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Abstract. Despite the importance of soil processes for global

biogeochemical cycles, our capability for predicting soil evo-

lution over geological timescales is poorly constrained. We

attempt to probe our understanding and predictive capabil-

ity of this evolutionary process by developing a mechanis-

tic soil evolution model, based on an existing model frame-

work, and comparing the predictions with observations from

soil chronosequences in Hawaii. Our soil evolution model in-

cludes the major processes of pedogenesis: mineral weather-

ing, percolation of rainfall, leaching of solutes, surface ero-

sion, bioturbation, the effects of vegetation in terms of or-

ganic matter input and nutrient cycling and can be applied

to various bedrock compositions and climates. The specific

properties the model simulates over timescales of tens to hun-

dreds of thousand years are, soil depth, vertical profiles of

elemental composition, soil solution pH and organic carbon

distribution. We demonstrate with this model the significant

role that vegetation plays in accelerating the rate of weath-

ering and hence soil profile development. Comparisons with

soils that have developed on Hawaiian basalts reveal a re-

markably good agreement with Na, Ca and Mg profiles sug-

gesting that the model captures well the key components of

soil formation. Nevertheless, differences between modelled

and observed K and P are substantial. The fact that these

are important plant nutrients suggests that a process likely

missing from our model is the active role of vegetation in se-

lectively acquiring nutrients. This study therefore indirectly

indicates the valuable role that vegetation can play in accel-

erating the weathering and thus release of these globally im-

portant nutrients into the biosphere.

1 Introduction

Soils play a major role in many global biogeochemical cycles

due to their position at the interface between the atmosphere

and lithosphere. For example, soils influence the flow of wa-

ter to rivers and vegetation, they govern the flux of nutrients

between the lithosphere, vegetation and rivers and are also

a source and sink of gases to the atmosphere. A quantitative

description of the evolution through time of the processes and

properties within soils is therefore of great interest.

This study is motivated by several important global-scale

questions that a dynamic soil model will enable us to in-

vestigate further. An example being the exchange of plant

nutrients between the soil and vegetation, of particular im-

portance is phosphorus which is almost completely derived

from the lithosphere and considered a limiting nutrient for

many tropical forests across the globe (Vitousek and San-

ford Jr., 1986; Vitousek et al., 1993; Quesada et al., 2012).

Another important Earth system process is the long-term car-

bon cycle, specifically the relationship between silicate min-

eral weathering and atmospheric CO2 concentrations. Over

multi-million year timescales atmospheric CO2 concentra-

tions are governed by the balance between silicate mineral

weathering and CO2 outgassing from volcanic and tectonic

activity (Urey, 1952). Increased levels of atmospheric CO2

promote the weathering of silicate minerals, which in turn,

indirectly consumes atmospheric CO2 (Walker et al., 1981).

This weathering process which occurs within soils is also af-

fected by many other factors such as temperature, precipita-

tion, pH, soil depth and vegetation dynamics. The influence

of each of these factors is hard to quantify from field studies
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alone and current modelling attempts lack true process-based

weathering feedbacks within soil profiles. Instead, to test

theories such as the role of vegetation and silicate min-

eral weathering in modulating Earth’s climate (Pagani et al.,

2009) we need process-based models which integrate all in-

teracting processes, including, mineral weathering, physical

erosion, tectonic uplift, soil depth evolution, soil hydrology

and vegetation interactions (Goddéris and Donnadieu, 2009).

Existing models of pedogenic processes are largely aimed

at understanding landscape scale processes (Yoo and Mudd,

2008; Minasny and McBratney, 2001, 1999; Dietrich et al.,

1995) and largely focus on rates of soil production and pay

less attention to biogeochemical processes occuring within

the soils. Models developed to study whole profile evolution

include those of Vanwalleghem et al. (2013); Cohen et al.

(2010); Salvador-Blanes et al. (2007), which, like this study

attempt to model the evolution of soil resulting from exposed

bedrock over geological timescales. These models track the

vertical profile of particle size distribution through time by

implementing a depth dependent soil production rate, chem-

ical and physical weathering and overturning due to biotur-

bation. However, these models do not include a liquid phase

so chemical weathering processes or losses from the profile

due to leaching are greatly simplified.

Soil models which do include such biochemical processes

exist but these attempts generally focus on very specific mi-

croscale processes such as mineral dissolution and/or veg-

etation interactions and are not designed for understanding

pedogenic processes (Goddéris et al., 2006; Wallman et al.,

2005; Warfvinge and Sverdrup, 1992). An attempt to cou-

ple such processes with a pedogenesis model is the SoilGen1

model (Finke and Hutson, 2008). This model simulates the

evolution of nutrient, carbon and pH profiles, however, the

model requires a large number of soil properties for initiali-

sation and can thus only predict changes in existing soil pro-

files.

The model which on conceptual grounds we view as hav-

ing the most potential for our purposes is the pedogenesis

model developed by Kirkby (1985). This model is recog-

nised as a pioneering attempt to model biogeochemical soil

processes in the context of understanding hillslope processes

(Hoosbeek and Bryant, 1992; Minasny et al., 2008). The

model meets the criteria of being based upon physical pro-

cesses, yet is sufficiently simple to allow the mechanisms and

feedbacks behind the resulting properties to be understood.

Over recent years a range of chemical and physical soil

chronosequence data, a valuable means of evaluating our un-

derstanding of evolutionary processes in soil profiles, has

also become available. A good example is the soils which

have developed on the lava flows of Hawaii (e.g. Chadwick

et al., 1999; Porder et al., 2007). However, to our knowledge,

efforts to make complete use of these soil data sets and syn-

thesise them within one consistent, process-based modelling

framework have been limited.

The purpose of this paper is to introduce a soil evolution

model based on the framework described in Kirkby (1985)

and explore how well this updated model can reproduce cur-

rent soil properties, by placing a strong emphasis on eval-

uation with data. Specifically we will demonstrate how the

model may be used to further our understanding of long-

term nutrient cycles. While the model is based on Kirkby

(1985), there are many aspects of this model which need

to be changed to fit our purposes. For example, to explore

long-term nutrient cycles we would like to model individ-

ual nutrients, whereas the original model of Kirkby (1985)

is structured such that only three profiles are simulated; a

weathering profile, organic profile and inorganic profile. The

components of each of these are greatly simplified, for exam-

ple, solubility is expressed as a linear relationship with the

proportion of original material remaining and it is suggested

that pH is then also derived from this proportion. Therefore

pH does not dynamically interact with solubility and is also

not altered by changes in the organic profile.

In this paper we describe with equations the individual

processes and mathematical basis of the updated soil evo-

lution model. Following on from the model description, the

basic performance of the model is explored. This demon-

stration of the model’s capability is based on a hierarchy of

model simulations starting with a profile subject to weather-

ing and leaching only, with each further simulation including

an additional process. We then evaluate the model with soil

chronosequence data from Hawaii, demonstrating what we

can learn from such a model. The focus here is on soils of

tropical systems, however, the model can be applied to other

biomes by adjusting the appropriate input parameters.

2 Model description

The process of soil evolution is conceptualised as a vertical

profile of bedrock which undergoes both chemical and phys-

ical weathering resulting in an altered profile which we term

soil. The formation of soil begins when water percolates into

bedrock and initiates mineral dissolution. Chemical weath-

ering in the model is based on the central assumption that

dissolution equilibrium is reached between the rock minerals

and percolating water (Kirkby, 1977, 1985). In the model,

water acts directly on the elemental oxides of the parent ma-

terial rather than on rock minerals. The oxide composition

and density of the bedrock provides the initial conditions for

the modelled weathering process.

The simulated percolation of rainfall through the profile

provides the mechanism and rate for losses of dissolved ions

from the soil layers. The modelled soil may deepen as a re-

sult of steadily increasing percolation through the profile re-

sulting from the increasing pore space which is created by

the leaching of dissolved rock oxides and also by the redis-

tribution of soil by bioturbation and from direct removal by

vegetation.
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Figure 1. Diagram of the major processes, inputs and outputs of the soil profile model.

The specific soil properties the model predicts are: soil

depth, pore space, the proportion of the initial elemental ox-

ides remaining in each soil layer, pH of the soil solution,

organic carbon and pore CO2 concentration (Fig. 1). The

processes included in the model are, chemical weathering

of bedrock elements, percolation of rainwater, leaching of

weathering products, surface erosion, bioturbation, plant lit-

ter decomposition and vertical transport, CO2 production and

diffusion and nutrient cycling. As well as chemical weath-

ering, other adopted processes from Kirkby (1985) include

losses of solutes via leaching, surface erosion, biological

mixing and ionic diffusion. The main way in which the model

differs from that of Kirkby (1985) is that we keep the bedrock

elements separate throughout model calculations. Keeping

chemical elements separate allows us to explore more com-

prehensively the individual cycling and feedbacks of impor-

tant elements. The key elements needed to understand the

model rational are detailed in the following sections.

2.1 Mineral weathering and leaching

2.1.1 Equilibrium reactions

As already indicated, the model assumes that dissolution

equilibrium is reached between the rock oxides and the per-

colating waters. Although a simplistic assumption, as a first

order approximation, this is preferable to a formulation us-

ing kinetic dissolution equations which are particularly dif-

ficult to constrain due to the requirement of reactive mineral

surface areas. Studies have also shown that the unknowns as-

sociated with kinetic reactions are very large, with weath-

ering rates of minerals such as plagioclase behaving closer

to equilibrium predictions in natural systems than to kinetic

rates derived from experimental studies (White et al., 2001,

2008). The methods of calculating the equilibrium composi-

tion; thus the dissolution of rock oxides and subsequent pH

of the soil solution are derived from Kirkby (1977) and Gar-

rels and Christ (1965) and an example taken from Kirkby

(1977) for SiO2 is shown in the appendix.

2.1.2 Percolation

The rate of water flowing through each soil layer is regulated

by the amount of pore space available in that layer. In the

early stages of soil formation this is dependent only upon the

porosity of the bedrock, however, over time, the losses due to

leaching increase this porosity. The pore space is expressed

as a fraction of soil volume (m3 m−3) and is derived from

the proportion p of original parent material remaining in the

profile, where p = 1 for unweathered bedrock and p = 0 for

complete loss of the original material. The total soil deficit w

below depth z is calculated as

w(z) =

z
∫

∞

(1 − p)dz (1)

and has the dimension of length (Kirkby, 1985). The coordi-

nate system is chosen such that z is positive in the downward

direction.

A simple vertical flow through the profile is assumed, with

sub-surface flow resulting from the vertical variation in pore

space. The percolation of water, F , at depth z is

F(z) − F0 = Kw(z), (2)

where F0 is the rate of percolation allowed through the

bedrock, and K is a site specific parameter related to hy-

draulic conductivity and slope gradient. Because F(z) is the
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maximum rate of percolation, effectively occurring percola-

tion is whichever is lowest, the maximum rate of percolation

or the rate of precipitation minus the cumulative evapotran-

spiration from the soil surface to depth z.

2.1.3 Evapotranspiration

The process of evapotranspiration removes water from the

soil profile. Here we calculate total actual evapotranspiration

(ET) as the minimum of potential evapotranspiration (E∗
T)

and mean annual precipitation (PA):

ET = min[E∗
T,PA]. (3)

Although simple, the formulation still permits the model to

operate under water stressed conditions. E∗
T is calculated for

specific locations using a modified Hargreaves model (Har-

greaves and Samani, 1985) (see appendix). This method is

chosen because it requires only a small amount of climate

data (temperature) for any specific location. The allocation

of water loss by evapotranspiration to the different soil lay-

ers is determined by the distribution of roots through the soil

profile, these are assumed to decline exponentially with in-

creasing soil depth (Jackson et al., 1996). The e-folding root-

ing scale depth is zr so that the rate of evapotranspiration, E,

at depth z is

E(z) =
ET

zr
exp

−z
zr . (4)

Rainfall minus cumulative evapotranspiration at depth z

places a limit on the amount of water available for perco-

lation:

Ec(z) = ET(1 − exp
−z
zr ), (5)

where Ec(z) is the cumulative evapotranspiration from the

surface down to depth z. Values for zr can be obtained from

the rooting distributions compiled for different biomes by

Jackson et al. (1996). When the modelled soil is shallow, the

rooting depth and subsequent vertical distribution of evapo-

transpiration is limited by the soil depth. Rooting depth, dr, is

the depth which contains a fraction, f , of the total root mass

(Arora and Boer, 2003) and can be calculated by

dr = − ln(1 − f )zr. (6)

If we term rooting depth as the depth above which 95 % of

the total root biomass is contained, following Arora and Boer

(2003) we use f =0.9502 to aid simplicity, so that

dr = − ln(1 − 0.9502)zr = 3zr (7)

when dr is greater than the soil depth in either the early stages

of soil development or in shallow soils, the above value of zr

is adjusted so that dr equals soil depth. This will result in a

greater proportion of roots in the top layers of soil.

2.1.4 Leaching

Following Kirkby (1985) the loss of solutes from the profile

is calculated by mass balance, the main difference being that

each individual element is treated separately. The derivation

of this is provided in the appendix for completeness.

2.1.5 Ionic diffusion

The ions released into the solution from weathering can dif-

fuse from regions of higher to lower concentrations, so fol-

lowing Kirkby (1985) we model this as a diffusive process,

only again we treat each element separately. The derivation

is provided in the appendix. This process is most important

at the weathering front where ion concentrations are greatest

and leaching losses are low (Kirkby, 1985).

2.1.6 Bioturbation

Bioturbation is the mixing and turnover of soil resulting

from biological activity and is considered a major soil form-

ing process (Gabet et al., 2003; Wilkinson and Humphreys,

2005; Yoo et al., 2005). Following Kirkby (1985) biotur-

bation is also represented in the model as a diffusive pro-

cess with a depth dependent diffusivity coefficient (see Ap-

pendix).

2.1.7 Surface erosion

Removal of soil from the surface by mechanical processes is

modelled through a denudation rate, T (m yr−1). Following

the approach of Kirkby (1985), surface elevation, zs is low-

ered at a rate, dzs/dt , which is inversely proportional to the

amount of original material remaining at the surface, ps, or

p(z = 1). Described this way we find the following:

∂p

∂t
=

∂p

∂z

T

ps
. (8)

The full derivation is provided in the appendix. Cosmogenic

nuclides such as in situ 10Be have provided measures of sur-

face erosion for hillslope soils where soil thickness is as-

sumed to be at steady state and thus rates of soil production

from bedrock balance rates of loss due to surface erosion.

Erosion rates calculated from these studies lie in the range of

10 to 100 m Myr−1 (Wilkinson and Humphreys, 2005).

2.2 Organic carbon and CO2

2.2.1 Carbon fluxes, decomposition and mixing

To estimate carbon input into the soil we assume that veg-

etation cover is at steady state, with new carbon production

equal to the losses from litterfall and root senescence. For

this first presentation and evaluation of the model we simply

assume a time invariant climate and annual net productivity

(NP) (kg C m−2 yr−1). The carbon is assigned to four differ-

ent pools which are defined by the stability or turnover time
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of the pools. These are fine litter (e.g. leaves), coarse woody

debris (e.g. branches/stems), fine roots and coarse roots and

are assigned using allocation coefficients from the literature.

The overall equation for the organic matter decomposition

and mixing processes in the soil profile is

∂Ci

∂t
=

∂

∂z

(

D(z)
∂Ci

∂z

)

− ki(z)Ci + Ii(z), (9)

where Ci is the concentration of carbon (kg m−3) in pool i,

the first term is the diffusive mixing of carbon through the

soil profile by biological activity, k is the decay coefficient

(yr−1) and Ii is the carbon entering the soil profile from ei-

ther plant litter at the surface or from root litter, which is

distributed throughout the profile. The decay coefficient may

remain constant with depth or decrease with increasing soil

depth as observed in soil carbon studies using carbon iso-

topes (Veldkamp, 1994; Trumbore et al., 1995; Van Dam

et al., 1997). For this study it is assumed that the decay rate,

k, declines exponentially with increasing soil depth. For the

fine and coarse litter, I provides a top boundary condition

flux equal to αiNP where αi is the proportion of carbon pro-

duction assigned to pool i. For both fine and coarse roots the

input of carbon is distributed vertically throughout the profile

according to

I (z) =
αiNP

zr

exp
−z
zr . (10)

Because of the much shorter timescale that these carbon dy-

namics operate on, we assume a steady-state carbon profile

and hence solve Eq. (9) for ∂C/∂t = 0 and boundary con-

ditions of ∂C
∂z

= 0 at the bottom and a top boundary condi-

tion equal to the flux of carbon entering from the above litter.

The carbon is not subject to the modelled surface erosion,

however, given the very different timescales of the two pro-

cesses this seems a reasonable simplification. A limitation of

this carbon scheme is that biomass is present from the start

of soil evolution rather than vegetation productivity evolving

with the developing soil profile. This may result in an unre-

alistic vegetation enhanced acceleration of weathering in the

very earliest stages of soil evolution.

2.2.2 CO2 production and diffusion

Gases in soil are transported in either the pore space or in so-

lution. Here we assume that the CO2 produced from root res-

piration and from the above decomposition process is trans-

ported through the profile by gaseous diffusion only. This is

modelled as a diffusion scheme:

∂Cg

∂t
=

∂

∂z

(

Dc(z)
∂Cg

∂z

)

+ S(z) + Rc(z), (11)

where Cg is the concentration of CO2 (kg m−3 soil air),

Dc(z) is the diffusion coefficient of CO2 in soil (m2,s−1)

at depth z, S is the CO2 production rate (kg m−3 s−1) (cal-

culated by
∑n

i=1ki(z)Ci(z), where n is the total number of

carbon pools (4 in this case)) and Rc is the production of

CO2 from root respiration which is assigned from the litera-

ture and distributed throughout the profile following the same

exponential function as for root carbon turnover. The effec-

tive diffusion coefficient in soil air is lower than that for bulk

air due to both the smaller volumes of air filled pore space

and the tortuosity introduced by soil pores. The diffusion

coefficient for CO2 is taken from Jones (1992), Dc = 14.7

(mm2 s−1) for 20 ◦C. To account for tortuosity a more real-

istic diffusion coefficient for soil air (Ds) is calculated using

the following relationship of Penman (1940) (Hillel, 2004, p.

204).

Ds(z)

Dc
= 0.66fa(z), (12)

where fa is the fraction of air-filled space, in the model this

is equal to 1−p(z). 0.66 represents the tortuosity coefficient,

which means that the straight line path is approximately two-

thirds the length of the path of diffusion, so as the pore space

increases the diffusive path will decrease. The CO2 profile is

also modelled at steady state so that

∂Cg

∂t
= 0. (13)

The top boundary condition is equal to the atmospheric con-

centration of CO2 and the bottom boundary condition allows

no mixing out of the profile. This modelled partial pressure

of CO2 replaces the atmospheric CO2 concentration used in

the carbonate equations of the dissolution model and thus

changes the charge balance of Appendix Eq. (A11), influ-

encing the pH of the soil solution and solubilities of the rock

oxides.

2.2.3 Nutrient cycling

Nutrient concentrations in vegetation depend on a number

of factors such as the species of plant, the climate and the

nutrient status of the soil. As a simplification, it is assumed

in the model that the nutrients taken up, and hence those re-

entering the soil from plant litter and root turnover, try and

meet optimum stoichiometric ratios.

We use the optimum stoichiometric nutrients ratios cal-

culated by Linder (1995) for deciduous plants. For the fol-

lowing elements, N : P : K : Ca : Mg : Fe, these are 100 : 10 :

35 : 2.5 : 4 : 0.2. Nutrient concentrations are calculated as-

suming a fixed proportion of biomass is made up of nutrients

and a fixed relationship between NP and biomass production

(biomass is double the mass of carbon). In the case of the soil

not being able to supply enough of a nutrient to meet the op-

timum C : nutrient ratio, then the nutrient stoichiometry will

deviate from that above. The nutrients are released into solu-

tion at the soil surface (g m−2 yr−1) from the fine litter pool

and provide a flux surface boundary condition in the solute
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transport equation (Eq. A19). The nutrients from fine root

turnover are released into solution obeying the exponential

decline in root distribution with depth. Although obviously

not completely realistic, it has been observed that nutrients

are readily lost from litter in the earlier stages of decomposi-

tion (Berg and McClaugherty, 2008) and this method makes

it possible to readily incorporate the nutrients into the disso-

lution submodel.

Nutrients are then taken up from solution by the vegeta-

tion or leached from the system. Nutrient uptake from the

soil profile is passive and controlled by the rate of evapotran-

spiration from each soil layer, the concentration of ions in

solution in that layer and the rate of uptake required by the

vegetation i.e. the fraction of biomass production calculated

from NP. This process is represented by the second term in

an updated form of Eq. (A19):

∂ mi

∂t
= −F(z)

∂ci

∂z
−

∂Ec

∂z
cni(z) + Rni(z). (14)

where cn is the concentration of nutrient i in each layer

(g m−3). Total cni is calculated by integrating ∂Ec

∂z
cni succes-

sively over each soil layer until the required annual uptake

of nutrients is reached (i.e. when total uptake of nutrient i

equals the nutrient production calculated from biomass pro-

duction and hence turnover for the steady-state condition).

Rni is the concentration of nutrient i returned from fine root

turnover (g m−3 yr−1). When the nutrient uptake from a layer

is greater than cn ×1t , uptake is set to cn/1t . We know that

plants can interact directly with soil minerals for nutrients,

however, the main source of nutrients is likely the soil so-

lution (Lucas, 2001) and this simple mechanism of nutrient

uptake is employed for the first attempt at modelling long-

term, plant–soil interactions.

3 Model setup and simulations

3.1 Model solution and parameters

The model partial differential equations are solved numer-

ically by finite-difference schemes. The leaching and de-

nudation equations are solved by an upwind scheme (Mor-

ton and Mayers, 2005) and the diffusion equations by the

semi-implicit Crank–Nicholson scheme (Morton and May-

ers, 2005). The parameters used in the model runs described

in Sect. 3.2 are shown in Table 1. The values are selected as

being the most appropriate from the literature, they are not

constrained for one particular site.

3.2 Simulations demonstrating the model processes

To permit easier interpretation of our model predictions we

follow a hierarchial procedure. This involves first running the

model in it’s most basic form and adding an additional pro-

cess for each subsequent run. We can then get a clear sense

of how each of the important processes influences the mod-

elled soil properties and thus understand their importance in

soil evolution within this modelling framework.

In the following simulations the oxide composition of the

model bedrock is a basalt taken from the study of a Hawai-

ian soil chronosequence (Porder and Chadwick, 2009) (Ta-

ble 2, Kona flow). For the purpose of this study the model is

run first with only oxide weathering and leaching as the ac-

tive processes. Other processes are then added successively

in the order of surface erosion, bioturbation, organic carbon

decomposition and nutrient cycling. For these simulations

the profile is discretised into 10 cm deep layers and the total

number of layers is chosen so that the total profile depth is

greater than that reached by the weathering front during the

simulation. The model time step is 0.1 year. Unless stated

otherwise the model is run with the parameters in Table 1,

and a mean annual temperature and precipitation of 20 ◦C

and 1.7 m yr−1, respectively.

The developmental state of the modelled soil profile is

quantified as the proportion of each oxide remaining in the

soil layers relative to that of the parent material. Values lower

than one represent a relative loss from the profile compared

to the initial unaltered bedrock material and values greater

than one relative enrichment. A value equal to one indicates

zero mobility.

3.3 Model simulations and setup for Hawaii

chronosequence sites

To assess the ability of the model to reproduce real soil pro-

files we compare the model predictions with data from in situ

soil profiles from soil chronosequences. Due to the slow na-

ture of pedogenesis it is impossible to directly observe soil

changes over these very long timescales. Instead we make

use of chronosequences. These are series of soils which dif-

fer in the age of soil initiation but other factors of soil forma-

tion such as parent material, climate and topography remain

constant. It is thus assumed that any differences in soil prop-

erties are related only to the differences in the age of the soil

profile.

Hawaiian soil chronosequence data published by Porder

et al. (2007) and Porder and Chadwick (2009), are used for

comparison here. The soils have developed on volcanic lava

flows on the island of Hawaii, and thus have parent material

of relatively uniform composition (Table 2). Because of the

wide range in eruption ages, soils from the Hawaiian island

chain have been utilised in a number of studies looking at the

interactions between soil age, weathering and nutrients (Vi-

tousek et al., 1994; Vitousek and Farrington, 1997; Chadwick

et al., 1999; Hedin et al., 2003; Porder et al., 2007; Porder and

Chadwick, 2009). Porder et al. (2007) sampled soils on three

lava flows aged 10, 170 and 350 ka, each spanning a topo-

graphic gradient and resulting rainfall gradient. Mean annual

precipitation (PA) varies from 0.57 to 2.5 m yr−1, the high-

est rates of precipitation are found at the highest elevations.
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Table 1. Model parameters.

Parameter Value Unit Description Source

d
dx

(Kg) 2 yr−1 Hydraulic conductivity and gradient This study

F0 0.05 m yr−1 Rate of percolation into bedrock This study

DI 1 × 10−2 m2 yr−1 Diffusion coefficient for ionic diffusion Haynes and Lide (2011)

D 2 × 10−4 m2 yr−1 Diffusion coefficient for bioturbation Johnson et al. (2014)

zb 0.28 m e-folding length scale for biouturbation Johnson et al. (2014)

T 6 µm yr−1 Denudation rate Craig and Poreda (1986),

Kurz (1986),

Nishiizumi et al. (1990)

zr 0.26 m e-folding length scale for root distribution Jackson et al. (1996)

NP 1.0 kg m−2 yr−1 Net productivity of carbon Malhi et al. (2009)

kfine 1 yr−1 Decay coefficient of fine litter and roots This study

kcoarse 0.02 yr−1 Decay coefficient of coarse litter and roots This study

α1 0.21 – Proportion of NP allocated to fine roots Malhi et al. (2009)

α2 0.08 – Proportion of NP allocated to coarse roots Malhi et al. (2009)

α3 0.36 – Proportion of NP allocated to fine litter Malhi et al. (2009)

α4 0.36 – Proportion of NP allocated to coarse litter Malhi et al. (2009)

f NPl 0.62 % Percentage of fine leaf biomass production allocated to nutrients This study

f NPr 0.2 % Percentage of fine root biomass production allocated to nutrients This study

Rc 0.56 kg C m−2 yr−1 CO2 production from root respiration Malhi et al. (2009)

zk 0.26 m e-folding length scale for carbon decay coefficients This study

Dc 14.7 mm2 s−1 Diffusion coefficient for gaseous mixing Jones (1992)

ρbedrock 3.01 g cm−3 Bedrock density McBirney (2007)

Table 2. Composition (mass fraction (%)) of three laval flows taken from Porder and Chadwick (2009).

Flow SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 P2O5

Kona (10 ka) 45.5 9.0 13.3 7.4 18.7 1.4 0.2 1.6 0.1

Hawi (170 ka) 45.5 18.4 12.4 4.8 3.0 4.1 1.6 2.6 1.6

Pololu (350 ka) 47.4 14.4 13.7 10.0 6.9 2.7 0.9 3.2 0.5

Mean annual temperature (TA) increases from 16 ◦C at these

higher and wetter elevations to 24 ◦C at the lower altitudes.

Consequently the sites receiving the lowest rainfall have the

highest temperatures and are thus subject to the highest ET,

resulting in a negative water balance (Chadwick et al., 2003).

It is important to note that the rainfall gradient has not al-

ways been this strong during the evolution of the soil profiles,

this is a result of glacial periods and changes in the eleva-

tion of the trade wind inversion (Hotchkiss et al., 2000). The

sites at the wet, higher elevations may have received 50 %

less precipitation during most of their development, however,

the temperatures during these drier glacial periods were also

cooler, thus probably reducing the water lost from the profile

by evapotranspiration.

The model is compared with the driest and wettest sites

from each flow and an intermediate rainfall site. The follow-

ing model parameters are modified from those in Table 1 to

suit the Hawaiian sites. The monthly minimum and maxi-

mum and mean temperatures needed to calculate ET using

the Hargreaves equation are taken from the Western Regional

Climate Center (http://www.wrcc.dri.edu/). The site closest

to the Kona lava flows is used and the temperatures were ad-

justed to TA of 16, 20 and 24 ◦C for the low, medium and

wet rainfall sites, respectively. The estimated E∗
T calculated

for these sites is 1.20, 1.34 and 1.48 m yr−1, respectively. We

assign productivity values for each site by relating ET to pro-

ductivity using a water use efficiency (WUE) term. The WUE

of a plant is the unit of carbon fixed per unit of water tran-

spired. Assigning a WUE of 1 kg m−3 we estimate carbon

productivity (NP) values of 0.3, 0.53 and 0.48 kg m−2 yr−1

for each of the sites respectively, replicating the observed

trend for Hawaiian vegetation of increasing NP with PA up

to approximately 2 m yr−1, declining for further increases in

rainfall (Schuur and Matson, 2001; Austin, 2002). However,

we are aware that the mechanisms behind this relationship

are not the same. The decrease in the model productivity

is due to decreasing evapotranspiration associated with de-

creasing PA, whereas, the changes in the observations are

thought to be due to decreased N availability. The vertical

root depth scale (zr) is 0.26 m, the value estimated for tropical

evergreen forests (Jackson et al., 1996). The bedrock oxide

compositions used in the model runs are shown in Table 2.
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Figure 2. Vertical distributions of pH and the relative depletion/enrichment of the elemental model oxides after 20 kyr of soil development

for five different model runs of increasing complexity. Values < 1 indicate a loss relative to the parent material, and values > 1 indicate

relative accumulation.

The erosion rate is set to 10 m Myr−1 because even though

the soils sampled are not thought to have experienced high

rates of erosion (Porder et al., 2007), even stable soils often

experience erosion rates greater than 5 m Myr−1 (von Black-

enburg, 2005) and values in the range of 7.7 to 12 m Myr−1

were calculated for basalts on the lip of Hawaiian volcano

craters (Craig and Poreda, 1986; Kurz, 1986; Nishiizumi

et al., 1990). Townsend et al. (1995) found that the turnover

times of the intermediate carbon pool in Hawaii soils double

with a 10 ◦C decrease in TA. It is unclear whether this in-

crease in decomposition with increasing temperature follows

a linear or exponential trend but here we assume a simple

linear function of decomposition with mean annual tempera-

ture using the values observed by Townsend et al. (1995) to

calculate the decomposition rate (k) of the coarse roots and

coarse wood:

kcoarse = 0.0026.TA − 0.02. (15)

The decomposition rates (k) of the fast carbon pools remain

the same as in Table 1. The depth of the vertical model layers

is increased to 0.25 m to improve the numerical stability of

the simulations.

To determine the intensity of weathering of elements in

a soil profile, element concentrations are commonly com-

pared with those in unweathered bedrock and normalised to

an immobile element such as zirconium (Zr) to give the frac-

tion of the particular element remaining relative to bedrock

(Brimhall and Dietrich, 1987) (See the appendix for a de-

scription of this method). For these Hawaiian soils Porder

et al. (2007) used Niobium (Nb) as the immobile element.

This provides values which can be directly compared with

output from the model.

It is recognised that soils are complex systems and display

a great deal of heterogeneity across even very small spatial

scales. Nevertheless, we assume here that over these paedo-

genic timescales the soils sampled at each of these sites have

been subject to the same soil–vegetation interactions.

4 Results

4.1 Model behaviour

4.1.1 Dissolution and leaching

With chemical weathering and leaching as the only ac-

tive processes, we observe losses of the most soluble ox-

ides in only the top 20 cm of the soil profile (Fig. 2, first

column). The sequence of losses for the basic oxides is

MgO > Na2O > CaO ≫ K2O (Fig. 3) after 20 thousand years

of soil development. Of the non-basic oxides, we observe

some depletion of P2O5 and SiO2 but very minimal losses

of FeO and Al2O3 (Fig. 2, first column and Fig. 3). The solu-

bility of iron increases at lower pH values and Fig. 3 demon-

strates the much greater losses of Fe when all processes are
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Figure 3. Proportional mass loss of each model element relative to

the amount in the parent material and mean pH for the top 50 cm of

the soil profile after 20 kyrs of soil development for each of the

model simulations (WL = weathering and leaching, E = erosion,

B = bioturbation, C = organic carbon and N = nutrient cycling).

included in the model simulation and soil pH has lowered

from approximately 8 to 6. Al2O3 on the other hand displays

reduced losses in the full simulation and this is attributed

to aluminium being most soluble in either very alkaline or

acidic solutions. At this stage the model displays very early

signs of horizonisation, with a depleted top (or A) horizon

and a slightly enriched saprolite (or B) horizon. Enrichment

or deposition of the most soluble oxides at the bottom of

the weathering front occurs when saturated solution from the

layers above percolates into a bedrock layer with lower equi-

librium solute concentrations. As discussed in Sect. 5.1, this

weathering sequence of basic oxides is similar to those in

other studies.

The predictions based on chemical weathering and leach-

ing processes alone demonstrate (i) an expected weathering

sequence of oxide losses, (ii) very shallow soil profiles in the

absence of any physical weathering or biological activity and

(iii) evidence of horizonisation.

4.1.2 Surface erosion

The modelled process of surface erosion acts by shifting the

simulated soil properties towards the soil surface, whilst re-

moving those in the surface layers (Fig. 2, second column

and Fig. 4). Erosion plays a larger role in older, more de-

pleted soils. This is demonstrated when all processes are in-

cluded in the model simulations (Fig. 4). The more weath-

ered and depleted in original material the surface layer is, the

greater the reduction in surface elevation, with a shallower

profile then ensuing. Thus over long timescales surface ero-

sion becomes an increasingly important process in the soil

evolution model. If the rate of soil deepening becomes equiv-

alent to the rate of surface denudation, soil thickness natu-

rally reaches a steady state.
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Figure 4. Proportion of original parent material remaining after 10

and 20 kyrs of model simulation for 3 different rates of surface ero-

sion (T ).

4.1.3 Bioturbation

Parameterised here as a diffusion process, bioturbation

smoothes the oxide distributions in the surface layers (Fig. 2,

third column) allowing the upward mixing of oxides from

further down the profile. This action combined with that of

surface erosion results in retention of mineral oxides in the

surface layers (Fig. 3). Bioturbation acts to deepen the soil

by removing material from deeper in the profile and mixing

it into the upper layers. Bioturbation thus influences both the

composition of the soil layers and the rate of soil production

from bedrock.

4.1.4 Effect of vegetation

The addition of organic matter to the soil accelerates the

weathering of all but the most insoluble oxides (Fig. 2, col-

umn 4). When carbon biomass is absent from the model sim-

ulation, soil development progresses slowly, CO2 concentra-

tions are equal to atmospheric concentrations, and pH re-

mains above 7. When organic carbon is included in the model

simulations pH decreases from ∼ 8 in the surface layers to

∼ 6 after 20 thousand years of soil development (Fig. 2, col-

umn 4 and Fig. 3).

This decrease in pH and increase in leaching losses is a

result of the higher concentrations of soil CO2 (Fig. 5). CO2

concentrations increase with increasing soil depth, reaching

approximately 50 times atmospheric levels where pore space

is low (Fig. 5). For this simulation the flux of CO2 out of

the soil profile is within the ranges observed in studies of

Hawaiian tropical forest soils (Fig. 6).

The addition of nutrient cycling into the simulation results

in some retention of the oxides in the surface layers (Fig. 2,
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Figure 6. Modelled soil respiration rate after 20 kyr of soil devel-

opment (1) and ranges of measured soil respiration rates from the

following studies of Hawaiian tropical soils (2) Raich (1998), (3)

Townsend et al. (1995), and (4) Schuur and Matson (2001).

column 5), a trend also noted in the soil-nutrient studies of

Jobbágy and Jackson (2001); Lucas (2001) and Porder and

Chadwick (2009). However, in older or very wet soils the

effect of plants on nutrient retention may be diminished due

to the overriding effect of leaching losses as found by Porder

and Chadwick (2009). In the model the return of basic ions

in solution from litter decomposition alters the equilibrium

status of the solution and slows the rate of dissolution.

4.2 Comparison of model predictions with observations

Figure 7 illustrates the performance of the model for the three

different rates of annual precipitation on the young 10 ka lava

flow for a selection of elements. The simulations of Ca and

Na in the model are most realistic, followed by Mg, and then

K and P. The model captures the slower rate of weathering

losses in the driest site and higher rates in the intermediate

and high rainfall sites. Mg, Ca and Na display very similar

distributions of depletion in these Hawaiian soils, whereas

the relative vertical distribution of Mg depletion differs from

that of Ca and Na in the model. Modelled Mg weathers to

deeper depths than those observed in the intermediate rain-

fall sites (where model NP is highest), also weathering deeper

than the other model elements. Modelled K is particularly

resistant to weathering compared with the observations and

modelled P is even more immobile. however, the observa-

tions also exhibit little depletion of P in these young profiles.

For the 170 ka Hawi flow, both the Hawaiian and modelled

soils have weathered much deeper in the intermediate and

high rainfal sites compared with the younger 10 ka flow. The

model captures the lower losses in the dry site relative to the

wetter sites but doesn’t replicate the more enriched surface

layers (Fig. 9). The modelled Na and Ca profiles again match

the observations most closely, reproducing the nearly totally

depleted profiles at the wetter sites and even matching the

depth of weathering. The depth of the Mg weathering front,

however, is still too deep and the modelled K and P profiles

indicate that the modelled processes are still too resistent to

weathering for these elements. It should be noted that Porder

et al. (2007) estimate that additions of dust to the Hawi flow

averages 30 % of the total mass lost from the profiles and

most of this dust is found in the top 30 cm which may obscure

some of the weathering signal in these soils.

The 350 ka Pololu flow differs from the 10 and 170 ka flow

by being underlain by a pahoehoe flow at 1.8 m. Pahoehoe

flows are characterized by smooth, glassy surfaces and are

less porous than the overlying, blocky lava flows. They there-

fore act as a barrier to weathering in these soils.

Biogeosciences, 11, 6873–6894, 2014 www.biogeosciences.net/11/6873/2014/



M. O. Johnson et al: Insights into biogeochemical cycling from a soil evolution model 6883

0 0.5 1
1.5

1

0.5

0
MgO (640 mm/yr)

0 0.5 1
1.5

1

0.5

0
CaO (640 mm/yr)

Model
Obs

0 0.5 1
1.5

1

0.5

0
K2O (640 mm/yr)

0 0.5 1
1.5

1

0.5

0
Na2O (640 mm/yr)

0 2 4
1.5

1

0.5

0
P2O5 (640 mm/yr)

0 0.5 1
1.5

1

0.5

0
D
ep
th
(m

)
MgO (1700 mm/yr)

0 0.5 1
1.5

1

0.5

0
CaO (1700 mm/yr)

0 0.5 1
1.5

1

0.5

0
K2O (1700 mm/yr)

0 0.5 1
1.5

1

0.5

0
Na2O (1700 mm/yr)

0 1 2
1.5

1

0.5

0
P2O5 (1700 mm/yr)

0 0.5 1
1.5

1

0.5

0
MgO (2400 mm/yr)

0 0.5 1
1.5

1

0.5

0
CaO (2400 mm/yr)

0 0.5 1
1.5

1

0.5

0
K2O (2400 mm/yr)

Proportion remaining (-)
0 0.5 1

1.5

1

0.5

0
Na2O (2400 mm/yr)

0 1 2
1.5

1

0.5

0
P2O5 (2400 mm/yr)

Increasing
MAPPA

Figure 7. Observed vs. simulated oxide losses/gains across a mean annual precipitation gradient (PA) on the 10ka Kona lava flow. Values

< 1 indicate a loss relative to the parent material, and values > 1 indicate relative accumulation.
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Figure 8. Observed vs. simulated K for the 10 ka Kona flow for 3 different simulations of increased K solubility.

By comparing the profiles of K with Na Porder and Chad-

wick (2009) show that even at this age, plants in the dry flow

are still enriching the surface layers with nutrients but in the

intermediate and high rainfall sites, leaching losses override

any nutrient retention and the surface layers are depleted in

nutrients. Figure 10 shows that for the dry site the model dis-

plays general agreement with weathering depths and again

Na shows the closest match to the observations followed by

Ca and Mg with K and P still too immobile at this age. The

slow rate of chemical weathering of these two elements in

the model also means that any depleted signal in the surface

layers will also be removed by surface erosion. For the inter-

mediate and wet rainfall sites the model captures the surface

losses of Na, Ca and Mg. K is still too resistant in the inter-

mediate site but agrees better at the wettest site. For this older

soil, modelled P shows some signs of depletion but is still

much more resistant than the observed profiles. The mod-

elled profiles extend to nearly 5 m for the two wetter sites

whereas the observed profiles reach a maximum of 1.8 m be-

cause of the impermeable pahoehoe layer at this depth.

Figure 11 shows the comparisons between the observa-

tions and modelled pH profiles. Modelled pH agrees best
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Figure 9. Observed vs. simulated oxide losses/gains across a mean annual precipitation gradient (PA) on the 170 ka Hawi lava flow. Values

< 1 indicate a loss relative to the parent material, and values > 1 indicate relative accumulation.

with observations in the driest sites and for the intermediate

aged, Hawi flow. Simulated pH is generally too high in the

wetter sites which could be because modelled Al2O3 is very

insoluble (Fig. 2) so Al3+ ions in solution may be lower.

5 Discussion

5.1 Model processes

For the most elementary setup of the model, where weather-

ing and leaching are the only processes included, the weath-

ering sequence of basic oxides displays similar weathering

sequences to other studies. For example Busacca and Singer

(1989) observe a mobility sequence of Mg ≫ Na > Ca > K

from alluvium deposits in California and White et al. (2008)

observe a weathering sequence of Mg > Ca > Na > K in ma-

rine terraces also in California. For the three basic oxides

found in the feldspar family of minerals, CaO, Na2O and

K2O, the modelled sequence of losses follow an expected

trend associated with the lower solubility of K-feldspar (or

orthoclase) compared to plagioclase which incorporates the

endmembers anorthite and albite (Nesbitt and Young, 1984;

White et al., 2001, 2008). Importantly, White et al. (2008)

calculate that the pore waters of their chronosequence rapidly

reach feldspar thermodynamic saturation and so the weather-

ing velocity of Ca, Na and K is controlled by this thermo-

dynamic state, the rate of which is determined by the flux of

water, this being the weathering mechanism of our model.

White et al. (2008) also found that the weathering of plagio-

clase is non-stoichiometric, i.e. there is selective removal of

Ca over Na from plagioclase in their marine terraces. Thus

the solubility of the oxides act independently, indicating that

so far the dissolution and leaching of mineral oxides in this

model is conceptually realistic.

Even though the current model does not predict secondary

mineral formation, it is still possible to predict the secondary

minerals likely to be present through an understanding of the

sequence of minerals formed across gradients of weathering

intensities. The modelled weathering sequence thus predicts

the commonly predicted weathering pathway of a shift from

predominantly silicate minerals such as the Mg, Ca and K

feldspar family to the secondary Fe and Si containing clays

such as vermiculite and montmorillonite, through to the Al

and Si containing clay mineral kaolinite present in weath-

ered soils. Eventually, in very weathered soils Al sesquiox-

ides such as gibbsite dominate (Tardy et al., 1973).

In these poorly developed profiles, soil erosion in the

model acts by effectively replenishing the surface layer with

unweathered oxides from below. This action contributes

to long-term biogeochemical and carbon cycles, for ex-

ample, as we have demonstrated, increased rates of ero-

sion exposes previously shielded minerals to weathering

agents, enhancing chemical weathering fluxes (Millot et al.,

2002; Riebe et al., 2001; Gaillardet et al., 1999). These
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Figure 10. Observed vs. simulated oxide losses/gains across a mean annual precipitation gradient (PA) on the 350 ka Pololu lava flow.

Values < 1 indicate a loss relative to the parent material, and values > 1 indicate relative accumulation. The grey box shows the location of

the pahoehoe flow.

interactions between erosion and chemical weathering have

been proposed to explain periods of cooling in Earth’s history

(Raymo and Ruddiman, 1992; Raymo et al., 1988). To fully

explore such relationships Goddéris and Donnadieu (2009)

emphasis the need for a model which can track the growth

of soil profiles while also being coupled to vegetation and

climate. The chemical weathering and erosion that we have

presented so far demonstrates that this model can provide a

platform for exploring some of these theories. However, we

acknowledge that erosion rates and hydrology will need to

be implemented in a more mechanistic manner. Tectonic up-

lift, another process important over these timescales can be

formulated in the model in a similar manner to the current

erosion formulation.

Like erosion, bioturbation also results in greater retention

of unweathered minerals in the surface layers and alters soil

chemical and physical properties. We have shown that bio-

turbation can work to alter soil profiles at a depth greater

than that reached by chemical weathering alone, greatly en-

hancing pedogenesis, consistent with other studies (Wilkin-

son and Humphreys, 2005).

The step-wise approach of including processes in the

model framework has demonstrated the large influence that

vegetation has on the weathering rate and subsequent devel-

opment of the soil profile. The modelled vegetation affects

the soil profile via three processes: by altering the vertical

distribution of evapotranspiration from the soil profile, by

increasing soil acidity through the production of CO2 from

root respiration and litter decomposition, and through the cy-

cling and retention of nutrients. Of these three processes, the

impact of CO2 production on solution pH plays the largest

role in our model. This work did not explore the response

of soil solution pH to the pH of percolating rainwater or

the increased acidity resulting from leaching losses, however,

we believe that the influence of vegetation on weathering is

much greater than these components. The model agrees with

both field and laboratory studies exploring the effect of vas-

cular and non-vascular plants on enhanced silicate mineral

weathering rates (Moulton et al., 2000; Lenton et al., 2012).

The enhanced rates of Ca and Mg weathering in the presence

of vegetation supports the theory that the rise of non-vascular

and then vascular plants on Earth may explain abrupt drops

in atmospheric CO2 concentrations and temperatures in the

long-term records (Lenton et al., 2012; Berner, 1997). Our

ability to quantify the weathering and leaching of Mg and

Ca ions suggests that this model can provide a means of iso-

lating the contribution of vegetation to weathering which is

difficult to achieve in the field.
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5.2 Evaluating the model with Hawaiian

chronosequences

The comparison of simulated to observed elemental weath-

ering profiles has highlighted the poor ability of the model

to capture the depletion of phosphorus and potassium from

the profiles. These are both important plant nutrients and

required by plants in larger amounts than Ca and Mg and

are thus strongly cycled (Jobbágy and Jackson, 2001). The

model results for K may therefore highlight the importance

of the active role of plants, mycorrhiza and faunal commu-

nities in mediating the release of this poorly mobile nutri-

ent from minerals (Hutchens, 2009). The uptake of nutrients

in the model is controlled by the rate of evapotranspiration

and concentrations of the nutrient in the soil solution, how-

ever, there are a number of other mechanisms by which plants

can acquire nutrients (Hinsinger et al., 2009). For example,

roots can actively induce the release of non-exchangeable K

from phyllosilicates by secreting H+ to exchange with K.

By actively taking up K from solution plants can also shift

the solution equilibrium thus promoting further dissolution

(Hinsinger et al., 1993; Hinsinger and Jaillard, 1993). By al-

tering the solubility of K in our model, we show that the miss-

ing process accelerates the weathering of K from minerals by

a factor of approximately 50 (Fig. 8).

The 10 ka flow is characterised by surface layers enriched

in P and low amounts of P depletion in the deeper layers of

the intermediate and wet sites. For the driest site (Porder and

Chadwick, 2009) argue that the soils must receive additional

P from exogenous sources. If the observed surface enrich-

ment of P was due to cycling of the nutrient we would expect

this surface enrichment to be balanced by depletion deeper in

the profile, which is not observed. Dust can be a significant

source of P to Hawaiian soils (Chadwick et al., 1999), but for

these young flows Porder and Chadwick (2009) suggest that

the addition of fine organic matter from nearby surroundings

may explain the additions. Without these external sources of

P, the relative immobility of modelled P may well be repre-

sentative of these young soils. Also in the Hawaiian soils P

losses are correlated with Fe losses in the old and wet sites.

Fe can bind with P and may drive the losses in these lower

oxygen, reducing soils (Porder and Chadwick, 2009), a pro-

cess not represented in this model.

These comparisons show that for all profiles modelled

plant nutrients P and K are not in agreement with the ob-

servations. That Na, which is not an essential plant nutrient,

shows the best match, followed by Ca, which is a plant nu-

trient but is thought to be taken up in amounts equivalent

to availability and depends on water flow to the vegetation

(Knecht and Goransson, 2004), suggests that it is the pro-

cess of nutrient uptake which the model is not reproducing

realistically. The good agreement with Na, particulary in the

intermediate rainfall sites where plants play an important role

in nutrient distributions suggests a good model understand-

ing of the other soil processes included in the model and thus
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Figure 11. Observed vs. simulated pH for 3 sites on each of the lava

flows.

that the model is a reliable tool for further developing our

understanding of nutrient dynamics.

5.3 Limitations

We acknowledge that there are limitations and important pe-

dogenic processes missing from the model. For example: (i)

the model does not predict secondary mineral formation or

size fractions so features such as cation adsorption and soil

structure associated with these properties are overlooked, (ii)

porosity is very simple, and pores are assumed to be free

draining and connected, which for tropical soils may be ac-

ceptable (Sander, 2002), (iii) the formulation of hydraulic

processes is very simple and should ideally be better con-

strained and (iv) organic matter only interacts with the soil

through the action of increasing acidity so again missing out

associated cation exchange and structural properties. How-

ever, many of these missing processes can be included in the

model framework with relative ease once the method and

relevant parameters are derived. For example, to best pre-

dict secondary mineral mineralogy the model could in fu-

ture utilise a more complex chemical reaction module, for

example by coupling with the PHREEQC geochemical pro-

gramme (Parkhurst and Appelo, 1999).

Perhaps for this current study the largest limitation is that

vegetation is prescribed in the model and productivity does

not evolve with pedogenesis or nutrient availability. For this

first attempt at pedogenesis modelling we prefer to keep the

vegetation simple so that we can clearly identify how the

vegetation may influence soil processes and development.
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Introducing vegetation that responds to nutrient availability

will require a more sophisticated vegetation module that is

beyond the scope of this pedogenesis study. Instead, in the

future this soil model may be coupled to an existing dynamic

vegetation model.

6 Conclusions

This study has demonstrated that the soil evolution model

presented is capable of reproducing realistic soil properties

such as relative elemental losses, weathering depths, pH pro-

files, organic carbon content and soil-pore CO2 concentra-

tions. The model requires 20 parameters, of which at least

13 are easily assigned from literature, plus regional climate,

bedrock data and simple thermodynamic constants to sim-

ulate soil genesis on a chosen parent material. The limited

number of processes and the ease at which they can be both

included and excluded from simulations makes the model be-

haviour easy to understand. This study has detailed how each

of these model processes interacts with and influences the

soil properties.

Comparisons of the model predictions with a Hawaiian

soil chronosequences has highlighted the importance of veg-

etation in shaping soil profile evolution by increasing soil

acidity and cycling nutrients. The good model agreement

with the observations of Na, Mg and Ca which are less

strongly cycled by vegetation, suggests that the model is real-

istically reproducing the other processes unrelated to nutrient

cycling. These results lend confidence to the model’s ability

to quantify processes and feedbacks occurring during pedo-

genesis and to the valuable role it can play in understanding

long-term biogeochemical cycles.
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Appendix A

A1 Dissolution reactions

The Law of mass action states that the rate of a reaction is

proportional to the product of the active masses of reactants

and at equilibrium the rate of the forward reaction is equal to

the rate of the backward reaction:

bB + cC ⇋ dD + eE. (A1)

Equation (A1) represents the reaction between b moles of B

with c moles of C in equilibrium with d moles of D and e

moles of E. The equilibrium constant K of the reaction is

related to the above by

K =
aDdaEe

aBbaCc
, (A2)

where a is the activity of each reactant and product. This

thermodynamic equilibrium constant is related to the Gibbs

free energy of the reaction (1Gr) by

1Gr = −RT lnK, (A3)

where R is the universal gas constant (J mol−1 K−1), T is

temperature (K) and

1Gr = 61Gf products − 61Gf reactants, (A4)

where 1Gf is the Gibbs free energy change of formation,

which is the change in Gibbs free energy that accompa-

nies the formation of 1 mol of a substance in its standard

state from its constituent elements in their standard states. To

calculate the equilibrium composition at temperatures other

than 20 ◦C, the Gibbs-Helmholtz equation can be used.

The following is an example of the simplified dissolution

reaction for SiO2 in water and the procedure of how this is

calculated in the model:

SiO2 + 2H2O⇌H4SiO4 1Gr = 5.47 (A5)

SiO2 + 2H2O⇌H3SiO−
4 + H+ 1Gr = 18.71 (A6)

1Gr =−1.364 log K, therefore

−
5.47

1.364
= log

[H4SiO4]

[SiO2][H2O]2
. (A7)

The activity of H2O is unity, so

− 4.01 = log[H4SiO4] − log[SiO2] (A8)

[H4SiO4] = [SiO2] × 10−4.01, (A9)

and for [H3SiO4] the equivalent equation is reduced to

[H3SiO−
4 ] =

[SiO2] × 10−13.72

[H+]
. (A10)

Similar reactions occur for the other oxides present in the

parent material. Table A1 shows the Gibbs free energy of

Figure A1. Schematic overview of solute mass balance where F is

the rate of percolation (myr−1) at depth z and c is the concentration

of ion i in solution (gm−3). Adapted from Kirkby (1985).

formation for the oxides used in the model reactions. The

concentration of H+ in solution can be calculated by balanc-

ing the charge of the solution. Many of the anions present in

a soil solution result from the reactions with dissolved CO2.

These anions are calculated using the partial pressure of CO2

in the soil air and also described in Kirkby (1977). The domi-

nant anions in the soil water are [HCO−
3 ], [OH−] and [CO2−

3 ]

and the relevant charge balance equation for our modelled

soil solution is thus

[H+
] + [Al(OH)+2 ] + 3[Al3+

] + [Na+
] + [K+

] (A11)

+ 2[Ca2+
] + 2[Mg2+

] + 3[Fe3+
] + 2[Fe2+

]

= [HCO−
3 ] + [OH−

] + 2[CO2−
3 ] + [Al(OH)−4 ]

+ [H3SiO−
4 ] + 2[HPO2−

4 ].

There is more than one root to this equation so a bisection

method is used to solve for [H+]. This method involves set-

ting an upper and lower bound for [H+] i.e. 10−1 and 10−14.

The calculated [H+] is used in the dissolution reactions of the

next time step. In the initial model time step, [H+] is equal

to the concentration in rainwater.

The original concentration of the oxide in the parent rock

is calculated by

Mi = wt% × ρ, (A12)

where Mi is the concentration of oxide i (g m−3), wt % is

the original mass fraction of oxide i in the parent rock and

ρ is the density of the parent rock (g m−3) . At each time

step in the model, the suite of model equations calculates the

proportion of the original oxide remaining in each soil layer.

This value is used to calculate the new mole fraction of the

oxide in the rock. For the model simulations in this study it is
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Table A1. Oxide composition of a basalt and 1Gf values for the

rock oxides.

Oxide Mass fraction (%) 1Gf (Kcal mol−1)

SiO2 45.5 −204.66a

Al2O3 9.0 −378.18a

Fe2O3 1.3 −177.85b

MgO 18.7 −142.52a

CaO 7.4 −144.19a

Na2O 1.4 −89.74a

K2O 0.2 −76.76c

TiO2 1.6 −212.43a

FeO 12.0 −58.68b

P2O5 0.1 −644.80d

a Haynes and Lide (2011), b Lindsay (1979), c Kirkby (1977), d

Chen and Wang (1996).

assumed that solutions are ideal; thus mole fraction is equal

to activity. This activity value is used to calculate the new ion

concentration at thermodynamic equilibrium using the above

procedure.

The model assumes that the behaviour of the elemental

oxides depends only on their relative composition in the

bedrock. However, these oxides are not usually present on

their own, but are instead constituents of more complex sil-

icate minerals. This will alter the solubility of the individ-

ual oxides and to account for this Kirkby (1977) proposed a

correction term for the Gibbs free energy change of forma-

tion (1Gf) of each oxide. This correction term is determined

by calculating the difference between the Gibbs free energy

change of formation of the silicate minerals and the sum of

the free energies of their constituent oxides. This difference

is the formational free energy for the compound and is shared

between the oxides to give the effective Gibbs free energy

change of formation (1G′
f). In this study a set of likely min-

erals is calculated from the weight percent of oxides in the

parent rock and these are then used to find the correction fac-

tor. In order to determine the mineral assemblage of a rock

from bulk chemical analysis a mineral norm is calculated.

The norm is a set of idealised minerals that are calculated

from the known composition of oxides in a rock. The method

of calculating the minerals likely present is detailed below.

A2 Mineralogy and Gibbs correction factors

To calculate the likely minerals present in the parent mate-

rial from the bulk chemical analyses of the rock, the CIPW

(Cross, Idings, Pirsson and Washington) norm scheme is

used. The CIPW method follows that of Hughes (1982).

This method proceeds by expressing the oxides as molecu-

lar amounts and allocating the oxides to minerals in a step

by step procedure. For example, all P2O5 is used to make

the mineral apatite which requires three times the amount of

CaO, all TiO2 is used to produce ilmenite using an equiv-

Table A2. CIPW normative mineral assemblage of basalt

Mineral Formula Mass 1Gf

fraction

(%) (Kcal mol−1)a

Quartz SiO2 0 −204.66

Corundum Al2O3 0 −378.18

Anorthite CaAl2Si2O8 18.18 −960.68

Diopside MgCaSi2O6 15.25 −724.62

Hypersthene MgSiO3 12.94 −349.41

(enstatite)

FeSiO3 5.07 −257.60

(ferrosilite)

Albite NaAlSi3O8 12.18 −887.41

Orthoclase KAlSi3O8 1.21 −894.71

Olivine Mg2SiO4 22.93 −491.30

(forsterite)

Fe2SiO4 6.83 −329.31

(fayalite)

Nepheline NaAlSiO4 0 −477.24

Leucite KAlSi2O6 0 −687.62

Apatite Ca10(PO4)6F 0.22 −3094.73

Ilmenite FeTiO3 3.12 −

Magnetite Fe3O4 1.98 −243.47

Hematite Fe2O3 0 −177.85

a Lindsay (1979).

alent amount of FeO, next all of K2O is used to make or-

thoclase and all Na2O is used to make albite unless there is

not enough Al2O3, in which case the excess Na2O is used

to make acmite. The method continues in this nature until

all oxides are allocated to minerals. Some of the allocations

are then revised depending upon the saturation or undersat-

uration of silica. FeO and Fe2O3 are summed to give a total

value for Fe and then a ratio of 0.1 Fe3+/total Fe is applied.

This is because anomalously high Fe2O3 contents can be

recorded if the rock has undergone post-crystallisation oxida-

tion (Hughes, 1982, pg. 97). The normative mineral assem-

blages obtained from the oxide compositions of Table A1 are

shown in Table A2. This mineralogic configuration implies

that the basalt is an alkali basalt where silica is undersatu-

rated and nepheline is present. The correction factor for the

1Gf for each oxide, λ, is found by comparing the free en-

ergies of these minerals with those of the constituent oxides

and using the proportions of these minerals present in the par-

ent material to find the mean λ for each oxide. For the model

simulations of this study TiO2 is assumed to be insoluble.

A3 Hargreaves equation

PET = 0.0023 × Ra × (Tmean + 17.8) × TD0.5, (A13)

where PET is in units of mm month−1. Tmean is the monthly

mean temperature (◦C), TD is the difference between the av-

erage monthly maximum and minimum temperatures (◦C),

Ra is the incoming extraterrestrial radiation (mm day−1), this
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is calculated for the 15th day of the month. The monthly

value is calculated by multiplying this daily value by the

number of days in the month. Equation (A14) estimates the

extraterrestrial radiation using only latitude (φ) and the julian

day (J ) (Kouwen, 2010).

Ra = 15.392 × dr (ws × sinφ × sinδ (A14)

+cosφ × cosδ × sinws) ,

where dr is the relative distance between the earth and the

sun, given by

dr = 1 + 0.033 × cos

(

2πJ

365

)

, (A15)

δ is the solar declination (radians) defined by

δ = 0.4093 × sin

(

2πJ

365
− 1.405

)

, (A16)

and ws is the sunset hour angle (radians) given by

ws = arccos(− tanφ × tanδ). (A17)

A4 Leaching

See Fig. A1 for a schematic of the leaching formulation. The

amount of solute carried into a soil volume at depth z by

percolating water is F(z)ci , where ci (g m−3) is the concen-

tration of ion i in solution. The amount of solute lost from

the volume element by diversion due to sub-surface flow

is δF (z)ci and due to percolation outflow (F (z) + δF (z))

(ci + δci), thus

−δmiδz = [−(δF )ci −Fci +(F +δF )(ci +δci)]δt, (A18)

where mi is the mass change of oxide i at depth z during time

δt . Neglecting second order terms this reduces to

∂ mi

∂t
= −F(z)

∂ci

∂z
. (A19)

The proportion, pi , of oxide i remaining is then calculated

from the original bedrock density and the loss of mass from

leaching

pt+1
i = pt

i −
mi

mi(t = 0)
, (A20)

where mi(t = 0) is the mass of element i in the original par-

ent material (ρbedrock × wt% of i).

A5 Ionic diffusion

∂ci

∂t
=

∂

∂z

(

DI (z)
∂ci

∂z

)

(A21)

where DI is the diffusion coefficient of the ions which for

current purposes we keep fixed for all elements.

A6 Bioturbation

∂pi

∂t
=

∂

∂z

(

D(z)
∂pi

∂z

)

(A22)

where pi is the proportion of element i remaining in the

profile at depth z and D (m2 yr−1) is the diffusion coeffi-

cient. It is assumed that the mixing intensity will decline

with depth due to the decrease in faunal activity with increas-

ing soil depth (Humphreys and Field, 1998; Wilkinson and

Humphreys, 2005; Johnson et al., 2014). In the model this

takes the form of an exponential relationship:

D(z) = D(0)exp−z/zb , (A23)

where D(0) is the diffusion coefficient at the soil surface and

zb is the e-folding length scale for biological activity (m).

The boundary conditions at the top and bottom of the profile

allow no mixing in or out so that

∂pi

∂z
= 0, (A24)

at z = 0 and z = zmax, where zmax is the total number of

vertical layers in the model.

A7 Surface erosion

Erosion in the model acts by lowering the surface elevation.

This lowering process shifts soil properties (or proportion of

substance remaining, p) up the soil profile and thus

p(z − δz, t + δt) = p(z, t), (A25)

and

∂p

∂z
(−δz) +

∂p

∂t
δt = 0. (A26)

A8 Calculating chemical weathering intensity

To quantify element losses due to chemical weathering only,

mass balance techniques can be applied to soil profiles (April

et al., 1986; Riebe et al., 2004a, b). When soluble ele-

ments leave soil profiles the immobile elements become en-

riched compared to their concentrations in the parent mate-

rial. Therefore measurements of immobile element enrich-

ment in soil profiles can be exploited to reveal the extent of

chemical weathering losses of other elements in the profile

(e.g. Taylor and Blum, 1995).

To calculate the depletion or accumulation of an element

relative to its concentration in the bedrock the soil/rock ratios

of the element are normalised with those of a known inert el-

ement such as Zirconium (Zr) or Titanium (Ti) (Brimhall and

Dietrich, 1987). This ensures that the differences in element

concentrations between bedrock and soil is due to chemical

weathering only and not because of changes in the soil bulk

density or due to losses of other elements.
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The weathering intensity of elements in the Hawaiian soils

are calculated by normalising them relative to Nb:

τi =
Ciw · Nbp

Cip · Nbw
, (A27)

where τ is the mass transfer coefficient of element i

(Brimhall and Dietrich, 1987), “p” stands for the protolith

or parent material, “w” is the weathered material or soil and

C is the concentration of element i. τi = 1 indicates that the

element is enriched at the same ratio as Nb and is therefore

immobile, τi = 0 indicates complete depletion of element i

and τi >1 represents relative enrichment of element i.
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