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We present active-state structures of the G protein-coupled
receptor (GPCRs) rhodopsin carrying the disease-causing mutation
G90D. Mutations of G90 cause either retinitis pigmentosa
(RP) or congenital stationary night blindness (CSNB), a milder,
non-progressive form of RP. Our analysis shows that the CSNB-
causing G90D mutation introduces a salt bridge with K296. The
mutant thus interferes with the E113Q-K296 activation switch
and the covalent binding of the inverse agonist 11-cis-retinal, two
interactions that are crucial for the deactivation of rhodopsin.
Other mutations, including G90V causing RP, cannot promote
similar interactions. We discuss our findings in context of a model
in which CSNB is caused by constitutive activation of the visual
signalling cascade.
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INTRODUCTION
G protein-coupled receptors (GPCRs) are the largest family of
signalling proteins in the human genome. Defective signalling
of GPCR mutants causes many hereditary human diseases. The
dim-light photoreceptor rhodopsin found in retina rod cells is no
exception, with about 140 mutations known to cause retinitis
pigmentosa (RP), a blinding retinal degeneration affecting 1 in
4,000 persons. Patients characteristically suffer from congenital
night blindness and progressive loss of day vision. Virtually all
patients lose central vision by the age of 50–80 years. Four

mutations in rhodopsin are known to cause congenital stationary
night blindness (CSNB) and rod dysfunction similar to the early
stages of RP, but without progressive impairment of day vision
(supplementary Fig S1 online). Elucidation of the molecular
disease mechanisms of these mutations can provide important
information about the causes of RP progression and pave the way
for novel therapeutic approaches. Of all the rhodopsin mutations
causing visual impairments, G90D affects the only position in
rhodopsin where mutations can cause either RP [1] or CSNB [2].
The effects of G90D mutation have been carefully characterized
in vitro [2–4], as well as in human patients [5] and animal models
of the disease [6–8]. In contrast to most RP-causing mutations [9],
the G90D rhodopsin does not seem to have folding defects, but
causes constant basal activation of the visual system resulting in
rod desensitization. Here we report crystal structures of
constitutively activated G90D rhodopsin. In combination with a
biochemical analysis of its desensitization capabilities, our
structural analysis provides new insights into the molecular
causes of heritable blindness.

RESULTS AND DISCUSSION
The G90D mutation introduces a stabilizing salt bridge
We attempted to crystallize several rhodopsin forms, including
opsin, dark-state and light-activated G90D in the presence or
absence of the GaCT2 peptide [10] that specifically binds the
active metarhodopsin-II conformation [11]. We obtained crystals
of G90D opsin, light-activated G90D and G90D-GaCT2, which
diffracted to 3.9, 3.3 and 2.9 Å, respectively (supplementary Table
S1 online). No crystals of the G90D dark state could be grown.
The presence of retinal and the GaCT2 peptide both increased
diffraction quality, consistent with their ability to bind and
stabilize an active conformation of the receptor. Overall, the
structures are similar to those of metarhodopsin-II obtained by
light activation of constitutively active rhodopsin [12] or soaking
of opsin with all-trans-retinal [10] (Fig 1; supplementary Table S2
online). While the low resolution obtained for G90D opsin does
not allow accurate refinement of an atomic model, no obvious
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alterations of the protein backbone could be detected. Similarly,
presence or absence of the GaCT2 peptide did not alter the overall
receptor structure. Although we lack the structure of dark-state
G90D rhodopsin, the structural data we have, thus far, imply
that the impact of the G90D mutation is limited to the
ligand-binding pocket.

The rhodopsin ligand is a photoactivateable 11-cis-retinal
covalently attached by means of a protonated Schiff base (SB)
bond to K296 in the rhodopsin dark state. On absorption of a
photon, 11-cis-retinal isomerizes to all-trans-retinal leading to
formation of metarhodopsin-II, which activates the visual G
protein transducin (Gt). Signalling by the active receptor is
quenched via phosphorylation of its C terminus by G protein-
coupled receptor kinase 1 (GRK1). Phosphorylation enhances the
binding of arrestin-1, resulting in uncoupling of the receptor from
Gt. To reset rhodopsin back to its dark state, the SB between K296
and all-trans-retinal is hydrolysed, arrestin-1 dissociates and the
apoprotein opsin is regenerated with 11-cis-retinal. The G90D
mutation interferes with this cycle by introducing a charged side
chain close to the site of retinal attachment. Indeed, during
purification of the 11-cis-retinal-regenerated dark state, we
observed a shift of the absorption peak to 482 nm resulting from
perturbation of SB protonation [2,3]. The 482 nm/280 nm ratio of

the purified protein was 2.0–2.2, indicating a mixture of opsin
and rhodopsin. These results are consistent with inhibition of
11-cis-retinal binding by the G90D mutation [13] and a higher
hydroxylamine accessibility of the retinal SB in the G90D dark
state [3,4]. This heterogeneity likely prevented us from obtaining
crystals of the G90D dark state.

To further characterize the impact of the G90D mutation on
rhodopsin integrity, we compared the stability of the mutant with
the wild type (Fig 2) in presence or absence of retinal. Incubation
with all-trans-retinal does not change the stability of the wild type
significantly, as it does not bind opsin efficiently. In contrast,
reconstitution of the dark state with 11-cis-retinal, increased the
stability of the wild type by 11 1C. The stability at 63 1C for the
reconstituted dark state (opsin plus 11-cis-retinal) is in good
agreement with values obtained by UV/VIS spectroscopy [14].
Remarkably, the stability of G90D opsin was 8 1C higher
compared with that of wild-type opsin. In contrast to the wild
type, incubation of G90D opsin with retinal isomers had only an
insignificant effect on stability, either because binding of both
11-cis and all-trans-retinal was inhibited or due to lower stability
of the mutant dark state.

Even though binding of retinal to G90D rhodopsin was
impaired, electron density in the ligand-binding pocket of the
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Fig 1 | Comparison of the G90D-GaCT2 and G90D structures with metarhodopsin-II [12]. All-trans (yellow) and cis-retinal isomers (orange), the site of

retinal attachment K296 (blue slate), the retinal counterion E113 (blue slate), GaCT peptides (cyan) and the constitutively activating mutations G90D and

M257Y (green) are shown as spheres. The inset shows a closer view of the side chains that contribute to the retinal-binding pocket (within 4 Å of the

retinalþ the counterion E113) shown as sticks. Formation of a salt bridge (red dotted lines) between G90D (green) and K296 together with electrostatic

interference with the E113 disfavours covalent binding of retinal resulting in a mixed retinal population, illustrated here as 13-cis and 9–13-di-cis-retinal.
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mutant incubated with retinal showed that some retinal was
retained during crystallization (Fig 3). Crystallographic refinement
with different retinal isomers indicated a heterogeneous,
non-covalently bound population that we attribute to a mixture
of cis isomers. One reason for this heterogeneity is the close
proximity of the introduced G90D side chain to E113, with 3.6 Å
separating the two carboxyl groups. Residue E113 is critical for
retinal binding, because it provides the counterion that is involved
in maintenance and hydrolysis of the retinal SB, depending on the
conformational state of the protein [15]. E113 is also critical for
maintaining the inactive conformation through a stabilizing salt
bridge with the protonated SB. Disruption of the interhelical salt
bridge by light-induced isomerization of retinal and proton
transfer from the protonated SB to its counterion E113 is a
critical protonation switch that controls the conformational
transition to the active receptor-state metarhodopsin-II [16]. In
the absence of retinal, a similar salt bridge forms directly between
E113 and K296 to stabilize the inactive conformation of the
apoprotein opsin [17]. Interference of G90D with the E113-K296
activation switch is thus one explanation for the observed
constitutive activity of the mutant, as had been suggested even
before any structural data on rhodopsin were available [2]. Our

structure of the G90D mutant shows that the impact of the
mutation goes further, as the introduced charged carboxyl group
forms a salt bridge with the J;e-amino group of K296, thereby
providing an alternative for the deactivating E113-K296
interaction and preventing effective formation of a SB with
retinal (Fig 1, inset). Formation of this alternative salt bridge
provides an elegant explanation for the 80 times slower 11-cis-
retinal uptake [13], and increased thermal stability of G90D opsin
observed in the thermal shift assays (Fig 2). Interestingly, neither
the introduced salt bridge nor the non-covalently bound retinal
affects the overall conformation of the ligand-binding pocket,
which remains virtually identical to those of opsin [18] and
metarhodopsin-II [10,12]. The active conformation of opsin thus
seems to preform a binding pocket into which several retinal
isomers can bind. Once the right retinal isomer is in place, a SB
is formed and snaps into the strong salt bridge with its
counterion E113 to force the seven-helix bundle into the
inactive rhodopsin dark state [2,19]. The G90D mutation
prevents an efficient snapping by forming a salt bridge with
K296, the site of SB formation. Even when the SB has been
formed, the structurally close side chain of G90D destabilizes
the inactive conformation [2–4,6] by electrostatic interaction with
K296, replacing E113 as SB counterion.

Structural comparison of CSNB-causing mutations
To investigate what characterizes the active state of CSNB-causing
mutations, we have modelled the three other known amino-acid
substitutions causing CSNB (T94I, A292E and A295V) into our
G90D structure (Fig 4). In this model, the charged side chain of
A292E forms a salt bridge with K296, analogous to that between
G90D and K296 but from transmembrane helix (TM) 7 instead of
TM2. T94I is one helical turn away from G90D and forms a
hydrophobic van der Waals contact with K296. The fourth CSNB
mutant, A295V, is located one residue away from K296. It might
thus induce a similar stabilizing effect on the active-state position
of TM7, possibly by bridging TM6 and TM7 through van der Waals
interactions with W265, another activation switch in close contact
with retinal [20]. The common theme of all four CSNB-causing
mutations is therefore not only constitutive activity and
interference with retinal binding in the rhodopsin dark state [21]
but also the formation of specific additional interactions involving
K296 in the active state. Notably, replacing T94 with eight other
amino acids caused constitutive activity [22], yet only T94I has
been reported to cause CSNB. Similarly, both G90D and G90V
are constitutively active [4] but only G90D leads to CSNB while
G90V causes RP [1]. Placement of other nearby mutants causing
progressive loss of vision by RP into our structure shows that none
of them favours similar interactions with K296 as the four CSNB
mutations. It is well known that most RP-causing mutations reduce
stability and/or lead to misfolding of the protein [9], whereas
CSNB mutants generally fold well [21]. Although similar in their
early symptoms, both diseases are likely caused by different
molecular mechanisms. A better structural characterization of
these differences might open the way for medical treatment of RP,
possibly by small molecules stabilizing interactions with K296
similar to the ones preventing disease progression in
CSNB mutants. Although this approach would not cure night
blindness, it could prevent progression of RP towards severe
day vision impairment.
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Fig 2 | Impact of the G90D mutation on thermal stability and binding of

arrestin. Thermal stability (A) of wild type (WT) and G90D opsin (all in
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(B–D) Direct binding assay of radiolabeled arrestin-1 to different forms of

rhodopsin (phosphorylated rhodopsin (R-P), phosphorylated opsin (P-Ops)

and unphosphorylated rhodopsin (R)) in nanodiscs. Binding experiments

of wild type (B), constitutively active M257Y (C) and G90D (D) rhodopsin

were performed either in the dark or under room light (*). Means and s.d.

were obtained from four experiments.
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The G90D-K296 salt bridge reduces binding of arrestin
In vivo rhodopsin signalling is rapidly quenched by phosphory-
lation, followed by the binding of arrestin-1, which blocks Gt

binding. Disruption of this desensitization mechanism through
mutations in arrestin [23] or rhodopsin kinase [24] leads to
Oguchi disease, a recessively inherited form of CSNB. Arrestin
does not efficiently compete with Gt for G90D opsin [25].
To quantify this effect, we incorporated G90D, wild type and
constitutively active M257Y rhodopsin [26] into nanodiscs [27]
and quantified their ability to undergo phosphorylation and
bind arrestin-1. Phosphorylation in all samples reached levels of
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Fig 3 | Electron density (2Fo-Fc contoured at 1.5 sigma, blue and Fo-Fc contoured at 3.5 sigma, green) of the G90D-GaCT retinal-binding pocket

calculated after simulated annealing refinement with the G90D side chain omitted. The obtained map shows a clear difference peak for the introduced

G90D mutation and the salt bridge (red dashes) with K296. Clear positive density close to the position of all-trans-retinal in metarhodopsin-II

indicates that some retinal was retained in the binding pocket during crystallization. Formation of the G90D-K296 salt bridge interferes with formation

of a covalent bond and results in density that is most compatible with a mixture of retinals. For comparison, the 9,13-di-cis retinal isomer is shown

as orange sticks.
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2–3 phosphates per rhodopsin (supplementary Fig S2 online),
comparable to the levels observed for rhodopsin in native disc
membranes. Whereas the phosphorylation level of G90D was
slightly higher compared with wild-type rhodopsin, several
functional forms of this mutant demonstrated reduced ability to
bind arrestin-1 (Fig 2B–D). A particularly striking difference
between wild-type rhodopsin and the G90D mutant was observed
in case of phosphorylated opsin, where arrestin-1 binding was
reduced by 70%. Normal binding of arrestin-1 to M257Y
rhodopsin shows that this is not a general feature of constitutively
active rhodopsin mutants. Structurally, the G90D mutation is

located in a strong helix distortion in TM2 introduced by two
adjacent glycines at positions 89 and 90. These two glycines are
highly conserved among visual pigments, whereas in other GPCRs
proline residues at the equivalent position 2.57 produce similar
kinks near ligand-binding pocket. In b-adrenergic receptors,
ligands that bias the receptor towards arrestin binding form
additional contacts to TM2, TM3, and TM7 [28] and
predominantly affect the conformational state of TM7 [29]. In
rhodopsin, pump-probe experiments suggested a vital role of TM7/
TM8 dynamics in arrestin binding [30]. Likely the reduced arrestin
binding observed for G90D opsin is thus due to the unnatural salt
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bridge between TM2 and TM7 and the resulting reduced
conformational flexibility of the receptor. Most importantly,
these data indicate that the conformation of Gt-bound opsin is
different from arrestin-bound opsin.

Relevance to CSNB
Rod cells of human CSNB patients [5,21] and of animal models
carrying the G90D mutation [6–8] are functionally desensitized,
as if under constant low basal stimulation that confounds dim-light
vision. Three explanations (Fig 5), which are not mutually
exclusive, have been proposed for the increased basal activity
characteristic for CSNB: (1) constitutive Gt activation by G90D
opsin [2,7]; (2) spontaneous activation by thermal isomerization of
retinal [5]; (3) constant basal activation by a preactivated dark
state [8]. Our structures of light-activated and unliganded G90D
provide information concerning all three proposed mechanisms.
First, the structures show that D90 displaces the retinal counterion
E113 by forming a salt bridge with K296, stabilizing an active
opsin conformation. In addition, this salt bridge reduces binding of
opsin to the desensitizing protein arrestin-1. Second, it seems
likely that interference of G90D with the site of retinal attachment
also increases the rate of thermal isomerization. Several retinal
isomers, including all-trans and 11-cis-retinal, can transiently
activate opsin until SB formation with K296 deactivates the
protein [31,32]. Interference of CSNB mutations with SB formation
and stability can lead to increased background activity in the
presence of non-covalently bound cis-retinal, as evidenced in our
structure (Fig 3). The third mechanism, that of a dark state with
increased basal activity, is supported by studies using FTIR
spectroscopy [3], spin-label experiments [17] and increased
hydroxylamine reactivity indicating a perturbation of the G90D
dark state [6]. It is valid to ask what the structure of preactivated
rhodopsin, that is, an active rhodopsin species with bound
cis-retinal, would look like. It is commonly accepted that
G protein activation by rhodopsin and other GPCRs is
characterized by a conformational change in the seven-helix
bundle, most prominently in TM6. So far, all active-state
rhodopsin structures, be it in absence [18], or presence of non-
covalently [33] or covalently bound retinal [10,12] show these
structural changes. Spin labelling of the cytoplasmic ends of TM3,
TM5, TM6 and H8 has shown that G90D rhodopsin can adopt an
active-like dark state, that is strikingly similar to the state produced
by light activation of the wild-type receptor [17]. FTIR
spectroscopy indicated that the preactivated dark state of G90D
rhodopsin has a protonated E113 and increased hydrogen-bond
strength resulting from rearrangement of the hydrogen-bonding
network involving D83, both hallmarks of the light-activated
metarhodopsin-II state [3]. Although the dark state of G90D is
most likely structurally heterogeneous (supplementary information
online), we speculate that the activated fraction of it will be similar
to the G90D opsin with the bound retinal we have crystallized.

The question remains why only four mutations in rhodopsin
cause CSNB, whereas many other known mutations increase
constitutive activity of opsin [26], interfere with retinal
binding [19], increase thermal isomerization [34] or preactivate
dark-state rhodopsin [17,35]. Our structural data indicate that
substitutions that specifically perturb the E113-K296 activation
switch result in CSNB (Fig 4), likely by destabilizing the inactive
conformation and selectively favouring a short-lived preactivated

conformation at the same time. In addition, reduced binding of
arrestin could contribute to the disease just as loss of arrestin
causes night blindness in patients with Oguchi disease. Whereas
the contribution in each of the four CSNB mutations might vary,
we suggest that together these mechanisms increase the basal
activity in rods and thus cause night blindness in CSNB patients.

METHODS
Mutant rhodopsin was expressed in stably transfected HEK293S
cells. Different forms of the receptor were purified using 1D4
immuno-affinity resin and crystallized as described [12,33].
Diffraction data were collected at the Swiss Light Source and
structures were solved by molecular replacement.

Thermal denaturation was followed using binding of the
thiol-sensitive dye CPM to cysteins exposed during unfolding.
Phosphorylation and arrestin-1 binding to rhodopsin incorporated
into nanodiscs were measured using radioactively labelled ATP
and arrestin [27]. Full methods are included in the supplementary
information online.

Coordinates and structure factors have been deposited under
pdb code 4bey for G90D-GaCT2, 4bez for G90D.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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