxide dismu-

tase (SOD) level, inhibition of GSH synthesis and

greater utilization of GSH for detoxification of

hypoxia-induced free radicals, thus leading to

increased GSSG synthesis) and apoptosis in different

regions of the brain in rats. They also found that the

hippocampus is more susceptible to hypoxia when

compared with the cortex.

A later study by Baitharu et al.34,35 found that

hypobaric hypoxia–induced memory impairment was

associated with neurodegeneration along with altera-

tion in nitric oxide (NO), glucocorticoid, corticoster-

one, oxidative stress and acetylcholinesterase (AChE)

activity in the hippocampal region. In this study, rats

were exposed to a simulated altitude of 7600 m in a

specially designed animal decompression chamber

for 7 days. Another study showed that a shorter and

lower simulated altitude exposure also resulted in spa-

tial memory impairment.36 Exposure of rats to an

altitude of 5500 m (375 mmHg) for 3 days was found

to induce oxidative stress as evidenced by significant

increase in malondialdehyde and reduction in GSH in

serum and brain tissue, and neuronal death associated

with reactive astrogliosis in hippocampus and super-

jacent cortex.

Signalling pathways involved in oxidative stress

Barhwal et al.26,27 examined the signalling cascades

involved in mediating oxidative stress neuronal dam-

age in hypobaric hypoxia. The study revealed

increased thioredoxin (Trx-1) expression and

increased extracellular-signal-regulated kinase (ERK)

phosphorylation in rats exposed to hypobaric hypoxia

for 14 days.67 Trx-1 increases hypoxia-inducible fac-

tor-1a (HIF-1a) expression in both normoxic and

hypoxic conditions.68 The HIF-1a activates many

genes involved in erythropoiesis, angiogenesis,

energy metabolism, proliferation/cell survival, apop-

tosis and generation of NO.69–71 Alteration of NO

production plays an important role in brain injury in

conditions of hypoxia/reoxygenation.67 NO produced

in excess in the brain under the action of hypoxia-

induced neuronal nitric oxide synthases rapidly reacts

with superoxide anion to form peroxynitrite

(ONOO�), a more toxic metabolite that causes brain

injury.72 The peroxynitrite is responsible for protein

denaturation, lipid peroxidation, DNA damage and

depletion of antioxidant defences.25

On the other hand, ERK pathway contributes to

nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pro-

tein stabilization and may result in the increased

translocation of Nrf2 into the nucleus.73 Nrf2 is the

central transcription factor involved in regulating

the expression of antioxidant enzymes like GSH

S-transferase and SOD that are important in protect-

ing the cells against oxidative damage. However,

despite increased nuclear translocation of Nrf2, there

is increased free radical generation, protein oxidation

and lipid peroxidation in hypobaric hypoxia rats.27

Calcium overload-induced oxidative stress

Calcium overload in the neurons is previously

reported to generate ROS by activating phospholipase

A2, xanthine oxidase and monoamine oxidase.

Release of cytochrome c from the mitochondria due
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to calcium sequesteration is also known to generate

ROS and trigger apoptotic cell death.26

The elevation of intracellular calcium concentra-

tions and its L-type calcium channel expression, as

well as increased calpain expression, have been

demonstrated in rats exposed to hypobaric hypoxia.26

Calpain and L-type calcium channel expressions are

maximal on day 7 of hypobaric hypoxia exposure and

decline on day 14. Calcium is known to activate cal-

pain that mediates proteolysis of selective proteins

and significantly contributes to neuronal damage74

in several hypoxic and ischemic models.75,76 Calcium

is also known to be sequestered into the mitochondria

in excitotoxic conditions, thus resulting in release of

cytochrome c that triggers mitochondria-mediated

apoptotic cascades.77,78 Increased cytosolic cyto-

chrome c on day 7 is also demonstrated followed by

a marginal decline on day 14 of hypoxic exposure.

Expression of active caspase 3, however, shows a

different trend with its maximal level on day 14 of

hypoxic exposure. This is, however, in accordance

with another previous study that reported progressive

increase in caspase 3 activity and neurodegeneration

with increased duration of exposure.33 This anomaly

in caspase 3 activity may be due to existence of other

signalling cascades on day 14 of chronic hypoxic

exposure21 and warrants further investigation.

Glutamate excitotoxicity

The synthesis and release of neurotransmitters are

particularly sensitive to hypoxia. Hypobaric hypoxia

induces increased release of excitatory amino acid

such as glutamate79 and upregulation of N-methyl-D-

aspartate (NMDA) receptors. In a study by Hota

et al.,80 male Sprague Dawley rats were exposed to

simulated hypobaric hypoxia at 7600 m for 3, 7 and

14 days. Memory impairment in rats was maximal

after 14 days of hypobaric hypoxia exposure. It was

associated with significant increase in expression of

NR1 subunit of NMDA receptor, indicating oversti-

mulation of the NMDA receptor by hypobaric

hypoxia. Binding of glutamate to NMDA receptors

in hypoxic ischemia has also been reported to cause

free radical production and robust influx of calcium

ions into the cytosol leading to calcium overload.81

This excess calcium is sequestered by the mitochon-

dria through the calcium uniporter in the inner mito-

chondrial membrane at the expense of mitochondrial

membrane potential.82–86 This in turn causes genera-

tion of ROS by the mitochondria that may lead to

mitochondrial membrane damage and may cause the

release of cytochrome c from the mitochondria during

hypoxia.87,88 It is well known that cytochrome c is

released from the mitochondria to the cytoplasm89

as an outcome of mitochondrial dysfunction that may

trigger apoptosis. This activates a plethora of proa-

poptotic proteins such as Bax, caspase-3, Smac/Dia-

blo, Bid, Bad, Apaf-1 and many others.90,91

Alteration in cholinergic and
adrenergic systems

Apart from the crucial role of oxidative stress and

glutamate excitotoxicity in mediating cognitive defi-

cits following exposure to hypobaric hypoxia, choli-

nergic systems are also known to be involved.92

Previous reports have discussed that decreased cho-

line acetyltransferase,93 increased AChE and

decreased a7 nicotinic and muscarinic M1 acetylcho-

line (ACh) receptors94 are closely associated with

cognitive deficits. Muthuraju et al.28,29 revealed that

impairment in relearning ability and memory retrie-

val in rats exposed to hypobaric hypoxia was asso-

ciated with decreased ACh and increased AChE

levels which then led to morphological damage in

cortical and hippocampal neurons. Administration

of AChE inhibitors, such as physostigmine and

galantamine, resulted in amelioration of the hypoba-

ric hypoxia-induced neuronal morphological

damage in cortex and hippocampus. These AChE

inhibitors improved ACh level, decreased AChE

activity and increased ACh synthesis by increasing

acetyltransferase activity.95

The greatest amount of nerve growth factor (NGF)

is produced in the cortex, hippocampus and pituitary

gland, although significant quantities are also pro-

duced in other areas, including the basal ganglia, tha-

lamus, spinal cord and in the retina.96 The NGF plays

a pivotal role in the survival and function of choliner-

gic neurons of the basal forebrain complex97; such

functions include attention, arousal, motivation,

memory and consciousness.

Other studies associate memory impairment with

adrenergic dysregulation and neuronal damage in

medial PFC. In these studies, rats were habituated at

simulated altitude of 4572 m for 1 day followed by

exposure to simulated altitude of 7620 m for a further

7 days.37,38 It was suggested that norepinephrine (NE)

dysregulation under hypobaric hypoxia might have

been one of the possible underlying mechanisms lead-

ing to cognitive deficits and associated morphological
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damage. This is due to the fact that working memory

is regulated by the PFC and is created by networks of

PFC neurons engaged in recurrent excitation generat-

ing persistent activity.98 If the PFC recurrent excita-

tory firing is profoundly altered by the NE

dysfunction, working memory functions will also be

affected.98,99

Brain-derived neurotrophic factor

Jain et al.32 examined the cellular and molecular path-

ways related to hypobaric hypoxia–induced neuronal

cell death. Adult male Sprague Dawley rats exposed

to hypobaric hypoxia equivalent to 7620 m for 7 days

resulted in spatial memory impairment and neurode-

generation that was related to low brain-derived neu-

rotrophic factor (BDNF). The low BDNF inhibits

PI3K/AKT pathway resulting in activation of GSK3�
and caspase 3 which further augments neuronal apop-

tosis and memory impairment.

cAMP response element binding protein (CREB) is

a key transcription factor involved in several critical

functions of the brain including learning, neuronal

plasticity and cell survival.100 CREB has been shown

to be the key mediator for BDNF-mediated cell sur-

vival as studies showed that silencing the transcrip-

tional activity of CREB impaired BDNF

protection.101 CREB can be activated by various

kinases including ERK, AKT and GSK3�.102

Although there was increased CREB phosphoryla-

tion in hypoxia as observed from the total CREB to

phospho CREB ratio, total CREB was decreased

when compared to the normoxic group, thus resulting

in its decreased availability for phosphorylation. The

decreased CREB expression in hypobaric hypoxia is

probably due to the excitotoxic neuronal loss and free

radical–mediated protein degradation as indicated by

increased protein carbonyls.22

Conclusion

Hypobaric hypoxia studies conducted in rats provide

some insight into the underlying mechanism of hypo-

baric hypoxia–induced memory loss. Exposure to

hypobaric hypoxia in rats induces glutamate excito-

toxicity and increases influx of calcium ion by NR1

subunit of NMDA receptor and L-type calcium chan-

nel upregulation.21,22,26 It also induces oxidative

stress18,20–22,34 via apoptotic signalling pathways

leading to hippocampal cell apoptosis.26,27,32 Hypo-

baric hypoxia exposure also impairs cholinergic28,29

and adrenergic37,38systems and lowers BDNF level

which are important for memory function. All of

these mechanisms may be related to learning and

memory deficit in human exposed to hypobaric

hypoxia.
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