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Alzheimer’s disease (AD) is the most prevalent neurodegenerative dementia

in older adults worldwide. Sadly, there are no disease-modifying therapies

available for treatment due to the multifactorial complexity of the disease.

AD is pathologically characterized by extracellular deposition of amyloid beta

(Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated

tau. Increasing evidence suggest that Aβ also accumulates intracellularly,

which may contribute to the pathological mitochondrial dysfunction observed

in AD. According with the mitochondrial cascade hypothesis, mitochondrial

dysfunction precedes clinical decline and thus targeting mitochondria may result

in new therapeutic strategies. Unfortunately, the precise mechanisms connecting

mitochondrial dysfunction with AD are largely unknown. In this review, we will

discuss how the fruit fly Drosophila melanogaster is contributing to answer

mechanistic questions in the field, from mitochondrial oxidative stress and

calcium dysregulation to mitophagy and mitochondrial fusion and fission. In

particular, we will highlight specific mitochondrial insults caused by Aβ and tau in

transgenic flies and will also discuss a variety of genetic tools and sensors available

to study mitochondrial biology in this flexible organism. Areas of opportunity and

future directions will be also considered.

KEYWORDS
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Introduction

Drosophila has been used in genetic research for over 100 years (Morgan, 1910). The
conservation of genes between Drosophila and human (Rubin et al., 2000), the simplicity
of genes with lesser isoform/redundancy in flies, and the smaller size of the Drosophila
genome compared to the human counterpart, make Drosophila an excellent model organism.
Drosophila also has the advantage of having a short life cycle, around 10 days from embryo to
adulthood, is easy to maintain in a small space, and is very economical. Approximately 75%
of human disease-causing genes are present in the fly (Rubin et al., 2000; Reiter et al., 2001;
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Ugur et al., 2016) and its genome has been fully sequenced and
extensively annotated (Adams et al., 2000). Fly genes can be over-
expressed or knocked-down through RNAi, mutated by targeted
knock-out or deletion of the gene, or replaced by knock-in of a gene.
Another technical advantage in flies is the presence of the Gal4-
UAS system, where the yeast transcription factor Gal4 can drive the
expression of any gene of interest at any developmental stage in
a tissue-specific manner (Brand and Perrimon, 1993). Thousands
of Gal4 drivers and other valuable fly strains are available at
stock repositories including the Bloomington Drosophila Stock
Center (BDSC), the Harvard Transgenic RNAi Project (TRiP), the
Vienna Drosophila Resource Center (VDRC), the Japan National
Institute of Genetics (NIG) Stock Center, the Kyoto Drosophila
Stock Center (DGGR), and the Zurich ORFeome Project (FlyORF)
(Dietzl et al., 2007; Cook et al., 2010; Ni et al., 2011; Yeh et al.,
2018). This is highly advantageous as researchers can easily procure
essential stocks for experiments in a matter of days. Also, FlyBase
is a regularly updated website that provides valuable information
about any fly gene, which facilitates rapid progress in the field.
All these Drosophila resources and tools make the fly system an
ideal platform to approach the pathological complexity underlying
neuronal dysfunction and degeneration.

Drosophila as a model to study
neurodegenerative diseases

Drosophila melanogaster has been used to study mechanistic
aspects of human neurodegenerative diseases for over two decades
(Nayak and Mishra, 2022). This is facilitated by the functional
conservation of many genes and pathways between humans and
flies and their remarkable similarities in neuronal functions. The
nervous system of Drosophila is quite complex and includes
functionally distinct neurons in the eyes, olfactory, gustatory and
auditory organs, ventral nerve cord, brain, as well as peripheral
sensory neurons (Hirth, 2010). Multiple assays have been developed
to assess neurodegeneration in many of these tissues. For instance,
the fly eyes contain photoreceptor neurons and are made up of
800 ommatidia that are uniformly arranged with bristles. Human
disease-causing genes can be overexpressed in the eye and the
effects of these genes can be determined based on the degree
of alterations in eye morphology, including the size of the eye,
pigmentation, ommatidial organization, and cell death. All these
phenotypic outcomes are very easy to score under a dissecting
microscope, making the Drosophila eye the preferred screening
platform for modifiers of neurodegenerative processes. Apart
from the eye, neurodegeneration can be also assessed based on
vacuolization of the brain, locomotor performance such as climbing
and flight assays, analysis of neuromuscular junction morphology,
life span analysis, as well as assessment of learning and memory
decline (McGurk et al., 2015; Gevedon et al., 2019). Interestingly,
the accumulation of amyloid aggregates and pathological tau, the
main neuropathological hallmarks in AD, can be also assessed
in the fly brain by staining with Thioflavin and with antibodies
against phosphorylated and conformational tau (Greeve et al.,
2004). Thus, neurodegeneration-related genes and their pathways
can be easily studied at molecular and pathological level in
Drosophila to understand their impact on disease progression. In

the next sections, we will discuss the contributions of Drosophila
as experimental platform to study mitochondrial dysfunction in
Alzheimer’s disease.

Alzheimer’s disease, amyloid beta,
and tau

Alzheimer’s disease (AD) is an incurable neurodegenerative
brain disorder that leads to cognitive impairment and memory
deficits in affected individuals (Knopman et al., 2021) and displays
a reduction in the hippocampal and temporal lobe of the brain
(Ramos Bernardes da Silva Filho et al., 2017). It accounts for
50–60% of dementia (Blennow et al., 2006), affecting mostly
people above 65 years of age. The disease is named after the
German neurologist Alois Alzheimer who examined a 51 years old
patient, Auguste Deter, suffering from memory loss, hallucinations,
disorientation, and language problems. Her autopsy showed an
accumulation of amyloid plaques and tangles in the cerebral
cortex. The etiology of the disease is not well defined. However,
the amyloid cascade theory is the predominant hypothesis where
cognitive deficits are due to the deposition of amyloid beta peptides
forming extracellular plaques (Morishima-Kawashima and Ihara,
2002; Cummings, 2004; de Vrij et al., 2004) and subsequent
hyperphosphorylation of the microtubule associated protein tau,
resulting in formation of neurofibrillary tangles (NFT) (Cummings,
2004; Blennow et al., 2006; Braak et al., 2011).

A variety of amyloid beta fragments (37–43 amino acid
residues) are released into the extracellular space through
proteolytic processing of APP by γ-secretase (Haass et al., 2012).
Among these, Abeta 42 (hereafter referred to as Aβ) is the
most toxic peptide as it is highly insoluble and more prone to
aggregation (Moore et al., 2018). Monomeric Aβ aggregates into
oligomers and protofibrils, while insoluble amyloid beta-fibril
aggregates form amyloid plaques that interfere with signaling
at the synapse (Chen and Yan, 2010; Crews and Masliah, 2010).
Studies have shown that Aβ aggregation causes neuronal death by
altering calcium homeostasis, elevating mitochondrial oxidative
stress, and reducing energy metabolism. In addition, Aβ triggers
microglial priming by interacting with the microglia, making it
more prone to secondary inflammations. Aβ stimulates microglia
to release pro-inflammatory cytokines, and these interfere with
anti-inflammatory cytokines and transforming growth factor-
beta1 (TGF-β1), which can induce neuroinflammation and
neurodegeneration (Torrisi et al., 2019; Merlini et al., 2021). Aβ

also causes a neuroinflammatory response by activating astrocytes
to release various pro-inflammatory molecules (cytokines,
interleukins, complement components, nitric oxide, and other
cytotoxic compounds) (Brosseron et al., 2014; van Eldik et al., 2016;
Arranz and DeStrooper, 2019). Polymerization of Aβ fibrils leads its
aggregation into plaques and to the activation of Glycogen Synthase
Kinase 3 (GSK3), causing hyperphosphorylation of microtubule-
associated Tau and subsequent formation of neurofibrillary tangles
(NFT) (Eftekharzadeh et al., 2018; Tiwari et al., 2019).

Tau is a microtubule-associated protein (MAP) that plays a
role in the stabilization of neuronal microtubules and regulates
axonal growth. Tau exists in a set of six isoform proteins (3R0N,
3R1N, 3R2N, 4R0N, 4R1N, and 4R2N) and is expressed in neurons

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1184080
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1184080 April 12, 2023 Time: 16:48 # 3

Varte et al. 10.3389/fnins.2023.1184080

via alternate splicing of MAPT. Depending on the exclusion or
inclusion of exon 10, the expression of tau isoforms will contain
three (3R) or four (4R) microtubule-binding repeats, whereas
isoforms with 0, 1, or 2 N-terminal inserts are determined by
the inclusion of exons 2 and 3 (Goedert et al., 1989). The
ratio of 3R to 4R is 1 in the healthy human brain (Kosik
et al., 1989; Goedert and Jakes, 1990), but this ratio is altered
in tauopathies (D’Souza and Schellenberg, 2005; Goedert and
Jakes, 2005; Sergeant et al., 2005). Tau exists normally as soluble
and unfolded protein (Mandelkow and Mandelkow, 2012) and
interacts with tubulin, promoting its assembly into microtubules
and helping stabilize the structure (Weingarten et al., 1975).
It has the potential for multiple phosphorylation at Serine (S),
Threonine (T), and Proline (P) residues within its Proline-
rich region (PRG) or C-terminal region (CTR), and only 2–
3 residues are phosphorylated in the healthy brain. However,
there are around five to nine moles of phosphate per mole of
tau in AD and other tauopathies (Grundke-Iqbal et al., 1986;
Kopke et al., 1993; Holper et al., 2022). Hyperphosphorylation
of Tau is associated with an aggregation of multimers and fibers
(Despres et al., 2017) that seem to mediate cognitive defects.
Microtubule-associated kinases such as Cyclin-dependent Kinase
5 (CDK5), Glycogen Synthase Kinase 3 (GSK3β), casein kinase
II (CKII), Src-family tyrosine kinase Fyn, c-Abl tyrosine kinase
(c-Abl), lemur tyrosine kinase 2 (LTK), dual specificity tyrosine-
phosphorylation-regulated kinase 1A (Dyrk1A), and thousand-
and-one amino acid kinases (TAOKs), casein kinase 1 (CK1), c-Jun
amino-terminal kinase (JNK),extracellular signal-regulated kinases
1 and 2 (Erk1 and Erk2), adenosine-monophosphate activated
protein kinase (AMPK), cyclic AMP (cAMP)-dependent protein
kinase (PKA), protein kinase N1, tau-tubulin kinases 1 and 2
(TTBK1 and TTBK2), Ca2+/calmodulin-dependent protein kinase
II (CaMKII) and microtubule-affinity regulating kinases (MARKs)
are known enzymes to be involved in tau phosphorylation
(Limorenko and Lashuel, 2022). In the AD brain, approximately
85 serine, threonine, and tyrosine residues have been found
phosphorylated (Tavares et al., 2013; Limorenko and Lashuel,
2022). Therefore, deposition of extracellular Aβ plaques and
intracellular accumulation of NFT constitute the main pathological
hallmarks in AD (Knopman et al., 2021).

Mitochondrial dysfunction in
Alzheimer’s disease

The mitochondrion is a membrane-bound cytoplasmic
organelle that carries out essential functions like ATP production
through oxidative phosphorylation. It is critical for multiple
cellular processes and interacts with several organelles to regulate
energy metabolism (Rossmann et al., 2021; Collier et al., 2023).
It is worth noting that the brain utilizes 25% of body glucose
and 20% oxygen consumption, but it constitutes only 2% of body
weight. As a result, the brain is very susceptible to changes in
energy metabolism and, therefore, disturbances of mitochondrial
functions are associated with neurodegenerative disorders (Lin
and Beal, 2006; Wang et al., 2020; Zhang X. et al., 2021), including
Alzheimer’s disease (Wang et al., 2014; Swerdlow, 2018). Several
studies have shown that mitochondrial abnormalities are early

events in AD (Reddy et al., 2012; Swerdlow, 2018). Cell lines
expressing mutant APP or treated with Aβ (Schmidt et al., 2007;
Diana et al., 2008; Wang et al., 2008b, 2009; Calkins and Reddy,
2011; Manczak et al., 2011), AD mouse models (Smith et al., 1997;
Li et al., 2004; Reddy et al., 2004; Caspersen et al., 2005; Manczak
et al., 2006; Yao et al., 2009), and AD post-mortem brains (Parker
et al., 1990; Gibson et al., 1998; Maurer et al., 2000; Butterfield et al.,
2001, Dragicevic et al., 2010) are reported to have mitochondrial
dysfunction. Brains from AD patients show decreased production
of ATP, increased production of free radicals, lipid peroxidation,
oxidative damage of DNA and protein, and cellular damage
compared to control specimens (Parker et al., 1990; Gibson et al.,
1998; Maurer et al., 2000; Wang et al., 2005; Devi et al., 2006;
Dragicevic et al., 2010), suggesting that mitochondrial dysfunction
is a main pathological feature of AD.

The mitochondrial cascade hypothesis was first reported in
2004 (Swerdlow and Khan, 2004). According to this hypothesis,
mitochondrial dysfunction disrupts multiple pathways connected
to AD, resulting in a variety of clinical phenotypes including
cognitive decline. It also states that mitochondrial dysfunction
alters Aβ homeostasis triggering its overproduction and
accumulation, and that an overall bioenergetic dysfunction
might be the main culprit in AD [reviewed in Swerdlow (2023)].
Accordingly, the mitochondrial ROS production, calcium
homeostasis, mitochondrial morphology and number, transport
along the neuronal axon, neurotransmitters levels, mitophagy, and
mtDNA mutation and oxidation, are all clearly compromised in
AD (Johnson and Blum, 1970; Hirai et al., 2001; Hauptmann et al.,
2009; Wang et al., 2009; Calkins and Reddy, 2011; Butterfield and
Halliwell, 2019; Wong et al., 2020; Figure 1). Next, we will examine
specific mechanisms mediating mitochondrial dysfunction and
abnormalities in the context of AD.

Mitochondrial ROS and oxidative
stress

The mitochondrion contributes with approximately 90% of
cellular reactive oxygen species (ROS), a by-product of electron
transport of aerobic respiration in mitochondria (Balaban et al.,
2005). When cellular homeostasis is disrupted, mitochondria
produce less ATP and more ROS, resulting in oxidative stress
(Gibson et al., 1998). AD patients are reported to have increased
oxidative damage of proteins, nucleic acids, sugars, and lipids
(Butterfield and Halliwell, 2019). For instance, markers of protein
oxidation, such as protein carbonyl content, are significantly
increased in the parietal lobe, superior, and middle temporal
gyrus, and hippocampus of AD brains (Hensley et al., 1995;
Lyras et al., 1997; Aksenov et al., 2001). Similarly, 3-nitrotyrosine,
another protein oxidative modification, was significantly increased
in various brain regions and cerebrospinal fluid from AD cases
(Good et al., 1996; Smith et al., 1997; Tohgi et al., 1999; Castegna
et al., 2003; Reed et al., 2009; Butterfield and Halliwell, 2019).
Oxidative damage of DNA/RNA in AD brains causes double-strand
breaks of DNA, crosslinking of DNA/DNA or DNA/protein, and
extensive modification of DNA bases. Consequently, levels of DNA
breaks in the AD hippocampus and cerebral cortex are found
to be high (Mullaart et al., 1990; Anderson et al., 1996). Both
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FIGURE 1

Simplified overview of mechanisms associated with mitochondrial dysfunction. Mitochondrial homeostasis is regulated by mitochondrial dynamics
(fission and fusion), proper handling of calcium, control of ROS production, neurotransmitters function, maintenance of mtDNA replication, and
elimination of damaged mitochondria through mitophagy. Stressful and persistent insults to the mitochondria, such as the presence of neurotoxic
proteins, alter these processes resulting in the indicated abnormalities, which leads to mitochondrial dysfunction and potential cell death. Fission
eliminates abnormal mitochondria from healthy ones and this process is mediated by Drp1.

mitochondrial DNA and nuclear DNA from AD brains have a
significant increase of 8-hydroxydeoxyguanosine (8-OHdG) and 8-
hydroxyguanosine (8-OHG), markers of DNA oxidation (Mecocci
et al., 1994; Good et al., 1996; Lyras et al., 1997). Similarly, the
levels of oxidized rRNA or mRNAs are significantly elevated in
AD cases (Shan et al., 2003; Ding et al., 2005; Honda et al., 2005).
Moreover, lipid peroxidation products such as 4-hydroxynonal,
malondialdehyde (MDA), and 2-propenal (acrolein) are increased
in different regions of AD brains (Wang et al., 2014). In contrasts,
the level of antioxidant factors and enzymes is decreased in AD
brains compared to control specimens (Marcus et al., 1998; Doré,
2002; Kim et al., 2006; Venkateshappa et al., 2012). Altogether, these
observations suggest that mitochondrial dysfunction and oxidative
stress are closely linked and, thus, are considered primary triggers
of neuronal death.

Calcium dyshomeostasis

The mitochondria play an essential role in the maintenance
of calcium homeostasis in neurons which is essential for their
survival (Jouaville et al., 1999). The level of mitochondrial calcium
affects the activity of mitochondria and the supply of ATP.
The mitochondrial calcium uniporter (MCU) protein complex
conducts calcium transport into the matrix through MICU1 and
MICU2/3 proteins (MICU gatekeepers) that sense calcium levels
(Perocchi et al., 2010). AD patients have reduced expression of
cytosolic calcium-binding proteins calmodulin, calbindin D28K,

and parvalbumin which might cause activation of MCU after
free calcium binds to MICU1 and MICU2/3 (McLachlan et al.,
1987; Riascos et al., 2011; Ahmadian et al., 2015; Ali et al., 2019).
Therefore, the level of calcium in mitochondria is elevated in
AD. Consistently, exposure of cortical neurons to Aβ increases
calcium concentration and promotes neurodegeneration, which
is rescued by blocking MCU proteins (Hedskog et al., 2013).
Aβ oligomers are also reported to form a calcium-permeable
pore in the mitochondrial membrane that regulates calcium
uptake and may disrupt the homeostasis of calcium in the
mitochondria (Lashuel et al., 2002; Shirwany et al., 2007). In
addition, Aβ oligomers promote the release of calcium stored
in the ER to increase mitochondrial calcium levels, leading to
mitochondrial dysfunction (Ferreira et al., 2015). Indeed, the
expression of Ryanodine receptors (RyR), which regulate the
release of intracellular Ca2 + in the ER, varies during AD
progression and the RyR fly homologue has been found as modifier
of Abeta and tau toxicity in transgenic flies (Casas-Tinto et al.,
2011; Feuillette et al., 2020). Calcium homeostasis also depends on
the sarcoplasmic/endoplasmic reticulum Ca2 + ATPase (SERCA),
an essential ER protein that pumps Ca2 + into the ER, and
modulation of SERCA expression modifies Aβ levels (Green et al.,
2008). However, the direct role of RyR and SERCA in the AD-
related mitochondrial malfunction remains to be elucidated. On
the other side, it has been demonstrated that dyshomeostasis of
mitochondrial calcium can be restored through calcium efflux
pathways, mainly through the sodium-calcium exchanger (NCLX)
(Boyman et al., 2013). Interestingly, AD pathology in mouse models
is associated with the loss of mitochondrial NCLX expression
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and function, and rescue of NCLX in these mice restores both
cognitive decline and cellular pathology (Jadiya et al., 2019).
Additional studies in AD mouse models demonstrated that an
elevated mitochondrial calcium level is associated with induction
of apoptosis, highlighting the importance of mitochondrial calcium
concentration in this process (Sanz-Blasco et al., 2008; Calvo-
Rodriguez et al., 2020). Of note, a recent study found an oscillation
of cytosolic Ca2 + in primary neurons after incubation with tau
K18, a protein fragment carrying the four repeat (4R) domain of
the protein. As a result, both mitochondrial and cytosolic Ca2 + are
increased, indicating that Tau also impairs Ca2 + homeostasis
(Britti et al., 2020).

Mitochondrial fusion and fission

Mitochondria undergo fission and fusion in the cytoplasm to
maintain proper distribution (Zhu et al., 2013), and disruption of
either of these processes leads to neurological disorders (Mishra
and Chan, 2014). The fission of mitochondria is regulated by
the GTPase-related dynamin-related-protein1 (Drp1), also known
as Dynamin-1-like protein (DLP1) in humans. It triggers the
fragmentation of mitochondria and acts as a mitochondrial
fission factor; however, its downregulation promotes mitochondrial
fusion (Wenger et al., 2013). Of note, the structural damage in
mitochondria was documented in AD brains over two decades
ago (Hirai et al., 2001). Subsequent studies demonstrated that
AD brains have a reduction of mitochondrial size and number
(Wang et al., 2008b, 2009), which could cause a shortage of
mitochondrial bioenergetics either by enhancing ROS generation
(Yu et al., 2006) or by having a negative effect on electron
transport chain (ETC) function (Liu et al., 2011; Zhou et al., 2017).
AD patients are reported to have increased mitochondrial fission
(Manczak et al., 2011; Kandimalla et al., 2016). Interestingly, the
pathology of AD in the brain not only includes an interaction
between oligomeric Aβ and DLP1, but also an interaction between
hyperphosphorylated tau and DLP1 (Manczak et al., 2011). This
suggests that these abnormal interactions induce mitochondrial
fragmentation, which is supported by in vivo and in vitro models of
AD. For instance, transgenic flies expressing Aβ display abnormal
dynamics and distribution of mitochondria (Iijima-Ando et al.,
2009; Zhao et al., 2010). In neuronal cell culture, where Aβ or
APP is overexpressed, mitochondria undergo fragmentation with
altered distribution (Wang et al., 2008b, 2009; Manczak et al.,
2011). In M17 neuroblastoma cells and primary neurons, wild-
type or mutant APP overexpression also induces fragmentation
of mitochondria (Wang et al., 2008b, 2009). Interestingly, APP-
or Aβ-induced mitochondrial deficit in neurons is rescued by
blocking mitochondrial fission, confirming the role of this process
in AD pathogenesis (Wang et al., 2008b, 2009). On the other
hand, mitochondria fusion is regulated by dynamin-related GTPase
proteins mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and the optic
atrophy type 1 (OPA1) protein where Mfn1 and Mfn2 bind
to the outer membrane of mitochondria and OPA1 binds to
the inner mitochondrial membrane and mediates the fusion of
the inner mitochondrial membrane (Koshiba et al., 2004; Song
et al., 2009). In mice cortexes and the hippocampus, knockout of
Mfn2 caused structural and functional damage to mitochondria

as well as neuroinflammation, oxidative stress and neuronal
death, illuminating the role of mitochondrial fragmentation in
AD pathology (Jiang et al., 2018; Han et al., 2020). Confocal
and electron microscopy studies from another group confirmed
the structural damage and fragmentation of mitochondria in
the brain of CRND8 APP transgenic mice at 3 months of age,
much before visible amyloid deposition, suggesting that abnormal
mitochondrial dynamics is an early event in AD pathogenesis
(Wang et al., 2017). It is worth noting that overexpression of
Tau also causes abnormal mitochondrial fusion (Li et al., 2016;
Kandimalla et al., 2018). A study showed that overexpression of
human wild-type tau alters mitochondrial dynamics and results
in mitochondrial elongation by increasing the fusion proteins
OPA1, Mfn1, and Mfn2, which reduces neuronal viability (Li
et al., 2016; Szabo et al., 2020). In addition, the knockdown
of mfn2 reduced the human tau-enhanced mitochondrial fusion
and restored mitochondrial function, suggesting that Mitofusin-
associated mitochondrial fusion might contribute to tau toxicity
(Szabo et al., 2020). Another group has shown that expression of
caspase-cleaved tau in cortical neurons from tau-/- knockout mice,
as well as in immortalized cortical neurons, led to mitochondrial
fragmentation with a decline in OPA1 levels (Pérez et al., 2017;
Szabo et al., 2020), indicating the impact of tau on mitochondrial
fusion.

Axonal trafficking deficits and
abnormal mitochondrial distribution

In addition to defects in mitochondrial structure, reduced
expression of mitochondrial fission and fusion proteins in AD can
lead to the absence of mitochondria in axons or dendritic segments
(Wang et al., 2009; Pickett et al., 2018). Mitochondria undergo
anterograde and retrograde transport that helps maintain healthy
mitochondria by inhabiting axons with fresh mitochondria and
recycling the damaged ones (Sheng and Cai, 2012; Lin et al., 2017).
Alteration of either of these processes causes a reduction of healthy
mitochondria, which leads to impaired mitochondrial function.
Dysregulation of axonal mitochondrial transport contributes to
AD as this transport is crucial for the maintenance of neurons
and their synaptic function (Hollenbeck and Saxton, 2005). In
mammals, Milton (OIP106 and GRIF1) and Miro (Miro1 and
Miro2) regulate the attachment of mitochondria to microtubules
via kinesin heavy chains (Fransson et al., 2006). In Drosophila,
Milton and Miro proteins perform similar functions (Guo et al.,
2005) and, thus, mitochondria are absent in synaptic terminals
and axons when there is no Milton or Miro (Stowers et al.,
2002). Interestingly, it has been reported that the number of
mitochondria is reduced in the axons of hippocampal neurons
upon Aβ treatment (Du et al., 2010), which is consistent with a
lower number of mitochondria in axons from AD brains (Stokin
et al., 2005). Mislocalization of mitochondria and its decrease in
dendrites, axons, and soma (Iijima-Ando et al., 2009) was observed
as consequence of Aβ expression in flies. Similar results were
reported in neuronal cell cultures exposed to Aβ oligomers, which
led to reduced mitochondrial trafficking/motility in axons (Du
et al., 2010; Wang et al., 2010; Calkins and Reddy, 2011; Rui and
Zheng, 2016). On the other hand, tau has been also associated
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with abnormal mitochondrial trafficking. For instance, earlier
investigations showed that over-expression of tau in neuroblastoma
cells alters the kinase-dependent anterograde axonal transport of
mitochondria by enhancing the binding of microtubules, resulting
in neurites almost devoid of these organelle (Ebneth et al.,
1998). In vivo studies in transgenic mice confirmed the reduced
mitochondrial movement in axons upon overexpression of human
tau (Stoothoff et al., 2009; Vossel et al., 2015). Intriguingly, not
only the expression of tau but also its phosphorylation impairs
mitochondrial transport. For instance, in neuronal PC12 cells
and mouse cortical neurons, phosphorylation of tau at AT8 sites
(Ser 199, Ser202, and Thr 205) inhibits mitochondrial movement
(Shahpasand et al., 2012). This is consistent with abnormal
mitochondrial distribution in neurons positively stained with the
anti-phospho tau Alz50 antibody in AD brains (Kopeikina et al.,
2011), suggesting that tau plays a key role in the mitochondrial loss
observed in AD (Wee et al., 2018).

Neurotransmitters and
mitochondrial dysfunction

Mitochondrial dysfunction affects a number of
neurotransmitters in AD. For instance, memory and learning
deficits result from insufficient cholinergic transmission. In this
case, the hyperpermeability of the mitochondrial membrane
leads to degeneration of cholinergic neurons and deficiency
of acetylcholine (ACh) (Wong et al., 2020). Dysfunctional
mitochondria also alter the activity of acetylcholine esterase
(AChE) and recycling of choline from the synapse is hampered by
mitochondrial-induced oxidative stress via nitrosative stress, which
results in ACh deficiency (Wong et al., 2020). Serotoninergic,
dopaminergic, norepinephrinergic, and histaminergic systems
comprise the diverse monoaminergic neurotransmission
network. Through membrane permeabilization and altered
serotoninergic metabolism, mitochondrial dysfunction in AD
causes serotoninergic inefficiency (Yamamoto and Hirano, 1985;
Lai et al., 2011). Mitochondrial dysfunction also causes the loss of
serotoninergic neurons via caspase-dependent apoptosis resulting
in the reduction of 5-hydroxytryptamine (5-HT) or Serotonin
neurotransmission (Wong et al., 2020). In AD, an excessive 5-HT
breakdown is the result of mitochondrial dysfunction, which leads
to a 5-HT deficit. The inadequate serotoninergic transmission also
contributes to AD progression by causing ROS accumulation and
further mitochondrial dysfunction (Wong et al., 2020).

Impaired mitophagy

Mitophagy is a mechanism that eliminates damaged
mitochondria by activating PINK1 at the outer mitochondrial
membrane (Nguyen et al., 2016). Studies have shown that
Parkin, an E3-ubiquitin ligase, is drawn to the mitochondria
by PINK1 and phosphorylated there to initiate the mitophagy
pathway for protein ubiquitination and degradation (Geisler et al.,
2010; Matsuda et al., 2010; Narendra et al., 2010; Vives-Bauza
et al., 2010). Accumulation of damaged mitochondria is due to
insufficient mitophagy to remove them (Ye et al., 2015) or to

defects in lysosomal degradation (Martín-Maestro et al., 2016,
2017; Kerr et al., 2017; Sorrentino et al., 2017). Nonetheless, it
has been suggested that AD is mainly associated with mitophagy
impairment (Nixon and Yang, 2011). For instance, post-mortem
hippocampal brain samples from AD patients showed a reduction
of mitophagy by 30–50% compared to control patients (Fang
et al., 2019). Proteins believed to be involved in autophagy
and mitophagy processes, such as Optineurin (OPTN), ATG5,
ATG12, Beclin-1 (Bcl-1), PI3K class III, ULK1, AMBRA1, BNIP3,
BNIP3L, FUNDC1, VDAC1, and VCP/P97 were decreased in AD
brains (Martín-Maestro et al., 2017). The mitochondrial structure
and function in the brains of AD patients and mouse models
change into a swollen round shape with deformed cristae, low
ATP production, reduced LC3 recruitment to the mitochondria,
dysfunctional AMP-activated protein kinase (AMPK), and
inhibition of its targets ULK1 and TBK1, which collectively impairs
the mitophagy process (Hirai et al., 2001; Martín-Maestro et al.,
2016; Wang et al., 2017; Fang et al., 2019). Parkin’s ability to
translocate to damaged mitochondria is also affected by abnormal
contacts between the projection domain of tau protein and Parkin,
which prevents mitophagy (Cummins et al., 2019). Moreover,
addressing mitophagy with urolithin A or actinonin improves
memory in APP/PS1 mice and C. elegans expressing Aβ or tau,
emphasizing the role of mitophagy in AD pathogenesis (Fang et al.,
2019).

Mitochondrial genome
abnormalities

Mitochondria have their own DNA called mtDNA that codes
for the 13 mitochondrial core proteins of the electron transport
chain complexes, two rRNAs, and 22 tRNAs (Taanman, 1999;
D’Souza and Minczuk, 2018). Although mitochondrial DNA plays
a crucial role in mitochondrial function, it is prone to mutations
due to the lack of histone proteins necessary to protect DNA and
to mediate DNA repair mechanisms (Yana et al., 2013; Boczonadi
et al., 2018). MtDNA mutations, via inheritance or gradual somatic
mutation, affect mitochondrial function, which leads to cell death
and disease (Swerdlow, 2018). Like AD patients, individuals with
mtDNA mutations are reported to have similar cognitive deficits.

(Inczedy-Farkas et al., 2014), suggesting the potential role of
mtDNA in cognition. In the case of AD, affected individuals
have an increase in mtDNA mutations, possibly due to higher
oxidative damage (Swerdlow, 2018). Indeed, AD patients have
10-fold higher levels of oxidized bases in mtDNA than nuclear
DNA compared to healthy controls (Mecocci et al., 1994; Wang
et al., 2005). This is consistent with higher oxidized nucleic acid
in mtDNA in MCI patients and preclinical AD (Lovell et al., 2011).
All these observations illustrate the role of mitochondrial genome
abnormalities in AD pathogenesis.

Assays for studying mitochondrial
biology

Many assays have been developed and improved over the
years to analyze the structure and function of the mitochondria.
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Flow cytometry is a standard assay to record mitochondrial
mass (Doherty and Perl, 2017). However, it was only in recent
decades that this procedure could be performed independently of
mitochondrial potential due to the production of the MitoTracker
family of dyes in the mid-1990s. Specifically, MitoTracker probes-
green (MTG) is used for its ability to accumulate inside the
mitochondria despite the measured membrane potential, unlike the
positively charged red dye (Doherty and Perl, 2017; Rana et al.,
2017). MTG collects inside the mitochondrial matrix and binds to
free thiol groups in cysteine residues located on the mitochondrial
membrane proteins; the amount of accumulated dye can then
be quantified via fluorescence relative to the mitochondrial size
(Presley et al., 2003; Doherty and Perl, 2017).

Along with the size, it is also important to measure the
mitochondrial membrane potential (MMP) to assess the global
mitochondrial function, as this parameter directly correlates with
the ability of the mitochondria to generate ATP for the cells.
The MMP is created from the electrochemical gradient formed
through a series of coupled redox reactions in the electron transport
chain steps; decreases in the MMP can be detected using lipophilic
cationic fluorescent dyes (Sakamuru et al., 2012). Other membrane-
potential dependent fluorescent dyes that can be used to measure
MMP include tetramethylrhodamine, methyl ester (TMRM), and
tetramethylrhodamine, ethyl ester (TMRE). The more polarized the
mitochondria, the brighter the signal when measured due to higher
accumulation of dye (Perry et al., 2011). Other dyes have been
developed to analyze and measure oxygen consumption, which is
directly related to oxidative phosphorylation (OXPHOS) activity
(Yarosh et al., 2008). Spectrophotometric assays have also been
developed to measure the activity of mitochondrial enzymes or the
concentrations of cellular metabolites. For instance, by measuring
enzyme activity through spectrophotometry, it was found that
the activity of the mitochondrial complex I is slightly reduced
in the brain during aging, but highly reduced in the context of
neurodegeneration (Pollard et al., 2016).

In many cell types, the mitochondria create a complex,
reticular network to support its critical functions, such as energy
production. These networks undergo constant dynamic changes,
which require the complementary processes of fission and fusion
to occur (Hoppins et al., 2020). Several in vitro and in vivo
studies were performed to assess mitochondrial fission and fusion
and earlier assays provided evidence that mitochondrial fission
involves multiple constriction steps that are marked by the
endoplasmic reticulum (ER) and dynamin-related proteins (DRPs)
(Friedman et al., 2011; Anand et al., 2014). Recent advances in
light and electron microscopy demonstrated that the inner and
outer membrane dynamics may be uncoupled during fission and
fusion, which suggests that both processes are uniquely required
to uphold the morphology of the mitochondria during its dynamic
equilibrium; problems in this relationship can cause a diverse array
of diseases as mitochondrial fission and fission are required for
mitochondrial replication, a process critical to maintain energy
levels and overall cell health (Cho and Sun, 2020; Hoppins et al.,
2020). To correctly visualize mitochondrial fusion, stable cell
lines that express fluorescent mitochondrial matrices via targeted
proteins must be generated; once this is done, the mitochondria can
be isolated, and the fusion assay can be performed (Hoppins et al.,
2020). The fusion efficiency of the mitochondria can be quantified
by dividing the number of fused mitochondria by the total number

of mitochondria seen in the microscope field. It is anticipated that
about 15–20% of total mitochondria are fused in wild-type control
specimens (Hoppins et al., 2020).

Mitochondrial fission is required for growing and dividing
cells and is mediated by the cytosolic dynamin family member,
Drp1, in Drosophila and mammals (Youle and van der Bliek,
2012). Assays to measure fission in vitro involve quantification
of the GTPase cycle kinetics and biochemical activity of Drp1
(Ingerman et al., 2005). Electron microscopy has also been included
to study mitochondrial fission through Drp1-mediated liposome
tubulation and constriction assays. Once images are obtained, the
ultrastructural changes can be analyzed and measured using the
ImageJ software (Schneider et al., 2012).

Mitochondrial biology in Drosophila

Drosophila is a prominent model for studying mitochondrial
diseases because researchers can manipulate the mitochondrial
genome to express the characteristics of many human
mitochondrial disorders (Chen et al., 2019). By utilizing certain
restriction enzymes on Drosophila mitochondrial DNA, it has been
observed that many mitochondrial mutations are heritable by
isolation of specific disease-causing genes; when these methods are
used with genetic drivers, such as GMR-GAL4, heteroplasmic flies
with different mitochondrial genomes can be produced in order
to study the molecular and phenotypic effects of a specific disease
gene (Xu et al., 2008; Chen et al., 2015).

From a genomics perspective, human and Drosophila genomic
mtDNA are very similar despite the human genome being about
3 kb shorter (Lewis et al., 1995). The 16,559 kb human mtDNA
genome encodes for 13 proteins, 22 tRNAs, and two rRNA; all
thirteen of these mitochondrial proteins make up components
of the four complexes found in the electron transport chain,
and almost all the DNA sequences in each specific protein have
small introns that must be spliced out before translation can
occur. Drosophila mtDNA encodes the same transcripts as its
human counterpart but has a slightly different genomic order,
predominantly due to its expanded “A + T-rich” regions (Sen
and Cox, 2017). Crucial molecular functions of the mitochondria,
including transport, oxidative phosphorylation (OXPHOS), and
nucleotide biosynthesis, have highly conserved nuclear-encoded
genes across both species, making Drosophila an excellent model
for studying metabolic issues (Chen et al., 2019). Each of the 13
mitochondrial proteins is translated in the mitochondrial matrix
using mtDNA-encoded tRNAs and most of the mRNA sequences
for the mitochondrial proteins are separated by at least one
mtDNA-encoded tRNA. It is critical that each mtDNA-encoded
tRNA is properly and systematically excised since both human
and Drosophila mtDNA are transcribed in a polycistronic manner.
Without proper excision of each previous transcript, normal
translation and processing of the proteins cannot occur which can
lead to illnesses or even the death of the organism (Sen and Cox,
2017).

Drosophila research can also be used to define phenotypes
associated with defective mitochondria. It has become clear that
the number of mitochondria present in different organisms can
fluctuate and the structure of the organelle dynamically changes
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depending on which type of cell they reside in Zhang et al.
(2016). Neuronal cells are in a constant state of high energy
demand so they are considered to be especially vulnerable to
dysfunction in the mitochondrial equilibrium as this can lead to
abnormally low levels of ATP; specifically, there is an abundance
of mutations in the MFN2 gene that have been commonly linked
to a peripheral neuropathy caused by Charcot-Marie-Tooth disease
Type 2A (CMT2A) (Kyriakoudi et al., 2021). Severe symptoms
of this disease, most likely caused by mutations in the functional
domains of the gene, include distal limb atrophy leading to loss of
leg function as well as distal sensory loss in the limbs (Züchner
et al., 2004). Other mutations in the MFN2 gene can be linked
to other CMT diseases, which can damage the optic nerve and
other crucial neurons in different sensory pathways (Zhou et al.,
2019). In addition to genetic research, behavioral assays such as
flight and climbing tests can be performed in flies as behavioral
defects correlate with key features observed in patients with certain
mitochondrial disorders (Jacobs et al., 2004).

Tools for studying mitochondrial
biology in flies

Genetically encoded sensors have been generated in Drosophila
to monitor mitochondrial structure, function, and metabolites.
These sensors are placed under the control of the UAS promoter
and have been used to perform mitochondrial assessments in
different fly tissues using tissue-specific Gal4 drivers such as C155-
Gal4 (pan-neuronal), MB-GS Gal4 (mushroom body), MB296B-
Gal4 (dopaminergic neurons), TH-Gal4 (dopaminergic neurons),
vGlutOK 371 Gal4 (glutamatergic neurons), esgts-Gal4 (intestinal
stem cell), apt-Gal4 (perineurial glial cells), and vGlutVGN 6341 Gal4
(glutamatergic interneurons) (Hwang et al., 2014; Arce-Molina
et al., 2020; Morris et al., 2020; Sharma and Hasan, 2020; Cho
et al., 2021; Hartwig et al., 2021; Wong et al., 2021; Houlihan
et al., 2022). Some sensors are substrate-dependent, while some
are light-dependent. On the other hand, UAS-mitoGFP is used as
a mitochondrial marker to visualize mitochondria in any tissue
because, in this case, the mitochondrial import sequence is fused
to GFP (Lutas et al., 2012; DeVorkin et al., 2014; Morris et al., 2020;
Hartwig et al., 2021; Figure 2A).

Substrate-dependent sensors

Various substrate-dependent sensors were created to detect
substrates like hydrogen peroxide, glutathione, pyruvate, ATP,
NAD/NADH, and calcium. To see redox changes in live
mitochondria, the UAS-mito-roGFP2-Grx1 is available, which
encodes a redox-sensitive GFP cassette fused to glutaredoxin-1
(Grx1) (Albrecht et al., 2014; Krzystek et al., 2021; Houlihan et al.,
2022; Figure 2B). The sensor for pyruvate is known as UAS-mito-
PyronicSF and consist of a circularly permuted GFP fused to the
bacterial pyruvate-sensitive transcription factor PdhR. It binds to
pyruvate and induces conformational changes that increase the
readout of FRET signal (Arce-Molina et al., 2020). Therefore, this
sensor can be used to study mitochondrial metabolism (Figure 2C).

To monitor calcium, the UAS-mito-GCaMP3 was designed
to express a circularly permutated EGFP M13/Calmodulin fusion
protein under control of the UAS promoter. Upon binding to
calcium, this fusion protein undergoes conformational changes
that elicit GFP signal (Figure 3A; Lutas et al., 2012; Morris
et al., 2020; Sharma and Hasan, 2020). UAS-AT1.03NL is an
ATP sensor that consists of two fluorescent proteins (mVenus
and mseCFP) linked to the ε subunit from bacterial F0F1-
type ATP synthase. The ε subunit has two C-terminal helices
and an N-terminal barrel domain. Low FRET efficiency results
from the loose and flexible subunit separating two fluorescent
proteins in ATP-free mode. When ATP is bound, the ε subunit
configuration switches from open to close, bringing the two
fluorescent proteins closer together and increasing FRET efficiency
(Imamura et al., 2009; Tsuyama et al., 2013; Dong and Zhao, 2016;
Cho et al., 2021; Figure 3B). UAS-PercevalHR is also used as
ATP/ADP sensor and contains the ATP-binding protein GlnK1
from Methanocaldococcus jannaschii and circularly permutated
monomeric Venus (CpmVenus) connected by a peptide linker.
Upon binding to ATP, the T-loop of GlnK1 undergoes a dramatic
conformational change from a loose, disordered structure to a
tight, ordered loop, which integrates CpmVenus into the T-loop for
sensing ATP (Berg et al., 2009). It has an excitation peak at 405 nm
for ATP binding and 488 nm for ADP binding (Figure 3C; Broyles
et al., 2018; Morris et al., 2020; Wong et al., 2021). Lastly, the
UAS-SoNaR transgene is used as NADH/NAD + sensor. It has the
NADH-binding domain of Rex protein from Thermus aquaticus (T-
Rex) connected to a circularly permuted yellow fluorescent protein
(cpYFP) (Figure 3D). It has excitation at 420 or 485 nm with
emission at 528 nm to determine NADH/NAD + ratio (Zhao et al.,
2015; Bonnay et al., 2020; Morris et al., 2020).

Light-dependent sensors

UAS-Dendra2.mito is a light-dependent sensor where the
photoconvertible protein Dendra2 (green) from the filamentous
fungus A. nidulans is tagged to the mitochondrial matrix. The green
fluorescence of this tagged protein can be localized and examined
prior to irradiation. The region of interest within a cell or the
entire cell is then exposed to UV (405 nm) or blue light (488 nm)
lasers. Dendra2 is immediately photo-converted from green to red
fluorescence by UV or blue light (Figure 4). It is used to monitor
mitochondria over time (Hwang et al., 2014; Perez-de-Nanclares-
Arregi and Etxebeste, 2014; Bertolin et al., 2018). This sensor
allows easy tracking of green signal before photoconversion and
the corresponding shift to red fluorescence upon UV or blue light
irradiation. Importantly, with excitation and emission occurring
at 553 and 573 nm, respectively, the activated red Dendra2
signal exhibits high photo-stability (Perez-de-Nanclares-Arregi and
Etxebeste, 2014).

Mitochondrial dysfunction in
Aβ-expressing flies

Wang and Davis (2021) recently assessed mitochondrial
function and dynamics in flies expressing Aβ in the mushroom
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FIGURE 2

Schematic representation of UAS-mitoGFP, UAS-mito-roGFP2-Grx1 and UAS-mito-PyronicSF constructs. (A) UAS-mitoGFP contains a
mitochondrial import sequence fused to GFP and serves as mitochondrial marker. (B) UAS-mito-roGFP2-Grx1 is a redox sensor transgene in which
glutaredoxin-1 (Grx1) is fused to redox-sensitive GFP. (C) UAS-mito-PyronicSF is a pyruvate sensor containing the bacterial pyruvate-sensitive
transcription factor PdhR linked to circulated permuted GFP (CpGFP), which allows real-time assessment of mitochondrial pyruvate transport.

body neurons through super-resolution microscopy, calcium
imaging and behavioral assays. They found that Aβ induces
mitochondrial fragmentation and dysfunction at a very early age,
consistent with detectable apoptosis. Interestingly, learning was
impaired much later than the initial mitochondrial abnormalities,
confirming the proximal role of mitochondria in AD pathogenesis.
In terms of structural changes, Aβ was found to induce formation
of aberrant mitochondria with a build-up of vacuoles or damaged
cristae in the pre-synapse of the fly dorsal longitudinal flight muscle
(DLM). In this case, Aβ decreased the age-dependent anterograde
and retrograde axonal trafficking of mitochondria (Zhao et al.,
2010). To determine if manipulation of mitochondrial fission could
modify Aβ-induced phenotypes, the fission regulator Drp1 was
pan-neuronally co-expressed with Aβ. This work demonstrated
that overexpression of Drp1 improves survival, climbing capacity,
neuronal degeneration and ATP levels in Aβ flies (Lv et al., 2017).
On the other hand, over-expression of Aβ in all neurons decreases
drp1 and marf mRNA levels in older flies (Abtahi et al., 2020).

Another protein essential for mitochondrial function and
transport is Milton. It connects Miro to kinesin, (Stowers et al.,

2002) and enables them to move in axons and dendrites (Glater
et al., 2006). Knock-down of Milton enhanced Aβ-induced
locomotion defects. Consistently, heterozygous miro mutants led to
an enhancement of Aβ-induced locomotor impairment associated
with mitochondrial mislocalization (Iijima-Ando et al., 2009),
whereas over-expression of Miro improved the eye phenotype,
climbing performance and ATP levels in Aβ flies (Panchal and
Tiwari, 2020).

To understand the effects of Aβ on mitochondrial distribution,
Aβ was expressed in glutamatergic motor neurons of the fly
leg. Aβ significantly reduces the number of mitochondria in the
motor neurons and shortens the fly lifespan when overexpressed
in glutamatergic neurons (Fernius et al., 2017). This suggests
that Aβ affects mitochondrial distribution in the neuron, possibly
contributing to the reduction in life span.

Mitochondria and endoplasmic reticulum connect to create
mitochondria-ER contact sites (MERCs), which facilitates the
exchange of lipids and calcium ions. However, MERCs dysfunction
or miscommunication affects ATP generation and mitochondrial
division by disturbing calcium shuttling and possibly through
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FIGURE 3

Schematic representation of genetically-encoded sensors for Calcium, ATP, ATP/ADP, NADH, and NAD. (A) UAS-mito-GCaMP3 encodes for a
circularly permutated EGFP M13 and calmodulin fusion protein that gives GFP signal upon binding to calcium. (B) UAS-AT1.03NL consist of two
fluorescent proteins (mVenus and mseCFP) and an ATP binding sequence (ε subunit) that elicits a FRET signal upon binding to ATP.
(C) UAS-PercevalHR contains the ATP-binding protein GlnK1 from Methanocaldococcus jannaschii linked to circularly permutated mVenus and
allows ATP sensing through conformational changes in Glnk1. (D) UAS-SoNar serves as NADH/NAD + sensor and encodes for a fusion of the
NADH-binding domain of T-Rex (Rex protein from Thermus aquaticus) with a circularly permuted yellow fluorescent protein (cpYFP).

interaction with Drp1 and mitochondrial fission factor (MFF),
although the molecular mechanism is not well understood
(Rowland and Voeltz, 2012; Wilson and Metzakopian, 2021). This
is relevant because alterations of the mitochondria–endoplasmic
reticulum contacts have been reported in AD (Schon and
Area-Gomez, 2013). In an effort to improve contacts between
mitochondria and ER, synthetic linkers have been designed to
enhance the proximity between both organelles. For instance, over-
expression of a synthetic linker carrying mitochondrial and ER
targeting sequences extended lifespan and suppressed climbing
deficits in Aβ flies, which suggests that improving the interaction
between mitochondria and ER could alleviate AD pathologies

associated with mitochondrial dysfunction (Garrido-Maraver et al.,
2020). However, a different team recently demonstrated that
the knockdown of pdzd8, a putative Drosophila homolog of the
mammalian MERC tethering protein, decreases contacts between
the ER and mitochondria and restores locomotor deficits in Aβ flies
(Hewitt et al., 2022). Thus, further research is needed to clarify these
contradictory findings.

Calcium homeostasis is very important for proper
mitochondrial function and must be preserved. Flies expressing
human Aβ in the mushroom body have significantly reduced
calcium import compared to control flies, suggesting an Aβ-
mediated impairment of mitochondrial function in mushroom
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FIGURE 4

Schematic representation of the photo-convertible process
associated with UAS-Dendra2.mito. Green Dendra2 is
photo-converted to the red form upon UV or blue light exposure.

body neurons (Wang and Davis, 2021). In addition, pan-neuronal
expression of Aβ reduced the levels of phosphoproteins predicted
to be substrates of PKA, indicating that Aβ42 might modulate
cAMP/PKA signaling (Iijima-Ando et al., 2009). This cAMP/PKA
signaling is known to be affected by mitochondrial dysfunction
which, in turn, reduces synaptic strength and prevents synaptic
vesicle movement in the presynaptic terminal (Verstreken et al.,
2005).

NDUFS3, a core component of the mitochondrial complex, is
involved in the electron transport chain. Its expression is down-
regulated in Aβ-expressing flies, which causes a decrease in the
generation of ATP (Lin et al., 2021). Given that vitamin K serves as
a mitochondrial electron transporter during oxidative respiration
(Vos et al., 2012), there is an interest in investigating its therapeutic
potential in fly models of AD. For instance, Lin et al. (2021)
treated Aβ flies with vitamin K, which led to an improvement
of mitochondrial function, reduction of Aβ neurotoxicity, and
autophagy activation with concomitant increase in NDUFS3
expression and ATP levels.

Taken together, all these findings demonstrate that Aβ over-
expression in flies triggers abnormal structural and functional
changes in mitochondria, disrupts their dynamics and transport,
and impairs learning and memory in late stages of the disease, all of
which is relevant to understand AD pathogenesis (Figure 5).

Mitochondrial dysfunction in
tau-expressing flies

Tau is a protein involved in the polymerization and stabilization
of microtubules and is also associated with the axonal transport
of sub-cellular organelles (Gendron and Petrucelli, 2009; Dolan
and Johnson, 2010). Phosphorylation of tau reduces its binding
affinity for the tubulin subunits of microtubules, which enhances
the self-aggregation and fibrillization of phosphorylated tau
(Cohen et al., 2011; Cisek et al., 2014; Singh et al., 2015)
and leads to defects in axonal transport of mitochondria
(Ittner and Götz, 2011; Mondragón-Rodríguez et al., 2013;
Mietelska-Porowska et al., 2014). Over-expression of human
wild-type and mutant tau R406W in flies induces elongation
of mitochondria, resulting in mitochondrial dysfunction and
apoptotic neurodegeneration with cell cycle activation (Wittmann
et al., 2001; Khurana et al., 2006). Tau-dependent activation
of the cell cycle requires tau phosphorylation and it has been
shown that TOR signaling is also involved in the cell-cycle
activation that mediates tau-induced neurodegeneration (Khurana
et al., 2006). Interestingly, stimulation of mitochondrial fission
by concomitantly increasing the expression of Drp1 and reducing
Marf levels reversed mitochondrial elongation and alleviated
tau neurotoxicity in flies, suggesting that restoring the proper
balance of mitochondrial fission and fusion is necessary to alleviate
mitochondrial dysfunction and cell cycle-mediated cell death
(DuBoff et al., 2012). In contrast, increasing fusion by upregulation
of Marf and downregulation of Drp1 further increased the
mitochondrial length in tau flies, resulting in more aggressive
neurodegeneration (DuBoff et al., 2012).

Dynamin-related-protein1 is a cytoplasmic protein that
translocates to the mitochondrial outer membrane to drive
mitochondrial fission; however, in the context of mutant tau
overexpression, Drp1 staining does not colocalize with mitoGFP
and stays primarily in the cytosol, as evidenced by its distribution
in cytoplasmic and mitochondrial fractions from fly heads (Frank
et al., 2001). This tau-related blockage of Drp1 translocation
is thought to be mediated by stabilization of actin because
reversing actin stabilization rescues tau-induced mitochondrial
defects (DuBoff et al., 2012). Another study demonstrated that
over-expression of leucine-rich repeat kinase 2 (LRRK2) also
increases tau neurotoxicity through excessive actin stabilization
and subsequent mislocalization of Drp1 (Bardai et al., 2018). This
seems to be a relevant pathway as pharmacological suppression of
actin polymerization was found to reverse neurodegeneration and
mitochondrial impairments in tau transgenic flies (Bardai et al.,
2018). On the other hand, given that the balance between fusion
and fission is disturbed in AD (Wang et al., 2008a), Abtahi and
coworkers looked at how tau affects the expression of Marf and
Drp1, which are essential for mitochondrial fusion and fission,
respectively, (Abtahi et al., 2020). The authors found that pan-
neural expression of both wild-type and mutant tau R406W in flies
decreased the expression of Marf mRNA in older flies, suggesting
that the decline in the mitochondrial fusion process takes place at a
later stages in AD. The expression of Drp1 is modulated differently
by wild-type and mutant tau; wild-type tau up-regulates Drp1
mRNA, whereas mutant tau down-regulates it. Despite the fact
that mutant and wild type tau express Marf and Drp1 differently,
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FIGURE 5

Overview of mitochondrial abnormalities found in Aβ-expressing flies. Aβ induces formation of spherical mitochondria, which disrupts their function.
It also decreases calcium import into the mitochondria and affects their axonal trafficking, which impacts learning, lifespan, and locomotor
behaviors. Aβ down-regulates NDUFS3, a crucial factor for the electron transport chain, resulting in low ATP production. In motor neurons, it
reduces the number of mitochondria leading to shortened lifespan. Furthermore, Aβ decreases Drp1 and Marf expression, which causes an
imbalance in the fission and fusion processes. Lastly, it seems to alter the mitochondria–endoplasmic reticulum contacts, although contradictory
results have been found in this regard. Thus, this is highlighted with a question mark.

the increased ratio of Drp1/Marf suggests that both wild type
and mutant tau display more mitochondrial fission (Abtahi et al.,
2020), uncovering an imbalance between fusion and fission in tau
flies.

In Drosophila larval motor neurons, overexpression of human
tau (0N3R) disrupts axonal transport as well as the morphology
and function of neuromuscular junctions (Chee et al., 2005). This
is caused by a marked decrease in the amount of detectable
mitochondria in the pre-synaptic terminal, which causes synaptic
dysfunction accompanied by a lower number of functional
mitochondria (Chee et al., 2005). To understand the effects
of tau on mitochondrial distribution, both UAS-tau0N4R and
UAS-tau0N4R−E14 were expressed in the fly leg neurons. The
results showed that “clump-like” aggregation of mitochondria
is seen in the motor neurons projecting into the muscles
while the distribution of mitochondria is even in control flies,
indicating that tau affects mitochondrial distribution (Fernius et al.,
2017). Accordingly, wild-type UAS-tau0N4R and UAS-tau0N4R−E14

expression in glutamatergic neurons significantly shorten the fly
lifespan (Fernius et al., 2017).

A recent genome-wide RNAi screen in flies expressing
human mutant tau pan-neuronally led to the identification of

several modifiers involved in the mitochondrial pathway, such
as biotinidase, NDUFS4, ALDH6A1, and TFB1M (Lohr et al.,
2020). The authors found that the knock-down of biotinidase in
tau flies disrupts the structure and function of mitochondria, the
function of carboxylase enzymes, and leads to a more aggressive
neurodegeneration. Interestingly, administration of biotin through
feeding rescues toxicity of both wild-type and mutant tau in
transgenic flies (Lohr et al., 2020). This is relevant because the
authors also found reduced carboxylase biotinylation in the brain
of some AD patients. However, the extent to which biotin levels
contribute to AD pathogenesis is largely unknown. On the other
hand, to understand the possible interaction between toxicity of tau
and axonal mitochondria, the adaptor proteins essential for axonal
mitochondrial transport, Milton and Miro, were knocked-down
in flies expressing wild type tau. Knock-down of either Milton or
Miro enhances tau-induced neurodegeneration. Moreover, Milton
knock-down accelerates the accumulation of autophagic bodies
and vacuole formation in presynaptic vesicles and axons (Iijima-
Ando et al., 2012). Additionally, it increases tau phosphorylation
at Ser262 via the partitioning defective-1 (PAR-1) protein, which
decreases tau ability to bind microtubules. This suggests that
both tau phosphorylation at Ser262 and PAR-1 are essential for
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FIGURE 6

Overview of mitochondrial abnormalities found in tau-expressing flies. Tau induces elongated mitochondria, which causes mitochondrial
dysfunction and apoptotic neurodegeneration with cell cycle activation. The cell cycle activation brings neurodegeneration via TOR and through an
imbalance in the fusion and fission processes. Tau disrupts the circadian rhythm by inhibiting the neuropeptide pigment dispersing factor (PDF) and
reducing mitochondrial transport in axons of clock neurons. Additionally, it prevents Drp1 from localizing to the outer mitochondrial membrane,
which affects the fission process. Tau also disrupts axonal transport in the neuromuscular junction (NMJ) leading to mitochondrial aggregation.
Lastly, it has been found that tau also reduces mitochondrial numbers in axons.

enhancing tau-induced axon degeneration in Milton knockdown.
Whereas pan-neuronal knockdown of Milton or Miro results in
age-dependent neurodegeneration in the fly brain, knock-down
of PAR-1 or endogenous fly tau suppresses Milton knockdown-
induced neurodegeneration, demonstrating that both PAR-1 and
tau participate in Milton knockdown-mediated neuropathology
(Iijima-Ando et al., 2012).

Lastly, another study showed that pan-neuronal expression
of wild-type and phosphomimetic mutant tau (tauE14) disrupts
the circadian rhythm (Zhang et al., 2022). While wild type tau
expression in clock neurons reduces the levels of neuropeptide
pigment dispersing factor (PDF), a neurotransmitter essential
for circadian function in Drosophila, expression of tauE14
in clock neurons disrupts the circadian rhythm and reduces
PDF distribution in the dorsal axonal projections. Interestingly,
tauE14 also induces a complete loss of mitochondria in dorsal
projections indicating that tauE14 impairs axonal transport of
neuropeptides and mitochondria in circadian pacemaker neurons,
affecting circadian rhythm (Zhang et al., 2022). Further studies
will be required to better understand the association between
circadian rhythm, mitochondrial biology and Alzheimer’s disease.
In summary, all these observations highlight multiple ways in
which abnormal tau contributes to mitochondrial malfunction
(Figure 6).

Concluding remarks and future
directions

Alzheimer’s disease is a devastating neurodegenerative brain
disorder characterized by extracellular Aβ plaques and intracellular
aggregates of hyperphosphorylated tau, along with progressive
cognitive decline. Despite decades of research and impressive
efforts from multiple groups, there is still no treatment available
for this dreadful disorder. Recent evidence suggested that AD and
other neurodegenerative diseases are impacted by mitochondrial
dysfunction, an area that may provide new targets for future
therapeutic strategies.

In this review, we emphasized how Drosophila closely
resembles molecular and pathological features of Aβ- and tau-
related mitochondrial disfunction observed in AD. We compiled
relevant studies in flies showing how Aβ42 or tau affect the
structure of mitochondria, mitochondrial dynamics, calcium
homeostasis, axonal transport of mitochondria, cAMP/PKA
signaling, mitochondria-ER contact sites as well as the expression
of several mitochondrial factors. We also discussed available assays
and tools for examining mitochondrial function and dynamics in
Drosophila. Considering the flexibility and power of Drosophila
genetics, it is clear that this model organism will continue
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improving our understanding of the critical role of mitochondria in
AD pathogenesis and its crosstalk with other pathomechanisms.

It is worth noting that there are still many opportunities
for Drosophila-based research in this field. For instance a recent
study found that the glutathione S-transferase (GST) Gfzf prevents
mitochondrial hyperfusion in axons and regulates mitochondrial
dynamics (Smith et al., 2019). This is important because several
GST polymorphisms in humans have been associated with the
development of AD (Allen et al., 2012). Thus, future manipulation
of Gfzf in fly models of AD will help understand the potential
contribution of GST activity to this devastating disorder.

One limitation of the studies discussed here is that they were
performed in either Aβ42- or tau-expressing flies. Since Aβ42 and
tau display synergistic interactions (Zhang H. et al., 2021), it will
be imperative to study mitochondrial dynamics and function in
flies co-expressing Aβ42 and tau to provide a more physiological
context. This is because a recent longitudinal positron emission
tomography (PET) study found that Aβ accelerated tau deposition
in the inferior temporal cortex of older people with cognitively
normal function over a 7-year follow-up period and that the rate
of such accumulation was linked to the degree of cognitive decline
(Hanseeuw et al., 2019). This finding is consistent with another
PET study in cognitively healthy individuals showing that Aβ-tau
interactions (rather than Aβ or tau alone) accelerated cognitive
decline (Sperling et al., 2019). Moreover, individuals with primary
age-related tauopathy, who exhibited equivalent tau burdens
but negligible amounts of Aβ, had lesser high-molecular-weight
(HMW) tau levels than patients with AD, who showed typical
Aβ-plaque and tau-tangle burden (Bennett et al., 2017). Taken
together, these studies confirm the synergistic interaction between
Aβ and tau in AD pathology and emphasize the need of using fly
models with concurrent Aβ and tau pathologies. On the other hand,
TDP-43, an RNA/DNA binding protein linked to frontotemporal
lobar degeneration and amyotrophic lateral sclerosis, was recently
found to mediate prominent structural and functional damage to
mitochondria along with activation of the mitochondrial unfolded
protein response (UPRmt) (Wang et al., 2019). This is also relevant
because more than 50% of AD cases display TDP-43 pathology
in the brain (Meneses et al., 2021). It is, therefore, critical to
concurrently manipulate Aβ42, tau and TDP-43 in transgenic flies
to decipher their overall mitochondrial insults in AD cases with
TDP-43 pathology. Approaching these and other unknown aspects
of mitochondrial dysfunction with Drosophila will provide a more
comprehensive portrait of molecular abnormalities and, thus, may

lead to the identification of multiple and promising therapeutic
targets in the years to come.
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