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Summary

� The seedling stage is the most susceptible one during a tree0s life. Water relations may be

crucial for seedlings due to their small roots, limited water buffers and the effects of drought

on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce

as respective methodical approaches are limited.
� Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to

different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus

water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems,

roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed

and stem PLC measured with hydraulic techniques.
� In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ50 �1.13MPa) than stems

(�2.51MPa) and roots (�1.78MPa). The main leaf veins of F. sylvatica had similar Ψ50 values

(�2.26MPa) to stems (�2.74MPa) and roots (�2.75MPa). In both species, no difference

between root and stems was observed. Hydraulic measurements on stems closely matched

the micro-CT based PLC calculations.
� Micro-CT analyses indicated a species-specific hydraulic architecture. Vulnerability segmen-

tation, enabling a disconnection of the hydraulic pathway upon drought, was observed in

A. pseudoplatanus but not in the especially shade-tolerant F. sylvatica. Hydraulic patterns

could partly be related to xylem anatomical traits.

Introduction

Trees can live for hundreds of years, sometimes facing and resist-
ing very harsh environmental conditions during their life span.
Yet, the most critical and threatening stages in a tree’s life can be
tracked back to the very few weeks after seed germination. At the
seedling stage, the plant relies upon reserves stored in the seed,
until cotyledons unfold and start to perform active photosynthe-
sis. Seedlings and the following juvenile stages are at a very high
risk of death (e.g. Fenner, 1987; Larcher, 2003; Smith et al.,
2003; Johnson et al., 2011), because productivity and reserves are
small, investments in growing organs have to be perfectly bal-
anced and respective sensitivity to many biotic and abiotic stress
factors is high. Water relations are key issues during early
ontogeny as root systems are small and shallow, water supply
relies on upper soil layers, which are easily exposed to dehydra-
tion, and internal water buffers are limited. Despite the small size

and relatively short transport distances, multiple studies have
indicated that transport hydraulic efficiency and safety of
seedlings play a central role in plant survival, just like in adult
trees (e.g. Grulke & Retzlaff, 2001; Rice et al., 2004; Domec
et al., 2009). Moreover, the increasing frequency and intensity of
drought events (e.g. Sperry & Love, 2015) are limiting the estab-
lishment and survival of plants, as seedlings play a critical role in
tree population dynamics and shifts in species distributions under
climate change (Ibanez et al., 2007; Vanderwel et al., 2013).
Knowledge on seedling hydraulics, therefore, is relevant for vari-
ous fields such as forestry or nature conservation.

Root-to-leaf water transport is necessary to compensate tran-
spirational water losses (cohesion-tension theory; Boehm, 1893;
Dixon & Joly, 1894; Steudle, 2001) and unavoidable generates a
water potential (Ψ) gradient along the xylem pathway. The
resulting negative hydrostatic pressure in xylem conduits implies
the risk of embolism formation and propagation in the xylem
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(Tyree & Zimmermann, 2002). Embolism causes blockages in
xylem conduits that, in turn, reduce plant hydraulic conductance,
limit photosynthesis and can even lead to plant death (e.g. Bro-
dribb & Cochard, 2009). Embolism can result from drought
stress, when low Ψ cause the aspiration of gaseous bubbles into
xylem conduits from adjacent gas-filled compartments via the
pits (air seeding; Tyree & Zimmermann, 2002; see also Choat
et al., 2015, 2016). Low Ψ is also responsible for embolism for-
mation when plants are exposed to freeze�thaw cycles (e.g. Pit-
termann & Sperry, 2003; Mayr & Sperry, 2010).

In adult trees, the xylem vulnerability to embolism can differ
both between (e.g. Choat et al., 2012) and within species (e.g.
Beikircher & Mayr, 2009), as well as between organs of speci-
mens (e.g. Tsuda & Tyree, 1997; Beikircher et al., 2013; Scholz
et al., 2014; Johnson et al., 2016). It has been suggested that
within-plant variation in vulnerability follows distinct patterns,
with distal plant parts, such as leaves or small branches, being
more vulnerable to drought-induced xylem embolism than cen-
tral and older parts, such as the trunk (hydraulic vulnerability
segmentation hypothesis; Tyree & Ewers, 1991; Tyree & Zim-
mermann, 2002). This would enable drought stressed plants to
sacrifice highly vulnerable plant segments by confining embolism
in the distal sectors, while keeping the remaining parts hydrauli-
cally active and therefore protecting central parts of the water
transport system with high carbon investments (e.g. trunk and
larger stems). In angiosperms, many studies demonstrated peti-
oles and leaves to be more vulnerable than branches (Tyree et al.,
1993; Tsuda & Tyree, 1997; Beikircher et al., 2013; Scholz et al.,
2014; Charrier et al., 2016; Johnson et al., 2016; Wolfe et al.,
2016). Leaves probably exhibit vulnerable extra-xylary pathways,
which disconnect the xylem from distal water transport under
moderate drought stress (Trifil�o et al., 2016; Scoffoni et al.,
2017). In some cases, however, trunks were reported to be more
vulnerable than branches (e.g. Johnson et al., 2016; Rosner et al.,
2018), and other studies found similar vulnerabilities across
organs (e.g. Choat et al., 2005; Hao et al., 2013). Roots were
shown to be more vulnerable than branches in several studies (e.g.
Mart�ınez-Vilalta et al., 2002; Maherali et al., 2006; Johnson
et al., 2016). Within-plant variation in vulnerability has also been
reported for conifers (Kavanagh et al., 1999; Beikircher & Mayr,
2008; Willson et al., 2008; Domec et al., 2009; Delzon et al.,
2010; McCulloh et al., 2014; Losso et al., 2016; Miller & John-
son, 2017). It is likely that vulnerability segmentation is species-
specific and can show various patterns. These patterns are based
on variation in xylem properties (e.g. Hacke et al., 2001; Gleason
et al., 2016), which are known to determine the stability of the
hydraulic pathway. Most important, the pit characteristics influ-
ences air-seeding thresholds (Tyree et al., 1994; Li et al., 2016),
and the cell-wall reinforcement counterbalances maximum ten-
sion occurring in xylem conduits (Hacke et al., 2001). Most stud-
ies on vulnerability segmentation dealt with adult trees (see
citations above) and few on shrubs or herbs (e.g. Ganthaler &
Mayr, 2015; Nolf et al., 2016; Savi et al., 2016; Skelton et al.,
2017), while studies on youngest tree stages (i.e. < 1 yr old) are
scarce (Rodriguez-Dominguez et al., 2018). To our knowledge,
there are only two studies that directly measured hydraulic

vulnerability (Lauenstein et al., 2013; Way et al., 2013) and none
on hydraulic segmentation dealing with plants of an age up to
6 months. This is related to methodical limitations as hydraulic
measurements on small plants are difficult. Fortunately, new
methods now enable studies on samples of small size, such as the
seedlings analysed in the present study.

In past years, a wide variety of experimental techniques has
been developed and used for measuring the vulnerability to
drought-induced xylem embolism of different plant organs
(Cochard et al., 2013). In particular, noninvasive in vivo visu-
alisation techniques have recently taken hold in the field of
plant hydraulics (e.g. Choat et al., 2010; Cochard et al., 2015;
Jansen et al., 2015; Brodribb et al., 2016). X-ray phase con-
trast micro-tomography (micro-CT) is so far the most promis-
ing method, as it is nondestructive (but see Petruzzellis et al.,
2018) and allows in vivo observations of conduits status (in
terms of water- vs air-filled conduits) and thus to analyse
hydraulic integrity and embolism patterns within organs (e.g.
Brodersen et al., 2013; Choat et al., 2015). This technique
provides the possibility to visualise at high resolution and
quantify xylem embolism in detached branches (e.g. Cochard
et al., 2015; Choat et al., 2016; Knipfer et al., 2016; Nardini
et al., 2017), leaves (Bouche et al., 2016; Ryu et al., 2016;
Scoffoni et al., 2017), roots (Cuneo et al., 2016) as well as on
the main stem of intact plants (Choat et al., 2015; Knipfer
et al., 2017; Nolf et al., 2017; Savi et al., 2017).

In the present study, we used synchrotron-based micro-CT to
analyse the vulnerability to drought-induced xylem embolism of
6-month-old Acer pseudoplatanus and Fagus sylvatica plants (here
after called seedlings). The study aimed at real-time observations
of xylem conduits in main organs (stem, roots and leaves) during
progressive plant dehydration. Based on the micro-CT technique,
it was not only possible to study intact seedlings but also to com-
pare vulnerability patterns within single plants. We designed an
experiment that enabled simultaneous micro-CT observations at
multiple points in intact plants and thus recording within-plant
vulnerability patterns with respect to main roots, stems, petioles
or leaf veins. We also compared the theoretical loss of stem
hydraulic conductivity (PLCt) calculated from micro-CT obser-
vations with classical hydraulic measurements performed on
seedling stems, which is important in the view of recent methodi-
cal controversies (e.g. Wheeler et al., 2013; Trifil�o et al., 2014;
Venturas et al., 2015). A comparison between hydraulic and
micro-CT methods on identical plant material has been done in
only three recent studies, in which Nardini et al. (2017) and Nolf
et al. (2017) demonstrated agreement between methods, while
Savi et al. (2017) highlighted possible discrepancies.

We hypothesised that seedlings show pronounced and species-
specific patterns in vulnerability to drought-induced embolism,
with higher hydraulic safety in the main stem compared with
leaves and overall small safety in roots. Roots are exposed to overall
less negative Ψ as they are situated in the basal part of the
soil�plant continuum and accordingly, comparably low hydraulic
safety was reported for roots of mature trees (see the third
paragraph of the Introduction). Furthermore, we expected similar
vulnerability curves from micro-CT and hydraulic measurements
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performed using standard protocols. This micro-CT study should
improve our knowledge of xylem hydraulic safety in seedlings, an
important aspect in the youngest stage of a tree’s life.

Materials and Methods

All experiments were conducted in September and October 2017
on 6-month-old seedlings of Acer pseudoplatanus L. and Fagus
sylvatica L. Seeds (Herzog.Baum, Samen und Pflanzen GmbH,
Gmunden, Austria) were sown in small pots (8 cm high and 7 cm
wide; to allow an easy handling during experiments). For optimal
growing conditions, plants were placed in a glasshouse and con-
stantly irrigated to field capacity (every 2–3 d). At the time of
measurements, seedlings were c. 15–20 cm tall with a stem diam-
eter of 3–4 mm. Micro-CT measurements were performed on
the following plant organs: stems, main roots (all seedlings had a
main root, which was thicker than the others; c. 0.5–0.8 mm in
diameter), petioles (A. pseudoplatanus) and main leaf veins (F. syl-
vatica). Hydraulic measurements were performed only on stems.

Hydraulic measurements

Vulnerability to drought-induced xylem embolism was measured
hydraulically using the ‘bench dehydration’ technique (Sperry
et al., 1988; Cochard et al., 2013). Fully hydrated seedlings were
removed from pots, and roots were carefully rinsed to remove soil
residuals. Seedlings were left dehydrating to different water
potentials (Ψ) in the laboratory (time intervals ranging between
20 min to 8 h). To allow equilibration of Ψ within plants and
obtain accurate Ψ measurements, seedlings were then wrapped in
dark plastic bags for 30–45 min before measurement. After dehy-
dration, the apical part of the seedling (3–5 cm including leaves)
was used to measure Ψ (Scholander apparatus model 1505D;
PMS Instruments, Albany, OR, USA). Out of the central part of
the stem, an c. 6 cm long sample was cut under water, the bark
was removed and the sample trimmed several times with a sharp
carving knife to gradually release tension, remove micro-bubbles
(Wheeler et al., 2013; Venturas et al., 2015) and minimize even-
tual artefacts due to xylem refilling under rehydration (Trifil�o
et al., 2014). Samples were then connected to a modified Sperry
apparatus (Sperry et al., 1988; Losso et al., 2018) and perfused
with distilled and degassed water, filtered at 0.2 lm and contain-
ing 0.005% (v/v) Micropur (Katadyn Products, Wallisellen,
Switzerland) to prevent microbial growth. The initial hydraulic
conductivity (Ki; normalised by xylem cross-sectional area and
sample length) was measured at 4 kPa. F. sylvatica samples were
then flushed for 10 min at 60 kPa to remove embolism. After
flushing, the hydraulic conductivity was measured again. Flush-
ing was repeated until measurements showed no further increase
in conductivity to obtain final specific hydraulic conductivity
(also normalised by xylem cross-sectional area and sample length;
Ks). All hydraulic measurements were conducted at room temper-
ature (c. 21–22°C). Conductivity values were corrected for water
viscosity at 20°C, and percent loss of conductivity (PLC) was cal-
culated as:

PLC ¼ 1�
Ki

Ks

� �

� 100 Eqn 1

For A. pseudoplatanus, direct measurements of PLC were
not possible as conductivities progressively decreased upon
flushing, indicating conduit plugging. Therefore, PLC was cal-
culated from the conductivity of dehydrated samples (corre-
sponding to Ki in Eqn 1) vs the conductivity of saturated
samples (Ks in Eqn 1; Beikircher & Mayr, 2009). F. sylvatica
dehydrated very rapidly at Ψ between c. �2 to �4MPa so
that only few data points could be measured in this range.
Respective vulnerability curves thus show gaps, but determina-
tion of vulnerability thresholds was still possible due to suffi-
cient measurements below and above the critical range and to
a sufficient number of replicates.

PLC was plotted vs the corresponding Ψ and a Weibull
regression curve was fitted to each vulnerability curve (R-
package FIT-PLC, R i386 3.2.5; Duursma & Choat, 2017).
From vulnerability plots, we also extracted the thresholds Ψ12,
Ψ50 and Ψ88, which refer to Ψ at 12%, 50% and 88% loss
of conductivity, respectively (Domec & Gartner, 2001; Choat
et al., 2012).

Micro-CT observations

Micro-CT scans were performed at the SYRMEP beamline of
the Elettra Light Source in Trieste, Italy (Tromba et al., 2010)
using the propagation-based phase contrast technique. Seedlings
were transported to the facility and stored at a shaded field site
until preparation for the analyses. Plants were carefully removed
from the pots and roots carefully rinsed to remove soil residuals
before bench dehydration (as described above in ‘Hydraulic
measurements’). To simultaneously observe the functional status
of xylem conduits in three different organs (stem, main root and
leaf), seedlings were prepared as shown in Fig. 1. Briefly, the
main root and a leaf were bent upwards and downwards, respec-
tively, and positioned next to the stem. The section to be scanned
(stem, leaf vein or leaf petiole, root) was wrapped in Parafilm®,
while the remaining leaves and roots were wrapped in cling film
to prevent further dehydration of the sample during scans. For
A. pseudoplatanus, the petiole was observed. In the case of
F. sylvatica, due to the short petiole, the main vein of the leaf was
observed. Organs were stabilised during scan rotation using a V-
shaped custom-made sample holder. This allowed an easy and
fast positioning of the samples (see Fig. 1), which were fixed to
the holder with Terostat putty (Teroson, Heidelberg, Germany).
Thanks to the use of this sample holder, we could avoid long
exposition to irradiation during the initial sample alignment, thus
minimizing eventual X-ray induced cellular damage (Savi et al.,
2017; Petruzzellis et al., 2018). Overall, sample preparation, ini-
tial alignment and scan time (90 s) were performed within 10–
15 min. The scanned region of the stem was at c. 5–7 cm above
the root collar (corresponding to stem sections used for hydraulic
measurements), and at a distance of 12 cm from the detector.
The field of view was 59 5 mm and covered the full cross-section
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of the three organs. Two 5-mm filters of silicon were used to
obtain an average X-ray source energy of 25 keV. The exposure
time was set to 100 ms, at an angular step of 2° s�1. During the
180° rotation of the sample, 900 projections were acquired. In
total, 15 seedlings of A. pseudoplatanus and 16 seedlings of
F. sylvatica at different Ψ were scanned (initial scan). As for
hydraulic measurements, in F. sylvatica, only few scans were pos-
sible between �2 and �4MPa (see ‘Hydraulic measurements’).
After scans, the plant was cut directly above the root collar and Ψ

of the upper part (main stem and leaves) was measured with a
portable pressure chamber (3005 Plant Water Status Console;
Soilmoisture Equipment Corp., Goleta, CA, USA). Stem Ψ was
expected to be close to measured Ψ as plants were wrapped in
cling film for 20 min at a minimum, which enabled Ψ equilibra-
tion. Finally, stem, root and petiole/leaf segments (still wrapped
in Parafilm®) were cut to c. 4 cm length to induce air-entrance.
After 24 h of dehydration, these samples were recut to 1-cm-long
pieces and arranged in a row along a skewer (four samples per
skewer). We then rescanned all samples at the marked position of
the first scan to observe fully embolised xylem. Arrangement of
several samples in a row enabled time-efficient consecutive scans
by adjusting the stage height (after positioning of the first sample
in the beam).

In total, 1400 slices per sample with a pixel size of 2 lm,
were reconstructed using the software SYRMEP TomoProject
(STP; Brun et al., 2015). In STP, a phase retrieval preprocess-
ing filter (Paganin et al., 2002) was applied before the recon-
struction using the Filtered Back Projection algorithm. For
each sample, one central slice per sample from the initial scan
and one from the final scan were analysed using IMAGEJ 1.51Q

software (National Institute of Health, Bethesda, MD, USA).
Images were processed to set thresholds and select only air-
filled vessels (black; Fig. 2), whose areas were measured using
the ‘Analyse particles’ function. We quantified the vessel den-
sity (VD) and the mean diameter (d) of each vessel (calcu-
lated from its area and assuming circular shape), which was
used to calculate the mean hydraulic diameter (dh) as Σd

5/Σd4

(Kolb & Sperry, 1999) per sample and organ. To check for
variation in conduit size across plant organs, we also analysed
the conduit diameter distribution (2 lm classes). d was also
used to calculate the theoretical hydraulic conductance (kt). kt
is the cumulative hydraulic conductance of all conduits, which
was calculated based on a modified Hagen-Poiseuille equa-
tion (e.g. Knipfer et al., 2015; Cuneo et al., 2016):

kt ¼
pq

128l

X

n
i¼1d

4
i Eqn 2

where q and l are the density of the fluid and the viscosity of
water, respectively. kt was then divided by the cross-sectional
xylem area to obtain the theoretical specific hydraulic conductiv-
ity (Kst).

The theoretical percentage loss of hydraulic conductivity
(PLCt) was calculated by relating the initial theoretical conduc-
tivity (Kt initial) to the theoretical conductivity calculated from all
visible conduits in the final scan (Kt final):

PLCt ¼ 1�
Kt initial

Kt final

� �

� 100 Eqn 3

(a) (b) (c) (d)

Beam

Cling film

Parafilm

Cling film

Fig. 1 Design of the sample preparation for scanning. The main root and a leaf of Acer pseudoplatanus (a) and Fagus sylvatica (b) seedlings were bent
upwards and downwards, respectively, to bring them at the scanning level of the stem (4–5 cm above the root collar) and wrapped in Parafilm�.
Remaining parts were wrapped in cling film (to avoid water loss during scanning) and plants placed in a custom-made sample holder (c). All three organs
(stem, root and petiole/main vein) were irradiated and scanned simultaneously (d; A. pseudoplatanus and F. sylvatica in the upper and lower figure,
respectively).
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whereby Kt initial was calculated from Kt final minus Kt of
embolised vessels in the initial scan. PLCt was plotted vs the cor-
responding Ψ. Exponential sigmoid functions were fitted to each
vulnerability curve (see ‘Hydraulic measurements’) and vulnera-
bility thresholds were determined.

Cell-wall reinforcement

Samples used for micro-CT analyses were soaked in an ethanol/
glycerol/water solution (1 : 1 : 1, v/v/v) for at least 5 d. Transver-
sal sections were cut with a sliding microtome (Sledge Microtome

Acer pseudoplatanus Fagus sylvatica

–2.0 MPa(c)

–0.4 MPa(a)

–4.2 MPa(e)

–5.5 MPa(g)

–0.4 MPa

–1.4 MPa

–3.9 MPa

–6.5 MPa

(b)

(d)

(f)

(h)

Fig. 2 In vivo visualization by micro-CT of
xylem embolism in stems (left in each panel),
leaves (petiole/main vein; upper right in each
panel) and roots (lower right in each panel) in
intact Acer pseudoplatanus (a, c, e, g) and
Fagus sylvatica (b, d, f, h) seedlings.
Reconstructed cross-sections show
embolised (dark grey) and water-filled (light
grey) xylem conduits at different xylem
water potential (MPa). Bars, 1250 lm.
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G.S.L. 1; Schenkung Dapples, Z€urich, Switzerland), stained with
Etzold FCA mixture (consisting of fuchsine, chrysoidine and
astrablue) for 5 min and then rinsed with distilled water. From
images captured with a light microscope (Olympus BX41; Olym-
pus Austria, Wien, Austria) connected to a digital camera
(ProgRes CT3; Jenoptik, Jena, Germany), we estimated the con-
duit wall reinforcement by calculating the ‘thickness-to-span
ratio’ (t/b)2 (Hacke et al., 2001) on at least 8–10 conduit pairs
per sample. The wall thickness (t) and the lumen breadth (b)
were measured using IMAGEJ 1.51Q software. Measurements were
made on vessels pairs with a diameter of dh� 2 lm (Hacke &
Sperry, 2001; Hacke et al., 2001). Values were averaged per plant
organ (� SE).

Statistics

For vulnerability analyses, PLC was plotted vs the corresponding
Ψ and a Weibull regression curve was fitted to each vulnerability
curve (R package FIT-PLC, R i386 3.2.5; Duursma & Choat,
2017). Differences in anatomical (d, dh, VD and (t/b)2) and
hydraulic parameters (Kst and Ks) were tested with a two-way
analysis of variance (ANOVA) followed by Tukey posthoc com-
parison and Student’s t-test, respectively, after testing for normal
distribution and homoscedasticity. For vulnerability analyses, dif-
ferences between techniques and organs were assessed using 95%
confidence intervals obtained via bootstrap resampling. Student’s
t-tests were performed using SPSS v.24.0 (SPSS Inc., Chicago, IL,
USA) at a probability level of 5% while bootstrapping was per-
formed in R STUDIO.

Results

Hydraulic measurements and micro-CT observations

Vulnerability curves obtained with the hydraulic method did not
significantly differ between species, though vulnerability thresh-
olds of A. pseudoplatanus were overall higher than of F. sylvatica
(Ψ50 �2.81MPa vs �3.36MPa; Fig. 3; Table 1). Micro-CT
in vivo visualisation of stems confirmed this finding, whereby dif-
ferences in thresholds were smaller (e.g. Ψ50 �2.51MPa vs
�2.74MPa for A. pseudoplatanus and F. sylvatica, respectively;

Fig. 3; Table 1). Also, vulnerability thresholds did not signifi-
cantly differ between methods (Fig. 3; Table 1). In both species,
calculated stem Kst was higher than the measured stem hydraulic
conductivity Ks (Table 2).

Micro-CT also revealed similar Ψ50 in roots of study species
(Table 1). In A. pseudoplatanus, in vivo visualisation indicated
petioles (Ψ50 �1.13MPa) to be more vulnerable than both roots
and stems (Fig. 4; Table 1), while roots and stems did not differ
in Ψ50. However, roots exhibited significantly higher Ψ88 than
stems (�2.08MPa vs �4.69MPa) with a steep increase in PLC
upon decreasing Ψ (Fig. 4e). In petioles, Ψ12 could not be deter-
mined, because data points at high Ψ were missing. Petiole Kst

was lower than root and stem Kst, which showed similar values
(Table 2). In F. sylvatica, vulnerability to drought-induced xylem
embolism of stems, roots and leaf veins did not differ (Fig. 4b,d,
f; Table 1). Main leaf vein Kst was higher than root Kst, which
was higher than stem Kst (Table 2).

Anatomical parameters

Both species showed similar stem d and dh (Table 2), whereby in
A. pseudoplatanus the size of most frequent conduits was smaller
and a fraction of large diameter conduits (> 38 lm) present,
which were missing in F. sylvatica (Fig. 5). In A. pseudoplatanus,
leaf and root xylem showed significantly smaller d and dh values
(Table 2) than in F. sylvatica.

In A. pseudoplatanus, pronounced differences in the number of
larger conduits (> 20 lm) were observed between organs (Fig. 5a,
c,e). In petioles, d and dh were smaller than in roots, while
largest d and dh were found in stems (Table 2; see also Fig. 5).
In F. sylvatica, dh of roots (23.72� 0.67 lm) and stems
(22.65� 1.09 lm) was similar (see Table 2) while d and diamet-
ric classes distribution differed (Fig. 5d,f; Table 2). Major leaf
veins of F. sylvatica showed smaller d and dh (Table 2; see also
Fig. 5) than roots and stems.

Both species showed low stem VD when compared with roots
and leaf veins/petioles (Table 2). In A. pseudoplatanus, root and
petiole VD did not differ, while leaf veins had a significantly
higher VD than roots in F. sylvatica. Cell-wall reinforcement (t/b)2

showed minor variation in A. pseudoplatanus. In F. sylvatica, stems
exhibited higher (t/b)2 values than both roots and leaf (Table 2).

(a)

Acer pseudoplatanus
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0
2

0
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(b)

Fagus sylvatica

−7 −6 −5 −4 −3 −2 −1 0
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Fig. 3 Vulnerability to drought-induced
xylem embolism from hydraulic
measurements (red) and micro-CT
observations (black) of stems of Acer
pseudoplatanus (a) and Fagus sylvatica (b)
seedlings. Solid vertical lines represent water
potential at 50% loss of conductivity (Ψ50),
dashed vertical lines represent lower and
upper confidence intervals for Ψ50. Shaded
areas represent the 95% bootstrapped
confidence interval for fitted curves.
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Discussion

Based on the micro-CT technique, xylem resistance to drought-
induced embolism in seedlings of two angiosperm species could
be studied in vivo. The experimental design enabled the analysis
of vulnerabilities in different organs of individual plants. Micro-
CT observations demonstrated within-plant variation in the vul-
nerabilities of one out of two study species and thus species-
specificity in the hydraulic architecture of seedlings. Moreover,
comparison of micro-CT observations and hydraulic measure-
ments indicated agreement between methods.

Micro-CT scans enabled the analysis of within-plant patterns
in hydraulic traits at small scale. In the present study, this tech-
nique was used to compare the hydraulic vulnerability of stem,
roots and leaves within intact seedlings, which had an age of only
few months, while previous studies dealt with either saplings or
detached organs of adult trees (e.g. Choat et al., 2015, 2016;
Cochard et al., 2015; Bouche et al., 2016; Cuneo et al., 2016;
Knipfer et al., 2016, 2017; Ryu et al., 2016; Nardini et al., 2017;
Nolf et al., 2017; Scoffoni et al., 2017). Interestingly, the mean
vulnerability of seedling stems was lower than that of branches
from adult trees of A. pseudoplatanus (Ψ50 �1.60 and �2.2MPa

from Tissier et al., 2004 and Lens et al., 2011; respectively). In 2-
yr-old saplings, L€ubbe et al. (2017) also found lower Ψ50 (c.
�3.70MPa) compared with branches of adult trees (Tissier et al.,
2004; Lens et al., 2011). In contrast, F. sylvatica seedlings showed
a stem Ψ50 similar to adult trees and to 2-yr-old saplings (L€ubbe
et al., 2017; B€ar et al., 2018). This indicates that early ontoge-
netic stages of A. pseudoplatanus are probably better protected
against drought-induced xylem dysfunction than adult trees,
which may be necessary to counterbalance the small root system
(see ‘Introduction’). For F. sylvatica seedlings, this aspect may be
less relevant due to this species’ overall lower hydraulic vulnera-
bility and its shade tolerance. F. sylvatica is a very shade-tolerant
and heavy shade-casting species (Petritan et al., 2007) and may be
better protected in the understory from risky transpirational
losses. Though, the recorded Ψ88 was less negative than in 2-yr-
old saplings in both species (�6.00 and �4.80MPa for
A. pseudoplatanus and F. sylvatica, respectively; L€ubbe et al.,
2017). Intense drought events thus might produce significantly
larger impacts and mortality in seedlings. However, comparison
of vulnerability thresholds of our seedlings with mature trees
analysed in previous studies have to be taken with caution as dif-
ferent methods and techniques were used.

Table 1 Vulnerability to drought-induced embolism of Acer pseudoplatanus and Fagus sylvatica stems, roots and leaves obtained with hydraulic measure-
ments and micro-CT observations.

Species Ψ12, MPa CI 2.5% CI 97.5% Ψ50, MPa CI 2.5% CI 97.5% Ψ88, MPa CI 2.5% CI 97.5% n

A. pseudoplatanus

Hydraulic (stem) �1.83 a �1.07 �2.17 �2.81 a �2.54 �3.13 �3.72 a �3.44 �5.04 13
Micro-CT (petiole) �1.13 b* �0.96 �1.32 �3.01 b �2.35 �3.54 10
Micro-CT (stem) �0.97 a �0.56 �2.6 �2.51 a �1.93 �3.33 �4.69 a �3.78 �5.69 15
Micro-CT (root) �1.41 a �1.39 �2.18 �1.78 a �1.77 �2.48 �2.08 b �1.97 �2.7 10
F. sylvatica

Hydraulic (stem) �2.16 a �1.37 �2.65 �3.36 a �2.92 �3.94 �4.52 a �4.15 �5.27 9
Micro-CT (leaf main vein) �1.30 a �0.67 �3.02 �2.26 a �1.93 �3.31 �3.25 a �2.53 �5.15 12
Micro-CT (stem) �1.54 a �0.93 �2.26 �2.74 a �2.28 �3.24 �4.00 a �3.09 �5.11 16
Micro-CT (root) �1.73 a �1.16 �2.32 �2.75 a �2.00 �3.33 �3.74 a �2.07 �4.77 8

Parameters Ψ12, Ψ50 and Ψ88 correspond to Ψ at 12, 50 and 88% loss of conductivity, respectively, and CI 2.5% and CI 97.5% indicate the confidence
interval for each parameter. n, the number of samples used for plotting each vulnerability curve. Letters indicate statistically significant differences in the
respective parameter within a species, asterisks between species (P < 0.05).

Table 2 Mean conduit diameter (d), mean vessel hydraulic diameter (dh), vessel density (VD), cell-wall reinforcement (t/b)2 and mean theoretical specific
hydraulic conductivity (Kst) of roots, stems and leaves, and mean specific hydraulic conductivity (Ks) of stems of Acer pseudoplatanus and Fagus sylvatica

seedlings.

Species Organ d (lm) dh (lm) VD (nmm�2) (t/b)2
Kst

(kgm�1MPa�1 s�1)
Ks

(kgm�1MPa�1 s�1)

A. pseudoplatanus Root 11.15� 1.13 a* 15.63� 0.71 a* 1284.0� 2.6 a* 0.083� 0.006 a 0.95� 0.13 a*
Stem 17.24� 1.50 b 25.06� 1.89 b 211.5� 0.8 b* 0.070� 0.008 a* 0.95� 0.16 a 0.14� 0.01**
Petiole 10.47� 0.23 a* 13.96� 0.26 a* 908.3� 1.1 a 0.063� 0.006 a 0.76� 0.18 a*

F. sylvatica Root 14.51� 1.44 a 22.65� 1.09 a 741.3� 2.1 a 0.080� 0.009 a 2.01� 0.24 a
Stem 18.36� 0.64 b 23.72� 0.67 a 314.4� 0.6 b 0.140� 0.004 b 1.35� 0.13 b 0.34� 0.05**
Main leaf
vein

12.01� 1.25 a 16.42� 0.88 b 2551.3� 3.9 c 0.074� 0.018 a 2.51� 0.60 a

Letters indicate statistically significant differences in the respective parameter within a species, asterisks between species (P < 0.05). Double asterisks indi-
cate significant differences between Kst and Ks within a species (P < 0.05). Mean � SE.
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Petioles of A. pesudoplatanus (Fig. 4a) were found to be more
vulnerable than both stems and roots, while in F. sylvatica, organs
exhibited similar vulnerabilities (Fig 3d,f,h; Table 1). It should be
noticed that leaf vulnerability analyses considered only xylary
pathways (in petioles or main veins) but not extra-xylary compo-
nents (Trifil�o et al., 2016; Scoffoni et al., 2017). Recent studies
on angiosperm species (Klepsch et al., 2018; Wason et al., 2018)
also reported leaf xylem to be similarly resistant to embolism
compared with other organs except for Acer rubrum (Wason
et al., 2018), which exhibited more vulnerable petioles than
stems. Interestingly, in roots of A. pseudoplatanus, Ψ12 and Ψ50

were similar to stems, while Ψ88 was less negative (Fig. 4c, e;
Table 1). This indicates resistance of roots to moderate drought,
which likely can occur in upper soil layers. Rodriguez-
Dominguez et al. (2018) found roots of Olea europaea saplings to
have more resistant xylem than stems and leaves, and Tsuda &
Tyree (1997) reported higher hydraulic safety in roots compared
with stems in A. saccharinum saplings. In contrast, several studies

indicated fine roots to exhibit low hydraulic safety and thus to act
as hydraulic ‘fuses’ (Jackson et al., 2000; Cuneo et al., 2016).
Though, the present micro-CT study focused on the seedlings’
main root, which (although similar in size) may differ from fine
roots.

During the dehydration process, leaves of both species under
study started to wilt below distinct Ψ. This was particularly pro-
nounced in A. pseudoplatanus, which suffered severe wilting at Ψ
of c. �1 to �1.5MPa. Wilting thus happened before Ψ50 was
reached, even in A. pseudoplatanus, whose petioles showed the
highest vulnerability in this study. As suggested by other authors
(Tyree et al., 1993; Pivovaroff et al., 2014; Savi et al., 2016;
Wolfe et al., 2016), leaf wilting and shedding might play an
important role under drought stress by reducing transpiration
and water loss. Embolism formation in the leaf petiole and/or leaf
veins is expected to further disconnect the main stem from leaves
and thus delay the decrease of stem Ψ and the risk of xylem dys-
function. Under drought, a timely onset of these protective
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Fig. 4 Vulnerability to drought-induced
xylem embolism of micro-CT observations of
leaves (a, b), stems (c, d) and roots (e, f) of
Acer pseudoplatanus and Fagus sylvatica

seedlings. Solid vertical lines represent water
potential at 50% loss of conductivity (Ψ50),
dashed vertical lines represent lower and
upper confidence intervals for Ψ50. Grey
shaded areas represent the 95%
bootstrapped confidence interval for fitted
curves. Stem curves are also shown in Fig. 3.
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mechanisms may be essential to guarantee survival in young
seedlings.

Anatomical parameters (i.e. d, dh, VD and (t/b)2) were overall
similar between organs (Table 2) and hardly reflected observed
variations in hydraulic vulnerability. In A. pseudoplatanus, no dif-
ference in conduit size (d and dh) or VD between petioles and
roots were observed, while the stem exhibited wider conduits but
lower VD. Similar values of (t/b)2, which is related to the
hydraulic vulnerability (e.g. Hacke & Sperry, 2001; Hacke et al.,
2001), were recorded across organs. In A. rubrum, Wason et al.
(2018) reported similar hydraulic safety across organs despite dif-
ferences in conduit diameters. In F. sylvatica, despite the absence
of differences in hydraulic vulnerability, stems exhibited wider
conduits, lower VD and lower (t/b)2 than roots and leaf main
veins. These veins showed the highest VD values as conduits were
smaller in size and grouped in bundles. We suppose that mechan-
ical demands substantially influenced the measured anatomical
parameters and masked possible hydraulic structure-function
relationships. Also, the properties of pits, which are central struc-
tures with respect to drought-induced xylem dysfunction (e.g.
Cochard et al., 2009; Lens et al., 2011; Li et al., 2016), were not

considered in our study but relevant as indicated by the differ-
ences between Kst calculated form micro-CT images and
hydraulically measured Ks. More studies, ideally based on micro-
CT analysis at higher resolution, would be desirable to investigate
the relation between pit characteristics and hydraulic vulnerabil-
ity segmentation in more detail.

In both species under study, stem vulnerability curves based on
hydraulic measurements were similar to those obtained with
micro-CT observations. These results agree with previous studies
(e.g. Nardini et al., 2017; Nolf et al., 2017) and indicate that,
when appropriate precaution is taken, ‘cutting artefacts’ (Wheeler
et al., 2013) do not bias hydraulic measurements by causing an
overestimation of vulnerability. The Ψ50 of hydraulic curves was
even more negative than Ψ50 obtained with micro-CT (Fig. 3;
Table 1), as also reported by Savi et al. (2017) for young sun-
flower stems. This difference between methods can be attributed
to three main methodological limitations: (1) Micro-CT observa-
tions can lead to an overestimation of conductivity, when con-
duits are water filled but do not contribute to sap flow. This may
be the case when conduits are not connected to adjacent ones
(e.g. due to immature conduits). (2) Micro-CT only allows an

(a) (b)

(d)(c)

(e) (f)

Fig. 5 Distribution of conduit diameters
(2 lm classes) of stems (a, b), roots (c, d) and
leaves (e, f) of Acer pseudoplatanus (a, c, e)
and Fagus sylvatica (b, d, f) seedlings.
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estimation of conductivities based on conduit diameter, and cal-
culations do neither include pit resistances nor resistances caused
by the cell walls. (3) Hydraulic measurements on small plant
material are difficult and may not be highly accurate due to e.g.
conduit clogging, cut open vessels, accidental removal of
embolism during sample preparation and gas exsolution. Accord-
ingly, hydraulic vulnerability measurements never showed a PLC
higher than 95%, while in micro-CT observations, 100% PLC
were reached already at �4.5 MPa (see Fig. 3). In a recent study,
Savi et al. (2017) suggested that higher rates of PLC in micro-CT
based vulnerability curves might be caused by the exposition of
samples to heat and/or X-ray absorption during sample align-
ment and scanning. However, in our study, samples were not
exposed to irradiation during the initial alignment and the scan
time was rather short (90 s) compared with other studies
(Cochard et al., 2015; Choat et al., 2016; Knipfer et al., 2016;
Ryu et al., 2016; Nardini et al., 2017; Nolf et al., 2017).

Further analyses on larger species pools and on wider spatial
scales (e.g. including fine roots), as well as a combination with
other important hydraulic and physiological traits (e.g. water
storage, leaf shedding) will be essential to better understand water
relations of trees at early ontogenetic stages. Improved knowledge
on seedling hydraulics will be an important base to optimise
afforestation strategies and future management under climate
change projections of progressively warmer and drier conditions.
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