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Abstract 

Despite the great success of genome-wide association studies (GWAS) in identifying genetic loci 
significantly associated with diseases, the vast majority of causal variants underlying disease-
associated loci have not been identified1–3. To create an atlas of causal variants, we performed 
and integrated fine-mapping across 148 complex traits in three large-scale biobanks (BioBank 
Japan4,5, FinnGen6, and UK Biobank7,8; total n = 811,261), resulting in 4,518 variant-trait pairs 
with high posterior probability (> 0.9) of causality. Of these, we found 285 high-confidence variant-
trait pairs replicated across multiple populations, and we characterized multiple contributors to the 
surprising lack of overlap among fine-mapping results from different biobanks. By studying the 
bottlenecked Finnish and Japanese populations, we identified 21 and 26 putative causal coding 
variants with extreme allele frequency enrichment (> 10-fold) in these two populations, 
respectively. Aggregating data across populations enabled identification of 1,492 unique fine-
mapped coding variants and 176 genes in which multiple independent coding variants influence 
the same trait (i.e., with an allelic series of coding variants). Our results demonstrate that fine-
mapping in diverse populations enables novel insights into the biology of complex traits by 
pinpointing high-confidence causal variants for further characterization. 

Introduction 

Identifying causal variants for complex traits is a major goal of human genetics research, but most 
genome-wide association studies (GWAS) do not pinpoint specific variants, limiting the biological 
inference possible from follow-up experimentation1–3. Identifying causal variants from GWAS 
associations (i.e., fine-mapping) is challenging due to extensive linkage disequilibrium (LD) 
among associated variants, effect sizes that are often small, and the presence of multiple 
independent causal variants at a locus. Fine-mapping methods assign to each variant a posterior 
probability of being a causal variant (posterior inclusion probability, PIP)9–16, and recently-
developed methods for fine-mapping use scalable, sophisticated algorithms14–16 that allow for 
multiple causal variants in a locus and can be applied to the very large data sets necessary to 
overcome the challenges listed above. Previous studies, performed almost exclusively in cohorts 
of European ancestry17–22 or meta-analyses of majority European ancestry23–30, have used fine-
mapping methods to identify putative causal variants, enabling novel biological insights into 
diseases such as inflammatory bowel disease19 and type 2 diabetes20 and traits such as blood 
cell counts21 and kidney function30.  
 
The recent development of large-scale biobanks worldwide4,6,7,23 provides an exciting opportunity 
for well-powered fine-mapping of multiple phenotypes in diverse populations of both European 
and non-European ancestries. Unlike results from most meta-analyses, biobanks allow access to 
individual-level genotypes at large scale, enabling more accurate fine-mapping results21,22, and 
often include hundreds of complex diseases and quantitative traits. For example, BioBank Japan 
(BBJ)4,5, the largest non-European biobank, has recruited ~200,000 individuals with >200 
phenotypes, which is sufficient to achieve powerful fine-mapping in a cohort of East Asian 
ancestry. Within Europe, there is also substantial genetic diversity31; for example, FinnGen6, a 
biobank in Finland, currently combines genotype data with electronic health records for ~270,000 
individuals in a population that has undergone strong population bottleneck followed by 
subsequent isolation and rapid expansion, making it genetically distinct from mainland Europe32. 
Moreover, because both Japan and Finland have recently undergone population bottlenecks, 
these populations harbor deleterious alleles with high frequency that are rare or absent in other 
populations33–35. 
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Here, for the first time, we compare and combine fine-mapping results across large-scale 
biobanks in three distinct populations. To this end, we apply state-of-the-art multiple-causal-
variant fine-mapping methods at scale in BBJ4,5 and FinnGen6, and we analyze these results in 
conjunction with results from our parallel effort performing fine-mapping in UK Biobank (UKBB)7,8. 
Our multiple-biobank fine-mapping enables us to identify high-confidence putative causal variants 
that replicate in multiple populations, to compare fine-mapping results across biobanks, and to 
identify population-specific putative causal variants and the genes these variants converge on. 
 

Results 

Expanded atlas of putative causal variants across three populations 

In a companion paper8, we describe our fine-mapping in UKBB7 (n = 361,194; 119 traits); here, 
to create an atlas of causal variants of complex traits, we extended our analysis to additionally 
include 148 complex diseases and traits available in BBJ4,5 (n = 178,726; 79 traits) and FinnGen6 
(n = 271,341; 67 traits from release 6) (Fig. 1a; Supplementary Table 1,2). These traits were 
manually curated in each biobank to cover a wide spectrum of human phenotypes ranging from 
common complex diseases to biomarkers. Of these, 26 traits (e.g., height and type 2 diabetes) 
are available in all the three cohorts, 65 traits (e.g., lab tests and biomarkers) are available in any 
two of the three, and the rest are specific to a single cohort (Fig. 1b). We performed GWAS in 
BBJ and FinnGen using a generalized linear mixed model as implemented in SAIGE36 or BOLT-
LMM37,38 (Methods). We identified 2,611 and 1,698 genome-wide significant locus-trait pairs (P 
< 5.0 × 10–8; 3 Mb regions excluding the major histocompatibility complex [MHC]; Methods) in 
BBJ and FinnGen, respectively. We then conducted multiple-causal-variant fine-mapping using 
FINEMAP14,15 and SuSiE16 (Methods). 
 
In total, our expanded atlas included 476, 342, and 3,847 fine-mapped variant-trait pairs (posterior 
inclusion probability [PIP] > 0.9), and 3,558, 2,348, and 27,276 95% credible set (CS)-trait pairs 
(median CS size = 11, 9, and 12) in BBJ, FinnGen, and UKBB, respectively (Fig. 1c–e). These 
consisted of 4,518 unique variant-trait pairs (PIP > 0.9 in any population) and 31,598 unique 95% 
CS-trait pairs (median CS size = 12; independent SuSiE CS merged across populations; 
Methods) in aggregate, of which 23,563 CS-trait pairs (75%) contained at least one variant with 
PIP > 0.1 (Supplementary Table 3,4). Notably, our expanded atlas included 66 unique variant-
trait pairs (PIP > 0.9 in any population) and 601 CS-trait pairs on the understudied X chromosome. 
The three biobanks displayed similar and strong enrichment of high-PIP (> 0.9) variants in seven 
main distinct functional categories (defined as non-overlapping regions; Methods): predicted 
loss-of-function (pLoF), missense, synonymous, 5’/3’ UTR, promoter, and cis-regulatory element 
(CRE) regions (DNase I hypersensitive sites [DHS] and H3K27ac39; Extended Data Fig. 1a–h; 
Supplementary Table 5). In addition, our combined results recapitulated the functional 
enrichments of 35 additional annotations as previously reported40–43, including conserved regions 
in mammals44,45 and ancient putative promoter/enhancer46; these enrichments remained 
significant even when analysis is restricted to  the “non-genic” variants that do not belong to any 
of the seven main functional categories listed above (Extended Data Fig. 1i; Supplementary 
Table 6). 
 
We additionally performed eQTL colocalization in BBJ and FinnGen, using fine-mapped cis-
eQTLs from GTEx8,47 v8 and eQTL catalog48 release 4, identifying 719 variant-trait-gene triples; 
in our companion paper8, we identified 4,420 triples in UKBB. We aggregated these results into a 
combined 4,957 unique variant-trait-gene triples in which the variant was fine-mapped for both 
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the trait and expression of the gene (PIPcoloc = PIPGWAS × PIPcis-eQTL
 > 0.1), spanning 117 traits and 

3,937 genes (Fig. 1f; Supplementary Table 7). We defined the rate of colocalization as the 
proportion of variants with PIP > 0.1 in each biobank that showed at least one cis-eQTL 
colocalization (PIPcoloc > 0.1 across any trait, gene, or tissue) in our study; this rate was 5.3%, 
5.6%, and 7.3% for BBJ, FinnGen, and UKBB, respectively. We investigated the MAF distribution 
of colocalized variants in each biobank and observed that 85%, 74%, and 89% of colocalized 
variants showed MAF > 5% in BBJ, FinnGen, and UKBB, respectively (Fig. 1g). This is in contrast 
to the coding variants with PIP > 0.1, of which 56%, 42%, and 55% had MAF > 5% in BBJ, 
FinnGen, and UKBB, respectively (Fig. 1h). 
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Fig. 1 | Expanded atlas of putative causal variants across three populations. a. Overview of the studied cohorts 
and cis-eQTL datasets. As an illustrative example, the 6p24.1 locus was shown for coronary artery disease (CAD) 
association in BBJ, FinnGen, and UKBB with cis-eQTL association of PHACTR1 in tibial artery from GTEx. b. Number 
of traits shared across the cohorts. c–e. For each cohort, number of independent 95% CS per region, number of fine-
mapped variants per 95% CS, number of 95% CS binned by the best PIP variant in each CS, and number of fine-
mapped variants binned by PIP. All numbers are counted against unique trait pairs. f. (Top two rows) number of genes 
or variants binned by the best PIPcis-eQTL across tissues. (Bottom two rows) number of gene-trait pairs or variant-trait-
gene triples binned by the best PIPcoloc across tissues. g. MAF distribution of cololocalized variants (the best PIPcoloc > 
0.1) in each biobank. h. MAF distribution of coding variants (the best PIP > 0.1) in each biobank. Labels represent 
proportions of variants with MAF > 5% and ≤ 5% in each biobank. 
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High-PIP variants are largely non-overlapping across populations 

We set out to investigate what proportion of variants with PIP > 0.9 in one population are 
associated or fine-mapped in other populations. Fine-mapping methods employ a model in which 
there are a small number of causal variants driving the association signal at the locus, all of which 
are measured without error, and there are no uncorrected confounding or non-linear effects. 
When the model is perfectly specified and inference is perfectly accurate, we would expect, for 
example, 90% of variants with PIP = 0.9 to be truly causal; however, this will not always be the 
case. We systematically classified variants based on several hierarchical criteria (Fig. 2a; 
Methods). First, what proportion of high-PIP (PIP > 0.9) variants in one population (the “discovery 
population”) reach genome-wide significance (PGWAS < 5.0 × 10–8) in either of the other two 
(“secondary”) populations, permitting a well-powered comparison of fine-mapping results at the 
same locus. Second, of these variants where association is strongly replicated, what proportion 
have replicated fine-mapping, defined by the same variant having PIP > 0.1 in the secondary 
population (that is, the variant is also fine-mapped in the second population, though at a lower 
threshold of confidence). For this analysis, we utilized only the 26 traits analyzed in all three 
cohorts. 
 
Out of 646 unique variant-trait pairs with PIP > 0.9 in at least one of the three populations, we 
found that 45% (291 / 646) achieved genome-wide significance (PGWAS < 5.0 × 10–8) in at least 
one of the other two populations (Fig. 2b). Of these, we found that 55% (160 / 291) had replicating 
fine-mapping (PIP > 0.1) in at least one of the other two populations, while the other 45% (131 / 
291) did not (PIP ≤ 0.1). We took the proportion of fine-mapping replication (= # replication / [# 
replication + # non-replication] among the variants reaching PGWAS < 5.0 × 10–8) and defined it as 
the cross-biobank fine-mapping replication rate. This proportion was relatively consistent across 
all the pairs of populations, ranging from 38% to 57% (Fig. 2b). The cross-biobank fine-mapping 
replication rate was relatively insensitive to the specific threshold, increasing only slightly when 
considering a fine-mapping result to be replicated if it had PIP > 0.05 or was in a 95% credible 
set, as opposed to PIP > 0.1 (Extended Data Fig. 2a,b). While mean PIP in a secondary 
population was positively correlated with PIP in the discovery population, the underlying 
distribution of PIP in the secondary populations were bimodal, particularly for variants with PIP > 
0.9 in the discovery population (Extended Data Fig. 2c–e).  
 
To further interpret these observations, we analyzed simulated GWAS data described in our 
companion paper8, and we characterized specific examples. In our simulations, our fine-mapping 
algorithm was mostly well calibrated, with 96% of variants with PIP>0.9 truly causal. In these 
simulations, however, the variants that were simulated to be causal and that reached genome-
wide significance also had a bimodal distribution of PIP, with 24% reaching PIP>0.9, due to 
incomplete power for fine-mapping. Thus, while we have the highest confidence in the fine-
mapping results that replicate across populations, we do not interpret a cross-biobank replication 
rate of 55% as strong evidence for or against fine-mapping miscalibration. In examining specific 
examples in real data, we found that lack of replication was sometimes due to differences in LD 
structure and effect sizes across populations that lower power in the secondary population, or 
likely non-causal variants that nonetheless achieve high PIP in the discovery population, as 
expected given the PIP threshold of 0.9. We illustrated a few examples in Extended Data Fig. 3. 
 
Of the remaining 55% (355 / 646) of variant-trait pairs that did not reach genome-wide significance 
(PGWAS < 5.0 × 10–8) in either of the secondary populations, 42% (150 / 355) had an association 
that replicated at the more permissive threshold of PGWAS < 0.01 (Fig. 2c), suggesting the 
association is present but at a level insufficient to perform fine-mapping reliably. An additional 
14% (51 / 352) had high power to detect association (power > 0.9 for achieving PGWAS < 0.01; 
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Methods) in at least one of the secondary populations, assuming the same causal effect size 
from the discovery population and a standard linear regression, but were not associated at PGWAS 
< 0.01 in either population. These variants may include causal variants with heterogeneous effect 
sizes across populations or false positive variants that nonetheless achieved high PIP in the 
discovery population (which is not unexpected given the number of traits studied and the PIP 
threshold of 0.9). A few causal variants would also be expected not to reach this threshold due 
only to random sampling, even with equal effect sizes and estimated power of 0.9. We note that 
three variant-trait pairs had replicated fine-mapping (PIP > 0.1) but not genome-wide significance 
in either of the secondary populations (Note that these are in genome-wide significant loci). Lastly, 
42% (151 / 355) had low power or were missing from the GWAS summary statistics due mostly 
to differences in allele frequencies across populations (Fig. 2c; Supplementary Note). This 
proportion was different for different pairs of populations, ranging from 19% (UKBB and FinnGen) 
to 62% (BBJ and UKBB). Importantly, our results indicate that these missing causal variants are 
undiscoverable through standard GWAS fine-mapping in other populations, re-emphasizing the 
desperate need for data generation in diverse populations. 
 
For the remainder of this manuscript, we mainly focus on several subsets of PIP > 0.9 variants 
with highest confidence: fine-mapped variants replicated in multiple populations, coding variants 
with PIP > 0.9, and genes supported by multiple fine-mapped variants. 
 
 

 
Fig. 2 | Overview of replication status for high-PIP fine-mapped variants across populations. A. Schematic 
flowchart of our classification criteria. Starting from the high-PIP (> 0.9) variant-trait pairs in a discovery population, we 
categorized each pair into the six categories: fine-mapping replication, fine-mapping non-replication, replicated 
association, non-replicated association, low power, and missing variants (Methods). b,c. Barplots showing a fraction 
of the high-PIP (> 0.9) variant-trait pairs identified in each discovery population, stratified by the above replication 
categories tested in the other two secondary populations. Labels in the bar represent a proportion for each category, 
while labels on the right represent a proportion of the genome-wide significant and non-genome-wide significant variant-
trait pairs. b. Breakdowns for the genome-wide significant variant-trait pairs (PGWAS < 5.0 × 10–8) in a secondary 
population. c. Breakdowns for the non genome-wide significant variant-trait pairs (PGWAS ≥ 5.0 × 10–8) in a secondary 
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population. Note that there were three variant-trait pairs in total that had replicated fine-mapping (PIP > 0.1) but not 
genome-wide significance in either of the secondary populations (dark blue). 
 

Common putative causal variants implicate shared biological mechanisms across 
populations 

Restricting to 91 traits available in two or more populations, we identified 285 high-confidence 
variant-trait pairs (204 unique variants including 56 variants that are only polymorphic in 
Europeans) that achieve replicated fine-mapping across multiple populations analyzed (PIP > 0.9 
in at least one population and PIP > 0.1 in at least one of the others; Supplementary Table 8,9). 
While estimating correlation of effect sizes across multiple traits and populations is challenging, 
we observed 100% directional consistency for posterior effect sizes between populations (P for 
sign test = 2.7 × 10–107). These replicated fine-mapped variants represent a set of common 
putative causal variants (Extended Data Fig. 4a,b) with the highest confidence in our dataset, 
providing excellent candidates for functional characterization and therapeutic targets. 
 
We observed a significant enrichment of coding variants in high-confidence variant-trait pairs: of 
the 285 high-confidence variant-trait pairs, 94 pairs (60 unique variants) are coding variants 
(Supplementary Table 8), whereas 4 pairs would be expected by chance (Fisher’s exact test P 
< 0.05). These variants include well-known pLoF and missense variants such as rs429358 (APOE 
ε4-tagging missense variant) for Alzheimer’s disease49; rs2066847 (NOD2: p.Leu980ProfsTer2) 
for Crohn’s disease50,51; rs855791 (TMPRSS6: p.Val736Ala) for blood hemoglobin levels and 
erythrocyte volume52; rs2642438 (MARC1: p.Ala165Thr) for alkaline phosphatase53,54; and 
rs4149056 (SLCO1B1: p.Val174Ala) for total bilirubin55. Notably, we found that rs9379084 
(RREB1: p.Asp1171Asn) showed PIP > 0.9 for height in every population; this variant was 
previously implicated for type 2 diabetes20 but not for height. We also found that a common 
synonymous variant rs55714927 on ASGR1 (canonical transcript ENST00000269299.3) was 
fine-mapped for alkaline phosphatase in both BBJ and UKBB (PIP = 1.0 for both; Extended Data 
Fig. 5a). The same variant was significantly associated with other traits in our dataset, such as 
albumin, cholesterol levels, and sex hormone binding globulin (Extended Data Fig. 5b). ASGR1 
was previously reported for having a rare non-coding 12-base-pair deletion within intron 4 (del12; 
c.284-36_283+33delCTGGGGCTGGGG, NM_001671.4; MAF = 0.41% in ~398,000 Icelanders), 
which was associated with a reduced risk of coronary artery disease (CAD), lowering LDL 
cholesterol, and increasing alkaline phosphatase and vitamin B12 levels56. However, the reported 
del12-tagging variant rs186021206 is independent from the synonymous variant rs55714927 (r2 
= 0.001 in Europeans) and is monomorphic in East Asians, implying that the del12 variant does 
not contribute to the identified rs55714927 association here. Instead, we observed rs55714927 
has a significant splicing QTL effect in GTEx liver47 (P = 2.4 × 10–46) for the same isoform as del12 
(Extended Data Fig. 5c,d). 
 
We also characterized 191 non-coding variant-trait pairs (144 unique variants) with replicated 
fine-mapping as described above (Supplementary Table 9). These variants are primarily located 
within CRE (48%) followed by promoter (16%) and 3’ UTR (8%) regions, and are enriched for 
predicted cis-regulatory expression modifier score57, suggesting that most of these variants act 
through transcriptional or by post-transcriptional regulation (Extended Data Fig. 4b–d). In total, 
we identified 48 out of 144 putative causal non-coding variants that co-localized with cis-eQTL 
associations (PIPcoloc > 0.1 in at least one tissue; Supplementary Table 9), including well-known 
variants, e.g., rs2070895 (intronic variant of LIPC) for HDL cholesterol; and rs78378222 (3’ UTR 
variant of TP53) for skin cancer; as well as under-characterized variants, e.g., rs1497406 
(intergenic variant, ~22 kb upstream of EPHA2) for γ-glutamyl transferase; and rs34778241 
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(intronic variant of EIF4E3) for loss of Y chromosome (Extended Data Fig. 6). Notably, we 
identified a well-known intronic variant rs9349379 in PHACTR1 that was fine-mapped for CAD in 
every population (Fig. 1b; PIP = 1.0; MAF = 0.35, 0.45, and 0.41 for BBJ, FinnGen, and UKBB, 
respectively). This intronic variant also co-localized with a fine-mapped cis-eQTL association of 
PHACTR1 in GTEx tibial artery47 (PIPcoloc = 1.0). We note that, although we identified rs9349379 
as a putative causal non-coding variant for CAD with high confidence, it was previously 
demonstrated that rs9349379 also regulates expression of EDN1 (located a 600 kb upstream of 
PHACTR1) in CRISPR-edited endothelial cells58; and thus the causal gene(s) for CAD at this 
locus remains unresolved58,59. 
 
The 144 putative causal non-coding variants also included seven intergenic variants located in 
gene deserts; i.e., that are more than 250 kb away from the closest gene60 (Supplementary 
Table 10). For example, rs77541621 and rs183373024 (349kb and 322kb upstream of POU5F1B, 
respectively) were fine-mapped for prostate cancer (PIP = 1.0 in FinnGen and UKBB), and are 
located within the 8q24 locus, a well-known gene desert associated with many complex 
diseases61,62 (Extended Data Fig. 7a). These variants are one of the 12 independent variants for 
prostate cancer that were previously identified at the 8q24 locus, but the exact functional 
mechanism of each variant is still under active investigation63. Other examples include rs1434282 
(284 kb downstream of PTPRC) for mean corpuscular volume, rs116376456 (269 kb downstream 
of IRS1) for height, and rs35009121 (1.2 Mb downstream of GATA3) for serum calcium levels 
(Extended Data Fig. 7b–d). Although these loci are also known as gene deserts, none of the 
fine-mapped variants are well-characterized in the current literature, nor do they overlap with 
enhancer-gene mappings predicted by the activity-by-contact (ABC) model64. 
 
We also found nine examples where a variant was fine-mapped in every population even though 
it was not significantly associated in every population. Five of these were significant at a more 
permissive threshold of P < 1.0 × 10–5, but in other cases the marginal effect sizes were 
substantially lower, due to LD with another causal variant(s). For example, rs244711 (4.7 kb 
upstream of FGFR4) is consistently fine-mapped for height but not significantly associated in BBJ 
(marginal β = 9.0 × 10–3; P = 4.1 × 10–4; Extended Data Fig. 8a–d). We found that rs244711 is 
partially correlated with a nearby fine-mapped missense variant rs1966265 (FGFR4: p.Val10Ile) 
in every population (r2 = 0.14, 0.08, and 0.13 in BBJ, FinnGen, and UKBB, respectively) but the 
correlation is only negative in BBJ (r = –0.37). The causal effect of rs244711 is thus partially 
cancelled out by the tagged effect of rs1966265 in BBJ, where the correlation between the two 
variants is negative, but not in UKBB and FinnGen, where the correlation is positive, leading to a 
non-significant association in BBJ but significant associations in UKBB and FinnGen. Another 
example is rs1801706 (3’ UTR variant of CETP), which is consistently fine-mapped for HDL 
cholesterol but not significantly associated in BBJ (marginal β = 6.0 × 10–3; P = 0.43; Extended 
Data Fig. 8e–h). This is owing to partial correlation with Japanese-enriched splice donor and 
missense variants rs5742907 (c.1321+1G>A) and rs2303790 (p.Asp459Gly). These two variants 
showed large effect sizes (marginal β = 0.76 and 0.39; P = 4.9 × 10–122 and 5.5 × 10–206; 
respectively) and are negatively correlated with rs1801706 in BBJ (r = –0.03 and –0.06, 
respectively; this corresponds to –16.6 and –56.3 decrease in marginal χ2 statistics of rs1801706 
by partial tagging). These examples illustrate that, when a region contains multiple independent 
associations, differences in LD between two sites can create differences in the marginal effect 
size and observed association in univariate analyses between populations. 
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Identification of population-enriched putative causal variants 

Given that a substantial number of the variants with high PIP (> 0.9) in one population are 
rare/absent (and therefore undiscoverable) in the other populations (Fig. 2c), we investigated 
allele frequency (AF)-enriched variants from the two bottlenecked populations included in our 
study, Finland65,66 and Japan67,68. To quantify AF enrichment (AFE) in the Finnish and Japanese 
populations, we used the gnomAD69 v2 and the GEM-J WGS70 to compute a ratio of AF in 
Japanese vs. non-Japanese-Korean East Asians (NJKEA) for BBJ and in Finnish vs. non-Finnish-
Swedish-Estonian Europeans (NFSEE) for FinnGen (Methods).  
 
Past studies have noted that variants stochastically boosted through a bottleneck are enriched 
for functional categories33–35,71–73. Consistent with these previous studies, we found that there 
were significantly more variants with AFE > 10 than with AFE < 1/10 in both FinnGen and BBJ, 
and that variants with AFE > 10 were enriched for coding variants (2.2- and 4.8-fold enrichment 
over variants with AFE ≤ 10; Methods).  Of 140,416 and 91,564 coding variants tested in FinnGen 
and BBJ GWAS, 29,656 (21%) and 14,802 (16%) showed AFE > 10 in the Finnish or Japanese 
population, respectively (Fig. 3a,b). Furthermore, high-PIP (> 0.9) coding variants were 
significantly more likely to have high AFE than low-PIP (≤ 0.01) coding variants (Fig. 3c,d; Fisher’s 
exact test P < 0.05; Methods); and showed substantially younger estimated allele age based on 
GEVA74 (Fig. 3e,f). These observations are consistent with recent bottleneck events and negative 
selection on the putative causal variants studied here, because deleterious variants boosted in 
frequency through these bottlenecks have had insufficient time to be brought back down in 
frequency by selection75,76.  
 
Notably, we identified seven pLoF variants and 40 missense high-PIP (> 0.9) variants with 
extreme AF enrichment (> 10-fold) in BBJ or FinnGen (Table 1). These variants are more likely 
to be deleterious and impactful given their extreme enrichment. Indeed, the list includes several 
known pathogenic variants or genes in related autosomal recessive disorders. For example, 
rs75326924, a Japanese-enriched missense variant (p.Pro90Ser) on CD36 is a known 
pathogenic variant for platelet glycoprotein IV (CD36) deficiency (PIP = 1.0 for platelet count; MAF 
= 0.047 in GEM-J WGS), contributing to high prevalence of CD36 deficiency in Japanese (2–
3%)77; and rs386833873, a Finnish-enriched frameshift variant (p.Leu41AspfsTer50) on NPHS1 
is a well-known causal variant for the congenital nephrotic syndrome of the Finnish type (PIP = 
1.0 for nephrotic syndrome; MAF = 0.011 in gnomAD Finnish)78. Interestingly, we found two novel 
population-enriched deleterious variants on PLOD2, fine-mapped for height: i) a Japanese-
enriched missense variant rs148051196 (p.Gln553Arg; PIP = 1.0; MAF = 7.3 × 10–3 in GEM-J 
WGS) and ii) a Finnish-specific stop-gained variant rs201501322 (p.Ser166Ter; PIP = 0.58; MAF 
= 1.9 × 10–3 in gnomAD FIN). PLOD2 is a known recessive gene for Bruck syndrome 2 
(osteogenesis imperfecta with congenital joint contractures; OMIM: 609220)79. We identified 
additional population-enriched variants for height in 27 genes, including known recessive genes 
such as ADAMTS17 (causal gene for Weill-Marchesani syndrome 4; OMIM: 613195) and IHH 
(brachydactyly type A1; OMIM: 112500). Furthermore, we identified fine-mapped variants  on 
genes that were not previously implicated, such as rs199935580 (THBS3: p.Arg520Trp; MAF = 
1.0 × 10–3 in gnomAD FIN) fine-mapped for carpal tunnel syndrome (PIP = 1.0); rs191692991 
(LUM: p.Arg310Cys; MAF = 5.5 × 10–3 in gnomAD FIN) fine-mapped for fibroblastic disorders 
(PIP = 1.0); and rs200939713 (POF1B: p.Arg339Trp; MAF = 1.7 × 10–3 in gnomAD FIN) fine-
mapped for varicose veins (PIP = 0.99). Detailed biological annotations of each gene are 
summarized in the Supplementary Box. 
 
On the other hand, the high-PIP non-coding variants were not significantly more likely to have 
high AFE than low-PIP non-coding variants (Extended Data Fig. 9; Fisher’s exact test P > 0.05), 
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partly because non-coding variants tend to be less deleterious and thus less likely to undergo 
strong negative selection. However, we identified 23 population-enriched (> 10-fold) high-PIP (> 
0.9) non-coding variants that are independent of population-enriched coding variants (r2 < 0.1) in 
each population (Supplementary Table 11). While we are not able to replicate these population-
enriched variants in other populations due to low AF, we identified several variants that might 
have biological significance. For example, a Finnish-enriched rs748670681 in an intron of 
TNRC18 (MAF = 0.042 in gnomAD FIN) is fine-mapped for inflammatory bowel disease (IBD) and 
psoriasis (PIP = 1.0). Despite very significant association in FinnGen (P = 6.2 × 10–69 for IBD), 
this locus was not previously reported, and its biological function is not well-characterized. 
 
 

 
Fig. 3 | Population-enriched putative causal coding variants. a–d. Histograms showing a distribution of allele 
frequency (AF) enrichment metric in (a) Finnish (n = 10,824) and (b) Japanese (n = 7,609) populations. A ratio of AF 
was computed against NFSEE (n = 43,697) and NJKEA (n = 7,212) for coding variants analyzed in BBJ or FinnGen 
GWAS that exist in gnomAD WES or GEM-J WGS. For a subset of variants that are fine-mapped in our analysis (see 
Methods), we show AF enrichment distribution across maximum PIP bins computed in (c) FinnGen or (d) BBJ. e–f. 
Cumulative distribution of estimated allele age for coding variants, stratified by AF enrichment in (e) Finnish or (f) 
Japanese. FIN: Finnish, JPN: Japanese, NFSEE: Non-Finnish-Swedish-Estonian European, NJKEA: Non-Japanese-
Korean East Asian. 
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Table 1 | Population-enriched putative causal coding variants. Nonsynonymous coding variants (PIP > 0.9) with 
AFE > 10 in the Japanese or Finnish populations are shown. 
 

 
  

Variant rsid Gene Consequence AF (pop) AF (ref) AFE Best PIP Fine-mapped traits (PIP > 0.9)

BBJ

1:21890590:G:A rs199669988 ALPL Missense 0.015 0.00035 43.1 1 ALP

1:55505604:G:A rs564427867 PCSK9 Missense 0.012 NA Inf 1 LDLC, TC

2:21242731:G:A rs13306206 APOB Missense 0.039 0.00049 79.5 1 LDLC, MI, TC

2:44051573:T:TA rs142037828 ABCG5 Splice region 0.051 0.00042 123.2 1 Cholelithiasis

2:120231070:C:G rs3731600 SCTR Missense 0.048 0.00069 69.2 0.99 T2D

2:219919943:C:T rs200216644 IHH Missense 0.0036 0.00027 13.4 0.99 Height

3:145794588:T:C rs148051196 PLOD2 Missense 0.0073 0.00014 52.4 1 Height

4:6303731:G:A rs147834269 WFS1 Missense 0.053 0.0012 43.7 1 T2D

6:158484904:G:C rs141160611 SYNJ2 Missense 0.032 0.0025 12.9 0.96 GGT

7:45954540:C:T rs17847676 IGFBP3 Missense 0.0061 6.90E-05 88.5 1 Height

7:80286003:C:T rs75326924 CD36 Missense 0.047 0.00083 56.9 1 Plt

8:118184855:A:T rs770224130 SLC30A8 Missense 0.0062 0.00014 44.7 0.97 T2D

9:107593923:C:G rs754040394 ABCA1 Missense 0.0019 NA Inf 1 HDLC, TC

11:64361219:G:A rs121907892 SLC22A12 Stop gained 0.021 0.00042 51.6 1 UA

11:116661394:G:C rs201229911 APOA5 Missense 0.01 NA Inf 1 HDLC, TG

12:16510581:GAA:G rs779999476 MGST1 Frameshift 0.015 NA Inf 1 HDLC

12:109690842:C:T rs17848833 ACACB Missense 0.0032 NA Inf 1 HDLC, TG

16:57016150:G:A rs5742907 CETP Splice donor 0.0037 NA Inf 1 HDLC, TC

16:84872195:G:C rs965984074 CRISPLD2 Missense 0.00086 NA Inf 0.99 Height

17:7462468:G:T rs201860460 TNFSF13 Missense 0.0022 7.00E-05 31.1 1 AG, NAP

17:48545926:C:A rs201158957 CHAD Missense 0.0081 6.90E-05 116.1 1 Height

17:78358945:G:A rs112735431 RNF213 Missense 0.01 0.00049 21.2 1 CAD, MAP, PP, SBP

19:11241988:C:T rs13306505 LDLR Missense 0.0085 0.00021 41.1 1 LDLC, TC

19:42855705:G:A rs200485103 MEGF8 Missense 0.0039 NA Inf 0.95 Glucose

19:46178043:G:T rs13306398 GIPR Missense 0.02 6.90E-05 286.9 1 BMI, BW

20:44507112:G:A rs139396693 ZSWIM3 Missense 0.015 0.00014 106.6 1 MCV

FG

1:21890632:G:A rs121918007 ALPL Missense 0.017 0.0011 15.7 0.94 Urolithiasis

1:155170392:G:A rs199935580 THBS3 Missense 0.001 1.10E-05 88.9 1 Carpal_Tunnel_Syndrome

1:192779303:G:T rs201233692 RGS2 Missense 0.0088 1.10E-05 761.5 0.96 Statin

4:120528397:C:T rs202226125 PDE5A Missense 0.007 1.20E-05 612 1 Height

5:1272362:G:A rs770066110 TERT Stop gained 0.00052 NA Inf 1 IPF

5:1279485:T:C rs776981958 TERT Missense 0.0016 NA Inf 0.96 IPF

6:155450779:A:G rs148543891 TIAM2 Missense 0.031 6.90E-05 455.3 1 Height

9:35609378:C:T rs777777413 TESK1 Missense 0.0025 2.40E-05 101.4 1 Height

9:136501728:C:T rs77273740 DBH Missense 0.051 0.0023 21.7 1 Hypertension

10:13040400:A:G rs199848893 CCDC3 Missense 0.0021 NA Inf 1 Height

11:36248678:T:TG rs767680853 LDLRAD3 Frameshift 0.0019 2.30E-05 82.3 1 Height

12:6882498:C:A rs149722682 LAG3 Missense 0.00061 NA Inf 1 AID, Hypothyroidism

12:91498031:G:A rs191692991 LUM Missense 0.0053 1.20E-05 450.7 1 Fibroblastic_Disorders, Height

14:100134609:G:A rs201483470 HHIPL1 Missense 0.0093 0.00013 74.2 0.97 Height

15:28228553:C:T rs74653330 OCA2 Missense 0.048 0.0014 33.4 1 Malignant_Neoplasms, SkC

15:101569374:C:T rs41531245 LRRK1 Missense 0.0076 0.00073 10.4 1 Fibroblastic_Disorders, Inguinal_Hernia

17:56436130:C:T rs199598395 RNF43 Missense 0.012 5.00E-05 239.7 1 Iron_Deficiency_Anaemia

17:60493445:C:T rs552441218 EFCAB3 Stop gained 0.001 6.90E-05 14.7 0.98 Depression_medications

19:36342510:CAG:C rs386833873 NPHS1 Frameshift 0.011 2.40E-05 473.3 1 Nephrotic_Syndrome

19:58421417:ACT:A rs774674736 ZNF417 Frameshift 0.0018 4.60E-05 39.8 0.93 Chronic_Tonsillitis

X:84563165:G:A rs200939713 POF1B Missense 0.0016 NA Inf 0.99 Varicose_Veins
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Allelic series of putative causal variants across populations 

Given that many fine-mapped variants are population-specific, we aggregated results across 
populations to identify genes harboring fine-mapped coding variants for one or more traits. 
Overall, we identified 1,492 unique putative causal pLoF/missense variants (best PIP > 0.1) that 
mapped onto 1,113 genes (Supplementary Table 12). Of these genes, 240 have two or more 
putative causal pLoF/missense variants located on the same gene, and 113 have variants 
identified from multiple populations (Fig. 4a). The genes with the most putative causal 
pLoF/missense variants include APOB (13 missense variants; the loss-of-function 
observed/expected upper bound fraction [LOEUF]69 = 0.46), TFR2 (1 pLoF and 6 missense 
variants; LOEUF = 0.77), and PIEZO1 (7 missense variants; LOEUF = 0.58); despite containing 
many variants that impact human phenotypes, these genes are modestly constrained (Fig. 4b, 
Extended Data Fig. 10a,b). 
 
Next, we focused on allelic series in which multiple fine-mapped coding variants implicate the 
same gene-trait pair (Fig. 4c). There were 2,452 gene-trait pairs with at least one fine-mapped 
pLoF/missense variant (PIP > 0.1), of which 306 pairs (176 unique genes) had two or more 
independent pLoF/missense variants (PIP > 0.1), forming an allelic series (Supplementary Table 
13). We found 104 allelic series (69 unique genes) that included variants fine-mapped in multiple 
populations, of which 41 allelic series (34 unique genes) included at most one variant per 
population, making them discoverable only by aggregating data across populations. The cross-
population allelic series include e.g., ABCG2, a known pathogenic gene for gout, where we 
identified two pLoF/missense variants (p.Gln126Ter and p.Phe489Leu) in BBJ, two missense 
variants (p.Asp620Asn and p.Ala528Thr) in UKBB, and one missense variant (p.Gln141Lys) in 
BBJ, FinnGen, and UKBB (Extended Data Fig. 10c). 
 
We further investigated allelic series including both coding and non-coding variants, assuming 
that non-coding causal variants proximal to deleterious coding variants (< 100 kb) might act 
through regulation of the same gene80. This facilitates understanding of unknown non-coding 
functions and enables us to identify allelic series for an additional 263 gene-trait pairs (195 unique 
genes) through coding/non-coding allelic series, of which 107 pairs (87 unique genes) included 
variants fine-mapped across multiple populations (Supplementary Table 14). For example, we 
identified coding/non-coding allelic series around EPX (eosinophil peroxidase) for eosinophil 
count (Extended Data Fig. 10d), where we found European-specific missense variant 
rs149610649 (EPX: p.Phe308Leu; MAF = 0.083 in gnomAD NFE) and Japanese-specific 
intergenic variant rs536070968 (MAF = 0.011 in GEM-J WGS). The intergenic variant 
rs536070968 is located 33 kb downstream of EPX and 11 kb upstream of LPO (lactoperoxidase), 
an ortholog of EPX, illustrating the value of allelic series across multiple populations to assign a 
potential causal gene from nearby genes. 
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Fig. 4 | Allelic series of putative causal variants across multiple populations. a. Number of fine-mapped 
pLoF/missense variants (best PIP > 0.1) per gene, stratified by the number of cohorts identified. b. Top list of genes 
that have a large number of fine-mapped pLoF/missense variants (best PIP > 0.1). c. Number of additional independent 
signals identified for a gene with fine-mapped pLoF/missense variants (PIP > 0.1), stratified by a discovery cohort. For 
each gene-trait pair where we fine-mapped pLoF/missense variants, we counted how many additional independent 
95% CS with pLoF/missense and non-coding variants (PIP > 0.1) were identified for the same gene in each cohort. 
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Discussion 

In this study, we performed statistical fine-mapping in Biobank Japan and FinnGen, and 
aggregated these results with our parallel fine-mapping of UK Biobank8, providing an extensive 
list of candidate causal variants for 148 complex diseases and traits across diverse populations. 
By integrating fine-mapped variants from deeply-phenotyped biobanks and eQTL studies, we 
expanded both the depth and breadth of the resource to explore biological mechanisms of 
complex traits at single-variant resolution, with replication across multiple populations and 
colocalization with different tissues. We make these resources publicly available for the 
community to further accelerate variant prioritization and characterization. 
 
Examination of fine-mapping from three biobanks enabled the identification of 285 high-
confidence variant-trait pairs that are replicated across multiple populations. However, the 
majority of high-PIP (> 0.9) variants are non-overlapping across populations. Many of the variants 
with high PIP in one population but not in the other two populations were trivially explained by the 
fact they are rare or monomorphic in the other two populations. The abundance of population-
enriched variants exemplifies the significant value of diverse populations in fine-mapping studies, 
contributing to identification of population-specific discoveries and deeper allelic series of multiple 
variants at the same locus across populations. We also classified observed inconsistencies into 
those with potential heterogeneity in effect sizes (i.e., population-specific effects) and those with 
replicated GWAS association but without replicated fine-mapping, further guiding interpretation of 
these results.  
 
Our study has several limitations that suggest directions for future work. First, the current fine-
mapping methods rely on modeling assumptions that are not all met in real-world fine-mapping 
(e.g., no genotyping or imputation errors). While we have focused here on a high confidence 
subset of results—high-PIP variants that replicate across biobanks, and fine-mapped coding 
variants—we see further exploration of potential misspecification of fine-mapping models as an 
important area for future work. Second, our sample sizes are still limited, especially for non-
European populations, emphasizing the desperate need for more diversity in human genetics. 
Here, we were powered to fine-map variants with large or moderate effect sizes; more samples 
will be required to fine-map causal variants with small effect sizes. Moreover, molecular data from 
non-European samples are vastly limited, which fundamentally inhibits variant interpretation of 
population-enriched variants. Third, systematic differences in study design, genotyping and 
imputation across cohorts limited our ability to integrate data from the three biobanks. We see 
method development for cross-population fine-mapping that takes into account this heterogeneity 
as an important direction for future work. 
 
We note that the populations studied here differ not only by ancestry, but along other dimensions, 
e.g., sample recruitment (BBJ: hospital-based, UKBB: population-based, and FinnGen: mixed), 
phenotyping (disease diagnosis, laboratory measurement, etc.), and environment. These other 
sources of heterogeneity could contribute to the differences we observe across the three 
biobanks. Despite these differences, we identify in this study a very substantial set of variants 
extremely likely to be directly causal, supported by consistency across populations, a strong 
enrichment of coding variants in high-PIP variants, and by the observation of 176 genes in which 
fine-mapping indicated multiple, independent coding variants associated with the same trait. 
 
To our knowledge, this study provides the largest and the most comprehensive comparison of 
fine-mapping results from multiple large-scale biobanks of diverse ancestries. Although these 
data still remain limited to identify common but small-effect causal variants shared across 
populations, we have demonstrated that the use of diverse populations facilitates the identification 
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of high-confidence causal variants shared across populations, population-enriched fine-mapped 
variants, and allelic series of high-impact variants across populations. With fast-evolving biobanks 
and high-throughput assays under development, our atlas of candidate causal variants provide a 
valuable resource for future functional characterization efforts. 

Data availability 

The fine-mapping results produced by this study will be publicly available at 

https://www.finucanelab.org/data. The BBJ summary statistics are available at the National 

Bioscience Database Center (NBDC) Human Database (accession code: hum0197) and at the 

GWAS catalog81 (https://www.ebi.ac.uk/gwas/home). They are also browseable at our PheWeb82 

website (https://pheweb.jp/). The BBJ genotype data is accessible on request at the Japanese 

Genotype-phenotype Archive (http://trace.ddbj.nig.ac.jp/jga/index_e.html) with accession code 

JGAD00000000123 and JGAS00000000114. The UKBB summary statistics will be available at 

the ENCODE data portal (https://www.encodeproject.org/) and at the GWAS catalog81 

(https://www.ebi.ac.uk/gwas/home). The UKBB individual-level data is accessible on request 

through the UK Biobank Access Management System (https://www.ukbiobank.ac.uk/). The UKBB 

analysis in this study was conducted via application number 31063. The FinnGen release 6 was 

used in this study and is still subject to embargo according to the FinnGen consortium agreement; 

thus the FinnGen summary statistics are available on request 

(https://www.finngen.fi/en/access_results) and are being prepared for public release by Q4 2021. 

The GTEx v8 summary statistics is available at the GTEx Portal 

(https://gtexportal.org/home/datasets). The GTEx individual-level data is accessible on request 

through the dbGAP application (accession code: phs000424.v8.p2; 

https://gtexportal.org/home/protectedDataAccess). The eQTL catalogue results are available at 

https://www.ebi.ac.uk/eqtl/Data_access/. 

 

Code availability 

Our fine-mapping pipeline is available at https://github.com/mkanai/finemapping-pipeline, and the 

code to perform all analyses and generate the figures is provided at 

https://github.com/mkanai/finemapping-insights. Custom fine-mapping pipelines for FinnGen is 

available at https://github.com/FINNGEN/finemapping-pipeline and for eQTL catalogue is 

available at https://github.com/eQTL-Catalogue/susie-workflow; both of which has implemented 

functionally-equivalent pipelines with a dataset-specific custom code. 
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Methods 

Study cohorts 

BioBank Japan (BBJ) 

The BioBank Japan (BBJ) is a hospital-based cohort that collected DNA, serum, and clinical 
information of approximately 200,000 individuals from 66 hospitals in Japan between 2003 and 
2007. All the study participants had been diagnosed with one or more of 47 target diseases by 
physicians at the cooperating hospitals. Written informed consent was obtained from all the 
participants, as approved by the ethics committees of the RIKEN Center for Integrative Medical 
Sciences, and the Institute of Medical Sciences, the University of Tokyo. Details of study design, 
sample collection, and baseline clinical information were described elsewhere4,83. 
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We genotyped samples using i) the Illumina HumanOmniExpressExome BeadChip or ii) a 
combination of the Illumina HumanOmniExpress and the HumanExome BeadChip. We applied 
standard quality-control criteria for samples and variants as described elsewhere84 (summarized 
in Supplementary Table 1). We analyzed 178,726 individuals of Japanese ancestry, chosen 
based on sample selection criteria using principal component analysis (PCA)5. The genotypes 
were prephased using Eagle85 and imputed using Minimac386 with a reference panel that consists 
of the 1000 Genomes Project Phase 3 (version 5) samples (n = 2,504)87 and whole-genome 
sequencing (WGS) data of Japanese individuals (n = 1,037)88. We excluded variants with low 
imputation quality (Rsq ≤ 0.7) and used 13,531,752 variants in this study. All the variants were 
processed on the human genome assembly GRCh37. 
 
We defined phenotypes based on clinical information retrieved from medical records and 
interviews using a standardized questionnaire. Detailed phenotype definitions are described 
elsewhere5 and summarized in Supplementary Table 2. 

FinnGen 

FinnGen is a public-private partnership project combining genotype data from Finnish biobanks 
and digital health records from Finnish health registries6. This study used the Data Freeze 6 which 
contains 271,341 individuals of Finnish ancestry. Patients and control subjects in FinnGen 
provided informed consent as described in Supplementary Note. Detailed characteristics of the 
cohort are described in our accompanying paper6. 
 
Samples were primarily genotyped using the FinnGen ThermoFisher Axiom custom array. The 
samples from legacy cohorts have previously been genotyped using various generations of 
Illumina GWAS arrays. The genotypes were prephased using Eagle 2.3.5 and imputed using 
Beagle 4.1 with a reference panel of Finnish WGS data, the SISu v3 reference panel (n = 3,775). 
We applied post-imputation quality control as described in our accompanying paper6, excluding 
variants with INFO < 0.6 and MAF < 0.001, and used 16,311,902 variants in our study. All the 
variants were originally processed on the human genome assembly GRCh38, and lifted over to 
GRCh37 for comparison with other cohorts used in this study. 
 
Clinical endpoints were defined based on medical records from multiple national health registries. 
Detailed phenotype definitions are described in our accompanying paper6 and summarized in 
Supplementary Table 2. 

UK Biobank (UKBB) 

The UK Biobank (UKBB) is a population-based cohort that recruited approximately 500,000 
individuals in the United Kingdom between 2006 and 2010. This study analyzed a set of 366,194 
unrelated “white British” individuals defined previously in the Neale Lab GWAS 
(https://github.com/Nealelab/UK_Biobank_GWAS). The individuals of British ancestry were 
determined by the PCA-based sample selection criteria 
(https://github.com/Nealelab/UK_Biobank_GWAS/blob/master/ukb31063_eur_selection.R), and 
were further filtered to self-reported “white British”, “Irish”, or “white”. The UK Biobank analysis 
was conducted via application number 31063. The cohort characteristics were extensively 
described elsewhere7. 
 
Genotyping was performed using either i) the Applied Biosystems UK BiLEVE Axiom Array or ii) 
UKB Axiom Array. The genotypes were imputed using IMPUTE4 with a combination of reference 
panels: i) the Haplotype Reference Consortium and ii) UK10K and the 1000 Genomes Phase 3. 
We retained 13,791,467 variants with INFO > 0.8, MAF > 0.001, and Hardy-Weinberg equilibrium 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.03.21262975doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/


 

P value > 1.0 × 10–10, with exception for the VEP-annotated coding variants where we allowed 
MAF > 1.0 × 10–6. The detailed quality-control criteria were described in the Neale Lab GWAS 
(https://github.com/Nealelab/UK_Biobank_GWAS). All the variants were processed on the human 
genome assembly GRCh37. 
 
We derived phenotypes based on multiple data sources available in UKBB, e.g., biomarkers, body 
measures, and disease case-control status mapped on phecodes89 
(https://phewascatalog.org/phecodes). Detailed phenotype definitions are described in our 
accompanying paper8 and summarized in Supplementary Table 2. 

Genome-wide association analysis 

We performed GWAS using a generalized linear mixed model as implemented in SAIGE36 (for 
binary traits) or BOLT-LMM37,38 (for quantitative traits) with age, sex, top principal components, 
and other study-specific covariates as detailed in Supplementary Table 1. We excluded sex-
adjusting covariates from sex-specific or stratified traits (i.e., age at menarche/menopause, breast 
cancer, testosterone levels, and uterine fibroid; Supplementary Table 2). For  mosaic loss of 
chromosome Y, we used summary statistics publicly available from BBJ90 and UKBB91. 

Statistical fine-mapping 

We conducted statistical fine-mapping using FINEMAP14,15 and SuSiE16 with GWAS summary 
statistics and in-sample dosage LD. We defined fine-mapping regions based on a 3 Mb window 
around each lead variant and merged regions if they overlapped. We excluded the major 
histocompatibility complex (MHC) region (chr 6: 25–36 Mb) from analysis due to extensive LD 
structure in the region. Allowing up to 10 causal variants per region, we derived up to 10 
independent 95% credible sets (CS) and posterior inclusion probabilities (PIP) of each variant 
using the default uniform prior probability of causality. The 95% CS reported by FINEMAP and 
SuSiE each have 95% posterior probability of containing a causal variant; in a locus with multiple 
causal variants identified, there will be multiple CS. This definition of CS differs from the definition 
given in Hormozdiari et al.92, in which each CS has 95% posterior probability of containing all 
causal variants in a locus. We computed in-sample dosage LD using LDstore 2 (ref. 93). 
 
We combined fine-mapping results from the two methods by taking an average of PIP, excluding 
variants with a substantial PIP difference (> 5%) to further improve fine-mapping accuracy. We 
justify our approach based on functional enrichment analysis that demonstrates that the variants 
with inconsistent PIP across the methods show little functional enrichment (as described in our 
accompanying paper8). If either fine-mapping method failed (e.g., due to conversion failure or 
available memory restrictions), we used successful results from the other method. If both of the 
methods failed, we excluded these regions from analysis. 
 
To define independent CS merged across populations, we merged SuSiE 95% CS from each 
population using hierarchical clustering based on the weighted Jaccard similarity index. Briefly, 
we computed the PIP-weighted Jaccard similarity index between all the pairs of CS for the same 
trait identified from each cohort. For a pair of CS, we computed the similarity index as 

∑
! 𝑚𝑖𝑛(𝑥! , 𝑦!)/∑! 𝑚𝑎𝑥(𝑥! , 𝑦!) where xi and yi are PIP values (or zero if missing) in each CS 

for the same variant i. We then used 1 – the similarity index as a distance to conduct hierarchical 
clustering of the CS using the complete linkage method. We cut a dendrogram tree at a height of 
0.9 so that any two credible sets with PIP-weighted Jaccard similarity above 0.1 are merged into 
a single credible set. 
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Colocalization 

We conducted colocalization of fine-mapped variants from complex trait and cis-eQTL 
associations. Based on fine-mapping results from complex trait and cis-eQTL, we computed a 
posterior inclusion probability of colocalization for a variant as a product of PIP for GWAS and for 
cis-eQTL (PIPcoloc = PIPGWAS × PIPcis-eQTL)

92. We assembled fine-mapping results of cis-eQTL 
associations from GTEx47 v8 (detailed in our accompanying paper8) and eQTL catalogue48 
release 4, both of which used the same or the functionally-equivalent fine-mapping pipelines to 
our GWAS fine-mapping (see Code availability). All the variants were originally processed on 
the human genome assembly GRCh38 and lifted over to GRCh37 to colocalize with GWAS 
results in this study. 

Functional enrichment 

We performed functional enrichment analysis for fine-mapped variants from each population. We 
first defined seven main distinct functional categories: pLoF (predicted loss-of-function), 
missense, synonymous, 5’ UTR, 3’ UTR, promoter, cis-regulatory element (CRE), and non-genic. 
We assign fine-mapped variants to these categories in the sequential order so that each category 
is non-overlapping from each other. Variant-based categories (pLoF, missense, synonymous, and 
5’/3’ UTR variants) are defined based on the most severe consequence for a variant on a 
canonical transcript, predicted by the Ensembl Variant Effect Predictor (VEP)94 v85 (using 
GRCh37 and GENCODE v19). The pLoF category represents stop-gained, splice site disrupting, 
and frameshift variants predicted as high-confidence by LOFTEE69. The missense category 
includes missense-like variants such as low-confidence LoF. Region-based categories (promoter 
and CRE) are defined using region-based annotations. The promoter annotation is retrieved from 
the baseline annotations in Finucane & Bulik-Sullivan et al.40, originally from the UCSC Genome 
Browser95 and post-processed by Gusev et al96. The CRE annotation is defined as intersection of 
DNase I hypersensitive sites (DHS) and H3K27ac regions from the Roadmap Epigenomics 
Project97, ChIP-Atlas98, Meuleman et al.99,  Domcke, et al.100, Corces et al.101, Buenrostro, et al.102, 
and Calderon, et al.103, reprocessed in our accompanying paper8. Lastly, the non-genic category 
represents any variants that do not belong to the other six categories. In addition, we annotated 
each variant using 35 binary annotations from the baselineLD v2.2 model43. 
 
For each variant, we computed the maximum PIP across traits in BBJ, FinnGen, UKBB, and all 
cohorts combined. We estimated functional enrichment for each category as a relative risk (i.e., 
a ratio of proportion of variants) between being in an annotation and fine-mapped (PIP ≤ 0.01 or 
PIP > 0.9). That is, a relative risk = (proportion of variants with PIP > 0.9 that are in the annotation) 
/ (proportion of variants with PIP ≤ 0.01 that are in the annotation). The 95% confidence intervals 
are calculated using bootstrapping with 5,000 replicates. 

Fine-mapping replication analysis 

To investigate fine-mapping replication, we systematically evaluated the consistency of fine-
mapping results across populations for the 26 traits analyzed in all three populations 
(Supplementary Table 2), using all six pairs of discovery population and distinct secondary 
population. Starting from high-PIP (> 0.9) variant-trait pairs in the discovery population, we first 
split them by whether the association is genome-wide significant (P < 5.0 × 10–8) in the secondary 
population, and then categorized each pair into the following categories, based on criteria 
evaluated in the secondary population: 
 
For genome-wide significant (P < 5.0 × 10–8) variant-trait pairs, 
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1. Pairs for which the fine-mapping result is replicated (PIP > 0.1). 
2. Pairs for which the fine-mapping is not replicated (PIP ≤ 0.1) 

For non-genome-wide significant (P ≥ 5.0 × 10–8) variant-trait pairs, 
3. Pairs for which the association is replicated (P < 0.01). 
4. Pairs for which the association is not replicated (P ≥ 0.01) but the variant is included in the 

study and has decent statistical power (estimated power > 0.9 for achieving P = 0.01). We 
estimated statistical power via the non-centrality parameter (NCP) of the chi-square 
distribution104. We defined NCP = 2f(1 – f)nβ2 where f is MAF, n is the effective sample 
size, and β is a posterior effect size estimated by SuSiE in the discovery population. Here, 
we assumed the variant has the same causal effect size in a second population. For 
quantitative traits, effective sample size equals the number of samples. For binary traits, 
effective sample size is calculated via nϕ(1 – ϕ) where ϕ is the number of cases divided 
by the number of total samples. We note that this power estimation does not account for 
linear mixed models adopted by BOLT-LMM or SAIGE.  

5. Whether the variant is analyzed in the study (i.e., exists in summary statistics). The 
missingness is mainly due to low frequency or monomorphism (non-existence) in the 
secondary population, which is described in the Supplementary Note. 

The schematic flowchart of this process is illustrated in Fig. 2a. We note that there could be a 
case where non-genome-wide significant variant-trait pairs (P ≥ 5.0 × 10–8) in a secondary 
population still had fine-mapping replication (PIP > 0.1). 

High-confidence and low-confidence fine-mapping results 

We annotated high-confidence and low-confidence high-PIP (> 0.9) variant-trait pairs for the 91 
traits analyzed in two or more populations (Supplementary Table 3). High-confidence pairs are 
defined as having PIP > 0.9 in at least one population and PIP > 0.1 in all the other populations 
analyzed in this study. Low confidence pairs are defined as having PIP > 0.9 in one population 
and P < 5.0 × 10–8 but PIP ≤ 0.1 and not in 95% CS in one of the other populations. Those 
categorized otherwise (e.g., population-specific variants) were not assigned either annotation. 

Allele frequency enrichment 

To identify population-enriched variants, we defined allele frequency (AF) enrichment metrics as 
a ratio of pseudo AF between ancestral and founder populations. To do this, we retrieved allele 
counts from gnomAD69 v2 and GEM-J WGS70. To account for finite sample sizes, we computed 
pseudo AF by constantly adding one to allele count (AC), i.e., pseudo AF = (AC + 1) / allele 
number. Due to the disparity in available sample sizes between gnomAD v2 exomes and 
genomes, we computed enrichment metrics separately for coding and non-coding variants using 
exomes and genomes, respectively. Coding and non-coding variants are defined as having VEP-
predicted coding consequences or not (see the previous section). 
 
For coding variants, we used gnomAD v2 exomes for the Finnish (n = 10,824), non-Finnish-
Swedish-Estonian Europeans (NFSEE; n = 43,697), and non-Japanese-Korean East Asians 
(NJKEA; n = 7,212). For non-coding variants, we used gnomAD v2 genomes for the Finnish (n = 
1,738), NFSEE (n = 5,421), and NJKEA (n = 780). We used the GEM-J WGS for both coding and 
non-coding variants, which contains WGS data from the Japanese population (n = 7,609). To 
account for coverage differences across data sources, we excluded regions from GEM-J WGS 
with a median coverage < 10 in gnomAD exomes or genomes. To eliminate non-coding 
enrichment due to tagging coding variants, we excluded non-coding variants in LD (r2 > 0.1) with 
coding variants using gnomAD v2 LD matrices for the Finnish and East Asian populations. We 
restricted our analysis to 140,416 and 91,564 coding variants and 11,732,074 and 9,539,454 non-

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.03.21262975doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/


 

coding variants tested in FinnGen and BBJ GWAS, respectively. To annotate estimated allele 
age, we retrieved point estimates of allele age (mode of the composite posterior distribution) from 
the Genealogical Estimation of Variant Age (GEVA)74. 

Allelic series analysis 

We investigated an allelic series of fine-mapped variants within and across populations. We first 
took nonsynonymous coding variants (pLoF and missense predicted by VEP as described in the 
previous section) that had PIP > 0.1 for at least one of the studied traits. We then counted the 
number of these variants falling in each gene, identified allelic series of two or more such variants 
in a single gene for the same trait, and categorized allelic series according to whether they were 
discoverable in a single population or only by combining data across populations.  Furthermore, 
we investigated non-coding variants that are proximal to these fine-mapped nonsynonymous 
coding variants (< 100 kb), assuming they might act through the same gene. 
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Extended Data Figures 

 
Extended Data Fig. 1 | Functional enrichments of fine-mapped variants. a–d. Proportion of variants for the seven 
main functional categories (Methods), stratified by the best PIP bin for a variant in BBJ, FinnGen, UKBB, and all cohorts 
combined. Labels above each bar represent the number of variants in each bin. e-h. Enrichments of fine-mapped 
variants (PIP > 0.9) in each functional category compared to non-fine-mapped variants (PIP ≤ 0.01). i. Enrichments in 
35 binary annotations from the baselineLD v2.2 model43. Enrichment was calculated as a relative risk (i.e., a ratio of 
proportion of variants) between being in an annotation and fine-mapped (PIP ≤ 0.01 or PIP > 0.9; Methods). Error bars 
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correspond to 95% confidence intervals using bootstrapping. Numerical results are available in Supplementary Table 
5,6. 
 
 

 
Extended Data Fig. 2 | Additional details of fine-mapping replication status across populations. a,b. Breakdowns 
for the genome-wide significant variant-trait pairs (PGWAS < 5.0 × 10–8) in a secondary population, using distinct fine-
mapping replication criteria (a. PIP > 0.05 and b. in 95% CS) different from Fig. 2 (PIP > 0.1). c–e. PIP distributions in 
a secondary population, stratified by PIP bins in a discovery population. Half-sided violin plots represent PIP 
distributions for each secondary population. Points represent mean PIP in the secondary population for each PIP bin 
in a discovery population. f. PIP distribution of true causal variants with PGWAS < 5.0 × 10–8 in simulated GWAS data 
from our companion paper8. 
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Extended Data Fig. 3 | Illustrative examples of fine-mapping non-replication across populations. Locuszoom 
plots for the same locus across populations. Colors in the locuszoom panels represent r2 values to the lead variant. In 
the PIP panels, only fine-mapped variants in SuSiE 95% CS are colored, where the same colors are applied across 
populations based on the merged CS (Methods). a. rs35506085 for height that was fine-mapped in FinnGen and UKBB 
(PIP = 1.0), but not in BBJ (PIP ~ 0) likely due to extensive LD. b. rs17140875 for height that was fine-mapped in BBJ 
(PIP = 1.0) but not in FinnGen or UKBB (PIP ~ 0). The variant is more common in BBJ (MAF = 0.08) than in FinnGen 
or UKBB (MAF = 0.04 and 0.05, respectively) and has more LD neighbors in Europeans. c. rs1996023 for BMI that 
was fine-mapped in BBJ (PIP = 0.99), but not in FinnGen or UKBB (PIP ~ 0). Instead, we found other CS in FinnGen 
and UKBB that showed modest LD with rs1996023 in Europeans (r2 ~ 0.5) but high LD in BBJ (r2 ~ 0.8). d. rs495855 
for height that was fine-mapped only in UKBB (PIP = 1.0). This seems very likely a false positive given extensive LD in 
every population. 
 
 
 

 
Extended Data Fig. 4 | Overview of high-confidence fine-mapped variants. a. Distribution of minor allele 
frequencies (MAF) in each cohort. Violin plots represent the distribution. Each point represents a high-confidence fine-
mapped variant and each line connects the same variant across cohorts. b. Consequences annotated by VEP (see 
Methods). c. Histogram of distance to the closest gene for high-confidence fine-mapped non-coding variants. Color 
represents non-coding consequences same as b. d. Distribution of predicted expression modifier score (EMS)57 for 
fine-mapped non-coding variants, stratified by the best PIP bins. The highest bin (0.9 < PIP ≤ 1) was further stratified 
into the high-confidence variants or not based on replication across populations (see Methods). Maximum normalized 
EMS score over genes was calculated for each fine-mapped variant using the whole blood tissue. Details of the high-
confidence fine-mapped variants are summarized in Supplementary Table 8,9. 
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Extended Data Fig. 5 | Synonymous variant rs55714927 shows splicing effect in ASGR1. a. Locuszoom plots for 
alkaline phosphatase (ALP) in BBJ and UKBB. b. Phenome-wide association study (PheWAS) of rs55714927 across 
all the traits analyzed in this study. Only phenotypes that showed P < 5.0 × 10–8 in any cohort are displayed. Each point 
represents a marginal beta for a given trait in a cohort, with an error bar representing the standard error. Shape of each 
point represents whether each variant showed PIP > 0.1. c. sQTL effect of rs55714927 in GTEx liver. d. Sashimi plot 
showing splicing effects of rs55714927 in three homozygous reference allele carriers vs. three homozygous alternative 
allele carriers that were randomly chosen. 
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Extended Data Fig. 6 | Colocalization between high-confidence fine-mapped non-coding variants for complex 
traits and cis-eQTL associations in trait-relevant tissues. Locuszoom plots for the same locus of complex traits 
across populations and of cis-eQTL associations in trait-relevant tissues. Colors in the locuszoom panels represent r2 
values to the lead variant. In the PIP panels, only fine-mapped variants in SuSiE 95% CS are colored, where the same 
colors are applied across populations based on the merged CS (Methods). a. rs2070895 for HDL cholesterol in BBJ 
and UKBB and for LIPC expression in GTEx liver. b. rs78378222 for skin cancer in FinnGen and UKBB and for TP53 
expression in GTEx skin. c. rs1497406 for γ-glutamyl transferase (GGT) in BBJ and UKBB and for EPHA2 expression 
in GTEx liver. d. rs34778241 for loss of chromosome Y (LOY) in BBJ and UKBB and for EIF4E3 expression in GTEx 
whole blood. 
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Extended Data Fig. 7 | High-confidence fine-mapped intergeneric variants in a gene desert. Locuszoom plots for 
the same locus across populations. Colors in the locuszoom panels represent r2 values to the lead variant. In the PIP 
panels, only fine-mapped variants in SuSiE 95% CS are colored, where the same colors are applied across populations 
based on the merged CS (Methods). a. rs77541621 in the 8q24 locus for prostate cancer in UKBB and FinnGen. b. 
rs1434282 in the 1q32 locus for mean corpuscular volume (MCV) in BBJ and UKBB. c. rs116376456 in the 2q36 locus 
for height in UKBB and FinnGen. d. rs35009121 in the 10p14 locus for calcium levels in BBJ and UKBB. 
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Extended Data Fig. 8 | Putative causal variants are negatively correlated in a locus. a–d. rs244711 and rs1966265 
for height in BBJ, FinnGen, and UKBB.  e–h. rs1801706, rs5742907 and rs2303790 for HDL cholesterol in BBJ and 
UKBB. a, e. Locuszoom plots for the same locus across populations. Colors in the manhattan panels represent r2 
values to the lead variant. In the PIP panels, only fine-mapped variants in SuSiE 95% CS are colored, where the same 
colors are applied across populations based on the merged CS (Methods). b, f. Heatmaps showing r values between 
the highlighted variants and the other variants in 95% CS in each population. In a CS panel, variants are colored by 
the same colors in the locuszoom plots (a, e). c, d, g, h. Forest plots showing marginal and posterior betas of fine-
mapped variants. Point color represents each cohort and shape represents whether the variant showed PIP > 0.1 in 
each cohort. 
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Extended Data Fig. 9 | Population-enriched non-coding variants. a–d. Histograms showing a distribution of allele 
frequency (AF) enrichment metric in (a) Finnish (n = 1,738) and (b) Japanese (n = 7,609) populations. A ratio of AF 
was computed against NFSEE (n = 5,421) and NJKEA (n = 780) for non-coding variants analyzed in FinnGen or BBJ 
GWAS that exist in gnomAD WGS or GEM-J WGS, respectively. For a subset of variants that are fine-mapped in our 
analysis (see Methods), we show AF enrichment distribution across maximum PIP bins computed in (c) FinnGen or 
(d) BBJ. e–f. Cumulative distribution of estimated allele age for non-coding variants, stratified by AF enrichment in (e) 
Finnish or (f) Japanese. FIN: Finnish, JPN: Japanese, NFSEE: Non-Finnish-Swedish-Estonian European, NJKEA: 
Non-Japanese-Korean East Asian. 
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Extended Data Fig. 10 | Allelic series of putative causal variants across populations. a. Number of genes with 
fine-mapped nonsynonymous variants (pLoF and missense) with best PIP > 0.1 for each LOEUF decile69. Genes 
without fine-mapped nonsynonymous variants are not plotted. Colors represent the consequence of each variant. When 
multiple nonsynonymous variants are found, the most deleterious consequence is colored. b–d. Lollipop plots of allelic 
series for (b) APOB, (c) ABCG2, and (d) EPX. Each point represents a fine-mapped variant from a single trait and 
cohort. Point color represents discovery cohort and number label represents a fine-mapped trait. Points above the gene 
body correspond to those with positive effect sizes, whereas points below the gene body correspond to those with 
negative effect sizes. Coding variants are labeled with the HGVS protein nomenclature and non-coding variants (in d) 
are labeled with rsids. Protein domains are annotated based on the Pfam database. 
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