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Insights into beta cell regeneration for diabetes via
integration of molecular landscapes in human
insulinomas
Huan Wang1,2,14, Aaron Bender2,3, Peng Wang3, Esra Karakose3, William B. Inabnet4, Steven K. Libutti5,

Andrew Arnold6, Luca Lambertini7, Micheal Stang8, Herbert Chen9, Yumi Kasai10, Milind Mahajan1,

Yayoi Kinoshita11, Gustavo Fernandez-Ranvier4, Thomas C. Becker12, Karen K. Takane 3, Laura A. Walker3,

Shira Saul 3, Rong Chen1,14, Donald K. Scott3, Jorge Ferrer 13, Yevgeniy Antipin1,14, Michael Donovan11,

Andrew V. Uzilov1,14, Boris Reva1, Eric E. Schadt 1,14, Bojan Losic1, Carmen Argmann1 & Andrew F. Stewart3

Although diabetes results in part from a deficiency of normal pancreatic beta cells, inducing

human beta cells to regenerate is difficult. Reasoning that insulinomas hold the “genomic

recipe” for beta cell expansion, we surveyed 38 human insulinomas to obtain insights into

therapeutic pathways for beta cell regeneration. An integrative analysis of whole-exome and

RNA-sequencing data was employed to extensively characterize the genomic and molecular

landscape of insulinomas relative to normal beta cells. Here, we show at the pathway level

that the majority of the insulinomas display mutations, copy number variants and/or dys-

regulation of epigenetic modifying genes, most prominently in the polycomb and trithorax

families. Importantly, these processes are coupled to co-expression network modules asso-

ciated with cell proliferation, revealing candidates for inducing beta cell regeneration. Vali-

dation of key computational predictions supports the concept that understanding the

molecular complexity of insulinoma may be a valuable approach to diabetes drug discovery.
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N
ormal physiologic human beta cell replication occurs only
transiently in human infancy and early childhood, ceasing
irreversibly thereafter1. Therapeutically, there is only one

class of drugs, still in early development, that reproducibly
induces human beta cell replication: the harmine analogue class
of small molecules that inhibit the kinase, DYRK1A2–4. Even
here, however, the replication rates induced are modest and not
beta cell-specific. Accordingly, there is an urgent need to discover
additional beta cell mitogenic drugs and regenerative pathways.

Insulinomas are very rare, small (~ 1–2 cm), slowly proliferating
pancreatic beta cell adenomas5, 6. They come to medical attention
through their overproduction of insulin, causing hypoglycemia,
with resultant psychomotor symptoms5, 6. They are almost always
benign, and are readily treated by laparoscopic removal. Since they
are a rare tumor, they are not captured in large cancer genomic
surveys such as The Cancer Genome Atlas (TGCA) or the
International Cancer Genome Consortium (ICGC).

Here we report whole-exome sequencing (WES) and RNA
sequencing (RNAseq) of thirty-eight human insulinomas. We pro-
vide these findings for public access with extensive sets of annota-
tions relating to the DNA variants identified, with the ability to
prioritize selection of high-impact mutations in a user-defined way.

Our primary intent was to employ an integrative genomics
approach to identify mitogenic mechanisms with potential
application for human beta cell expansion (Supplementary
Fig. 1). This approach entails integrating whole-exome and RNA-
sequencing data into network analysis to computationally model
insulinoma molecular events relative to normal adult and juvenile

human beta cells. We reasoned that although some molecular
events in insulinoma are likely relevant to the mechanisms of
tumor formation, some may serve to uncover the genetic
mechanisms that enforce beta cell quiescence, and are bypassed in
such benign tumors. We further validated combinations of lead
candidate genes derived from this approach as beta cell mitogenic
mediators. Notably, we focused on insulinomas from subjects not
known to be members of multiple endocrine neoplasia type 1
(MEN1) kindreds, as the MEN1 gene has been previously
reported as one of the most frequently mutated genes in her-
editary pancreatic neuroendocrine tumors (PNETs), although
MEN1 mutations are uncommon in sporadic insulinomas5–7.
Despite attempting to exclude MEN1 subjects, we nevertheless
find widespread abnormalities in genes functionally related to
MEN1, revealing a previously unsuspected unifying mechanism
underlying insulinoma.

Results
Insulinomas harbor recurrent mutations in epigenetic genes.
WES was performed on genomic DNA from insulinomas and
patient-matched blood cells (as normal controls) from 22
patients, with a mean usable sequencing depth of 79X and 105X
for the blood and tumor samples, respectively. We included WES
data from four additional insulinomas from a prior report8,
yielding a total of 26 insulinomas with paired normal and tumor
DNA data (Supplementary Tables 1, Supplementary Data 1).
Mutation analysis was performed as described9, 10. After manual
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Fig. 1 Global molecular characterization of the insulinoma genomic landscape from whole-exome sequencing data. a A summary of 26 insulinomas (top

box) and a subset of their protein-changing key driver variants, each sample displaying the variant with the highest allelic fraction and, if any, the variant

from recurrently mutated genes. All variants are somatic, except for a germline MEN1 variant from sample 5967T (at chr11:64,572,613, G>A, p.R420*,

nonsense). b A summary of somatic copy number variants from selected model-predicted epigenetic modifiers and CDKN1C. c A summary showing which

85% of insulinomas harbor mutations or CNVs in selected epigenetic modifiers. d GO pathway analysis (Molecular Function) of insulinoma key driver

variants reveals terms associated with chromatin-binding and SMAD signaling as the most prominent pathways. e Circos plot of copy number gain (red),

loss (blue), or copy-neutral cnLOH (green). Each line within a track represents 20% of the total number of insulinomas. Note that ~ 20% of insulinomas

have CNV loss on chromosome 11 (blue), and ~ 20–40% have CNV gain on chromosome 7 (red). f GISTIC2.0 analysis showing finer mapping of regions of

significant chromosomal amplification or deletion throughout the genome. Cytoband labels indicate significant calls (FDR< 0.1)
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review of all the variants, a total of 258 somatic (tumor-specific)
single-nucleotide variants (SNVs) and 20 non-SNV variants,
including indels and multiple-nucleotide variants (MNVs), that
alter protein sequence were identified (Supplementary Data 2 and
3), revealing an average of 10.7 such somatic variants per insu-
linoma exome.

Notably, recurrent variants were rare in insulinomas: only four
of 26 insulinomas harbored the previously reported T372R SNV

in the YY1 gene8, 11, 12. Only two tumors had MEN1 mutations,
one somatic and one germline. We also identified several novel
recurrently mutated genes in insulinomas, including H3 histone
family 3A (H3F3A; two tumors), lysine-specific demethylase 6A
(KDM6A; two tumors), Filamin C gamma (FLNC; two tumors),
ATR serine/threonine kinase (ATR; two tumors), and Rho
GTPase-activating protein 35 (ARHGAP35; two tumors). Inter-
estingly, the seven recurrently mutated genes identified in 10 of
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the 26 insulinomas (five being epigenetic regulators: YY1, MEN1,
H3F3A, KDM6A, ATR) are significantly enriched for epigenetic
regulators as defined by the curated database, EpiFactors13 (fold
enrichment= 16.7, p= 2.8 × 10−6; Fisher’s exact test). Key driver
analysis14, 15 nominated 92 genes, including the seven recurrently
mutated genes noted above, as potential disease-causing key
driver mutations (Fig. 1a–c, Supplementary Table 2) and revealed
similar enrichment for epigenetic regulators (fold enrichment=
2.8, p= 0.002; Fisher’s exact test). Furthermore, gene ontology
(GO) molecular function pathway enrichment analysis of the
predicted key drivers revealed similar biological processes of
“chromatin-binding” (AdjP= 0.005) among the most signifi-
cantly enriched terms along with and “SMAD-binding” (AdjP=
1.6 × 10−6) (Fig. 1d, Supplementary Data 4). Thus, surprisingly,
despite having largely excluded MEN1-associated insulinomas,
the strongest recurrent mutational signal nonetheless arose from
genes encoding epigenetic modifiers functionally related to
MEN1, which also encodes an epigenetic modifying enzyme.
Interstingly, “developmental pathways” were also prominent in
GO biological processes, likely reflecting the major role of

chromatin-modifying enzymes in development and
differentiation.

Somatic copy number variants (CNVs) including gain, loss, or
copy-neutral loss of heterozygosity (cnLOH) were also investi-
gated. A Circos plot summarizing the recurrence of CNVs,
identified by the saasCNV algorithm16, across all 26 insulinomas
revealed that chromosome 7 and 11 had the most frequent gain-
of-copy and loss-of-copy/cnLOH CNVs, respectively (Fig. 1e).
GISTIC2.0 analysis17 confirmed that some of the strongest
amplification and deletion signals arose from chromosomes 7 and
11, respectively, and further defined regions of significant focal
CNV events throughout the genome (Fig. 1f, Supplementary
Data 5 and 6). Interestingly, MEN1 resides in one of the
significantly deleted regions of chromosome 11q13.1, in 8 of 26
insulinomas via loss-of-copy/cnLOH events (Fig. 1b, f), consistent
with previous MEN1 studies7, 18–20. In addition, frequent loss-of-
copy/cnLOH of CDKN1C, which resides on chromosome 11p15
and encodes the cell cycle inhibitor p57KIP2, was also observed in
9 of 26 insulinomas (Fig. 1b), as reported previously in pediatric
insulinomas18. Pursuing the ‘‘epigenetic modifier’’ gene ontology
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Fig. 3 Global epigenetic dysregulation in insulinomas revealed by comparison of ~ 14 K genes from insulinomas and beta cells to histone marks in normal

pancreatic cells. a H3K4me3, H3K9ac (active) and H3K27me3 (repressive) marks in normal beta cells and other islet-cell types from three independent

data sources27–29 in the top 12 panels are compared to DEGs (insulinomas vs. beta cells) in the bottom panel. In the top panel, the numbers in the “Cell

Type” column represent the number of genes included in each histone mark signature that were also tested in the differential expression analysis from the

bottom panel, and the black vertical lines in the “Insulinoma vs. Beta Cell DEG” column indicate genes with histone marks. In the bottom panel, the red box

indicates genes upregulated in insulinomas and blue represents genes downregulated. The white line represents –log10(FDR) of the DE analysis. As can be

seen, upregulated genes in insulinomas (red), in contrast to downregulated DEGs (blue) and non-DEGs (gray), were highly significantly over-enriched for

the repressive mark, H3K27me3, and under-enriched for the active marks, H3K4me3, H3K9ac across the three epigenetic data sources. The histone mark

signature visualization curves in the top 12 panels represent the average scores for each sliding window, as described in Methods. b Projection of all 12

histone signatures onto the insulinoma co-expression network reveals that the upregulated DEG-enriched modules (red labels) were also significantly over-

enriched for the repressive mark, H3K27me3, and under-enriched for the active marks, H3K4me3, H3K9ac, at FDR of 0.05, while the downregulated DEG

enriched modules (blue labels) were generally not enriched for histone signatures. Significant enrichment (FDR< 0.05) is shown in red for over-enrichment

or blue for under-enrichment
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signature from the earlier mutational analysis, we also surveyed
CNVs harboring other epigenetic modifiers in addition to MEN1.
Among this class, the EZH2 locus on chromosome 7 (7q36.1)
displayed a gain of copy CNV in 10 of 26 insulinomas (Fig. 1b).
Thus, collectively, at the DNA level, 22 of 26 insulinomas (85%)
contain recurrent SNVs/MNVs/indels (YY1, H3F3A, KDM6A,
MEN1, ATR) and/or recurrent CNVs (MEN1, EZH2) in genes
encoding epigenetic modifiers (Fig. 1c), four of which are
members of two key epigenetic modifying complexes, the
polycomb group (EZH2, YY1) and the trithorax group (MEN1,
KDM6A). These complexes are recruited to specific regions of
DNA and direct the post-translational modification of histones
(e.g., H3F3A) to either repress (polycomb) or activate (trithorax)
gene expression21, 22.

Transcriptomic networks reveal pathways underlying growth.
RNAseq analysis was performed on 25 insulinoma samples, 13 of
which had matching WES analysis (Supplementary Data 1 and 7).
We compared the transcriptomes of the insulinomas to those of
beta cells isolated using three independent methodologies from 22

normal human cadaveric islet donors23–25 (Supplementary
Data 7). Unsupervised classification analysis, after adjustment for
gender and library platform covariates, showed that insulinomas
cluster separately from beta cells, regardless of isolation technique
(Fig. 2a).

Comparison of insulinoma to beta cell transcriptomes revealed
3709 differentially expressed protein-coding genes (DEGs) (FDR
< 0.01) (Fig. 2b, Supplementary Data 8) of which 2125 were
upregulated and 1584 were downregulated in insulinomas.
Notably, insulin was consistently the most highly expressed
transcript across all samples, confirming the identity of the
PNETs as insulinomas. We further inferred differential splicing in
insulinomas vs. beta cells through analysis of differential exon
usage/retention (Fig. 2c, Supplementary Data 9 and 10). For
example, exon-level analysis identified the major histocompat-
ibility II transcriptional regulator, CIITA (Simes Test FDR=
4.2 × 10−27), which was also upregulated at the DEG level in
insulinomas, as being among the top 10 most differentially
spliced genes (DSGs) in insulinomas (Supplementary Data 10).

As part of a data dimensionality reduction approach to identify
the key modules of genes that underlie the altered biological

Sample

fraction

5% FDR

12

9

6

3

0

EROL1B

ATG10
PAPSS2POM121

RPL37A

INS

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1 X Y2
2

INS

ZNF594

ELAVL1
ZNF395

MHC

CD151 PI4KA

KIF3BATAD3B

ANKRD36

C2orf74

SDHAP1

LINC00969

CBWD7

GUSBP1

GNAS

INSM1

Insulinoma

5% FDR

chr11

a

b

c

d

e

g

h

f

8

4

0

C
p

G
 c

o
u

n
t

p
e

r 
w

in
d

o
w

%
 D

if
fe

re
n

ti
a

lly

m
e

th
y
la

te
d

p
e

r 
w

in
d

o
w

%
 D

if
fe

re
n

ti
a

lly
 m

e
th

y
la

te
d

p
e

r 
C

p
G

R
e

c
u

rr
e

n
c
e

C
N

V
 (

C
h

r 
1

1
)

1,850,000

500

250

50%

0%

50%

50%

0%

-50%

100%

C
p
G

m
e
th

y
la

ti
o

n

p
ro

fi
le

50%

IGF2
INS

rs689
KCNQ1OT1

KCNQ1 CDKN1C

P1

IGF2-AS

INS-IGF2

P0

DMR0
KvDMR1

Beta cells
Insulinomas

50%

0%

-50%

Gain Loss cnLOH

3,200,000

H19

13 33 3439 45 56

20,782 (71%)

+4.3% +20.0% +14.4% +11.0% +13.8% +9.1% +31.5% +17.6% +7.2%

8,187 (28%)

88 96 106

IGF2-INS

locus

KCNQ1

locus CDKN1C

2,169,000 2,183,000 2,720,000 2,722,500 2,897,900 2,908,500

0.25

0.25

0

1
0.50

0.50 0.75

0.75

1.00

db SNP

Ref Allele

fraction

Beta cell

–
lo

g
1

0
 F

D
R

12

9

6

3

0

–
lo

g
1

0
 F

D
R

A
lle

le
-s

p
e
c
if
ic

 e
x
p
re

s
s
io

n

Fig. 4 Global allele-specific expression and CpG methylation patterns in insulinomas and beta cells suggests a link between CNVs and ASE on the

chromosome 11 imprinted locus. a A Manhattan plot of ASE shows readily apparent genome-wide differences between beta cells (top panel) and

insulinomas (lower panel), suggesting broad genomic ASE abnormalities in insulinomas. Most of the differences observed are in the reference allele (red).

However, in insulinomas there is a strong preference for ASE from the alternate allele (blue) in chromosome 11 near the insulin (INS) locus. b CNV analysis

suggests that chromosome 11 harbors recurrent loss/cnLOH with each CNV segment recurring in an average of 8–9 of the 26 insulinomas. In addition, one

of the most significant deleted regions identified by GISTIC2.0 analysis (Fig. 1f) is found on cytoband 11p15.5, which also contains the two imprinting control

regions (ICRs). c A blow up of the 11p15.5-15.4 imprinted region that underwent DNA methylation analysis, highlighting key 11p15 genes and showing the

density of the 29,675 CpGs in the 1.35 Mbp, in 135 windows of 10Kbp. CpG density in the region in bins of 10 kb. d A comparison of methylation patterns

between insulinomas (n= 10) and FACS-sorted beta cells (n= 2), in the same 10 kb windows as in c. Insulinomas display at least nine hypermethylated

windows (red) denoted W13-106. Note also the broad hypomethylation (green) in this region. In all, 70.4% of CpGs were hypomethylated and 27.7%

hypermethylated, with 1.9% showing no differential methylation. e Expanded view showing the relative methylation of the 29,675 CpG in the 11p15 region,

highlighting four windows (W33, 34, 88,106) with the greatest relative hypermethylation in insulinomas. f Further expansion of the three hypermethylated

regions in e delineating individual hypermethylated CpGs. The gray shaded areas highlight the hypermethylated regions. g The average CpG methylation

status of each of the CpGs in the three regions in insulinomas (red) vs. beta cells (blue). h Genome browser view of the three highlighted 11p15 regions,

highlighting the genes and regions affected by the hypermethylated CpGs in the insulinomas, including IGF2, INS-IGF2, IGF2-AS, KCNQ1, KCNQ1OT, the

imprinting control region KvDMR, and CDKN1C
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processes occurring in insulinomas relative to beta cells, a signed,
weighted gene co-expression network analysis (WGCNA)26 was
performed (Supplementary Data 11, Supplementary Fig. 2).
Projection of the DEGs (insulinoma vs. beta cells) onto the
insulinoma-only co-expression network (52 co-expressed mod-
ules), yielded six modules that were over-enriched for upregulated
genes, and two modules were significantly over-enriched for
downregulated genes (cutoff: fold-enrichment >2, FDR< 0.01)
(Fig. 2d, e, Supplementary Data 12). Two modules (red and
grey60) were found to be significantly under-enriched for both
upregulated and downregulated genes (fold enrichment <0.6,
FDR< 0.01) (Fig. 2d, e). Pathway enrichment analysis based on
GO and KEGG databases was used to annotate the biological
functions of each insulinoma co-expression module (Fig. 2e,
Supplementary Data 13). Key biologies highlighted by the DEG-
enriched modules included ‘‘immune system’’, ‘‘extracellular
matrix’’, ‘‘vasculature development’’, ‘‘cell proliferation’’, ‘‘RNA
splicing’’ and ‘‘ubiquitination’’. This diverse biology indicates a
complex transformation of the insulinoma, despite the conserved
function of insulin secretion.

Insulinoma transcriptomes link to epigenetic dysregulation.
Since the genomic evidence indicated a unifying theme of per-
turbation of epigenetic modifiers in insulinoma, including
modifiers of histone methylation (Fig. 1), we looked for hints of
altered chromatin states regulating the insulinoma transcriptome.
We focused on histone modifications, in particular histone-H3
post-translational modifications, by testing the enrichment of
DEGs (insulinoma vs. beta cell) across prior reports in which
three histone mark signatures (H3K27me3, H3K4me3, H3K9Ac)
had been characterized in normal human beta cells or other islet
cells27–29 (Fig. 3a, Supplementary Data 14). Remarkably, the
upregulated DEGs in insulinomas were significantly over-
enriched for the repressive mark (H3K27me3) in normal beta
cells (Ferrer beta29: fold enrichment= 3.3 and FDR 3.1 × 10−37;
and Kaestner beta28: fold enrichment= 9.0, FDR= 2.6 × 10−216)
and under-enriched for the active mark (H3K4me3) (Kaestner28

beta: fold enrichment= 0.2, FDR= 4.7 × 10−222). This striking
contrast between genes upregulated in insulinomas vs. normal
beta cells bearing the repressive mark was consistent across the
three different data sources. This trend also extended to non-beta
cells: alpha cells, exocrine cells and pancreatic progenitor cells, as
well as whole islets. The reverse scenario (under-enrichment for
the active histone mark, H3K4me3, in beta cells) was also evident
for upregulated DEGs in insulinomas (Fig. 3a, Supplementary
Data 14). Furthermore, the histone mark signature visualization
scores revealed that even among the upregulated DEGs, the DEGs
with more significant FDRs (the white line in the bottom track in
Fig. 3a) were more likely to have a high score for H3K27me3-
signatures and low score for H3K4me3 signatures (Fig. 3a). To
summarize, precisely the same collection of ~ 2000 genes that are
repressed in normal beta cells (and related pancreatic and
endocrine cells) and which bear strong H3K27me3 repressive
chromatin marks and weak H3K4me3 open chromatin marks in
beta cells, are overexpressed in insulinomas; this is true whether
genes are assessed individually (Fig. 3a) or as modules of co-
expressed genes (Fig. 3b). These findings provide compelling
evidence to support a functional role for the recurrent mutations
in polycomb and trithorax genes in the broadly abnormal gene
expression in insulinomas.

To explore further the different beta cell histone mark
signatures in the context of insulinoma transcriptome, we
projected the same histone mark signatures onto the insulinoma
co-expression network. Importantly, the same modules over-
enriched for upregulated DEGs were also significantly over-

enriched for the repressive mark (H3K27me3) and under-
enriched for the active marks (H3K4me3, H3K9ac) (FDR<
0.05). The downregulated DEG-enriched modules, in contrast,
were generally not enriched for any specific histone signatures
(Fig. 3b, Supplementary Data 15). Thus, a significant set of genes
that are upregulated in insulinomas relative to beta cells appear to
be de-repressed through epigenetic modifications that are
recorded by trithorax and polycomb family members.

Global abnormalities in allele-specific expression. The epige-
netic aberrations described above may have additional con-
sequences, among which may be changes in allele-specific
expression (ASE). Lacking parental genotype information, we
interrogated the insulinoma and beta cell RNAseq data to identify
genes subject to ASE. Across the entire insulinoma genome, we
detected 717 loci (586 of which were common SNPs) showing
potential allelic imbalance (FDR< 5%) (Supplementary Data 16).
A Manhattan plot of these data (Fig. 4a) reveals a strong allelic
bias in the insulinomas relative to beta cells, largely involving loci
not previously reported in beta cells30.

Although the present data set cannot dissociate these ASE
results from epigenetic vs. genetic (e.g., cis-eQTL) causation, they
nonetheless provide additional insights into insulinoma biologies.
Strikingly, ASE highlighted the well-known imprinted region of
chromosome 11 as preferring mono-allelic expression (Fig. 4a).
For example, 8 of 24 insulinomas revealed a significant (FDR<
0.01%) preference for the alternate ‘‘T’’ allele at the SNP, rs689.
This SNP is located at the 5’ end of the INS-IGF2 locus, near the
differentially methylated regions, DMR0 and DMR1. These
DMRs assist the imprinting control region (ICR) located
immediately upstream of H19 to enforce ASE, by the parent-of-
origin, of maternally expressed H19 and paternally expressed
IGF2 in chromosomal region 11p15.5. The rs689 allelic imbalance
was also observed in 5 of 22 beta cell samples, albeit at much
lower significance (FDR< 3%), consistent with a previous
report24. To further understand the possible impact of the
rs689 SNP in the pathobiology of human insulinoma, we explored
the relationship between the A and T alleles and expression of
transcripts in this region. There was no impact on expression of
H19, IGF2, INS, but usage of the alternate T allele was associated
with significantly higher expression of the INS-IGF2 anti-sense
transcript, and a trend toward higher expression of the INS-IGF2
read-through transcript (Supplementary Fig. 3, Supplementary
Data 17). Analysis of RNAseq profiles in insulinomas expressing
the T vs. A alleles at rs689 revealed multiple DEGs, the gene
ontology analysis of which suggested that usage of the T allele
favors a neural signature in insulinomas (Supplementary Fig. 3).

Altered DNA methylation patterns at 11p15 in insulinomas.
Because 11p15 is a paradigmatic imprinted region, because 11p15
imprinting abnormalities are associated with beta cell prolifera-
tion in the focal variant of congenital hyperinsulinism (FoCHI)
and the Beckwith–Wiedemann Syndrome (BWS)31–34, and
because insulinomas display marked reductions in the cell cycle
inhibitor, p57KIP2 encoded by CDKN1C in the 11p15 imprinted
region (see below), we performed deep CpG methylome
sequencing in the 11p15.5-p15.4 region on 10 insulinomas and
compared this to the methylation pattern in two sets of FACS-
sorted normal human beta cell preparations (Fig. 4b–h). As
compared to normal beta cells, insulinomas display broad and
widespread hypomethylation, together with a hypermethylation
in a few selected areas. These regions contain sequences known to
have important regulatory functions in imprinting regulation,
possibly affecting ASE, and which may hint at underlying dis-
ordered 3-D chromatin structure in this region. Insulinomas also
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Fig. 5 Comparison of the bisque4 insulinoma proliferation module with adult human islets, replicating normal human juvenile and mouse beta cells,

validation of gene candidates for beta cell proliferation, and direct modulation of CDKN1C by trithorax member, KDM6A. a The insulinoma proliferative

bisque4 module is preserved in the islet co-expression network. b The bisque4 module is the only significantly over-enriched module (at FDR= 0.01) via

projection of gene signatures of human juvenile beta cells and from replicating mouse beta cells onto insulinoma co-expression network. c The top 20 “hub

genes” in the bisque4 module based on intra-modular connectivity. Red balls indicate differentially upregulated genes (FDR< 0.01); yellow balls, non-

significant. Increased line weights indicate stronger connectivity. d A panel of predicted candidate genes as possible mediators of beta cell proliferation.

The top bar graph shows their level of average expression based on RNAseq (log2CPM). The first row shows their bisque4 MMP status; the second row

shows their DE status in insulinomas vs. beta cells. Genes selected for validation are marked with an asterisk. e Differential expression from RNAseq for

CDKN2A, CDKN1C, and CCND1 in insulinomas vs. beta cells. f A representative immunohistochemical photomicrograph showing p57KIP2 (red) is readily

detectable in approximately half of beta cell (green) nuclei, but undetectable in non-beta cell islet cell types and insulinomas. g Induction of proliferation in

human beta cells by adenoviral overexpression or silencing of the genes shown. Each bar represents the mean of 4–10 different human islet preparations.

Error bars indicate mean± SEM; asterisks indicate p< 0.05 by Student’s t-test. Note that expression of CCND1 or EZH2, or silencing of CDKN1C individually

all induce human beta cells to enter cell cycle at rates comparable to those observed in insulinomas, and that EZH2-shCDKN1C combination appears

additive. In contrast, silencingMEN1, or overexpressing wild-type or mutant YY1 fails to activate proliferation under the conditions studied. Asterisks indicate

p< 0.05 by Student’s t-test. The inset shows examples of Ki67 immunolabeling (red) in human beta cells (green) induced by a control adenovirus encoding

Cre recombinase and adenoviruses encoding CCND1. Similar effects were seen with EZH2 or shCDKN1C (not shown). h Repression of CDKN1C expression

in human islets by the KDM6A inhibitor, GSKJ1. Error bars indicate mean± SEM of five human islet preps; asterisks indicate p< 0.05 by Student’s t-test. i

Repression of CDKN1C expression by adenoviral silencing of KDM6A in human islets. Error bars indicate mean± SEM of five human islet preps; asterisks

indicate p< 0.05 by Student’s t-test. j Top panel: ChIP analysis of KDM6A binding to the CDKN1C locus in five pairs of FACS-sorted human beta cells and

non-beta cells. Error bars indicate mean± SEM. Bottom panel: A genome browser view of the CDKN1C locus highlighting primer pairs 1–843, promoters,

enhancers, exons, and transcriptional start site of CDKN1C. In beta cells, KDM6A binds to CDKN1C, predominantly at an upstream enhancer delineated by

primer pair #2. KDM6A also binds to CDKN1C in non-beta cells of the islet. Note that the directionality of this panel is opposite that in Fig. 4h
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display CNV loss, copy-neutral LOH in the 11p15 region over-
lapping with key regulatory elements (e.g., transcriptional start
sites, enhancers, CTCF-binding sites, ICRs, splice sites) of
important transcripts in this region including INS, INS-IGF2,
IGF2, KCNQ1, KCNQ1OT, H19, and CDKN1C. This is corrobo-
rated by marked overexpression of H19 and KCNQ1 and
underexpression of CDKN1C in the large majority of insulino-
mas, as described in more detail below. IGF2 was upregulated in
several insulinomas, but mostly unchanged compared to beta cells
(Supplementary Data 8). Notably, despite the widespread CpG
abnormalities in this region, INS expression is preserved in
insulinomas. The adjacent 11p15.4 region also contains the non-
imprinted genes, ABCC8 and KCNJ11, which encode the sulfo-
nylurea receptor, SUR1, and the Kir6.2 potassium inward recti-
fier, respectively. These were not significantly differentially
expressed (Supplementary Data 8). Collectively, the widespread
and recurrent structural and/or imprinting abnormalities within
11p15—already strongly associated with pathologic beta cell
proliferation in FoCHI and the BWS syndrome31–34—suggest an
important role for abnormalities in this region in the molecular
pathogenesis of insulinoma. This should be more deeply explored
in the future using 3-D structural approaches such as CTCF
ChIPseq, 3-C and 5-C chromatin capture studies.

An integrative approach suggests proliferation drivers. Our
integrative genomics approach led to the identification of ten co-
expression modules (Fig. 2e) that may underlie insulinoma
pathogenesis, many of which were linked to potential epigenetic
dysregulation (Fig. 3b). Given our interest in beta cell regenera-
tion, and seeking the mechanisms that may permit escape from
beta cell quiescence in benign insulinomas, we elected to focus on
the bisque4 co-expression module, the module in insulinomas
that contained DEGs enriched for cell proliferation. Furthermore,
the bisque4 cell cycle module was particularly enriched for beta-
cell specific histone mark signature, including genes with bivalent
marks, both H3K27me3 and H3K4me3 (Kaestner beta28: fold-
enrichment= 5.2, FDR= 4.0 × 10−6) (Fig. 3a,b).

To assess the relevance of the bisque4 module to normal beta
cell proliferation, we compared the co-expression of the genes in
the bisque4 module to those within normal beta cells. Similarly as
for insulinomas, WGCNA was performed for human islets from a
large publicly available data set of 89 samples30, the majority of
which were from healthy adults (Supplementary Fig. 4). We
reasoned that an islet-based co-expression network could serve as
a proxy for a normal beta cell co-expression network, given beta
cells on average make up approximately 50% of the human islet
cell population35, 36. Importantly, the insulinoma bisque4 cell
cycle module was found to significantly overlap with that of only
one islet co-expression module, the lightcyan module (fold
enrichment= 23.7, FDR= 9.6 × 10−25, Fig. 5a). This suggests that
co-expression of cell cycle genes in normal beta cells is preserved
in insulinomas, despite their greater rate of proliferation.

Seeking to model the normal physiologic beta cell expansion
seen in childhood, we further projected two independent gene
expression signatures derived from proliferating juvenile
human37 and mouse38 beta cells onto the insulinoma co-
expression network. Among these many modules, only the
bisque4 module was over-enriched (human37: fold enrichment =
12.7, FDR= 9.6 × 10−6; mouse38: fold enrichment= 13.4, FDR <
1.0 × 10−16) (Fig. 5b). Altogether, these observations suggest a
commonality in the mechanisms that underlie proliferation in
insulinomas compared to those in juvenile mouse and human
beta cells.

Importantly, among the top 20 hub genes (based on intra-
modular connectivity)26 in the bisque4 module were genes

directly involved in beta cell cycle progression (Fig. 5c), including
E2F1, MKi67 and CDK1. However, since many of the bisque4
module genes were found to be related to late (G2/M) cell cycle
stages (Supplementary Data 11), we searched for genes farther
upstream of the G0/G1 transition by expanding the bisque4
module to include genes whose expression in insulinomas was
significantly correlated with the bisque4 module gene expression
profiles, thereby assigning a ‘‘bisque4 module membership p-
value’’ (MMP). At a bisque4 MMP of 0.01, an additional ~ 200
genes were revealed (Supplementary Data 18).

We first surveyed differentially expressed (insulinoma vs. beta
cells) cyclins, cyclin-dependent kinases (CDKs) and CDK
inhibitors for their MMP status (Fig. 5d). Interestingly,
CDKN1C/p57KIP2 was the only CDK inhibitor with significant
bisque4 MMP, nominating it as a key candidate driver of the
proliferative phenotype in human insulinomas. The consistent
reduction of CDKN1C relative to normal beta cells was confirmed
both by DEG analysis as well as immunohistochemistry on a
human insulinoma tissue microarray (Fig. 5e, f), and supports the
putative imprinting abnormalities and CNV loss in the CDKN1C
imprinted region on chromosome 11p15.5 (Fig. 4b). Moreover, a
central role for CDKN1C/p57KIP2 is supported by its well
documented loss in FoCHI, BWS, and pediatric insulinomas
syndromes18, 31–34, and by the observation that lentiviral
silencing of CDKN1C/p57KIP2 in transplanted human islets leads
to proliferation39. Notably, among differentially expressed genes
encoding G1/S phase cell cycle activators, two of the most highly
expressed were CCND1 and CCND3 (Fig. 5d, e). We have
reported previously that CCND1 is increased in 40% of
insulinomas40, and that overexpression of either CCND1 or
CCND3 leads to human beta cell proliferation41.

In addition, we explored the recurrently mutated genes, genes
encoding polycomb and trithorax complex members for their
bisque4 MMP and DEG status (Fig. 5d). Interestingly, among the
polycomb genes, only EZH2 achieved a significant bisque4 MMP
(Spearman correlation= 0.60, p= 0.002), concordant with the
observation that in mouse models, Ezh2 epigenetically represses
CDKN2A/p16INK4A in beta cells, and is requisite for beta cell
proliferation in juvenile mice42. As noted earlier, EZH2
upregulation in some insulinomas may arise from the increase
in copy number at the EZH2 locus on chromosome 7q. The
observations that CDKN1C (rather than CDKN2A) was the CDK
inhibitor best co-correlated with bisque4, and that EZH2 can
transcriptionally repress CDKN1C43 suggest that combined EZH2
and CDKN1C loss/repression may be critical to enable prolifera-
tion in insulinoma cells.

Biological validation of candidate proliferation drivers. To
validate combinations of lead candidate genes derived from our
integrative approach as human beta cell mitogenic mediators,
from the list of ~ 200 bisque4-associated genes, we developed
adenoviruses to overexpress EZH2 and YY1 (mutant and wild-
type), to silence MEN1 or CDKN1C, alone or in various combi-
nations, and to determine which, if any, candidates might induce
replication in human beta cells (Fig. 5g). Surprisingly, neither
silencing MEN1 nor overexpressing mutant or wild-type YY1-
induced proliferation, perhaps reflecting a requirement for
additional mitogenic events, or longer lead time to induce
requisite epigenetic changes. In contrast, adenoviral over-
expression of CCND1 or EZH2, or silencing of CDKN1C, alone
and in several combinations, were all capable of inducing human
beta cell replication, at rates mimicking the 1–2% Ki67 labeling
index characteristic of benign human insulinomas44. Importantly,
overexpression of EZH2 in combination with silencing CDKN1C
was more effective than either experimental perturbation alone.
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The EZH2-CCND1 combination yielded the highest Ki67 labeling
indices of all. As expected, overexpression of CCND1 also induced
Ki67 labeling in alpha, delta and PP cells in dispersed islets
(Supplementary Fig. 5). The other combinations had no effect on
delta or PP cells, whereas EZH2 overexpression in combination
with silencing CDKN1C did low level induce Ki67 labeling in
alpha cells.

Trithorax dysfunction leads directly to CDKN1C reduction. To
determine if a direct link exists between trithorax members and
cell cycle machinery in human beta cells, we selected the
H3K27me3 demethylase, KDM6A, for further study, since it is a
canonical trithorax member, since it is one of the rare recurrently
mutated genes in insulinoma (Fig. 1), since it’s expression is
reduced in insulinomas, (Supplementary Data 8) and since its
biology has not previously been explored in human beta cells. We
selected CDKN1C as a target because it is the only cell cycle
inhibitor in the bisque4 MMP list (Fig. 5d), because it is repro-
ducibly reduced in insulinomas (Fig. 5e, f), because its loss is

associated with beta cell proliferation in FoCHI and BWS31–34,
because CDKN1C is expressed only in beta cells in human
islets23–25, 32, and, because silencing CDKN1C leads to induction
of human beta cell proliferation in our hands (Fig. 5g) and oth-
ers39. Inhibition of KDM6A, whether pharmacologically with
GSKJ1 or adenovirally with shKDM6A, led to prompt and sub-
stantial reduction of CDKN1C in human islets, an effect not
observed by adenoviral silencing the closely related KDM5B or
KDM6B (Fig. 5h, i, Supplementary Fig. 6a–d). Chromatin
immunoprecipitation (ChIP) analysis demonstrated that KDM6A
directly interacts with a CDKN1C upstream enhancer in human
beta cells (Fig. 5j). Further, the CDKN1C locus in human beta
cells bears the H3K4me3 open chromatin mark, but lacks the
H3K27me3 repressive chromatin mark, as anticipated by tri-
thorax occupancy (Supplementary Fig. 6e). Collectively, these
results reveal that KDM6A, and by extension, the trithorax
complex, directly support CDKN1C expression in human beta
cells, and, conversely, that interfering with trithorax function
results in CDKN1C loss, with consequent cell cycle entry. Nota-
bly, they also suggest yet another pharmacological approach to
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Fig. 6 A schema summarizing the broad heterogeneity of insulinomas and the molecular hallmarks that distinguish insulinoma from beta cells. a A waterfall

plot summarizing cumulative coding mis-sense variants (black), CNV loss (blue), copy-neutral LOH (green), or copy number gain (red) among polycomb,

trithorax and related chromatin-modifying genes. In the grid boxes, each vertical column represents the DNA landscape of each of the 26 insulinomas.

Collectively, these observations highlight the frequency of multiple genomic and transcriptomic abnormalities in polycomb, trithorax, and other epigenetic

modifying genes across the majority of human insulinomas, the marked heterogeneity among insulinomas, the frequent mutation of multiple chromatin

modifiers in almost all insulinomas, all despite having selected insulinomas independent of known MEN1 kindreds. b A cartoon emphasizing the relationship

between polycomb, trithorax genes, and H3K27me3 and H3K4me3 marks in human beta cells and insulinomas. c An extension of b highlighting mutations

(red stars), and abnormal CpG methylation. Subsequent panels highlight altered DNA methylation/imprinting abnormalities (d), asymmetrical gene

expression from imprinted loci and abnormal chromatin marking patterns (e), all of which may lead to differential expression pattern of cell cycle genes

such as CDKN1C (f), all of which may lead to increased beta cell proliferation in insulinomas
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induction of human beta cell proliferation (Supplementary
Fig. 6f).

Discussion
Overall, this integrated and systematic analysis of a large human
insulinoma cohort, focused on non-MEN1 insulinomas, reveals a
near-universal preponderance of mutations in, and differential
expression of, epigenetic modifying genes and their targets,
together with structural and CpG methylation alterations of the
key imprinted region on chromosome 11 (Fig. 6). Genomic
mutations were particularly notable in genes related to the
polycomb and trithorax complexes. While inactivation or loss of
the trithorax complex member, menin, encoded by MEN1, is a
well-known cause of insulinoma in mice and humans, the striking
prevalence of mutations and/or dysregulation in many other
trithorax and polycomb members in non-MEN1 insulinomas was
not anticipated. In retrospect, it aligns nicely with prior
work37, 38, 45–47, which suggest that the epigenome, through its
broad control of cell cycle and function-modulating beta cell
genes, represents the key rate limiting step in human beta cell
proliferation.

Within this unifying context, the model also illustrates that
multiple specific ‘‘epigenetic roads’’ may lead to insulinoma, and
conversely, that despite their apparent clinical homogeneity,
insulinomas display marked mutational heterogeneity, which, in
retrospect, could only have been observed in a large number of
insulinomas such as described herein. The simplest of these
heterogeneous paths might be loss of the maternal chromosome
11, or chromosome 11 uniparental paternal disomy, as occurs in
some cases of FoCHI, BWS, and pediatric insulinoma
syndromes18, 31–34. Chromosome 11 errors, suggested by recur-
rent loss of this region and the unique ASE profile, as well as
imprinting errors directly confirmed by deep CpG methylome
sequencing, with congruent increases in H19, KCNQ1, and
recurrent loss of CDKN1C (Fig. 4), also likely contribute to a large
subset of insulinomas. Interestingly, the insulinomas with chro-
mosome 11 loss are distinct from those with chromosome 7 gain,
suggesting that these may represent two insulinoma subtypes. In
the latter, the increase in EZH2 relative to normal beta cells may
result from a CNV gain event. Importantly, the average of 3.5
driver mutations and multiple additional CNV gains and losses
that characterize insulinomas (Figs. 1 and 6) is congruent with the
observation that MEN1-associated human insulinomas occur
only after decades5–7, and that loss of both men1 alleles in mice
nonetheless requires months of latency before insulinomas
appear48. Thus, it appears inescapable that mutations in single
genes such as MEN1 alone cannot cause insulinoma; instead,
“hits” in multiple genes are likely required: MEN1 is just one of
many core polycomb/trithorax genes (e.g., MEN1, KDM6A, YY1,
EZH2, PCGF5, KTM2C, CREBBP etc.), which may contribute to
the insulinoma phenotype.

The heterogeneity observed among insulinomas is reminiscent
of the heterogeneity among human beta cells that has captured
recent attention49–51. To determine whether insulinomas are also
heterogeneous with respect to the hallmark markers of human
beta cell heterogeneity, we explored CD9 and ST8SIA1 expression
in our beta cell and insulinoma transcriptome data sets (Sup-
plementary Table 10). Indeed, both ST8SIA1 and CD9 expression
were highly variable among both human beta cells as well as
insulinomas (Supplementary Fig. 7).

Since we are interested in inducing benign, rather than
malignant growth of beta cells, it was reassuring to observe par-
allels between cell cycle genes and modules in insulinomas and
proliferating juvenile beta cells (Fig. 5a, b), and also to observe
that mutations in DNA repair genes such as ATRX, DAXX, TP53,

BRCA2, CHEK2, and the PI3 kinase/PTEN/mTor/TSC pathway,
characteristic of malignant non-functioning PNETs52, 53, were
not observed in the insulinomas. This may reflect an important
role for genes such as DAXX, ATRX, CHEK2, BRCA2, and TP53
in the rare malignant transformation of insulinomas; these genes
may also provide clues to genes and pathways that must be
avoided in attempts at therapeutic expansion of human beta cells.

Human insulinomas do not retain normal control of glucose
sensing and insulin secretion. To explore mechanisms underlying
this imperfect control, we surveyed families of so-called “dis-
allowed genes”54, 55, glucose transporters and hexokinases, and
beta cell-specific transcription factors (Supplementary
Figs. 8–10). Remarkably, abnormalities were abundant and tan-
talizing here, including, alterations in glucose transporter and
HK3 profiles, and a suggestion of restitution of expression of
certain disallowed genes, although their expression remained at
low levels. These observations provide clues to deeper under-
standing of the misregulation of insulin production in insuli-
noma. Canonical beta cell transcription factors such as PDX1,
NKX6.1, MAFA, and others were not substantially altered in
insulinomas vs. beta cells. We also explored whether expression of
mitogenic genes such as CCND1, EZH2, YY1, or silencing
CDKN1C or KDM6A might alter expression of these families of
genes in human islets (Supplementary Figs. 8–10). Reassuringly,
these maneuvers had little effect, with the exception of over-
expression of YY1, which altered expression of PDX1, NKX6.1,
SLC16A1, and SLC2A2. These observations may suggest that it is
best to avoid YY1 activation in therapeutic attempts to induce
beta cell expansion.

We observed that several insulinoma co-expression modules
were enriched not only for cell cycle genes (the bisque4 module),
but also enriched for ‘‘immune function’’, ‘‘vascularization’’,
‘‘extracellular matrix’’, ‘‘RNA splicing’’, and ‘‘ubiquitination’’
(Fig. 2d, e). While we chose to focus on the bisque4 cell cycle
module, the co-expression analysis highlights the importance of
the beta cell microenvironment in supporting insulinoma growth
and function. The immune-insulinoma connection was supported
by the appearance of CIITA among the top DSG in insulinomas
(Fig. 2c). Furthermore, many of the CIITA transcriptional targets,
the MHC class II genes, were also differentially expressed in
insulinoma relative to beta cells. Interestingly, YY1 and JARID’s
are DNA-binding partners, which interact with, and regulate
EZH2 recruitment to, the inducible promoter pIV of CIITA56.
While there have been prior reports linking beta cell proliferation
to inflammation in type 1 diabetes57, this apparent link between
CIITA and insulinoma is unexplained.

Collectively, this study provides a novel and complex lens
through which to view insulinoma and its relationship to normal
beta cell function, and raises a number of additional questions
noted above that merit further study. For example, what drives
the near universal EZH2 overexpression in insulinomas? The
precise genetic and molecular pathophysiology remain unex-
plained. Similarly, what drives CCND1 overexpression? Further,
these studies do not clearly distinguish between genomic/tran-
scriptomic abnormalities that lead to beta cell proliferation, vs.
those that lead to insulin overproduction. Clarification of this
issue would be facilitated by a similar comparison of insulinomas
to other benign PNETs that do not overproduce insulin. Simi-
larly, it would be informative to compare these non-MEN1
insulinomas to the whole-exomes and transcriptomes of bona fide
MEN1-associated insulinomas, to elucidate which features the
two different types of tumors share on their passage from normal
beta cell to adenoma. Finally, we highlight that previously
reported mitogenic targets of the harmine class of beta cell
mitogenic drugs2–4—DYRK1A (from the red module, Fig. 2), and
MYC (also upregulated in insulinomas, Supplementary Data 8)
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and its inhibitor, MNT (Fig. 6)—are also present in this analysis.
The observation that pharmacologic or adenoviral KDM6A
interference can downregulate the cell cycle inhibitor, CDKN1C,
suggest another entirely novel therapeutic target. Altogether,
these observations clearly illustrate that ‘‘insulinoma data
mining’’ can yield beta cell regenerative targets. Further studies
involving whole-genome sequencing of insulinomas, defining
lncRNA and microRNA profiles, whole-genome DNA methyla-
tion patterns, imprinting marks, histone marks, and chromatin
structure, and comparing malignant to non-malignant insulino-
mas, will deepen the description of the proliferating human beta
cell, and provide additional opportunities for therapeutic drug
discovery.

Methods
Insulinomas. Thirty-eight human insulinomas were studied. Thirty-four were
from subjects who provided informed consent, and were deposited in The Icahn
School of Medicine at Mount Sinai Biorepository; WES data from an additional
four insulinomas from Cao et al.8 passed our QC filtering and were included in the
sample cohort. Patient samples were de-identified through the Biorepository and
Pathology Core at the Icahn School of Medicine and IRB-HSM-00145. Of 26 WES
paired whole-blood and tumor insulinoma samples, 22 were sequenced at Mount
Sinai, with the other four from Cao et al.8. Of the 38 insulinomas, 25 were subject
to RNA sequencing; 13 from the same samples that underwent paired WES; 12 did
not undergo WES because of a lack of paired WBC samples. All displayed marked
increases in insulin RNA expression by RNAseq. Details of the patients with
insulinoma are provided in Supplementary Table 1 and Supplementary Data 1. All
of the samples were obtained from subjects not known at the time to be in MEN1 a
kindred, although after WES, subject 5967 was found to have a germline MEN1
mutation.

Purified normal human beta cells. RNAseq was performed on purified beta cells
from 22 donors of normal human cadaveric islets obtained from three sources. Five
{three male, two female; age (±SEM)= 45.8± 7.0; Body Mass Index (BMI)= 30.6
± 2.6} were from islets provided by the NIH/NIDDK-supported Integrated Islet
Distribution Program (IIDP) (https://iidp.coh.org/overview.aspx). For these, beta
cells were transduced 72 h before harvesting for fluorescence-activated cytometric
sorting (FACSAria II) with an adenovirus driven by a RIP1-miniCMV construct
that included 177 bases of the hCMV IE-1 promoter ClaI-SpeI fragment ligated to
438 bases of the RIP1 promoter, both upstream of the bright green fluorescent
protein ZsGreen (Clontech, Mountain View CA)25. The beta cell fraction was
confirmed to be >92% pure by immunolabeling of sorted cells with insulin, by
quantitative reverse transcription PCR (qRT-PCR) and by RNAseq (see below). For
ten others, FASTQ files from normal human cadaveric FACS-sorted beta cells
labeled using Newport Green were generously provided by Nica et al.24. For the
remaining seven, FASTQ files were obtained from Blodgett et al.23.

DNA sequencing. Shearing of 0.5–1 µg genomic DNA to a mean of 200–300 bp
fragments was performed using the Covaris E210 focused acoustic energy system
(Covaris, Woburn, MA). Whole-genome libraries were prepared using either the
NEBNext DNA Library Prep kit (New England Biolabs, Ipswich, MA) or KAPA
Hyper Prep kit (Kapa Biosystems, Wilmington, MA) according to the manu-
facturer’s protocol. Illumina compatible paired-end adapters were used, and the
adapter-ligated DNA fragments were amplified by ligation-mediated PCR (KAPA
Biosystems, Wilmington, MA) using a reverse PCR primer containing a six
nucleotide barcode that allowed for multiple samples to be pooled and sequenced
in the same run. The library was enriched for exonic sequences with the SeqCap EZ
Human Exome Library v3.0 capture system (Roche NimbleGen, Madison, WI).
The libraries were then sequenced with a 100 bp paired-end protocol on the Illu-
mina HiSeq 2500 according to standard manufacturer’s protocol (Illumina, San
Diego, CA).

Variant calling. Variant calling and filtering were carried out as described9, 10. For
each individual insulinoma and blood sample, FASTQ files from all available WES
runs were combined into a patient-specific “cohort” and run through an in-house
pipeline9 to yield BAM and VCF files with germline and somatic variant calls
(SNVs and small indels). Briefly, this in-house pipeline implements Genome
Analysis Toolkit (GATK)58 version 2.7.2b best practices for alignment, base quality
recalibration, variant calling (using HaplotypeCaller), and variant quality score
recalibration (VQSR)59, 60. VQSR was set to 99.5% sensitivity. Read pairs whose 5′

coordinates were identical were marked (except for one read pair) as duplicates by
the Picard software (http://broadinstitute.github.io/picard) and were not used for
variant calling, per the above best practices, to ensure that evidence for each variant
was derived from distinct DNA molecules, thus avoiding over-counting possibly
over-amplified or over-sampled DNA. A GATK genomic interval list was created
from the design file from the WES hybridization-capture kit manufacturer;

sequencing depth (Supplementary Data 1) was computed only within these
genomic intervals, whereas variant calling was done within these intervals, padded
by 100 nt padding on both sides. For somatic variant calling, MuTect61 (version
1.1.6-10b1ba92, HC + PON mode with default settings, using COSMIC62 version
65, dbSNP63 version 137, and using variant calls from patient-matched normal
control as the “panel of normals” setting) and Varscan264 (version 2.3.5, with flags
--tumor-purity 0.7 and --min-var-freq 0.07) were used.

All variant calls were annotated with SnpEff v3.4i65 (using the Ensembl66

version 74/GRCh37 resource bundle) and loaded into a custom MySQL (Percona
MySQL Server Community Edition 5.6.14-rel62.0.483.rhel6) database schema
using in-house scripts, where they were filtered as follows: only variants annotated
as altering the amino-acid sequence (missense, nonsense, affecting a canonical
splice site, indel in coding sequence) were retained for interpretation; however, the
full set of variants was used for routine post-sequencing QC described below.
Somatic calls whose population allele frequency in either ESP5400 (http://evs.gs.
washington.edu/EVS/)67 or 1000Genomes68 exceeded 2% were discarded on the
presumption that they are any combination of: contamination, a variant present
but missed in normal sample, a low-level artifact, or could not be pathogenic
because it was too common in general population. All SNV and indel calls were
manually reviewed in IGV and the UCSC Genome Browser69 to inspect supporting
alignment quality in the BAM files and alignability of the genomic region in the
hg19 human genome assembly, paying attention to whether a variant call was
located in a short tandem repeat or a low-complexity sequence region70, a region
with self-homology/duplication in the reference genome, or a region of low
alignability according to the GEM track from ENCODE/CRG71. Uncertain calls
were manually rejected at this step.

Approximately 70% of the called SNVs had a ref allele of G/C, higher than the
GC content of coding regions captured by the WES library capture/enrichment kit.
To exclude sequence bias induced by higher GC content, both normal blood and
insulinoma from ten randomly sampled subjects were investigated for GC content
in the regions with WES coverage above 30×: the GC content ranged between
43–47%. The GC content was 40.4% for the coding regions of all the called genes
with SNVs, identical to the GC content of the coding regions of the predicted key
drivers (also 40.4%), and very close to the GC content of the coding regions of all
the genes in the EpiFactors database (41.9%). Thus, the GC content in regions with
reasonable WES coverage and the coding regions of the genes with identified SNVs
was comparable. It is unlikely that sequencing bias drives the reported functional
enrichment of the predicted key drivers or enrichment in EpiFactor genes. Notably,
since mutations are under selection in the context of tumorigenesis, it is anticipated
that G/C frequency in our SNVs differs from the G/C content in the WES target
region: it is likely these SNVs with higher G/C frequency provide a survival
advantage to tumor cells. In addition, it is possible that mutational signatures might
also play a role: some mutational signatures simply have much higher G/C ref allele
frequency (http://cancer.sanger.ac.uk/cosmic/signatures, for example signature 1–4,
6, 7, etc.), potentially contributing to the insulinoma mutational driver signature
landscape.

Indel force calling. To further reduce the indel FDR caused by any systematic
artifact, we used UnifiedGenotyper (version 2.7)58 to force-call all indel variants
that passed manual review across the entire cohort in order to systematically collect
ref/alt allele read depths in all blood/tumor samples. Any indel variant with alt read
evidence from other normal blood samples was also removed from the final indel
variant list reported.

Copy number alterations. Somatic copy number alterations were identified using
saasCNV16. This algorithm uses heterozygous SNV calls from the normal control
sample, and the change in their sequencing depth and allelic fraction in the tumor
vs. the normal sample, to identify tumor-specific copy number change events. Joint
circular binary segmentation is performed on the two signals: the log-ratio of depth
and the log-ratio of mirrored allelic fractions in tumor vs. normal. Identified
segments are then classified into one of these categories: loss, cnLOH, gain, normal
(no change), or undecided. Because our GATK variant calling workflow
combines normal and tumor as a cohort, heterozygous variants called in the
normal sample are implicitly force-called by HaplotypeCaller in the tumor sample,
yielding their depth-by-allele in both normal and tumor in the output VCF.
Variant calls passing VQSR, having a 0/1 genotype in normal, having a
mapping quality> 30, and having non-zero depth in tumor, were input into
saasCNV. The saasCNV segments classified as loss, gain, and cnLOH CNVs were
input to R package RCircos72 to generate a Circos plot for visualization of recurrent
CNV regions. Finally the statistics for significant recurrent CNV regions was
analyzed by GISTIC2.0 using the segmentation output of saasCNV with log2ratio
values17. GISTIC2.0 analysis was performed using default parameters at q-value
threshold of 0.1.

Targeted DNA methylation analysis. Two sets of DNA (300 ng) from four sorted
adult beta cell samples was utilized. Three-hundred nanogram DNA was obtained
from one sample, and three other sorted beta cell DNA preparations were pooled to
achieve the 300 ng minimum. Three-hundred nanogram DNA was prepared from
ten insulinomas, of which six were in the original series (4973, 5329, 5333, 5863,
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6066, 6107) and four were new samples (5322, 5596, 5597, 5326). Probes were
designed to capture the region of chromosome 11 spanning 1.35 Mbp from posi-
tion 1,850,000 to 3,200,000 within bands p15.5-15.4, (GRCh37/hg19 Assembly Feb
2009) according to the SeqCap Epi Enrichment System (Roche NimbleGen, Roche
Sequencing & Life Sciences, Indianapolis, IN, USA) for hybridization-based tar-
geted enrichment of bisulfite-treated DNA. Pre-capture libraries were prepared
using the Kapa Hyper Prep kit, PCR-free version (Roche Sequencing & Life Sci-
ences). The 12 samples were barcoded and multiplex-sequenced in a single run and
the reads run through a customary DNA methylation pipeline for generating
methylation calls at every CpG dinucleotide. Sequencing was performed at the
Epigenomics Core Facility of Weill Cornell Medicine. Briefly, 300 ng of genomic
DNA were sonicated using a Covaris S220 (Covaris, Woburn, MA, USA) to
approximately 180–220 bp fragments. End-repair and A-tailing was performed in a
single reaction, followed by ligation of methylated indexed adaptors provided in the
Roche SeqCap Epi Enrichment kit. Products were cleaned using Agencourt
AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA). Bisulfite conversion
was carried out at 54 °C for 1 h using the Zymo EZ DNA Lightning kit (Zymo
Research, Irvine, CA, USA), followed by 12-cycles of ligation-mediated PCR
amplification performed with HiFi HotSart Uracil + polymerase (Roche Sequencing
& Life Sciences). Multiplex hybridization was performed by using 1 μg of bisulfite
converted libraries, obtained by pooling 250 ng from each of four libraries, and
hybridizing to the custom SeqCap Epi Choice probe pool at 42 °C for 72 h.
Hybridized products were purified by capture with Capture Beads and PCR
amplified for 15 cycles to create the final libraries for sequencing. Final yields were
quantified in a Qubit 2.0 Fluorometer (Life Technologies, Grand Island, NY, USA),
and quality of the library was assessed on a DNA1000 Bioanalyzer chip (Agilent
Technologies, Santa Clara, CA, USA). Three post-capture multiplexed libraries,
each containing four different indexes, were normalized to 2 nM, pooled, clustered
at 10 pM on a V2 paired-end read flow cell and sequenced for 150 cycles on an
Illumina MiSeq (illumina, San Diego, CA, USA). Primary processing of sequencing
images was done using Illumina’s Real Time Analysis software (RTA) as suggested
by Illumina. CASAVA 1.8.2 software was then used to demultiplex samples, gen-
erate raw reads and respective quality scores. Raw data was quality filtered, adapter
trimmed and reads aligned to the bisulfite converted reference human genome
(GRCh37/hg19 Assembly Feb 2009—whole-genome alignment approach) and the
methylation context for each cytosine determined. Custom scripts73 were used to
compute the percent methylation scores and average conversion rates. Average
conversion rates obtained ranged from 99.56 to 99.77%. The percent methylation
data across the CpG dinucleotides assessed by the targeted DNA methylation
platform were averaged within beta cells and insulinomas and compared with each
other. The limited number of beta cell control samples (n= 2) prevented the use of
statistical tests to validate the findings. However the high degree of correlation
between the pooled and individual sample (bivariate Pearson correlation coeffi-
cient = 0.943—p< 0.001; r2= 0.981—p< 0.001) add a substantial degree of con-
fidence to our analysis.

Pathway enrichment analysis. Pathway enrichment analysis for the predicted
genomic key driver variants was performed using the ClueGo(v2.1.7)74 and
CluePedia(v1.1.7)75 plugins in Cytoscape(v. 3.1.0)76 with the GO database
(29.02.2016 download). Pathways with a Bonferroni-corrected p-value are shown
with full data in Supplementary Data 4. Pathway enrichment analysis for the co-
expression modules from transcriptomic analysis was performed by R package
goseq with default parameters77.

RNA sequencing: beta cells. RNA from the five sets of FACS-sorted ZsGreen-
positive beta cells was prepared immediately using the RNeasy Micro kit (Qiagen).
RNA yields were 300–500 ng on each run, and RNA integrity numbers were
between 9.5 and 10.0. Briefly, polyA+ mRNA from sorted beta cells was purified
with oligo dT magnetic beads. The polyA RNA from beta cells was then frag-
mented in the presence of divalent cations at 94 °C. The fragmented RNA was
converted into double stranded complementary DNA (cDNA). After polishing
the ends of the cDNA, the 3′ ends were adenylated. Finally, Illumina-supplied
universal adapters were ligated to the cDNA fragments. The adaptor ligated
DNA was size selected to get an average of 250 bp insert size using AmpPure
beads, and amplified by 15 cycle PCR. The PCR DNA was then purified using
AmpPure beads to get the final seq library ready for sequencing. The insert size
and DNA concentration of the seq library was determined on Agilent
Bioanalyzer and Qubit, respectively. A pool of ten barcoded RNA seq libraries was
layered on two of the eight lanes of the Illumina flow cell at appropriate con-
centration and bridge amplified to yield ~ 25–35 million raw clusters. The DNA
reads on the flow cell were then sequenced on HiSEq 2000 using a 100 bp paired
end recipe.

RNA sequencing: insulinomas. RNA from frozen insulinoma tissue was prepared
using the RNeasy Mini Kit (Qiagen), and fragmented and reverse transcribed as
above. One microgram of total RNA was used for the preparation of the sequen-
cing libraries using the RNA Tru Seq Kit (Illumina (Cat #1004814). Ribosomal
RNA was depleted from total RNA using the Ribozero kit (Invitrogen) to enrich
polyadenylated coding RNA and non-coding RNA. The Ribozero RNA-Seq

libraries from insulinomas were sequenced on the Illumina HiSeq 2500 platform
using 100 bp paired end protocol following manufacturer’s procedure. Base calling
from Images and fluorescence intensities of the reads was done in situ on the HiSeq
2500 computer using Illumina software. Various QC parameters such as intensities
of individual bases, visual and graphic focus quality of the images, sequence quality
measured in terms of colored graphic representation of Q30 values (which is a
measure of errors per thousand base), and error rates at 35 and 75 cycles of
sequencing, were monitored periodically to assess the quality of an ongoing run.

RNA-seq alignment and feature quantitation. Genomic alignment of the paired
end RNA-seq reads was performed using STAR78. Default parameters for STAR
were used, as were those for the quantitation of aligned reads to GRCh37.75 gene
features via featureCounts, such that read pairs were counted instead of individual
reads79. Multimapping reads were flagged and discarded. For splicing inference, the
gene annotation was flattened into “exonic” counting bins such that exons with
variable lengths across different isoforms were split into multiple bins, including
ones of unit length, as in DEXSeq80. Reads that overlap multiple counting bins for
the same gene were counted for each bin, so when quantitating at the exonic level
with featureCount, the -O flag was thrown.

Differential expression analysis. DE at both the gene and exonic level, was
carried out by first computing feature-wise weights for variance-stabilized counts
based on their global mean-variance trend via the voom-transformation81, and
then propagating these feature-wise weights through the limma pipeline to account
for the heteroscedastic distribution of count data82. A straightforward linear model
which accounts for the contrasts of interest, known experimental covariates, and
feature-feature correlations between technical replicates, was then fit via general-
ized least squares and weighted least squares for genes and exons, respectively. The
null hypothesis of equal expression was thus tested and adjusted for multiple
testing83, rejection being called at a FDR≤ 1%.

Given the linear model at the exonic level, differences in exonic retention were
tested as to whether exonic log-fold changes in the fit differed for the same gene for
contrasts of interest using the diffSplice function within limma. Two tests to
quantify evidence of differential exonic usage at the gene-level were used: a F-test
for log-fold changes; and the conversion of a series of exonic t-tests into a genewise
test using the method of Simes84. Relative exonic usage across genes was computed
via aggregation of log2(2^x/Σi= 1..N(2^x)), where N is the number of exons in that
particular transcript, and x is exonic expression in units of log2(cpm), at the gene
level.

Allele-specific expression analysis. ASE was performed by calling heterozygous
SNPs from the RNA-seq data and evaluating, for calls which were identified in at
least one pair of control beta cells and insulinoma samples, the statistical sig-
nificance of the reference allele bias with the quasi binomial test against an
empirically determined reference fraction. The RNA-seq variant calls were carried
out via the GATK variant calling beta practices for RNA-seq, and requiring that
each site be supported by at least 30 reads. Calls made in high repeat, low
mappability, low complexity regions85 were removed, as were A/G (T/C) calls in
order to recover an empirical null reference allele fraction of ~ 0.54, reflecting the
well-known bias toward the reference allele, and to eliminate a likely RNA-editing
confounding signal. The resultant SNP coverage was genomically uniform, and the
distribution of allelic fractions was approximately normal, with that of beta cell
controls slightly more skewed than insulinoma. All features were annotated by
SnpEff 3.0 using dbSNP version 138 and GRCh38, Ensembl version 78 and
visualized using ggbio, GRanges and ggplot2 within R86, 87.

Co-expression analysis. A signed WGCNA algorithm26, 88 was used to build co-
expression networks, with the log2 of cpm values (after effective library size nor-
malization) as input.

Bisque4 module membership p-value (MMP). For Fig. 5d, the Spearman cor-
relation was calculated among all the genes in the co-expression network and the
bisque4 module eigengene (ME). ME was defined as the first principle component
of all the genes expressed in a module. The bisque4 MMP was defined as the
significance of the Spearman correlation, and the bisque4-associated genes were
defined as genes having an MMP< 0.01.

Histone mark gene set enrichment analysis. Each of the genes tested in Fig. 3a
were ranked by their DE status (insulinoma vs. beta cell) such that genes with
logFC≥ 0 (upregulated in insulinomas) were ranked in an ascending order, fol-
lowed by genes with logFC ≤ 0 (downregulated in insulinomas) ranked in des-
cending order. Thus in the final gene ranking order, genes with most significant
FDR were placed at the end of the x-axis, with each line representing a single gene.
Next, we compared these genes tested in DE analysis to published histone mark
signatures from prior reports27–29. Each histone mark signature was plotted in a
single track, with genes in the same order corresponding to the gene order based on
DE status as described earlier. In each track, genes with positive histone mark were
plotted as black lines. The visualization curves within each histone mark track were
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plotted as follows: for each histone mark track, each gene was given a binary value
(1 for genes with positive histone mark, and 0 for genes with negative histone
mark). A sliding window of 201 genes was defined for each gene, including 100
flanking genes on the left and 100 flanking genes on the right, according to the
gene-ranking order (increasing or decreasing expression differences between
insulinoma vs. beta cells). This was employed to calculate the average gene set
scores for each sliding window. These average scores were used to plot the
visualization curve for each track.

One-sided Fisher’s exact test was performed between genes upregulated in
insulinoma (when compared with normal beta cells) and each histone mark
signature, with all the protein-coding genes tested in the differential expression
analysis between insulinoma and normal beta cells described above as background
set.

For the enrichment of histone mark signatures in insulinoma co-expression
network (Fig. 3b), a two-sided Fisher’s exact test was performed between
each histone mark signature and each co-expression module, and FDR was
calculated based on all tests. FDR values were then transformed into FDR
scores using the following definition: −log2(FDR) for over-enrichment (odds
ratio from fisher exact test >1) and log2(FDR) for under-enrichment (odds
ratio from fisher exact test <1). All insignificant FDR scores (when FDR> 0.05)
were converted to a value of 0. The maximum absolute value of FDR score
value was set at 50. Finally, the FDR score matrix was used to create the enrichment
heat-map shown.

Adenovirus (Ad) silencing and overexpression. Ad.shRNAs directed against
human CDKN1C, CDKN2A, MEN1, KDM6A, KDM6B, and KDM5B were prepared
using the Block-It RNAi kit (Life Technologies) targeting sequence CDKN1C
(ATTCTGCACGAGAAGGTACAC), CDKN2A (CGAATAGTTACGGTCGGAG),
MEN1 (GATCTACAAGGAGTTCTTTGA), KDM6A (GCAGATACATGGTGT
TCAATA)), KDM6B (GCATCTATCTGGAGAGCAAAC), and KDM5B
(GCCATCTCCTGTTCTTGTAAA), respectively, driven by the U6 promoter.
For overexpression, Ad.EZH2, Ad.CCND1, Ad.YY1, mut-Ad.YY1(T372R) were
prepared using the pAd-CMV-V5-DEST Gateway recombination system (Life
Technologies)4, 41. cDNAs for EZH2 (Harvard Plasmid Library), CCND1
(Addgene), wild-type and mutant YY1 (Harvard Plasmid Library) were cloned
into the Gateway pENTR vector. Adenoviruses were packaged and produced
in HEK-293A cells. Titers were determined by plaque assay (PFU). Prior to
transduction, islets were dispersed using Accutase Cell Detachment Solution
(Innovative Cell Technologies, San Diego, CA), then transduced with 150 MOI
in serum-free RPMI-1640 medium containing 1% penicillin, 1% streptomycin,
and 5.5 mM glucose. After 2 h, transduction was terminated by addition of com-
plete medium containing 10% fetal bovine serum, and the islets were cultured for
72–96 h.

Immunocytochemistry and immunohistochemistry. Immunocytochemistry was
performed using standard methods4, 41. Briefly, islets were dispersed, transduced,
and plated on cover slips. Insulin (DAKO, Carpinteria, CA) and Ki67 (Fisher
Scientific) primary antisera were used to immunolabel beta cells entering the cell
cycle. A tissue microarray containing formalin-fixed, paraffin-embedded tissue
sections of insulinoma and normal pancreas tissue from the same and different
clinical cases were generated by the Biorepository and Pathology CORE at the
Icahn School of Medicine at Mount Sinai. Primary antisera against p57 (Cell
Signaling, Danvers, MA) and insulin (DAKO, Carpinteria, CA) were used to label

p57 in human beta cells. Secondary antisera were from Invitrogen (Carlsbad, CA).
Confocal fluorescent microscopy was performed using an Olympus Fluoview 1000
microscope.

Chromatin immunoprecipitation assays. ChIP was performed using the EZ-ChIP
Kit (Millipore) according to the manufacturer’s protocol. Beta cells were FACS
sorted using Ad.ZsGreen as described earlier. Forty-thousand ZsGreen+ (beta)
and ZsGreen− (non-beta) cells were collected per experiment for each H3K4me3
and H3K27me3 immunoprecipitation, and 130,000 sorted cells were collected
for each KDM6A immunoprecipitation. The primer sets were designed in a
previous study43. Immunoprecipitated DNA was quantified using ABI 7500
real-time quantitative PCR detection system (Life Technologies). The following
antibodies were used: anti-H3K4me3 (Millipore #17-614), anti-H3K27me3
(Millipore #17-622), anti-KDM6A (Abcam #ab84190). Data are presented as
ChIP reads normalized relative to input controls, and fold-enrichment divided
by respective IgG. Three separate islets preparation were used for each figure
shown.

Gene expression analysis. Ten nanogram of total RNA from isolated FACS-
purified beta cells or insulinoma tissue samples were reverse transcribed using the
SuperScript III First-Strand Synthesis SuperMix kit (Life Technologies). Gene
expression was analyzed by real-time PCR performed using an ABI 7500 system.
For RT-PCR, all data are expressed as the mean± SEM. Results were accepted as
statistically significant at p< 0.05, as determined using two-tailed Mann–Whitney
test. Primer sequences used are listed in Table 1.

Data availability. DNAseq, RNAseq, and CpG Bisulfite seq raw data files are
available through dbGAP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
about.html) under accession number: phs001422.v1.p1 and The Catalogue of
Somatic Mutations in Cancer (COSMIC) via ID number: COSP44132.

Processed data are also available on our Insulinoma Genomic Portal at http://
insulinoma.genomicportal.org
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