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Abstract

Low complexity regions are fragments of protein sequences composed of only a few types of amino acids. These regions frequently
occur in proteins and can play an important role in their functions. However, scientists are mainly focused on regions characterized
by high diversity of amino acid composition. Similarity between regions of protein sequences frequently reflect functional similarity
between them. In this article, we discuss strengths and weaknesses of the similarity analysis of low complexity regions using BLAST,
HHblits and CD-HIT. These methods are considered to be the gold standard in protein similarity analysis and were designed for
comparison of high complexity regions. However, we lack specialized methods that could be used to compare the similarity of low
complexity regions. Therefore, we investigated the existing methods in order to understand how they can be applied to compare
such regions. Our results are supported by exploratory study, discussion of amino acid composition and biological roles of selected
examples. We show that existing methods need improvements to efficiently search for similar low complexity regions. We suggest
features that have to be re-designed specifically for comparing low complexity regions: scoring matrix, multiple sequence alignment,
e-value, local alignment and clustering based on a set of representative sequences. Results of this analysis can either be used to
improve existing methods or to create new methods for the similarity analysis of low complexity regions.

Keywords: comparison methods, low complexity regions, protein sequence similarity

Introduction
Protein sequences are composed of amino acid frag-
ments of varying diversity. Fragments with low diversity
in the amino acid composition are called low complexity
regions (LCRs). Due to their frequent occurrence and
capacity to expand through replication slippage, they can
easily increase protein sequence space and contribute
to novel protein functions. They are known to play a
key role in protein functions and may be relevant to
protein structure [1]. For example, prion-like LCRs are
key regulators of protein solubility and folding [2]. Cyto-
plasmic human Gle1 is hyperphosphorylated in a low-
complexity domain in response to stress [3]. A known LCR
motif RGG/RG is generally required for RNA binding and
phase separation [4]. LCRs may also form labile cross-β
polymers and hydrogel droplets [5].

Methods and algorithms for searching for similari-
ties among protein sequences have always been impor-
tant tools in biology that allowed researchers to pre-
dict protein functions from the sequence data alone.

Many approaches are known from the literature that
are suitable for searching for similar protein sequences.
However, these methods are based on statistical models
that are optimized to compare high complexity frag-
ments. Due to that, for many years, protein regions that
are characterized by low complexity of amino acids had
been ignored and excluded from such type of analysis.

Recently, the research community became more inter-
ested in the so-called Dark Proteome that is mostly com-
posed of intrinsically disordered proteins or proteins that
contain intrinsically disordered regions [6–8]. Therefore,
nowadays, it is crucial to revisit state-of-the art methods
of protein sequence comparison in order to understand
if and how they can be applied to analyse similarity of
LCRs.

The community has already made some efforts to
develop tools that are capable of automatically assigning
functional roles of LCRs. One such example is the web
server LCR hound [9] which identifies Uniprot-annotated
prokaryotic LCR sequences that have the closest amino
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acid or di-amino acid content in comparison to the query
LCR sequence and based on this predicts a potential
role of the query LCR. However, the prediction algorithm
is using an amino acid content rather than sequence
similarity, and therefore, we still lack of state-of-the-
art methods for searching for similar LCRs in protein
sequences.

Here, we present a study that compares the perfor-
mance of three state-of-the art methods for searching
for similarities among protein sequences: BLAST [10],
HHblits [11] and CD-HIT [12]. By analysing how these
methods perform in a task of searching for similar LCRs,
we try to answer the following question: can these meth-
ods be applied to analyze LCRs or maybe new methods
have to be invented? According to our best knowledge,
scientists lack methods designed specifically for anal-
yses of similarities among low complexity fragments
of protein sequences. The aim of this study is also to
raise awareness that the statistical models created for
High Complexity Regions (HCRs) of proteins cannot be
applied directly for a task of low complexity sequences
comparison.

Methods
The workflow of our experimental approach is shown
in Figure 1. In the analysis, we need high-quality anno-
tated data, and therefore, we used the UniProtKB/Swiss-
Prot database (version: April of 2020) [13]. We identified
LCRs and we divided all sequences into LCR and HCR
parts. If a sequence had several LCRs, it was split into
these different LCRs and the remaining HCR part of the
sequence. Then, we created two datasets with sequences
collected in the previous step for both LCRs and HCRs. At
this point, the dataset contained amino acid sequences
with simple annotations (UniProt AC and a name of a
protein it belongs to). In the next step, we added infor-
mation about protein families and analysed this set of
sequences with BLAST, HHblits and CD-HIT tools. Then,
we evaluated these methods using exploratory analy-
sis, by looking at amino acid composition and biologi-
cal role of selected results based on UniProtKB/Swiss-
Prot functional annotations. To select interesting cases
from BLAST and HHblits results, we filtered out results
from the same families. We performed the entire pro-
cess several times adjusting the parameters for each
method to achieve the best results. To select similar
sequences, we used e-value threshold equal to 0.0001 for
BLAST and HHblits. The source code for the entire work-
flow is available for download (https://doi.org/10.5281/
zenodo.6759535).

LCR extraction
The definition of LCR in a protein sequence is not well
specified. General agreement is that LCRs in proteins
should have an excess of one or a few types of amino acid
residues, but still, there is no consensus which metric is

Figure 1. From the UniProtKB/Swiss-Prot database, we extracted LCRs
and created two distinct datasets (HCRs and LCRs) enriched with family
annotation that we analysed with BLAST, HHblits and CD-HIT. Then, we
compared obtained similarity results and examined selected examples.

most appropriate. LCRs can be composed of homopoly-
mers, short tandem repeats and irregular regions with
low entropy. The scientific literature provides different
terminology and definitions of these regions that are
typically based on the sequence composition and period-
icity [14]. CAST [15] and fLPS [16] are the methods capa-
ble of detecting compositionally biased regions (CBRs).
While the usage of the terms LCR and CBR has been
interchangeable in many contexts, use of one term or
the other depends on the focus of the method used for
their detection, i.e. sequence variability (LCRs) or amino
acid composition (CBRs), respectively [14]. Another type
of LCRs are short tandem repeats which are character-
ized by amino acid periodicity (i.e. repetitiveness). The
example of methods that are designed specifically to
discover short tandem repeats is XSTREAM [17] and T-
REKS [18]. SIMPLE [19] is another method that allows to
detect so-called cryptic repeats [19] which are regions of
proteins containing overrepresentations of short amino
acid repeats.
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Figure 2. Division of the exemplary sequence (UniProtID: P39413) into a
HCRs and LCRs. Panel (A) shows the whole sequence with identified LCRs
highlighted in red. Panel (B) shows extracted LCRs and panel (C) presents
all remaining non-LCR residues combined into an HCR part.

Here, we consider LCRs as sequences characterised by
low entropy in amino acids composition. This assump-
tion is based on the definition provided by authors of the
SEG method which is one of the most popular tools for
searching for LCRs [20].

To identify LCRs, we used SEG strict parameters (K1:
1.5, K2: 1.8, window: 15) which have been successfully
employed in LCR analyses. Strict parameters of SEG
ensure that identified regions are strongly composition-
ally biased while also allowing for a low amino acid
diversity [21, 22]. The first dataset is for LCRs and the
second one for HCRs. Each sequence that includes one
or more LCRs is split into its corresponding LCRs, while
the remaining residues are joined creating the HCR part
of the sequence as presented in Figure 2. As a result, we
found 26 333 LCRs in 16 418 proteins from which we cre-
ated two distinct datasets. The number of HCRs is equal
to the number of proteins in the database that is 562 252.

Creation of databases for LCRs and HCRs
The main purpose of our research is to compare canon-
ical sequence searching/clustering methods for LCRs;
however, we decided to compare HCRs as a control exper-
iment that proves correctness of our workflow.

Data enrichment
In the first step, we enriched protein sequences with
information about their protein families based on
UniprotKB/Swiss-Prot annotations. We need this infor-
mation to exclude from the analysis similar sequences
that are derived from the same family. The rationale
behind excluding these sequences from direct compar-
ison was because we expected a high level of similarity
of protein sequences within the family. However, in our
analyses, we wanted to focus on non-obvious cases
where HCRs from two proteins are different but LCRs
are similar.

Parameters of the methods
This section presents in details the parameters used for
analysis and adjustment of their values for analysis of
low complexity parts of the sequences as by default, the

methods’ parameters are optimised for high complexity
parts (HCPs) of sequences.

BLAST
BLAST is the first method we used to search for similar
sequences. It uses Smith–Waterman algorithm to cal-
culate local alignment based on a query and database
sequences [10]. We converted fasta formatted datasets to
BLAST-specific format.

Below, we enumerate modified parameters. We set e-
value to 0.0001 and max_target_seqs to maximal possible
value (1 073 741 798). Additionally, to improve searching
for LCRs using available BLAST options, we changed task
and comp_based_stats parameters. A study of selected
BLAST parameter settings that can be applied for LCRs
analysis can be found in [23]. Task option is responsible
for the default parameter set adjusted for specific types
of sequences. Possible options are: blastp, blastp-fast and
blastp-short. Blastp-short makes the following modifica-
tions to the default options: sets scoring matrix to PAM30,
sets gap opening cost to 9, sets gap extension cost to 1,
sets word size to 2, clears filter options and changes e-
value (which is not applicable in our case because we
explicitly set it). We left the scoring matrix parameter
unchanged with its default value of PAM30 since it is
recommended for short sequences [24]. Comp_based_stats
option is responsible for composition-based statistics.
This option changes the scoring matrix by recalculating
score values of frequently occurring amino acids in the
query sequence, which is mainly caused by LCRs. It sim-
ply decreases the significance of LCRs while searching
[25], and therefore, we turned it off.

HHblits

HHblits is able to search for distantly related proteins
that share a common ancestor. It is a part of the HH-Suite
package and it uses Hidden Markov Model profiles to find
similar sequences using HMM-HMM comparison [11].
Therefore, the query sequence is converted into an HMM
profile. Database also stores HMM profiles which are con-
densed forms of multiple sequence alignments (MSAs)
and represent protein sequences. In order to search for
similar sequences, HHblits requires to create a database
of profiles of Hidden Markov Models. We used uniclust-
pipeline to create them for both LCRs and HCRs [26].

Uniclust-pipeline uses MMseqs to cluster similar
sequences and to create their Hidden Markov Model
profiles [26, 27]. We created two distinct datasets for both
HCRs and LCRs. For HCRs, we used standard workflow,
and for LCRs, we slightly modified it. To analyse LCRs
with MMseqs tool, we changed two parameters. The first
parameter is mask which is responsible for choosing a
masking strategy and the second is comp-bias-corr which
changes correction for locally biased composition of
amino acids. While analysing LCRs, it is recommended
to turn off both of these parameters by setting their
values to 0. We also removed the max-seqs parameter as
it is deprecated and not available in the newest version
of MMseqs. The result of running uniclust-pipeline
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Figure 3. Possible ways of creating MSAs for LCRs collected from Q9V727, D3ZKD3 and Q5BGE2, respectively, that can generate different HMM profiles.
These alignments were obtained using three different methods for MSA which are (A) MUSCLE, (B) Kalign and (C) Clustal Omega.

is several databases created with different identity
thresholds: 10, 20 and 30%. From these results, we
selected Uniboost30, a database with highest sequence
identity that is equal to 30%. However, the threshold is
still low, and therefore, the results obtained using this
dataset contain more distant similarities.

We performed the analyses of both HCRs and LCRs
using the same e-value as in the case of BLAST (0.0001).
For LCR analysis, we modified the following parame-
ters: id, diff , norealign, sc and noprefilt. These parame-
ters control a number of results that are relevant to
query sequences and their detailed analysis is provided
in Supplementary material. Id parameter changes maxi-
mal pairwise sequence identity. We set this option to 100
(default is 90) because there are LCR families that are
highly similar in their amino acid patterns. By default,
HHblits selects the most diverse set of sequences, but
here, we wanted to analyse the most similar ones, and
therefore, we turned this setting off (diff parameter).
Setting the norealign parameter disables MAC algorithm
which significantly increases the number of matches
[28]. Sc option changes the method which is used to
calculate amino acid score. We examined all available
parameters, and based on the empirical analyses, we
chose the value of 0 which uses background frequencies.
Default value for this parameter is optimized for com-
positional bias correction [29]. noprefilt parameter was
introduced to speed up searches by filtering out cases
that are ‘obviously’ not similar. However, we noticed that
this parameter is filtering too many similar LCRs, so
finally we disabled prefiltering.

HHblits database contains profiles of HMMs which
are a condensed form of MSA. Here, we notice an issue
related to the MSA creation. In Figure 3, we can see
three protein alignments of three different subsequences
aligned by three different tools: MUSCLE [30], Kalign
[31] and Clustal Omega [32]. All of these sequences are
homopolymers of alanine, but two of them have a muta-
tion into valine. The problem is that MSA may be created
in several ways. For example, in Figure 3A, the third
sequence was aligned to others by inserting gaps at the
beginning of the sequence, while in Figure 3B, valine is
aligned properly. Figure 3C presents the actual alignment
based on Clustal Omega pipeline to create profiles of
HMMs for HHblits. Different ways to obtain MSA results
in different profiles HMM which influences searching
outcome, because a particular position will be scored
differently for given amino acid.

CD-HIT

The third method we analysed in this work is CD-HIT
which uses a greedy incremental algorithm. In a nutshell,

first all sequences are sorted by length in descendent
order. Then, the longest sequence creates the first cluster.
The sequence that creates a cluster is called a represen-
tative and all the following sequences are being aligned
to it to determine whether they should be included into
this cluster or not. If the similarity score of a partic-
ular aligned sequence is higher than a threshold, the
sequence is added to the corresponding cluster. Other-
wise, the sequence creates a new cluster and becomes
its representative [33]. To speed up comparison time,
short-word filtering and statistically based filtering were
introduced [34]. We left default parameters unchanged
for HCRs and we changed the minimal accepted length of
sequences to its lowest value for LCRs, which is 4, since
these regions are frequently short. We provide detailed
analysis of this parameter in Supplementary material.

Results analysis
We performed exploratory data analysis by investigating:
(i) how the results from the selected methods overlap
with each other, (ii) what is the average sequence sim-
ilarity and (iii) what is the number of alignments for a
given length? Finally, we present selected cases to show
how BLAST, HHblits and CD-HIT analyse LCRs. We also
analysed amino acid composition and biological roles of
selected examples. To find more interesting cases, we
filtered out results (hits) that include sequences from the
same families for BLAST and HHblits. We assumed that
minimal length of LCR is 6 amino acids.

To investigate biological features of the selected pro-
teins, we performed a three layer functional analysis
composed of the following stages: (i) We scanned pop-
ular DNA/protein databases (UniProt, RefSeq, STRING,
Ensembl) [13, 35–37], (ii) Next we focused on the Pfam
domain database [38] and (iii) the last stage was reading
articles that mentioned specific proteins/protein families
and their functional analyses.

Results
Quantitative results
To quantitatively compare the results from the three
methods, we created Venn diagrams (Figure 4). In
addition, we used the HCR results as a reference for
the comparison. BLAST and HHblits search for similar
sequences; therefore, we have created similar pairs by
combining a query sequence with each hit found by a
particular method. CD-HIT is a tool for clustering highly
homologous sequences [33]. We created pairs of similar
sequences for CD-HIT by combining all possible pairs
of sequences in clusters. Table 1 shows the number
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Table 1. In case of HCRs, HHblits found the highest number of similarities, while for LCRs, it was BLAST. CD-HIT reported low
similarity between LCRs. We combined all similar pairs found by each method and calculated percentages which sum up to 100% in
each of the columns

HCR LCR HCRs without same
families in pairs

LCRs without same
families in pairs

BLAST 3,205,592 (15.83%) 11,507,921 (71.58%) 46,413 (0.65%) 4,550,663 (67.56%)
HHblits 15,296,119 (75.55%) 4,331,254 (26.94%) 7,096,205 (99.32%) 2,105,748 (31.26%)
CD-HIT 1,745,171 (8.62%) 237,782 (1.48%) 2,477 (0.03%) 79,705 (1.18%)

of similar pairs found by each method, while Figure 4
presents an overlap among them.

As shown in Table 1, the highest number of similar
pairs for HCR results is found by HHblits (75.55% of
all HCR pairs). If we remove pairs where both proteins
belong to the same families, then HHblits results rises to
99.32% of all similar pairs found by all the methods. This
was expected because HHblits is the most sensitive of the
selected tools. On the other hand, in the case of LCRs, the
highest number of similarities were found using BLAST
which is over 71%, while HHblits results cover less than
27%. If we remove pairs that come from the same families
in HCR parts for BLAST, then we remove almost 99% of
similar pairs. In the case of LCRs, this number is about
60%. From all analysed methods, the lowest number of
similar pairs was found by CD-HIT. In case of HCRs, it
was 8.62% of all pairs, while for LCRs, it was only 1.48%.
This may be due to its design and application as CD-HIT
is mostly used to find sequence redundancy in datasets.

In Figure 4, we can observe that results for BLAST and
HHblits are rather diverged in all cases. Only 1.6% of
all HCR sequence pairs were found by both BLAST and
HHblits and 2.2% in the case of LCRs. The differences
between BLAST and HHblits results can be explained
by the fact that BLAST finds closely related sequences,
because it simply reports alignments with the lowest e-
value. On the other hand, HHblits uses precalculated
uniboost dataset that is optimized to boost diversity
in sequences, and therefore, it finds alignments with
more distant relationship. The intersection of CD-HIT
and HHblits also has a small number of similar pairs.
This observation is expected, because HHblits searches
for distinct similarities while CD-HIT searches for close
similarities or even can be used to detect redundancy in
databases. Intersection of BLAST and CD-HIT shows that
for HCRs, almost half of the results from CD-HIT overlaps
with BLAST ( 49%). In the case of LCRs, most of the results
are common with BLAST ( 92%). Intersection of all of the
methods is poor for both HCRs and LCRs which may sug-
gest that each of the selected methods covers different
types of similarities. Remarkably, removing similar pairs
that belong to the same families have a huge impact on
HCR results, while LCR results are less affected.

For BLAST and HHblits results, we sorted alignments
by e-value and divided them into 10 groups where each
group contains about 10% of sequences. Therefore, the
group size of BLAST is approximately 888 thousand pairs
each and the group size of HHblits is approximately

222 thousand pairs. Within each group, we compared
lengths of alignments to their similarity and the number
of alignments. The similarity in an alignment between
two sequences is denoted by percentage of similar amino
acids where similar amino acids are these which have
positive score in a scoring matrix.

For BLAST, the results for three best percentiles (the
lowest e-value) differ from the results for other per-
centiles (Figure 5A). It suggests that for BLAST, e-value is
length-dependent, and indeed, we can notice that length
of alignments increases with decreasing e-value. Same
situation, at least in the range from 0 to 100 amino acids,
is visible in Figure 5B which shows average similarity
of alignments for a given length. Along with increasing
e-value, the average similarity in the percentiles tends
to overlap. We can observe that alignments with lower
e-value are longer and more similar than alignments
with higher e-value, which is also reflected in higher
score of alignments. Interestingly, HHblits results are
different. In Figure 5C, e-value groups overlap which sug-
gests that e-value is length-independent. In Figure 5D,
we can observe that all groups are clearly divergent
for alignments below 40, which is most of the results.
Therefore, e-value in the HHblits results describes rather
similarities between sequences than their length. It also
indicates that alignments longer than 18aa are below
60% of similarity. Based on this results, we can notice
that BLAST alignments are longer and more similar than
HHblits alignments.

Corresponding figure for HCRs (Figure S1, see Sup-
plementary Data available online at http://bib.oxford
journals.org/) and comparison of lengths of alignments
in different e-value percentiles for LCRs and HCRs are
provided in Supplementary materials.

Qualitative results
In this section, we discuss and analyse the most inter-
esting cases (sequence alignments) obtained with the
different methods. Here, we show data that indicate the
following features: (i) some of the methods’ features are
more appropriate for HCRs than LCRs and (ii) similarity
of LCR sequences may but does not have to indicate a
similar function of these sequences.

BLAST

For BLAST, we selected 5 representative alignments with
their e-values that illustrate different problematic cases.
At least, one of the proteins from alignments belongs
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Figure 4. Venn diagrams present overlaps of the similar sequence pairs obtained by each of the methods. The only significant overlap is between BLAST
and CD-HIT results. In the case of LCRs, CD-HIT results are subset of BLAST what is different for HCRs, where less than a half of results are common with
BLAST. Other overlaps are slight, suggesting that the methods have different purposes. Panel (A) presents results for all HCRs, while panel (C) presents
results for HCRs without pairs that belong to the same family. Panels (B, D) present the corresponding results for LCRs. Numbers in diagrams show the
number of similar pairs of fragments found by specific method(s). Percentage determines how many pairs belong to the area versus all.

to the krueppel C2H2-type zinc-finger protein family.
Selected alignments are presented in Table 2

The first alignment presents homopolymers of ser-
ine that consist of 25 amino acids with e-value equal
to 1, 10E − 17 (Table 2). The second alignment contains
homopolymers of glutamine that consists of 23 amino
acids. It is two amino acid shorter than the first align-
ment but has a lower e-value (1, 40E−23). This situation is
caused by match score assigned to serine and glutamine
in the PAM matrix [39]. Matches in this matrix have dif-
ferent scores; therefore, two homopolymers of different
amino acids may have different scores.

The third, the fourth and the fifth examples show
other issues that we can observe if we use BLAST to
analyse similarities between LCRs. All of these align-
ments are 12 aa long. The third and the fifth alignments
consist of homopolymers of proline. The third one is
a perfect match over the total length of LCRs. On the
other hand, the fifth alignment consists of two LCRs with
different lengths resulting in an alignment with a shorter
LCR length. As a result, both alignments have similar
lengths and scores. However, the length of homopolymer

in an alignment may be crucial for its function [40].
Therefore, the fourth alignment is much better than the
fifth (because both homopolymers have the same length)
but have a worse e-value than the fifth alignment. N-
terminal of the bottom sequence in the 4th example is
‘AAPTAAPAAAATPAPTPVA’ which is an imperfection of
the SEG algorithm that occurs because SEG is not able
to distinguish LCRs in the first part of the subsequence
from the second part that is a homopolymer of proline.

We used this opportunity to analyze biological prop-
erties of the LCR pairs presented in Table 2. Remarkably,
the first pair represents a polyserine stretch (Table 2). The
zinc finger 865 protein is a putative transcription factor
composed mainly of zinc finger motifs and an unde-
fined low complexity N end region. Zinc fingers bind to
DNA, whereas the latter fragment is usually responsible
for activation or repression of transcription [41]. Serine-
rich regions are usually modified and most probably
function as modulators of protein binding [42]. ADP-
ribosylation factor-like protein 6-interacting protein 4
(ARL6IP4) is most probably involved in splicing in nuclear
speckles; however, its exact role is unknown [43, 44]. The
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Figure 5. BLAST’s e-value is length and similarity-dependent, while HHblits e-value is only similarity dependent. We sorted results by e-value and
divided them into 10 groups of similar size. (A, C) show the distribution of alignments by length. (B, D) illustrate how alignments of a given length are
averagely similar.

Table 2. BLAST can give ambiguous results; longer homopolymer of serine has higher e-value than shorter homopolymer of glutamine
even though both homopolymers are aligned without penalty. Table shows perfect alignments collected from BLAST. It compares
proteins from krueppel C2H2-type zinc-finger protein family (upper sequences) with proteins from other families (bottom sequences)

# Protein name Alignments e-value

1 Zinc finger protein 865 (P0CJ78) SSSSSSSSSSSSSSSSSSSSSSSSS (92 - 116) 1,10E-17
midline SSSSSSSSSSSSSSSSSSSSSSSSS

ADP-ribosylation factor-like protein 6-interacting protein 4
(Q66PJ3)

SSSSSSSSSSSSSSSSSSSSSSSSS (257 - 281)

2 Zinc finger protein rotund (Q9VI93) QQQQQQQQQQQQQQQQQQQQQQQ (739 - 761) 1,40E-23
midline QQQQQQQQQQQQQQQQQQQQQQQ

Ataxin-2 (Q99700) QQQQQQQQQQQQQQQQQQQQQQQ (165 - 187)
3 Zinc finger homeobox protein 4 (Q86UP3) PPPPPPPPPPPP (3112 - 3123) 3,61E-10

midline PPPPPPPPPPPP

Inactive histone-lysine N-methyltransferase 2E (Q3UG20) PPPPPPPPPPPP (1719 - 1730)
4 Zinc finger homeobox protein 4 (Q86UP3) PPPPPPPPPPPP (3112 - 3123) 1,84E-09

midline PPPPPPPPPPPP

Translation initiation factor IF-2 (Q2G5E7) AAPTAAPAAAATPAPTPVAPPPPPPPPPPPP (53 - 83)
5 Zinc finger homeobox protein 4 (Q86UP3) PPPPPPPPPPPP (3112 - 3123) 7,75E-10

midline PPPPPPPPPPPP

Glyceraldehyde-3-phosphate dehydrogenase, testis-specific
(Q64467)

PPPPPPPPPPPPPPPPPPPP (83 - 99)

second pair represents human ataxin-2 and fly’s rotund
proteins. Ataxin-2 polyQ region seems to be responsible
for dimerization/aggregationr[45–47]. Since the function
of Drosophila rotund’s polyQ is unknown, the paral-
lel notion of dimerization is attractive in the context

of developmental pathway in which rotund takes part
[48] [49].

Moreover, a rare function can be contributed to
the protein from three last examples. The polyproline
stretch of ZFHX4, the zinc finger homeobox protein 4,
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Table 3. HHblits found more distant similarities. We selected alignment results where one of the sequence is from chloroplast sensor
kinase, chloroplastic protein. The midline, ‘—’ mark indicates score above 1.5, while ‘+’ indicates score between 0.5 and 1.5

# Protein name Alignments e-value

1 Chloroplast sensor kinase, chloroplastic (F4HVG8) SSSSSSSSSSS (39 - 49) 1.6e-15
midline ||||+||||||
Lamellipodin (Q70E73) SLSSSSIKSGSSSSS (527 - 541)

2 Chloroplast sensor kinase, chloroplastic (F4HVG8) SSSSSSSSSSS (39 - 49) 3.2e-13
midline |||||||||||

E3 ubiquitin-protein ligase UBR4 (Q5T4S7) AALAASSGSSSASSSSAPVAASS (3333 - 3355)
3 Chloroplast sensor kinase, chloroplastic (F4HVG8) SSSSSSSSSSS (39 - 49) 5.9e-15

midline ||||+||||||
Dual specificity tyrosine-phosphorylation-regulated
kinase 1B (Q9Y463)

SSSTASSISSSGGSSGSSS (459 - 477)

4 Chloroplast sensor kinase, chloroplastic (F4HVG8) SSSSSSSSSSS (39 - 49) 1.4e-14
midline |||||||||||

Nucleolar and coiled-body phosphoprotein 1 (Q14978) DSSSDSDSSSSEEEEE (467 - 482)
5 Chloroplast sensor kinase, chloroplastic (F4HVG8) SSSSSSSSSSS (39 - 49) 9.6e-13

midline |||||+|||||
Krueppel-like factor 16 (Q9BXK1) PGGASPASSSSAASSPSSG (94 - 112)

serves as an assembly element for the human butyryl-
cholinesterase into a tetramer [50–52]. We could not find
any other functions ascribed to polyP of ZFHX4. The
inactive histone-lysine N-methyltransferase 2E (named
MLL5, KMT2E) uses the C-terminal part composed of
3 large proline-rich fragments to interact with natural
cytotoxicity receptors of the NKp44 natural killer cells
[53]. We could not identify any specific function(s) for
the translation initiator factor IF-2. In the case of the N
terminus containing the proline-rich region of testis-
specific glyceraldehyde-3-phosphate dehydrogenase
(GAPDHS), it was shown to bind to the tail sperm
cytoskeleton [54–56] and to stabilize the structure of the
enzyme itself [57].

HHblits

Table 3 presents selected cases from the HHblits analysis.
In each example, the query sequence (chloroplast sensor
kinase, chloroplastic) is the same and it is a poly-S
sequence without mutations. All examples have the
same midline length, but none of them is perfectly
matched to the query. However, they have lower e-value
in comparison to perfectly matched alignments from
BLAST of the same length.

For HHblits, alignments with a lower e-value are less
similar than alignments with higher e-value found by
BLAST, even if the input protein dataset is the same in
both cases. Perfect alignment of serine of the same length
in case of BLAST has an e-value equal to 2.95581e − 05
which is a huge difference in comparison to HHblits
where the highest e-value from imperfect match is 3.2e−
13 (Table 3). Additionally, HHblits was not able to find
perfect matches for a given region.

The first alignment has a better score and e-value
than the second. Both of them have 100% similarity.
Additionally, the second alignment has 2 mismatches
and worse e-value than the first one with 3 mismatches.
The third, the fourth and the fifth alignments have

Figure 6. Protein low complexity region alignment of the human dual
specificity tyrosine-phosphorylation-regulated kinase 1B (DYRK1B) and
the small capsomere-interacting protein (pp150, pUL32, m48.2) of the
cytomegalovirus obtained using FFAS03 algorithm [62].

three mismatches and are assigned slightly different
e-value, score and similarity. The third and the fifth hit
sequences are 19 amino acids in length. Furthermore,
the biggest difference among e-values is between the
third and the fifth alignments. The fourth example
is in the middle but has a different hit sequence
length (16 aa).

For most of the LCRs from Table 3, we were not
able to assign functions based on the literature search.
However, we found an interesting similarity of the dual
specificity tyrosine-phosphorylation-regulated kinase 1B
(DYRK1B) to the small capsomere-interacting protein
(pp150, pUL32, m48.2) of the cytomegalovirus (Figure 6).
Pp150 is known to bind to capsid proteins, especially
to Tri1, Tri2A and Tri2B [58, 59]. Experiments suggest
that tegument protein pp150 contributes to a netlike
layer that may stabilize the HCMV capsid [60]. LCR from
Chloroplast sensor kinase, chloroplastic (F4HVG8) is
located in the region of the transit peptide and it has
to be rich in serine according to von Heijne et al. [61]. This
serine homopolymer significantly enriches this region in
the required type of amino acid which may be crucial
to gain its function. We do not know the function of the
LCR located in the Krueppel-like factor 16 (Q9BXK1). By
similarity to the sensor kinase LCR and close vicinity to
3 zinc fingers, we speculate that it may interact with
different proteins as a hinge structure.

Another example of similarity to the same serine-rich
fragment of the chloroplast sensor kinase is the nucleolar
and coiled-body phosphoprotein 1 (Nopp1, NOLC1)
which acts as a platform to connect RNA polymerase
I with enzymes responsible for ribosomal processing
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and modification [63]. Experiments suggest that this
serine-rich fragment may be important in binding the
TFIIB transcription factor [64].

CD-HIT

Our analysis of LCR results from CD-HIT is slightly dif-
ferent in comparison to BLAST and HHblits as results of
CD-HIT are in the form of sequence clusters. Since the
number of the sequences returned by CD-HIT was sig-
nificantly smaller in comparison to BLAST and HHblits
(Figure 4), we decided not to remove pairs in which pro-
teins come from the same family. We noticed several
interesting facts while analysing clusters created by the
CD-HIT method.

In the Table 4, cluster 1 sequence P14922 is the repre-
sentative of the cluster and consists of a tandem repeat
of glutamine and alanine followed by a homopolymer
of glutamine. This representative sequence joins two
different types of LCRs to the cluster: homopolymers
of glutamine and short tandem repeats of glutamine
and alanine. As a result, we have sequences that are
similar to representatives but it does not mean that other
sequences in clusters are similar to each other. Next
disadvantage of this approach is that homopolymers of
glutamine (Q0CQ46) join the cluster where the represen-
tative sequence (P14922) is a combination of two types
of LCRs. On the other hand, some of homopolymers of
glutamine join clusters where the representative is also
a homopolymer of glutamine. In such a case, we have
wrong situation where homopolymers of glutamine are
spreaded among different clusters.

Another disadvantage is that CD-HIT creates two dif-
ferent clusters from two highly similar sequences from
composition and length perspectives. Table 4 contains
an example of this situation. Sequence with Uniprot
AC Q8TF68 which belongs to cluster 6 and sequence
Q9EQJ4 which belongs to cluster 7 are highly similar
but were assigned to different clusters as representative
sequences. On the other hand, cluster 4 consists of the
orphan sequence (Q9ZTX8). However, we can notice
that this sequence is similar to the representative
sequence in cluster 3. These results are correct because
these sequences have different repetitive patterns. The
sequence in cluster 4 is composed of the LSQQQQQQ
motif, while the representative sequence in cluster 3 is
composed of the LQQQQQ motif.

The fifth cluster from Table 4 (5th row) consists of
serine homopolymers of different lengths. LCR from pro-
tein Q75JC9 has the longest sequence with 306 serines.
The same cluster contains a region from P78424 with
11 serines. Such differences in length can be reduced
by changing the cutoff option of CD-HIT, which may be
adjusted by the user for a specific problem. Higher values
of the cutoff option results in lower diversity of sequence
lengths in clusters. By default, the parameter is turned
off. Detailed analysis of this parameter is provided in
Supplementary material.

Discussion and conclusions
Our analysis confirms that selected methods are
most efficient for comparing high complexity protein
sequences as they rely on statistical models designed for
sequences with diverse amino acid composition. This is
why masking low complexity parts improves searching
for homologous proteins [25]. An obvious way to include
LCRs into the analysis is to disable the masking. This still
does not solve the problem related to the fact that these
methods were optimized for HCPs of sequences.

The methods analysed in this paper use general pur-
pose scoring matrices. They are efficient to align typical
protein sequences but fail while applying them for non-
standard amino acid composition of sequences such as
LCRs [65]. For example, BLOSUM, one of the most popular
scoring matrix, was built from the BLOCK database which
contained only about a promile of proteins with LCRs
[66]. Sequence regions in proteins with non-standard
amino acid composition (especially LCRs) have their own
structural and amino acid preferences [1, 65]. For exam-
ple, A-rich and L-rich regions promote alpha-helix for-
mation, while H-rich and P-rich regions frequently over-
lap with disorder regions [67]. Whenever possible, it is
recommended to use specialised scoring matrices for
different types of protein domains such as intrinsically
disordered regions [68]. Unfortunately, many tools for
protein sequence comparison lack of parameter which
enable scoring matrix selection or they allow to select
predefined set of matrices only.

MSA and consequently a dataset of profiles of Hidden
Markov Models for LCRs may be created in many dif-
ferent ways. One problematic case is shown in Figure 3
where three selected tools gave three different results.
Only one method was able to align the valine correctly.
The problem presented is well known as shift-errors (the
erroneous positioning of a single indel whose length is
preserved) and occurs in protein and genome sequences
[69]. Such kind of error is especially abundant in LCR
alignments. To solve this kind of error, we need data
about evolution of proteins, but in many cases, it is lim-
ited due to lack of ancestral sequences [70]. MSA creation
is a general issue related to HCRs as well. It is well known
that automatically generated MSA need to be manually
curated [71, 72].

E-value is a statistic useful while searching for sim-
ilarities that have biological meaning as it provide the
estimate if a particular similar sequence may occur in a
database by a chance [73]. However, in the case of LCRs,
especially homopolymers, the number of even identical
sequences in a given database may vary a lot because
in nature, some of homopolymers occur more frequently
than others [74]. Therefore, to assess the significance of
an alignment of LCRs, we suggest to pay more attention
to score, identity and similarity metrics than e-value.

Local alignment causes loss of information about
length of longer LCRs than query sequence. Such a case
is presented in Table 2 for homopolymers of proline
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Table 4. CD-HIT places dissimilar LCRs to the same clusters and similar LCRs to different clusters. Sequences where ∗ is added to
Uniprot AC are representatives of clusters

# Example sequences in cluster Uniprot AC Number of LCRs
in cluster

1 QQQQQQQQAQQQ Q0CQ46 8 (99 cluster)
QAQAQAQAQAQAQAQAQ Q5ABZ2
QLQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAHAQ

AQAQAQAQAQAQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQLQPLPRQ

QLQQ

P14922∗

2 GAGGGGGGGGGGGGSGGGGGGGGAGGAGGAAAAAAGAGAVAAQAQAQAA

AAAAAAAAAAAGGGGGGGYGSSSSGYGV

E9Q4N7∗ 201(301 cluster)

AAAAAAAAAAAAAAA P35453
GGGGGGGGGTGGGGGGG O77215

3 QQQQQQQEQKQQLQQQQQQQQQLQQQQQQQQQQ P04725 3 (233 cluster)
LQQLQQQQQLQQQQQLQQQQQQQLQQQQQLQQQQLQQQQQQQQLQQQQQ

QQLQQQQQQLQQQQQQQQQQFQQQQQQQQ

O14686∗

LQRQRQQQQLQQQQQQQLQQQQ P52288
4 LQQQLSQQQQQLSQQQQQQQQLSQQQQQQLSQQQQQQLSQQQQQQLSQQ

QQQQ

Q9ZTX8∗ 1 (743 cluster)

5 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS Q8BTI8 119 (11 cluster)
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

SSSSSSSSSSSS

Q75JC9∗

SSSSSSSSSSS P78424
6 QQQVQAAAAAAAVAQAQAQAQAQAQAQAQAQAQAQASQASQQQQQQQQQ

QQQQQQQ

Q8TF68∗ 1 (625 cluster)

7 QQQVQAAAAAAAVAQAQAQAQAQAQAQAQAQAQAQAQAQAQASQASQQQ

QQQQ

Q9EQJ4∗ 1 (723 cluster)

(alignment 5). BLAST compares entire poly-P region
from Zinc finger homeobox protein 4 protein to only a
part of poly-P region from Glyceraldehyde-3-phosphate
dehydrogenase,testis-specific protein. Therefore, local align-
ment based tools lose information about difference
in LCR lengths. However, current knowledge says that
homopolymer length may affect protein function. For
instance, poly-Q region may cause neurological disease
if it reach a given length [75]. Therefore, differences in
lengths should be somehow penalized in LCR alignments
for example by comparing them globally. Another
approach to analyse the similarity of LCRs found in the
literature is a metric based on Jaccard index between
seqeunces [76]. In this solution, the Jaccard score may be
easily penalised by difference in the number of residues
between composition vectors.

Selection of representative sequences in CD-HIT may
result in wrong assignment of sequences of different
types of LCRs. This is especially visible in LCRs that
consist of two different types of LCRs. As mentioned in
Results section, if a representative sequence consists of
two types of LCRs, then three types of LCRs may join
this cluster: LCRs of the first type, LCRs of the second
type and the combination of both LCRs. As a result, a
single cluster contains different types of LCRs. Such a
scenario is present in examples 1 and 2 in Table 4. The
problem occurs because CD-HIT uses local alignment to

join sequences to cluster that are similar to representa-
tive. A metric designed for LCR comparison is crucial for
better performance of general purpose protein sequence
clustering since many methods use it to create clusters
[77, 78]. Another interesting approach to cluster LCRs is
through tagging them by their types [79].

Even if we showed that standard methods are not
appropriate for the similarity analysis of LCRs we could
identify some examples that are statistically sound (see
Results section for BLAST and HHblits). In this work, we
collected a few examples of LCR similarity/identity that
may follow the rule of transitivity. If the function of one
LCR is known and we show its similarity to another LCR,
then we may hypothesize that the role of the second LCR
may be identical or similar, e.g. if LCR1 binds a protein,
we may argue for an analogous binding mechanism of a
similar LCR2.

Our work focuses on three state-of-the-art methods
for protein sequence comparison that are based on the
most popular approaches for protein similarity analysis
such as local alignment or profiles of Hidden Markov
Models. There are other tools for protein sequence com-
parison that can be found in the literature, but they
usually rely on similar approaches. In this paper, we point
out why these methods are not suitable for LCR analysis.
However, since there are no tools specifically designed for
LCRs, we suggest to use BLAST. It seems to be the best
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choice to search for similar LCRs. HHblits may also be
useful in LCR analysis, but for more distant similarities.
Finally, we conclude that CD-HIT cannot be used for
analysing LCRs as the local comparison to representative
sequences results in badly clustered sequences that are
not similar to each other. Scientists should be aware of
these drawbacks while using these methods for search-
ing for similar LCRs. On the other hand, our results may
be used to improve existing methods or to design new
ones especially crafted for LCR comparison.

Key Points

• We would like to alert the community that similarity
searches reported by canonical tools may result with
false positive hits, even if they use the optimal parameter
set for these methods.

• We indicate which design assumptions of the selected
methods are not suitable for the analysis of low complex-
ity regions (LCRs).

• In the article, we advise on how to adjust HHblits and
CD-HIT parameters to find similar LCRs more efficiently.

• This knowledge can be used to improve existing methods
or to create new methods specifically designed to ana-
lyze the similarity between low complexity regions.
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