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Abstract: 
To understand the complex nature of the atherogenic response initiated by oxidative stress in vascular smooth muscle cells (vSMCs), 
computational prediction methodology was employed to define putative gene-gene and gene-environment interactions in vSMCs subjected to 
oxidative chemical stress. Computational relationships were derived from the global gene expression profiles of murine cells challenged with a 
chemical pro-oxidant to cause oxidative stress or cells treated with anti-oxidant prior to oxidative injury. Target clones were chosen based on 
their biological relevance within the context of the atherogenic response and included lysyl oxidase, matrix metalloproteinase 2, insulin like 
growth factor binding protein 5, and lymphocyte antigen 6c. Established biological relationships were derived computationally confirming the 
usefulness of the algorithm in uncovering novel biological relationships worthy of future investigation. Thus, the predictive algorithm can be a 
useful tool to advance the frontiers of biological discovery. 
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Background: 
The formation of atherosclerotic lesions involves the activation of 
vSMCs leading to modulation from a normally quiescent, contractile 
phenotype to a lesser differentiated and proliferative (i.e. atherogenic) 
phenotype. [1] This phenotypic modulation process is manifested by 
migration of vSMCs from the tunica media to the vessel lumen where 
they proliferate uncontrollably and give rise to occluding lesions that 
accumulate large amounts fat, undergo cellular necrosis and recruit 
clotting factors. To date, the interactive gene networks responsible for 
induction of atherogenic vSMC phenotypes have not been identified 
with certainty.  We have previously established that oxidative 
chemical injury of vSMCs in vivo or in vitro mediate the phenotypic 
modulation of vSMCs to atherogenic phenotypes. [1]   
 
To understand the complex nature of the atherogenic process, a 
computational approach was used to examine global patterns of gene 
expression and to define putative gene-gene interactions predictive of 
critical biological relationships during the course of atherogenesis.  
Several genes were chosen as targets for prediction using a method 
first described by Kim et al. [2]  The target genes selected for analysis 
were lysyl oxidase, matrix metalloproteinase 2, insulin like growth 
factor binding protein 5, and lymphocyte antigen 6c. These genes 
encode for proteins known to be involved in the regulation of cellular 
growth and differentiation.   

 
The experimental system employed involved acute challenge of 
vSMCs with benzo(a)pyrene (BaP), an aromatic hydrocarbon that 
causes oxidative stress in vSMCs [3] and initiates a cascade of 
genomic changes that culminates in induction of atherogenic 
phenotypes. [4] Our goal was to identify small sets of genes whose 
transcriptional states were predictive of the chosen targets, whether 
lying upstream or downstream within the gene interaction network, or 
based on chains of interaction among various intermediates. There 
was no assumption of causality in the prediction method and its sole 
focus was to identify sets of genes that may be associated with the 
target gene, and that could constitute the basis of hypothesis-driven 
biological investigations. 

 

Methodology: 
To define genomic profiles during the early phase of the atherogenic 
response, G0 synchronized cultures of vSMCs from C57BL/6J (6 wk 
old) mice at passage 12 and 75% confluence were released into 
growth by addition of fetal bovine serum (10%) in the presence of 
benzo (a)pyrene (BaP) (3 µM; Sigma-Aldrich) or dimethyl sulfoxide 
(DMSO, 0.0075%; Sigma-Aldrich) for 24 h.  A separate set of 
cultures was pretreated for 1 h with 0.5 mM N-acetylcysteine (NAC) 
(Sigma-Aldrich), a water-soluble antioxidant and precursor of cellular 
glutathione, dissolved in culture medium prior to BaP treatment to 
enhance antioxidant activity. Cultures were allowed to recover for 1 
wk before mRNA isolation.  Mouse cDNA arrays developed at 
National Institute of Environmental Health Sciences (NIEHS) were 
used for gene expression profiling. A complete listing of the 8,976 
transcripts represented on the chip is available at 
http://dir.niehs.nih.gov/microarray/chips.htm.  Comparisons between 
three treatment groups and one control were duplicated four times for 
a total of 12 independent hybridizations. Poly(A)RNA samples (2–4 
µg) were labeled with cyanine-3 (Cy3) or cyanine-5 (Cy5)-
conjugated dUTP (Amersham) by reverse transcription using 
SuperScript (Invitrogen) and oligo-dT (Amersham). A subset of 200 
differentially expressed genes was selected based on ANOVA p 
values that had been derived from gene expression profiles in 
response to pro-oxidant and anti-oxidant treatment as defined by 
cDNA microarrays. [5]   
 
Using a heuristic method to discretize the data into ternary states that 
describe their behavior, the algorithm started by categorizing 
transcript levels into ternary expression data: -1 for down-regulated, 0 
for invariant, and +1 for up-regulated genes. Invariant genes were 
defined as genes whose expression was not changed by the treatment 
relative to control. The data were then divided into training and test 
sets.  Based on the training data, the conditional probability that the 
target gene takes on one of the three transcriptional states was 
calculated for all possible patterns of the predictor genes, and the 
predicted target value defined as the state with the largest conditional 
probability.  In considering a predictor set with two genes, the 
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relationships can be defined as: t1, …, t9 equal –1, 0, or +1.  The 
analysis then reverted to the test data to examine the performance of 
these predictors.  The error for each of the predictor function is given 

by ∗−TTobs , where obsT  is the observed and ∗T  is the predicted 

transcriptional state, which could be the optimal predictor state ψT  

obtained by the designed filter or the reference predictor state, μT  

obtained by the reference filter. 
 

The above procedure was repeated by randomly splitting the data into 
training and test sets, in a fixed proportion.  The test error was 
estimated by averaging the prediction error across all iterations, and 
this error was computed for all possible predictor combinations.  The 
performance of a set of predictors was determined by a statistic 
known as the coefficient of determination (COD. [6] This coefficient 
measured the degree to which the transcriptional levels of a set of 
genes can be used to improve the prediction of the transcriptional 
state of a target gene relative to the best possible prediction in the 
absence of predictors.  In this case, the mean of the target gene was 
used as the reference metric, (its transcriptional state represented by 

μT ).  The COD (θ) is defined as 

•

• −=
ε
εε

θ ψ  

Where •ε  is the average error for the best predictor in absence of 

observation and ψε is the average error due to the optimal predictor 

designed.  The errors with respect to n observations is given by,  
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The higher the COD θ (close to 1), the more accurate the prediction 
of the target’s transcriptional state, i.e., the higher the degree of 
relationship between the target and predictor genes.  All possible 
combinations of 1, 2 and 3 gene predictors for the chosen targets 
were studied with possible predictors runs in the order of millions for 
multiple gene combinations for each target.  Predictors were ordered 
with respect to their errors and the COD’s, and the analysis focused 
on COD’s greater than 0.9 and a test error less than 0.05.  Information 
obtained was suggestive of biological commonality between predictor 
genes and their specified targets. 
  
Results and Discussion: 
The present study was undertaken to understand the complex nature 
of the atherogenic process initiated by chemical atherogens present in 

tobacco smoke using a novel computational approach.  Based on 
ANOVA p-values ≤ 0.01 several clones were selected for further 
analysis using the computational target clone-predictor approach. 
This strategy selected for genes within the dataset that displayed a 
high probability to behave as superior singleton predictors.  Target 
clones included lysyl oxidase, matrix metalloproteinase 2, insulin like 
growth factor binding protein 5, and lymphocyte antigen 6c. Multiple 
clone predictor combinations were ranked based on prediction error.  
Predictor combinations with CODs greater than 0.9 and errors less 
than 0.05 were selected for further analysis.  A large number of three-
clone combinations met these criteria for most targets, with one or 
two clones identified as predominant predictors within the sample 
pool.   

 
The development and validation of analytical tools that detect 
multivariate influences on cellular decision-making within complex 
genetic networks is essential. COD methodology provides an 
advantage over linear correlations because gene associations are 
measured based on categorization of discrete variables into a finite 
numbers of subgroups that enhance the accuracy of prediction.  This 
is in contrast to Pearson’s correlation where a pair of continuous 
variables is examined in the absence of criteria that examine putative 
interactions among multiple genes. CoD can in fact be used for 
nonlinear filtering of small datasets such as those often encountered 
in DNA microarray experiments as CoD is based on error estimation 
of patterns of gene expression. The determination coefficient permits 
biologists to focus on particular connections in the genome and 
coefficient estimates are useful even if they are biased and not overly 
precise, because at least the estimated coefficients provide a practical 
means of discrimination among potential predictor sets. 
 
A complete listing of target-predictor clones is presented as Appendix 
1.  Biologically relevant three gene combinations for each selected 
target are presented in Figures 1 and 2.  The combination of lysyl 
hydroxylase, syk tyrosine kinase, and osteopontin was shown to 
predict the behavior of lysyl oxidase (COD 0.91).  Lysyl oxidase 
functions in the maturation of collagen and elastin and is a putative 
tumor suppressor through a Ras related mechanism. [7] The two 
matrix related targets, lysyl oxidase (LO) and matrix 
metalloproteinase-2 (mmp-2) shared two common predictors syk 
tyrosine kinase (Syk) and osteopontin (OPN).  The substitution of 
stat1 for lysyl hydroxylase and the combination of syk tyrosine 
kinase, and osteopontin were shown to predict the behavior of matrix 
metalloproteinase-2 (COD 0.95).  This is significant given the role of 
these two targets in matrix remodeling during atherogenesis.  The 
prediction of genes related to insulin like growth factor binding 
protein 5 included squalene monooxygenase, osteopontin, and 
connective tissue growth factor (fisp12) (COD 0.935).  Lastly, the 
best predictors of lymphocyte antigen 6c included MSSP, pip92 and 
CD6 antigen (COD 0.945). 
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Figure 1:  Three gene combinations to predict the behavior of selected target genes. The values are the COD values for each predictor 
and the effect that addition of each predictor has on overall model prediction potential 
 

 
Figure2:  Network inference based on overlapping edges in the predictor-target relationships resolved using CoD values 
 

MMP-2 functions in the digestion collagens of and elastin to promote 
cell migration and vascular remodeling.  Syk plays a critical role in 
signaling of various receptors of the adaptive immune system and 
functions as an inhibitor of breast cancer cell growth and metastasis. 

[8] Syk participates in the integrin signaling pathway in monocytic 
cells leading to activation of NF-kB and increased levels of cytokine 
mRNAs. [9] Studies have shown that OPN induces activation of 
mmp-2 through the IkB alpha/IKK signaling pathways [10], and that 
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mmp-2 plays a direct role in OPN-induced cell migration, invasion, 
and tumor growth.  Both LO and OPN are activated by platelet-
derived growth factor in vSMC. [11] 

 
The difference between LO and mmp-2 in our predictor model is the 
addition of lysyl hydroxylase in the case of LO and stat1 in the case 
of mmp-2.  Lysyl hydroxylase catalyzes hydroxylation of lysyl 
residues in collagens and other proteins with collagenous domains. 
[12] Both LO and lysyl hydroxylase are involved in post-translational 
modifications of collagen as part of the cross-linking pathway and 
would thus be expected to behave is a similar manner.  The regulation 
of mmp-2 by stat1 has been demonstrated in tumor cells. [13] Stat1 is 
a signal transducer and activator of early transcription factor by 
adherence, and a modulator of ICAM gene expression.  Studies have 
shown the involvement of Stat1 in IFN and growth factor-dependent 
signaling and in positive, negative and constitutive regulation of gene 
expression. [14] 
 
Insulin like growth factor binding protein 5 (IGFBP-5) was predicted 
by OPN, squalene monooxygenase (SMO) and connective tissue 
growth factor (Fisp12).  IGFBP-5 is the most conserved IGFBP 
across species and as an essential regulator in bone, kidney and 
mammary gland.  In addition, IGFBP-5 plays a decisive role in the 
control of proliferation of specific tumor cell types. [15] In vSMCs, 
IGFBP-5 and OPN promote IGF-I effects and OPN binds to IGFBP-5 
with high affinity. [16] These interactions are important for 
concentrating intact IGFBP-5 in the extracellular matrix and 
modulation of the cooperative interaction between the IGF-I receptor 
and integrin αvβ3 signaling pathways in atherosclerotic lesion. [17] 
Fisp12 mediates cell adhesion and migration through integrin αvβ3, 
and promotes cell survival, and induces angiogenesis in vivo. [18] 
Fisp12 is also known as insulin-like growth factor binding protein 
related proteins (IGFBP-rPs). [19] Therefore, it is likely that Fisp12 
is regulated in a like fashion to IGBP-5.   
 
It is unclear how squalene monooxygenase (squalene epoxidase) is 
related to IGBP-5, but squalene monooxygenase catalyzes the second 
committed step in cholesterol biosynthesis from farnesyl 
pyrophosphate to squalene. [20] Studies have shown that squalene 
monooxygenase is bound to the endoplasmic reticulum of cells in 
association with NADPH-cytochrome P450 reductase, its electron 
transfer partner. [21] Squalene monooxygenase is regulated at the 
transcriptional level in response to sterol levels and may compete 
with HMG-CoA reductase as the regulated step in cholesterol 
synthesis.  Studies have identified a link between farnesyl 
pyrophosphate and post-translational processing of Ras and Ras-
related proteins. [20] The Ramos laboratory has demonstrated that 
Ras is a key factor in atherogenesis [22], and others have reviled that 
OPN is also critical for Ras expression. [23] Thus, LO, MMP-2 and 
IGBP-5 share OPN and integrin signaling as common factors, a 
relationship identified by computational methodology.  
 
The last target examined was lymphocyte antigen 6c, which plays a 
role in the T cell activation cascade and is modified by atherogenic 
challenge in vSMC. [5] This was predicted by the combination of 
CD6 antigen, pip92 and MSSP.  CD6 belongs to the scavenger 
receptor cysteine-rich protein super family that triggers co-activating 
signaling of T cells.  Its regulation during T cell ontogeny and 
activation has been extensively investigated. [24] MSSP promotes 

ras/myc cooperative cell transforming activity by binding to c-Myc 
[25], while Pip92 is an early response gene, activated by growth 
factors. The activation of pip92 is mediated by JNK and p38 kinase, 
but not ERK. [26] Type I interferon is the primary regulator of 
inducible Ly-6C expression on T cells [27], and studies have shown 
that interferon-alpha down regulates c-myc.[28]  c-myc single-strand 
binding protein (MSSP) may function in a similar fashion, a pattern 
that fits well with our current understanding of chemical-induced 
atherosclerosis. [29]   
 
Conclusion: 
The greatest challenge in computational prediction is biological 
validation.  Clearly, biological relevance is required to establish the 
true significance of findings derived computationally.  Based on 
established biological relationships, we demonstrate that predictor 
gene combinations derived computationally using the COD algorithm 
can be related at the biological level and consistent with established 
biological contexts. We have applied a similar strategy to define gene 
network structure and function of LINE-1 and found that unknown 
predicted relationships could be validated using functional genomics 
approaches. [30] Thus, the fidelity of computational relationships lends 
confidence that COD methodology can in fact predict undiscovered 
relationships.  These findings may yield new areas of exploration for 
those interested in atherogenesis and computational biology. 
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