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13 Abstract

14 In recent times, a great number of plants have been studied in order to identify new 
15 components with nutraceutical properties, among which are polyphenols. Dietary 
16 polyphenols represent a large group of bioactive molecules widely found in food of 
17 plant origin and they have been found able to prevent onset and progression of 
18 degenerative diseases, as well as reducing and controlling their symptoms. These health 
19 protective effects have been mainly related to their antioxidant and anti-inflammatory 
20 properties. However, it must be considered that application of isolated polyphenols as 
21 nutraceuticals is quite limited due to their poor systemic distribution and relative 
22 bioavailability. The present review highlights the potential effect of dietary intervention 
23 with polyphenol-rich food and plant extracts in patients with cancer, diabetes and 
24 neurodegenerative, autoimmune, cardiovascular and ophthalmic diseases, as well as the 
25 possible molecular mechanisms of action suggested in numerous studies with animal 
26 models.

27 1.Introduction

28 Polyphenols are secondary metabolites from plants which represent the largest group of 
29 non-energetic compounds in food of vegetable origin. Plants are expose to multiple 
30 stress factors and polyphenols display protective roles against photosynthetic and 
31 oxidative stresses, herbivores, wounds and UV radiation, as well as being involved in 
32 other relevant physiological functions, including pigmentation, pollination and 
33 inhibition of pathogen development.1, 2  Biosynthesis of polyphenols is indeed increased 
34 in plants exposed to previously mentioned stresses and polyphenol profile of plants has 
35 been reported to change depending on the environmental situation.3, 4

36 Different epidemiological studies have correlated high consumption of grain, fruits and 
37 vegetables that characterize Mediterranean and Nordic diet among others, with a lower 
38 risk of developing certain diseases.5-8 In this context, the intake of polyphenols has 
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39 shown being beneficial towards health, lowering risk of cancer, cardiovascular, 
40 neurodegenerative and other degenerative diseases.9-20 These protective effects might be 
41 linked to the antioxidant and anti-inflammatory properties of polyphenols, since they 
42 are able to reduce the activity of multiple targets through direct interaction or 
43 modulation of gene expression.14, 21-24.

44 The antioxidant effect of polyphenols may be exerted whether directly, as free radical 
45 scavengers, or indirectly, via modulation of genes expression and enzymes activity 
46 involved in redox homeostasis.25 Therefore, polyphenols might help the endogenous 
47 antioxidant systems to control oxidative homeostasis by reducing the excess of reactive 
48 oxygen species (ROS) and reactive nitrogen species (RNS).

49 Regarding the direct antioxidant effect of polyphenols, in vitro studies have shown that 
50 polyphenols are able to donate an electron or hydrogen atom, thus neutralizing free 
51 radicals. In the reactions within the lipid peroxidation chain, polyphenols can turn free 
52 radicals into stable radicals by donating an electron, acting as chain breakers.26 
53 Polyphenols can also reduce the rate of oxidation by inhibition or deactivation of the 
54 precursors of free radicals and as a consequence suppress their generation.9 Among the 
55 different interactions with enzymes, polyphenols have been found to induce antioxidant 
56 enzymes such as catalase, superoxide dismutase and glutathione peroxidase, thus 
57 decreasing levels of hydrogen peroxide, superoxide and hydroperoxides anions, as well 
58 as to inhibit the expression of pro-oxidant enzymes such as xanthine oxidase.9 

59 However, polyphenols have also displayed a well-documented pro-oxidant effect. These 
60 results have been mainly observed in tumor cells and have been related to pro-apoptotic 
61 action. The dual pro-oxidant and antioxidant behavior of phenolic compounds not only 
62 depends on cell type but also on their concentration, chemical structure and pH status.27-

63 30

64 On the other hand, modulation of the inflammatory process by dietary polyphenols is 
65 mediated by regulation of different signaling pathways involved in inflammation. As a 
66 result, release of proinflammatory metabolites and cytokines such as TNF-α is 
67 suppressed, whereas expression of anti-inflammatory modulators is enhanced.31, 32 
68 Besides, ROS and RNS scavenging capacity along with iron and copper chelating 
69 activity of polyphenols contribute to reduce inflammation, since they are causal factors 
70 strictly correlated to inflammatory diseases.33 

71 However, less than 25% of total polyphenol intake is absorbed in the intestine34. This is 
72 due to low solubility, instability in the gastrointestinal (GI) tract (pH, enzymes, presence 
73 of other nutrients), insufficient gastric residence time and  difficulty in traversing the 
74 lipid bilayer of the membranes, which cause low bioavailability and poor systemic 
75 distribution of polyphenols35-37. In order to overcome this drawback and enhance the 
76 potential of polyphenols with pharmacological purposes, it has been proposed the use of 
77 food macromolecules based on nanoparticles formed by reassembled proteins, cross-
78 linked polysaccharides, protein-polysaccharide conjugates, as well as lipids emulsified 
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79 by a safe procedure that can be applied in food. Polymer-based delivery nanoparticle 
80 systems, which encapsulate biofunctional ingredients within networks, have been 
81 widely developed for the functional and biomedical food sectors enhancing their 
82 protection and transport by the blood 37, 38. These biomacromolecular-based 
83 nanoparticles improve the absorption and bioavailability of the bioactive molecule 
84 mainly through different routes that includes: protection of the bioactive molecule from 
85 the hostile environment of the gastrointestinal tract, prolongation of the residence time 
86 in the intestine by muco-adhesion, endocytosis of the particles, and/or permeabilizing 
87 effect of the polymer. 35, 39, 40On the other hand, there is evidence confirming that the 
88 intake of the hole plant-origin food might be more effective than its main isolated 
89 components,41 since cooperation among the different phenolic compounds, as well as 
90 food matrix and other biologically-active components such as divalent metals or 
91 proteins influence polyphenols bioavailability 42. Therefore, studies focusing on whole 
92 food or total plant extracts are more accurate than those using isolated phenolic 
93 compounds. 

94 Polyphenols, which are mainly found as glycosylated derivatives in plants, must 
95 undergo various intestinal transformations by the digestive enzymes and the colonic 
96 microbiota, thus being hydrolyzed to aglycones and other bioactive metabolites which 
97 are absorbed by enterocytes 43. Aglycones are again metabolized in the enterocytes 
98 before being led to the liver, where these products undergo final enzymatic 
99 transformations becoming conjugated metabolites, hydrophilic molecules that enter the 

100 blood stream and are distributed to the tissues and organs or eventually excreted 43 
101 According to this metabolism routes for phenolic compounds, the beneficial effect of 
102 polyphenols towards human health is not caused by their direct antioxidant activity, but 
103 it is due to interaction of conjugated metabolites with genes and enzymes that modulate 
104 intracellular signaling cascades involved in cellular growth, proliferation and death, as 
105 well as in antioxidant and anti-inflammatory responses44. Therefore, studies which 
106 focus on the impact of polyphenols on human health should use animal models which 
107 consider the transformation processes that polyphenols undergo from food intake to 
108 final conjugated derivatives.
109
110 2. Classification of polyphenols

111 Polyphenols are characterized by the presence of one or more hydroxyl groups on an 
112 aromatic ring. These molecules are classified by their molecular weight, chemical 
113 structure and complexity in flavonoids (flavones, flavonols, flavanones, flavanonols, 
114 isoflavonoids, flavanols, anthocyanidins and chalcones) and non-flavonoids compounds 
115 (phenolic acids, stilbenes, curcuminoids, lignans and tannins).45 Flavonoids are the most 
116 predominant polyphenols that comprises over 5000 molecules.46

117 Considering the location in the plant of the polyphenols, they can also be divided into 
118 soluble compounds, which refer to molecules with low and medium molecular weight 
119 not bound to components of cell wall and insoluble compounds, which include 
120 condensed tannins and other phenolic compounds linked to polysaccharides or proteins 
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121 of the cell wall. The later derivatives are not digested meanwhile the soluble compounds 
122 can cross the intestinal barrier more easily.47

123 All flavonoids are derived from L-phenylalanine, which is transformed into 4-
124 coumaroylCoA through the phenylpropanoid pathway. The addition of three molecules 
125 of malonyl-CoA to 4-coumaroylCoA leads to the synthesis of a bicyclic chalcone, such 
126 as naringenin chalcone, which is the precursor of flavanones, which in turn, are the 
127 precursors for all the rest of flavonoids.48-51 The presence of different enzymes in plants 
128 such as isomerases, reductases, hydrolases and dioxygenases introduces modifications 
129 in the basic flavonoid structure, leading to the diverse flavonoids subclasses,52 
130 including: antoxanthins (flavones and flavonols),45, 53-57 flavanones,45, 54, 58, 59 
131 flavanonols,60 isoflavonoides,45, 61, 62 flavanols or catechins,45, 63-66 anthocyanidins67-70 
132 and chalcones59, 71, 72 (Figures 1-3). There are many examples of flavonoids found in 
133 plants with modifications in their structure, mainly as sugar O-conjugates in different 
134 positions.73 The presence of sugars, namely glucose, rutinose, galactose, xylose, among 
135 others improve their stability during storage and their absorption and bioavailability and 
136 it is a prerequisite for their transport in the central vacuole of the plant cell.71, 74

137

O

O

HO

OH

R4'
R3'

Luteolin, R6 = R3'= R5' = OH; R4' = OH
Apigenin, R6 = R3' = R5' = H; R4' = OH
Chrysin, R6 = R3' = R4' = R5'= H
Baicalein, R6 = OH; R3' = R4' = R5'= H
Eupafolin, R6 = OMe; R3' = H; R4' = R5'= OHFlavones

O

O

HO

R5

R4'
R3' Quercetin, R3 = R2' = R5' = H; R3' = R4' = R5 = OH

Myricetin, R3 = R2' = H; R3' = R4' = R5' = R5 = OH
Kaempferol, R3 = R2' = R3' = R5' = H; R4' = R5 = OH
Tamarixetin, R3 = R2' = R5' = H; R3' = R5 = OH; R4' = OMe
Morin, R3 = R2' = R4' = R5 = OH; R3' = R5' = H
Fisetin, R3 = R2' = R3' = R5 = H; R4' = R5' = OH
Isorhamnetin, R3 = R2' = R5' = H; R3' = OMe; R4' = R5 =OH
Isoquercetin, R3 = glucose, R2' = R5' = H; R3' = R4' = R5 = OH

OR3

R2'

R5'

Flavonols

R6

R5'O

O

OMe
MeO

MeO
OMe

R4'

R5'

Nobiletin, R4' = R5' = OMe
Tangeritin, R4' = OMe; R5' = H

138 Figure 1. Chemical structures of flavonoids and some examples of representative antoxanthines 
139 (flavones and flavonols) 

140
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141

O

O

HO

OH

R4'
R3'

Naringenin, R3' = H;R4' = OH
Hesperitin, R3' = OH; R4' = OMe
Eriodictyol, R3' = R4' = OH
Pinocembrin, R3' = R4'= H

Flavanones

O

O

R7O

OH

R4'
R3'

Naringin, R3' = H; R4' = OH; R7 = Neohesperidose
Hesperidin, R3' = OH; R4' = OMe; R7 = Rutinose
Neohesperidin, R3' = OH; R4' = OMe; R7 = Neohesperidose
Narirutin, R3' = H; R4' = OH; R7 = Rutinose

O

O

HO

OH

OH

Taxifolin or dihydroquercetin, R3' = OH; R5' = H
Aromadedrin or dihydrokaempferol, R3' = R5' = H
Dihydroquercetin glucoside, R3' = OH; R5' = H; R3 = glucoside
Dihydrokaempferol glucoside, R3' = R5' = H; R3 = glucoside

OR3

Flavanonols

O

O

HO

R5
R4'

Genistein, R5 = R4' = OH
Daidzein, R5 = H; R4' = OH
Formoninetin, R5 = H;R4' = OMe
Biochanin A, R5 = OH; R4' = OMe
Equol, R5 = H; R4' = OH

Isoflavonoids

R5'

R3'

142 Figure 2. Chemical structures of flavonoids and some examples of representative flavanones, 
143 flavononols and isoflavonoids

144

OHO

OH

OH
R3'

(+)-Catechin (C), R3 = R5' = H; R3' = OH
(-)-Epicatechin (EC), R3 = R5 = H; R3' = OH
(+)-Gallocatechin (GC), R3 = H; R3' = R5' = OH
(-)-Epigallocatechin (EGC), R3 = H; R3' = R5' = OH
(-)-Epicatechin gallate (ECG), R3 = GA; R5' = H; R3'= OH
(-)-Epigallocatechin gallate (EGCG), R3 = GA; R3' = R5'= OH

OR3

R5'

Flavanols

R3

O

R2

R1

R4

Naringenin-chalcone, R1 = R2 = R3 = R4 = OH
Isosalipurposide, R1 = OGlc; R2 = R3 = R4 = OH
Flavokawin A, R1 = OH; R2 = R3 = R4 = OMe
Flavokawin B, R1 = R2 = OH; R3 = OMe; R4 = OH
Cardamonin, R1 = R2 = R4 = OH; R3 = OMe

Chalcones

O+HO

OH

OH
R3'

Cyanidin, R3' = OH; R5' = H
Delphinidin, R3' = R5' = OH
Pelargonidin, R3' = R5' = H
Peonidin, R3' = OMe; R5' = H
Malvidin, R3' = R5' = OMe

OH

R5'

Anthocyanidins

R3

O

R2

OH

OH

Xanthohumol, R2 = OH; R3 = OMe
Desxanthohumol, R2 = R3 = OH
4'-Methylxanthohumol, R2 = R3 = OMe
Isobavachalcone, R1 = R2 = OH; R3 = H

Glc: glucose
GA: Galic acid

145 Figure 3. Chemical structures of flavonoids and some examples of flavanols, 
146 anthocyanidins and chalcones.
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147 Non-flavonoids compounds include phenolic acids (hydroxybenzoic acids and 
148 hydroxycinnamic acids),45, 75 stilbenes, tannins,76-78 lignans62, 79 and curcuminoids80. 
149 Some examples of these derivatives are included in Figures 4-6.
150

151

OH

O
R3

Protocatechuic acid, R1 = R4 = H; R2 = R3 = OH
Gallic acid, R1 = H; R2 = R3 = R4 = OH
Vanillic acid, R1 = R2 = H; R3 = OH; R4 = OMe
Gentisic acid, R1 = R4 = OH; R2 = R3 = H
Syringic acid, R1 = H; R2 = R4 = OMe; R3 = OH

Phenolic acids

R2

R4

R1

Hydroxybenzoic acids

OR

OR2

R1

Hydroxycynamic acids

Coumaric acid, R1 = OH; R2 = H
Caffeic acid, R1 = R2 = OH
Ferulic acid, R1 = OMe; R2 = OH
Rosmaric acid, R1 = R2 = OH; R = hydrocaffeic acid
Chlorogenic acid, R1 = R2 = OH; R = quinic acid

152 Figure 4. Chemical structures of phenolic acids

153

R1

R1

OH

Resveratrol, R1 = OH; R2 = H
Pterostilbene, R1 = R2 = OMe
Piceatannol, R1 = R2 = OH

R2

Stilbenes

O

OH

O

OH

O

O

HO
OH

HO
O

OH

OH

O

O
OH

OH

OH

O

O
HO

HO

HO

Tannic acid
Theogallin

Punicalagin

O

O

HO

OH

HO

O

HO

HO

OH

O
OH

HO

HO

OH

O

O

OH

OH

O

O

HO

HO

OHO
OH

HO

O

O

OH

O

HO
OHHO

O

OH
OH

OH

O

O

O

Tanins

154

Figure 5. Chemical structures of stilbenes and tannins.
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155

R1

R4

OH

OH

R2

R3

Enterolactone, R1 = R4 = OH;
R2 = R3 = H
Mataresinol, R1 = R4 = OMe;
R2 = R3 = OH

R1

R4

O

R2

R3

O

Enterodiol, R1 = R4 = OH;
R2 = R3 = H
Secoiscalriciresinol,
R1 = R4 = OMe; R2 = R3 = OH Lignans

MeO

OH

HO

OMe

O

O

Pinoresinol

HO
OMe

O

OH
OMe

O

Curcumin

HO
OMe

O

OH
OMe

OH

156

157 3. Therapeutic properties

158 The previously discussed properties of dietary polyphenols related to the improvement 
159 of human health have purposed them as novel tools for the management of chronic 
160 and/or degenerative diseases. Herein we have analyzed the most recent advances 
161 regarding to the use of dietary polyphenols with therapeutic purposes on several 
162 disorders that pose a serious global health situation due to their high incidence and 
163 mortality rate, from cancer to cardiovascular disease. The therapeutic potential of 
164 dietary polyphenols has been considered both as single agents as well as administered 
165 concomitant to other drugs as coadyuvants. The present review has mainly included 
166 preclinical studies on animal models and clinical trials with human volunteers. 

167 3.1. Anticarcinogenic effect

168 Dietary polyphenols might exhibit a dual role in cancer approach, since they have been 
169 proved to be beneficial in chemoprevention as well as in cancer treatment.81,82 
170 Regarding to the chemopreventive effect, different epidemiological studies suggest that 
171 intake of polyphenol-rich foods and supplements would decrease the risk of developing 
172 colorectal83, 84, gastric83, 85, lung,86 breast87 or prostate cancer.88 Antioxidant and anti-
173 inflammatory properties of polyphenols play important roles as anticancer, since 
174 tumoral environment is associated to inflammation and oxidative stress.89

175 Numerous preclinical trials have demonstrated the positive effect of polyphenol-rich 
176 dietary interventions on cancer appearance and progression (Table 1), but only a few 
177 clinical trials have been conducted. These studies with human patients are limited by the 
178 great inter-individual variation in response to polyphenols intake due to differences in 

Figure 6. Chemical structures of lignans and curcuminoids
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179 the absorption and metabolization of polyphenols.90 However, some clinical trials have 
180 produced promising results, suggesting the capacity of polyphenols to prevent onset of 
181 cancer and enhance clinical improvement on cancer patients.91-93

182 Table 1. Effect of polyphenol-rich dietary intervention on tumor prevention and 
183 progression studied on animal models.

Food 
supplement

Animal model Methodology Effect Reference

Tea

Oral 
carcinogenesis-
induced golden 
Syrian hamsters

Topical 
application of 
50 μl of 1.5% 

green tea, 0.1% 
tea pigments or 
0.5% mixed tea 

in acetone 3 
times per week 

↓ Expression of 
EGFR

94

Oral 
administration 
of 200 mg/kg 
b.w. from 0 to 
22 weeks daily

↓ Phase I and ↑ 
Phase II 
enzymes 
activity

95

200 mg/kg 
b.w. oral 

intubations for 
30 days.

Modulate 
expression of 

glycoconjugates
96Green Tea Wistar strain 

male rats

Oral 
administration 
of 200 mg/kg 

b.w. for 30 
days

Inhibit lipid 
peroxidation

97

Colon 
carcinogenesis-
induced F344 

rats

50 mg/kg b.w. 
administered 

with diet

Downregulation 
of over 350 

genes
98

Red Wine

BALB/c mice 
with C26 cells

100 mg/kg 
b.w. daily in 
the drinking 

water

↓ 
vascularization, 
upregulation of 

tumor 
suppressor 

genes

99

Red wine plus 
pomegranate

Carcinogen-
induced rats

Administered 
with diet at 

concentration 
recommended 
by the supplier

↓ fecal nitrosyl 
iron

100

184

185 A growing body of evidence supports that polyphenol-rich supplements display 
186 multiple anticarcinogenic mechanisms and intracellular targets in vivo, as they are able 
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187 to regulate different enzymes and signaling pathways involved in cellular growth, 
188 oxidative stress and inflammation95, 97 through modulation of gene expression.94, 96, 98 
189 Moreover, polyphenols can induce nutritional privation through modulation of the 
190 vascular network formation.99

191 Bastide et al. 100 observed that polyphenol-rich red wine and pomegranate extracts were 
192 able to reduce the number of premalignant lesions (mucin-depleted foci, MDF) and 
193 prevent promotion of colorectal tumorigenesis. In contrast with cured meat-fed rats, 
194 feeding rats with red wine and pomegranate extracts resulted in a significant decrease in 
195 the number of azoxymethane-induced MDF per colon, together with the absence of 
196 fecal excretion of nitrosyl iron -a promoter of carcinogenesis-100. Li et al.94 found that, 
197 in 7,12-dimethyl-benzanthacene (DMBA)-induced oral carcinogenesis hamsters, 
198 overexpression of epidermal growth factor receptor (EGFR) was reduced after oral 
199 administration of tea extracts. They also found that tea extracts reduced DNA damage 
200 and cell proliferation, altogether resulting in inhibition of DMBA-induced oral tumor 
201 formation.

202 Srinivasan et al. 95 induced oral carcinoma in Wistar strain male rats with 4-
203 Nitroquinoline 1-oxide (4-NQO), which led to an increased activity of cytochrome b5, 
204 cytochrome P450, cytochrome b5 reductase (cyt b5 R), cytochrome P450 reductase, 
205 arryl hydrocarbon hydroxylase and DT-diaphorase (Phase I enzymes which bioactivate 
206 4-NQO) and a decreased activity of glutathione-S-transferase and UDP-glucuronyl 
207 transferase (Phase II enzymes which enhances excretion of the carcinogen). However, 
208 they observed that upon treatment with green tea polyphenols these results were 
209 reversed, decreasing the activity of Phase I enzymes and activating Phase II enzymes, 
210 thus protecting the cells from the carcinogenic effect of 4-NQO, and reducing number 
211 and volume of the tumor. Therefore, these results suggested that green tea polyphenols 
212 could be used as both, chemopreventive and therapeutic agent. Previous studies had 
213 demonstrated that green tea polyphenols could inhibit lipid peroxidation97 and modulate 
214 the expression of glycoconjugates and immunological markers in 4-NQO-induced oral 
215 carcinogenesis as well.96

216 Dolara et al. 98 showed the capacity of polyphenols from red wine to modulate the 
217 mutagenesis and reduce tumor yield in colon carcinogenesis-induced F344 rats. Upon 
218 diet supplementation with ethanol-free polyphenolic extracts from red wine, 
219 dimethylhydrazine-induced colorectal carcinoma rats reduced the numbers of adenomas 
220 and azoxymethane-induced rats diminished the number of total tumors. The proposed 
221 mechanism of action responsible for preventing tumor initiation and promotion was the 
222 downregulation of over 350 different genes involved in a wide range of physiological 
223 functions, including metabolism, transport, signal transduction and intercellular 
224 signaling. Besides, polyphenols were able to mimic the effect of fiber and prebiotics on 
225 gut microbiota, both of them well-known compounds for optimal intestinal function.98 
226 Further studies with red wine polyphenolic extracts evidenced that these polyphenols 
227 reduced tumor vascularization and inhibit proliferation in BALB/c mice with C26 colon 
228 carcinoma cells, while enhancing apoptosis, by modulating the expression of genes 
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229 involved in these processes, such as vascular endothelial growth factor, matrix 
230 metalloproteinase 2, cyclooxygenase 2, cyclin D1 or p53, among others.99 

231 Therefore, results obtained on animal models of carcinogenesis have suggested 
232 induction of genetic and epigenetic changes as the major mechanism of action of 
233 polyphenols upon dietary supplementation.101 Metabolic studies in cancer patients 
234 search to confirm these results, and Nuñez-Sánchez et al. 102 proved that, in patients 
235 with colorectal carcinoma, the expression of various genes in the colorectal tissue would 
236 be modulated upon pomegranate extracts intake (900 mg of pomegranate extracts 
237 capsules daily). However, significant data has not been produced in most of these 
238 studies with human subjects.

239 3.2. Type 2 diabetes mellitus management

240 Dietary intervention might display a key role in both prevention and treatment as 
241 coadjuvants in type 2 diabetes mellitus (T2D). Clinical studies performed with healthy 
242 volunteers103-108 as well as with pre-diabetic individuals105, 106, 109, 110 have shown that 
243 supplementation with food and beverages rich in polyphenols significantly decrease 
244 post-prandial blood glucose levels. This effect is mediated by a decrease in insulin 
245 resistance.104, 105, 108 Moreover, Hoggard et al. 111 evaluated the potential role of 
246 Vaccinium myrtillus bilberry extract consumption (0.47 g of Mirtoselect®, equivalent to 
247 50g of fresh bilberries) on T2D male patients and found a similar decrease in post-
248 prandial glycaemia and insulinemia, thus proposing polyphenol supplementation as 
249 anti-diabetic coadyuvant agent. In a further study, Burton et al. 112 observed that food 
250 supplementation with a combination of inulin from agave (3.79 g), beta-glucan from oat 
251 (2.03 g) and  polyphenols from blueberry pomace (723.99 mg) improved tolerance to 
252 metformin in male T2D patients with intolerance to this drug. 

253 Studies on animal models have been performed in order to elucidate the mechanism of 
254 action by which the intake of polyphenol-rich supplements improve glucose control and 
255 thus ameliorate T2D symptoms and complications, as summarized in Table 2. 
256 Moreover, cell culture assays have provided additional information to further 
257 understand the beneficial role displayed by food supplements on the management of 
258 T2D.

259 Table 2. Effect polyphenol-rich dietary intervention on T2D analyzed on animal 
260 models.

Food 
supplement Animal model

Methodology Effect Reference

Cluster bean

High-fat diet-
fed 

streptozocin-
induced diabetic 

rat

Oral 
administration 
of 200 or 400 
mg/kg b.w. 
for 30 days 
(once daily)

Protection of β-
cell mass

113

Cocoa Zucker diabetic AIN-93G diet Protection of β- 114
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rat formulation 
supplemented 
with 100 g/kg 

b.w. of 
Natural 

Forastero 
cocoa powder 
for 15 weeks

cell mass; 
reversion of 
pancreatic 
oxidative 
damage

Coffee C57BL/6J mice

Gastric 
administration 

of coffee 
polyphenol 
extract 0.6 
g/kg b.w., 

0.28 g/kg b.w.

Secretion of 
GLP-1

115

Raspberry High-fat diet-
fed mice

High-fat diet 
supplemented 
with freeze-

dried red 
raspberry 

powder (5% 
of dry feed 

weight) for 10 
weeks

Increased 
expression of 

AMPKα-1
116

Concord grape High-fat diet-
fed mice

High-fat diet 
containing 

1% of 
Concord 

grape 
polyphenols 
for 13 weeks

Restored 
dysbiosis, 

reduction in 
inflammation

117

Arctic berries High-fat diet-
fed mice

Daily oral 
doses of 200 
mg powdered 

extract/kg 
b.w. for 8 

weeks

Restored 
dysbiosis, 

improvement of 
hepatic function

118

Cinnamon High-fat diet fed 
C57Bl/6J mice

Daily oral 
administration 
of 500, 300 or 

100 mg/kg 
b.w. of 

cinnamon 
extract; or 
600 mg/kg 

b.w. of 
cinnamon 

polyphenol-
enriched 

defatted soy 

Reduction of 
hyperglycemia

119
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flour
261

262 Loss of functional pancreatic β-cells is the critical stage of T2D development. Gandhi et 
263 al. 113 found that polyphenols of methanolic extracts of cluster bean (Cyamopsis 
264 tetragonoloba) successfully reversed β-cell damage on a diabetic rat model. The 
265 protective effect of C. tetragonoloba extracts resulted in a significant increase in 
266 sensitivity to insulin and consequently improved hyperglycemia. Further studies from 
267 Fernández-Millán et al. 114 observed that a cocoa-rich diet restored β-cell mass on 
268 diabetic rats and suggested that the protective effect of the mentioned supplement was 
269 mediated by its antioxidant effect. Authors observed that the administration of cocoa 
270 reduced oxidative stress in pancreatic tissue and as a result prevented apoptosis on β-
271 cells. 

272 The stimulation of the synthesis of glucagon-like peptide-1 (GLP-1) with dietary 
273 supplements has potential benefits in T2D management. In this line, Fujii et al. 115 
274 found that coffee polyphenols administration increased the intestinal production of 
275 GLP-1 on a mice model. Authors suggested that daily coffee consumption might 
276 prevent the development of diabetes due to the increase in insulin tolerance mediated by 
277 GLP-1 production. 

278 The potential benefits of dietary intervention with plant-derived food upon blood 
279 glucose control might be mediated, at least partially, by increasing the expression levels 
280 of AMP-activated kinase protein (AMPK). The isoform AMPKα1 is related to muscular 
281 glucose uptake and its activation is related to an improvement of tolerance to insulin. 
282 Intake of raspberry successfully activated AMPKα1 on an obese mice model, which 
283 contributed to an increase in the expression levels of the glucose transporter GLUT-4 on 
284 skeletal muscle116. An increased uptake of glucose by the skeletal muscle might 
285 contribute to a significant improvement of blood glucose control on diabetic patients. 

286 The role of the interplay between diabetes onset and progression and gut microbiome is 
287 still poorly understood; however, a growing body of evidence support the potential 
288 benefits of the modulation of microbial population in order to ameliorate T2D 
289 symptoms. Firstly, Fernández-Millán et al. 120 observed that the previously mentioned 
290 protective effect of a cocoa-rich diet on β-cells might be mediated by the resulting 
291 products after gut bacteria processing. Microbial-derived flavonoid metabolites rescued 
292 β-cell from oxidative stress-induced cell death and promoted the secretion of insulin in 
293 response to glucose stimulation on INS-1E cell line. In this context, the intake of 
294 prebiotic compounds might ameliorate diabetes progression. 

295 Regarding to gut microbiome composition and T2D, the total amount of Akkermansia 
296 muciniphila was shown to be inversely linked to inflammation, insulin resistance and 
297 hyperglycemia121, 122 and its oral administration enhanced metformin anti-diabetic 
298 effect.123 Dietary intervention with polyphenols-enriched food has been successfully 
299 used to restore microbial homeostasis. Roopchand et al. 117 administered polyphenols 
300 from Concord grape to an obese mice model and observed a significant increase in A. 

Page 12 of 37Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
4 

Fe
br

ua
ry

 2
02

0.
 D

ow
nl

oa
de

d 
on

 2
/2

8/
20

20
 5

:5
2:

25
 A

M
. 

View Article Online
DOI: 10.1039/D0FO00216J

https://doi.org/10.1039/d0fo00216j


13

301 muciniphila population along with a decrease in inflammation markers and an increase 
302 in insulin secretion. Authors proposed that the beneficial effects on dysbiosis of 
303 polyphenols are due to their ROS scavenger effect. In a further study, Anhê et al. 118 
304 found that extracts from cloudberry, alpine bearberry and lingonberry were also capable 
305 of increasing A. muciniphila amount on an obese mice model. Moreover, authors 
306 noticed a significant decrease in hyperinsulinemia due to an increased hepatic 
307 sensitivity to insulin. 

308 The hepatic effect of dietary intervention and its relationship with T2D management has 
309 been in-deeper investigated on cell models. Cinnamon polyphenols were found able to 
310 decrease the expression levels of two key genes involved in hepatic gluconeogenesis -
311 phosphoenolpyruvate carboxykinase and glucose-6-phosphatase- on H4IIE rat 
312 hepatoma cells. The inhibition of hepatic glucose synthesis correlates with the decrease 
313 in hyperglycemia later found on a diabetic mouse model fed with cinnamon extract or 
314 cinnamon polyphenol-enriched defatted soy flour119. Extracts from various types of 
315 Nordic berries, namely black chokeberry, crowberry and elderberry, have also been 
316 found able to increase glucose uptake on HepG2 cell model (12.5, 25 and 50 µg/ml)124. 

317 3.3. Neuroprotective effect

318 A large number of studies in humans have suggested that intake of different dietary 
319 polyphenols from foods and preparations, such as those from cocoa, tea, grapes, 
320 blueberries or walnut among others, would have beneficial effects on central nervous 
321 system (CNS) function, improving cerebral blood flow (CBF) 125-127 and, thus, cognitive 
322 performance 128-130 in cognitive impairment patients,131 as well as preventing or 
323 delaying the onset of neurodegenerative disorders.132 While these benefits towards 
324 mental health used to be related to inherent antioxidant properties of polyphenols, recent 
325 data rejects this hypothesis considering the low concentration of polyphenols reached in 
326 CNS. This is a result of the action of blood-brain barrier (BBB), which complicates 
327 penetration of polyphenols preventing accumulation of these compounds in brain tissues 
328 and CNS.133 Hence, despite innate antioxidant properties of polyphenols, alternative 
329 mechanisms of action have been proposed based on a wide variety of studies with 
330 animal model of neurological disorders. 

331 Most of these studies support neuroprotective effects of dietary polyphenols through 
332 modulation of intracellular signaling cascades and transcription factors which regulate 
333 oxidative stress and neuroinflammation (Table 3). Wang et al. 134 observed that feeding 
334 stress-mediated depression C57BL/6 male mice with a bioactive dietary polyphenol 
335 preparation improved resilience. Two different actions regarding modulation of gene 
336 expression were found. On the one hand, compounds from the polyphenol preparation 
337 were able to reduce levels of IL-6 -inflammatory marker identified in patients with 
338 neurological disorders135 by inhibiting methylation of genes encoding IL-6 protein134. 
339 On the other hand, different compounds would promote Rac1 expression by increasing 
340 histone acetylation along regulatory sequences of Rac1 gene134. Moreover, both Rac1 
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341 and IL-6 are involved in synaptic plasticity modulation, thus pointing these mechanisms 
342 as targets in stress-induced depression management.134 

343 Loss of synaptic plasticity leads to erratic neuronal communication, which is a common 
344 feature of neurodegeneration, since it is basis for proper learning, memory and other 
345 brain functions. Accordingly, changes in hippocampal plasticity parameters were 
346 determined in aged male F344 rats fed with a blueberry-supplemented diet 136. Results 
347 suggested that improvement of cognitive function upon blueberry intake might be 
348 mediated by their effects on neuronal plasticity. Zhao et al. 137 also observed that 
349 polyphenols were able to induce activation of the ‘cAMP response element-binding 
350 (CREB) signaling pathway, related with synaptic plasticity, and promote resilience to 
351 sleep deprivation-induced cognitive dysfunctions in C57BL6/J mice. Wang et al. 138 
352 studied the effect of a grape-derived polyphenolic preparation in a mouse model of 
353 Alzheimer disease (AD). They found that the preparation improved synaptic plasticity 
354 through activation of CREB signaling pathway, thus restoring brain function in AD.138

355 Different studies suggested that polyphenol-rich preparations were able to modulate 
356 cerebral blood flow (CBF) and spatial location of cerebrovascular network. Failure of 
357 the cerebrovascular system leads to a shortage of energy substrate and the consequent 
358 neuronal integrity disruption and cognitive malfunction.133 Baron-Mengury et al. 139 
359 observed that red wine polyphenols stimulated nitric oxide (NO) production and 
360 increased vascular endothelial growth factor (VEGF) expression, promoting 
361 angiogenesis and blood flow in a post-ischemic neovascularization rat model. This data 
362 suggested that polyphenols would have beneficial effects on cerebral ischemia and other 
363 neuronal diseases involving disruption of cerebrovascular coupling. Besides, 
364 supplementation with a cocktail of red wine polyphenols dissolved in water induced 
365 vasodilatation, which enhanced CBF, being restored in middle-cerebral occlusion-
366 induced rats used as stroke model.140

367 Apart from the capability of polyphenols to regulate different pathways involved in 
368 redox homeostasis and inflammation, they can modify specific features of 
369 neurodegenerative diseases including abnormal aggregation and fibrillation of the 
370 neurotoxic beta-amyloid peptides and hyperphosphorylated tau protein in the brain of 
371 AD and mild cognitive impairment patients. Wang et al. 141 found that daily oral 
372 administration of grape-derived polyphenols significantly reduced the accumulation of 
373 abnormally hyperphosphorylated tau protein in the brain of TMHT mouse model of AD. 
374 In addition, the capacity of polyphenols to enhance CBF might help to reduce beta-
375 amyloid peptides from brain.

376 Table 3. Neuroprotective effect of polyphenol-rich dietary intervention studied on 
377 animal models.

Food 
supplement Animal model Methodology Effect Reference

Bioactive 
dietary 

C57BL/6 male 
mice

5 mg/kg b.w. 
of 

Reduction of IL-6 
levels and promotion 

134
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polyphenol 
preparation

dihydrocaffeic 
acid and 0.5 

μg/kg b.w. of 
malvidin-3’-O-

glucoside 
delivered daily 

through 
drinking water

of Rac1 expression

Blueberry Aged male F344 
rats

400 mg of 
blueberry 

extract/day 
combined with 

control diet

Improvement of 
neuronal plasticity

136

C57BL6/J mice

200 mg of 
grape seed 

polyphenols/kg 
b.w.; 400 mg 
resveratrol/kg 
b.w.; and 183 
mg concord 

grape juice/kg 
b.w. delivered 

through 
drinking water

Activation of CREB 
signaling pathway 

and synaptic 
plasticity 

improvement

137

Mouse model of 
AD

80 mg/kg b.w. 
of monomeric-

enriched 
grape-derived 
polyphenolic 
preparation 
delivered 
through 

drinking water

Activation of CREB 
signaling pathway 

and synaptic 
plasticity 

improvement

138

Grape

TMHT mouse 
model

Daily oral 
administration 
of 200 mg/kg 

b.w.

Reduction of 
hyperphosphorylated 

tau protein 
accumulation in 

brain

141

Post-ischemic 
neovascularization 

rat model

Daily 
administration 
of 20 mg/kg 
b.w. or 0.2 

mg/kg b.w. by 
gavage in a 

solution of 5% 
glucose

Angiogenesis and 
blood flow 

promotion through 
NO production and 
VEGF expression

139

Red wine

Middle-cerebral 
occlusion-induced 

rats

Administration 
of 30 mg/kg 

b.w. dissolved 
in water

Vasodilatation 
induction and CBF 

enhancement
140
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378

379 3.4. Cardiovascular-protective effect

380 Under the term ‘cardiovascular disease’ are included a group of disorders that affect 
381 heart and blood vessels, some of which are coronary heart disease or congestive heart 
382 failure. Among the risk factors of cardiovascular disease highlight high blood pressure 
383 and atherosclerosis, which can be controlled by dietary intervention as discussed below.   

384 3.4.1. Blood pressure regulator effect

385 Regular consumption of plant-derived food such as chokeberries has been related to a 
386 decrease of both diastolic and systolic blood pressure on hypertensive patients,142 and 
387 the protective effect of polyphenol-rich foods might be correlated to gender, since 
388 Grosso et al. 143 observed a decreased risk of hypertension on female patients with the 
389 greatest intake of dietary polyphenols, whereas no significant anti-hypertensive effects 
390 were found on males. From a molecular point-of-view, dietary intervention based on 
391 plant-derived foods and/or polyphenol-enrichment contributes to the management of 
392 hypertension at various stages. Noad et al. 144 noticed an improvement of endothelium 
393 function on hypertensive patients with a polyphenol-rich diet (constituted by a daily 
394 intake of six portions of fruit and vegetables) that, in accordance with data collected  by 
395 Grassi et al. 145 from hypertensive patients supplemented with black tea (150 mg of 
396 polyphenols) for eight days, might be mediated by an increase in the amount of active 
397 circulating endothelium progenitor cells, which are responsible for maintaining and 
398 repairing of the endothelium. Furthermore, Medina-Remón et al. 146 reported an 
399 increase in plasmatic levels of the vasodilator NO after supplementation with extra 
400 virgin olive oil (1 L/week) or  30 g of mixed nuts (15 g walnuts, 7.5 g almonds and 7.5 
401 g hazelnuts), both rich in polyphenol content. Taken together, these results suggest that 
402 dietary polyphenols promote vasodilatation as well as an improvement of endothelium 
403 function, which leads to hypertension management. 

404 Further research performed on animal models has pointed to the antioxidant properties 
405 of polyphenols as partly responsible of the amelioration of endothelial cells dysfunction 
406 (Table 4). Furuuchi et al. 147 observed a decrease on aortic ROS levels on a high-fat diet 
407 mice model after consumption of boysenberry polyphenols that might be mediated by 
408 an increase on the dimerization of endothelial NO synthase (eNOS). Dimeric eNOS 
409 produces NO instead of ROS, thus contributing to vasodilatation. Similarly, Mukai et 
410 al. 148 reported an increase in eNOS and inducible NO synthase (iNOS) expression 
411 levels in both aorta and kidney on a hypertensive rat model supplemented with azuki 
412 beans extract. 

413 Independently from the NO-mediated vasodilator effect, the role of dietary supplements 
414 on hypertension management might be related to the activation of endothelium K+ 
415 channels due to an increase in H2S production, as shown by Horrigan et al. 149 on rat 
416 aortic rings exposed to blueberry juice. 
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417 Table 4. Effect polyphenol-rich dietary intervention on blood pressure regulation on 
418 animal models.

Food 
supplement Animal model Methodology Effect Reference

Boysenberry High-fat diet 
mice

0.1% 
boysenberry 
polyphenol 
extract in 

drinking water 
for 12 weeks

Decrease on 
aortic ROS 

levels
147

Azuki bean Hypertensive 
rat model

0.9% azuki vean 
extract-

containing diet 
for 8 weeks

Increase in 
eNOS and 

iNOS 
expression

148

419

420 3.4.2. Anti-atherosclerotic effect

421 An adequate dietary pattern characterized by an abundance of plant-derived fruits might 
422 be related to a decreased risk of cardiovascular disease due to their dual role on both 
423 prevention and treatment of hypercholesterolemia and atherosclerosis. Studies on 
424 healthy volunteers showed that dietary intervention enhanced overall high-density 
425 lipoprotein (HDL) function 150-152, thus contributing to a higher clearance of plasma 
426 cholesterol.  Moreover, the antioxidant properties of polyphenols might contribute to a 
427 reduced risk of atherosclerotic lesion by avoiding the oxidation of low-density 
428 lipoprotein (LDL), according to data obtained from healthy women after daily intake of 
429 200 g of açai pulp for 4 weeks.150 This evidence was further validated on patients at 
430 high cardiovascular risk. The intake of olive oil enriched with its own polyphenols (500 
431 ppm of phenolic compounds in comparison with 80 ppm of phenolic compounds found 
432 in regular olive oil) successfully reduced the total LDL particle/total HDL particle 
433 atherogenic ratio on hypercholesterolemic patients (daily dose of 25 ml for 3 weeks 
434 followed by a washout period of 2 weeks.153 Furthermore, studies on early 
435 atherosclerosis patients showed that olive oil intake (daily doses of 30 ml for 4 months; 
436 polyphenol content: 340 mg/ kg) improved endothelial function by reducing vascular 
437 inflammation.154 Taken together, these findings suggest that dietary polyphenols might 
438 be closely related to a more efficient management of atherosclerotic lesion onset and 
439 progression. 

440 Dietary intervention might reduce the progression of atherosclerosis at different stages 
441 of the disease, according to in vitro experiments. Firstly, as above discussed, 
442 supplementation of different animal models with plant-based food resulted in a decrease 
443 in LDL particles concomitant to an increase in HDL levels, 155-157 as summarized in 
444 Table 5. Since the oxidation of LDL is the main responsible of the onset of 
445 atherosclerosis, the antioxidant effect of polyphenols might lead to an efficient 
446 prevention of foam cells formation and subsequent accumulation. Furthermore, 
447 polyphenols might be directly involved in the prevention of LDL oxidation, since 
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448 golden needle mushroom polyphenols were found able to reduce LDL oxidation in 
449 vitro.158 Finally, food supplements might display a significant role on preventing foam 
450 cells formation trough the reduction of lipid accumulation on macrophages, as found 
451 upon incubation of THP-1-derived macrophages with anthocyanins or phenolic acids 
452 extracted from blueberry (concentrations ranging from 0.05 to 10 µg/ml) and then 
453 exposed to fatty acids.159 

454 Table 5. Effect on hyperlipidemia of polyphenol-rich dietary intervention evaluated on 
455 different animal models.

Food 
supplement

Animal model Methodology Effect Reference

Citrus sinensis 
juice and 

Citrus 
paradisi juice

Hyperlipidemic 
rats

Once daily, 
oral 

administration 
for 8 weeks of 

2, 5 or 8 
ml/kg b.w. of 

C. sinensis 
juic; 0.1, 0.3 
or 0.5 ml/kg 
b.w. of C. 
paradise 

juice; 
combination 

of both (2 
ml/kg+0.1 
ml/kg or 5 
ml/kg+0.3 

ml/kg)

Reduction of 
plasmatic 

triglycerides, total 
cholesterol and 

LDL-cholesterol
Increase of HDL-

cholesterol

155

Apple ApoE-/- mice

Western-type 
diet 

supplemented 
with oral 

administration 
of 100 mg/kg 
b.w. of apple 
polyphenols 
for 12 weeks

Reduction of 
plasmatic 

triglycerides and 
LDL-cholesterol
Increase of HDL-

cholesterol

156

Yellow rice 
wine

LDL receptor-/- 
mice

High-fat diet 
supplemented 

with oral 
administration 

of 10, 30 or 
50 mg/kg 

b.w./day of 
yellow wine 
polyphenolic 
compounds 
for 14 days

Reduction of total 
circulating 

cholesterol and 
LDL-cholesterol

160
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Kiwi
Cholesterol-

supplemented 
rats

Chow 
supplemented 

with 1% 
cholesterol 

and 5% 
lyophilized 

kiwifruits for 
33 days

Reduction of 
plasmatic 

triglycerides and 
LDL-cholesterol
Decrease of the 

atherogenic index 
total 

cholesterol/HDL-
cholesterol

157

Green tea APOE-knockout 
C57BL/6J mice

Oral 
administration 
of 3.2 or 6.4 
g/l through 

drinking 
water for 15 

weeks

Induction of 
autophagy and 

removal of 
damaged 

endothelial cells

161

456

457 Apart from the above-mentioned effect on the early stages of the disease, the intake of 
458 polyphenol-enriched foods and other nutritional approaches have a potential application 
459 on the management of the mature atherosclerotic plaque.156, 160, 162, 163 Supplementation 
460 with polyphenols is inversely correlated with the expression levels of endothelial 
461 adhesion proteins such as intracellular adhesion molecule 1 (ICAM-1) and vascular cell 
462 adhesion molecule 1 (VCAM1), 156, 163 both involved on the recruitment of immune 
463 cells and thus on the maintenance of a pro-inflammatory status. This indirect anti-
464 inflammatory activity might therefore be related to an amelioration of the lesion area, 
465 according to experiments on animal models. On the other hand, these kind of food 
466 supplements might display a direct effect on atherosclerotic lesion through a reduction 
467 of the activity of matrix metalloproteinases (MMPs), due to their key role on the growth 
468 of the atherosclerotic plaque. Authors have reported that dietary supplementation with 
469 polyphenol extracts and/or polyphenol-enriched foods are able to reduce MMPs activity 
470 directly by reducing their expression levels as well as indirectly by up-regulating the 
471 expression of tissue inhibitors of matrix metalloproteinases (TIMPs).160, 162 Lastly, Ding 
472 et al. 161 noticed a significant recovering of the autophagic flux on the vessel wall of an 
473 ApoE knockout mice model after supplementation with green tea polyphenols The 
474 induction of autophagy after green tea polyphenols consumption leaded to a removal of 
475 damaged endothelial cells and consequently to a reduction of the atherosclerotic lesion 
476 area. 

477 3.5. Immunomodulatory effect

478 Dietary intervention with plant-derived food might display a dual immunoregulatory 
479 role, being able of both potentiate or attenuate the immune response depending on the 
480 circumstances (Table 6). On one hand, stimulation of the immune response has been 
481 reported on situations characterized by an insufficient or deficient one such as cancer or 
482 ageing. Yi et al. 164 observed an increased amount of functional immune cells on 
483 Sarcoma 180-bearing mice after diet supplementation with purified polyphenols from 
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484 the pinecone of Pinus koraiensis. Similarly, results from De la Fuente et al. 165 revealed 
485 that supplementation with polyphenols-enriched biscuits (20% wt/wt) ameliorated the 
486 age-related loss of functionality of the immune system in terms of an improvement of 
487 the activities of macrophages and lymphocytes on a 32 week old ICR mice model. 

488 On the other hand, dietary polyphenols might modulate an exacerbated immune 
489 response in chronic inflammation-related disorders. In this line, the anti-inflammatory 
490 effect of polyphenols might be, at least partially, mediated by its immunomodulatory 
491 effect as it has been reported by in-deep studies of obese animal models. 
492 Supplementation with polyphenol-rich green tea preparations on obese rats resulted in a 
493 reduced production of pro-inflammatory cytokines by lymphocytes (after 90 days of 
494 gavage with 500 mg/b.w. of green tea extract)166 and neutrophils (500 mg/b.w. of green 
495 tea extract administered by gavage).167 This down-modulation of the immune response 
496 might also have a potential application on allergies management. Dietary 
497 supplementation with polyphenol-enriched extracts for 8 days resulted on a significant 
498 modulation of allergic symptomatology due to a reduction in mucosal pro-inflammatory 
499 interleukins production on a murine model of food allergy.168 Moreover, Kim et al. 169 
500 reported that intraperitoneal injection of 1 to 100 mg/kg b.w. of aqueous extracts from 
501 Diospyros kaki successfully inhibited histamine release from mast cells through 
502 increasing intracellular levels of cAMP, which avoids intracellular calcium release and 
503 thus blocks the following histamine liberation. As a consequence, a high intake of 
504 polyphenols might be beneficial to manage the symptoms of allergic inflammation. 

505 Table 6. Immunomodulatory effect of polyphenol-rich dietary intervention studied on 
506 animal models.

Food 
supplement Animal model Methodology Effect Reference

Pinecone from 
Pinus koraiensis

Sarcoma 180-
bearing mice

30, 150 or 300 
mg/kg b.w. oral 

administration of 
polyphenols 

from P. 
koraiensis 

pinecone for 11 
days

Increase of 
functional 

immune cells
164

Green tea Obese rat 
model

Gavage with 500 
mg/kg b.w. for 

90 days

Reduction of 
pro-

inflammatory 
cytokines

166, 167

Apple/cocoa
Balb/c mice 
sensitised to 
ovalbumin

1% polyphenol-
enriched apple 
extracto r 6% 
polyphenol-

enriched cocoa 
extract mixed 

with powdered 
mouse chow 

Reduction of 
pro-

inflammatory 
interleukins 

production in 
mucosa

168
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pellet for 8 
weeks

Persimmon

ICR mice 
administered 
with mast cell 
degranulator

Intraperitoneal 
injection of 1-

100 mg/kg b.w. 
of aqueous 

extract from 
Diospyros kaki

Inhibition of 
histamine 

release from 
mast cells

169

507

508 3.6. Ameliorative effect on ophthalmic diseases 

509 The eyes, essential sensory organs for vision, are quite sensitive to oxidative stress 
510 caused by continuous exposure to ultraviolet and visible light and retinal predisposition 
511 to produce reactive oxygen species170, 171 due to its high metabolic rate and high oxygen 
512 consumption. ROS can also be produced by N-retinylidene-N-retinylethanolamine(A2E) 
513 photo oxidation generating singlet oxygen172 and releases toxic metabolites such as 
514 endoperoxides and epoxides. In addition, oxidative stress may be involved in the 
515 production of pre-inflammatory cytokines in retinal tissue.173 Their defensive system 
516 against oxidative stress decreases with age causing various ophthalmic diseases such as 
517 cataracts, macular degeneration and retinopathy.174, 175,176 Moreover, onset  of these 
518 disorders might be influenced by lifestyle factors such as tobacco smoking , alcohol 
519 abuse or unhealthy diet.  

520 In line with this, diets rich in antioxidant compounds could be interesting in the 
521 prevention and treatment of these diseases. Experimental studies have found that fruit 
522 and vegetables consumption contributes to preserve the vision and even reverse the 
523 visual impairment,174, 177 which might be related, at least partially, by polyphenols.178, 179 
524 180 Some of the beneficial effects of polyphenols include scavenging free radicals, 
525 ameliorating inflammation, and improving ocular blood flow and transduction of visual 
526 signals.181 182

527 Age-related macular degeneration (AMD) is a multifactorial pathology, characterized 
528 by irreversible central vision loss, whose progression is increased by oxidative stress.183 
529 In the search for limiting the oxidative stress involved in AMD and reduce the 
530 progression of this pathology, many antioxidants have been studied. Among them, 
531 natural plant polyphenols have been used in the treatment of AMD. 184-190 Oral 
532 administration of polyphenol-enriched Vaccinium uliginosum L. fractions to Balb/c 
533 male mice reduced retinal damaged induced by exposure to blue light (10000 lux for 1 
534 h/d for 2 weeks). 191

535 Glaucoma induces vision loss by degeneration of retinal ganglion cells and oxidative 
536 stress due to low antioxidant levels is considered one of initiator steps. 190, 192 Therefore, 
537 studies in humans with Ginkgo biloba (40 to 80 mg daily for 1 to 6 months, depending 
538 on the dose) have shown that improve glaucoma.193, 194 Further studies on a rabbit 
539 model showed that topical administration of Ginkgo biloba extract improved intraocular 
540 pressure.195 
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541 Cataract is one of the most prevalent causes of visual impairment. It is mediated by loss 
542 of less transparency, which might be accelerated by high ROS levels.190, 196, 197 Studies 
543 on a rat model showed that the intraperitoneal injection of green tea leaf extract 
544 (Camellia sinensis) in rat inhibited selenite-induced cataractogenesis.198 Likewise, a 
545 recent study in rat pups showed that extracts of Vaccinium uliginosum L. given by 
546 gavage displayed a preventive effect against cataract formation by inhibiting m-calpain-
547 mediated proteolysis and oxidative stress in the lens.199 However, no official consent 
548 has been approved for the use of natural polyphenols for the treatment of ocular diseases 
549 due to their moderate bioavailability in vivo.200Some studies with polyphenols loaded in 
550 nanoparticles, instead of isolated polyphenols, have increased their anti-cataract activity 
551 by improving their antioxidant capacity.197 

552 Besides from controlling the previously discussed T2D symptoms, dietary intervention 
553 has been reported to ameliorate complications derived from this disease such as diabetic 
554 retinopathy. In this way, a study in diabetic rats showed that Bilberry (Vaccinium 
555 myrtillus) extract, reduced retinal degeneration and prevented the diabetic 
556 retinopathy.201 Duarte et al.202 found that cocoa enriched with polyphenols protected the 
557 retina of streptozocin-induced diabetic rats by down-regulating the expression of silent 
558 information regulator 1 (SIRT-1) protein. Furthermore, Ma et al. 203 observed a 
559 correlation between weekly green tea consumption and a decreased risk of diabetic 
560 retinopathy on diabetic volunteers. Taken together, these evidences suggest that an 
561 adequate dietary intervention might ameliorate eye-related diabetes-derived 
562 complications and thus improve patient’s quality-of-life.

563 Table 7. Effect on ophthalmic diseases of polyphenol-rich dietary intervention 
564 evaluated on different animal models.

Food 
supplement Animal model Methodology Effect Reference

BALB/c mice 
male expose to 

blue light

Oral 
administration 
of 25 mg/kg 

b.w., 50 
mg/kg b.w. 

and 100 
mg/kg b.w. 

Reduction of 
retinal damage

191

Vaccinium 
uliginosum L

Rat pups to 
selenite-induced 

cataract 
formation

40 mg/kg 
b.w., 80 

mg/kg b.w. 
and 120 

mg/kg b.w. 
administered 

by gavage

Protection of 
cataract 

formation
199

Ginkgo biloba Rabbit

Oral 
administration 

of 5mg 4 
times a day 

Intraocular 
pressure 

improvement
195
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for 14 days

Green Tea
Wistar rat pups 

to selenite-
induced 

oxidative stress

Intraperitoneal 
administration 
of 68 mg/kg 

b.w.

Reduction of 
cataract 

formation
198

Vaccinium 
myrtillus Diabetic rats

Oral 
administration 
of 100 mg/kg 

b.w. for 6 
weeks

Reduction of 
retinal 

degeneration 
and prevention 

of diabetic 
retinopathy

201

Cocoa
Streptozocin-

induced diabetic 
rats

Daily oral 
administration 
of 0.12, 2.90 

or 22.8 mg/kg 
b.w. for 16 

weeks

Down-
regulation of 

SIRT-1
202

565

566 4. Conclusions

567 Multiple degenerative diseases are characterized by disruption of homeostasis at 
568 different levels, which promotes oxidative and inflammatory environments that lead to 
569 tissue damage and, eventually, systemic malfunction. Thus, capacity of dietary 
570 polyphenols to reduce oxidative stress, whether directly or indirectly, together with the 
571 modulation of inflammation give them the ability to prevent onset and stop progression 
572 of degenerative diseases. This has been widely studied in animal models, as it has been 
573 explained along this work, and results evidence that intake of polyphenol extracts from 
574 different foods are effective in preventing and/or ameliorating symptoms of cancer, 
575 diabetes, ocular and neurodegenerative and cardiovascular diseases. Moreover, different 
576 epidemiological studies have confirmed these results in human, although further 
577 research is needed due to inter-individual variability in most of these studies. In 
578 conclusion, herein we have reviewed the most recent advances regarding the potential 
579 application of the intervention with polyphenol-rich dietary supplementation on the 
580 management of degenerative diseases, both as single agents and as coadjuvants of well-
581 established drugs.
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