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In multicellular organisms from Caenorhabditis elegans to
Homo sapiens, the maintenance of homeostasis is dependent
on the continual flow and processing of information through
a complex network of cells. Moreover, in order for the organ-
ism to respond to an ever-changing environment, intercellu-
lar signals must be transduced, amplified, and ultimately con-
verted to the appropriate physiological response. The
resolution of the molecular events underlying signal response
and integration forms the basis of the signal transduction
field of research. An evolutionarily highly conserved group of
molecules known as heterotrimeric guanine nucleotide-bind-
ing proteins (G proteins) are key determinants of the speci-
ficity and temporal characteristics of many signaling pro-
cesses and are the topic of this review. Numerous hormones,

neurotransmitters, chemokines, local mediators, and sensory
stimuli exert their effects on cells by binding to heptahelical
membrane receptors coupled to heterotrimeric G proteins.
These highly specialized transducers can modulate the activ-
ity of multiple signaling pathways leading to diverse biolog-
ical responses. In vivo, specific combinations of G�- and G��-
subunits are likely required for connecting individual
receptors to signaling pathways. The structural determinants
of receptor-G protein-effector specificity are not completely
understood and, in addition to involving interaction domains
of these primary acting proteins, also require the participa-
tionofscaffoldingandregulatoryproteins.(EndocrineReviews
24: 765–781, 2003)
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I. Introduction

WHEN A LIGAND such as a hormone, neurotransmit-
ter, or glycoprotein interacts with a heptahelical re-

ceptor on the surface of the cell, the ligand either stabilizes
or induces a conformation in the receptor that activates a
heterotrimeric G protein (composed of �-, �-, and �-subunits)
on the inner membrane surface of the cell (1). In the inactive
heterotrimeric state, GDP is bound to the G�-subunit. Upon
activation, GDP is released, GTP binds to G�, and subse-
quently G�-GTP dissociates from G�� and from the receptor
(Fig. 1). Both G�-GTP and G�� are then free to activate
downstream effectors. The duration of the signal is deter-
mined by the intrinsic GTP hydrolysis rate of the G�-subunit
and the subsequent reassociation of G�-GDP with G�� (1, 2).
This article will review current knowledge and recent
progress in defining the molecular mechanisms that regulate
the activity and specificity of G protein signaling cascades.
In addition, we will briefly discuss the use of dynamic ex-
perimental approaches that are likely to provide new insights
into G protein regulation in the future.

II. G Protein Structure

The solution of crystal structures for inactive (GDP-
bound), active (GTP-bound), and transition state (GDP-
ALF4

�) G�t (3–5) or G�i (6), as well as structures for the
inactive heterotrimeric complexes (7, 8), has provided the
framework for understanding the biomechanics of G pro-
teins as molecular switches. For a detailed discussion of the

Abbreviations: AC, Adenylyl cyclase; AGS, activators of G protein
signaling; GAP, GTPase-activating protein; GRIN, G protein-regulated
inducer of neurite outgrowth; PI3 kinase, phosphoinositide 3-kinase;
PLC, phospholipase C; RGS, regulator of G protein signaling.
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specific intramolecular contacts within heterotrimeric G pro-
teins, the reader is referred to reviews in Refs. 2 and 9. Herein,
we will briefly discuss key structural and functional features
common to all heterotrimeric G proteins to understand the
framework and interpretation of recent work in this field.

According to current knowledge, 16 genes encode for G�-
subunits, five genes encode for G�-, and 12 genes encode for
G�-subunits (10). Classically, G proteins are divided into
four families based on similarity of their �-subunits: G�i/o,
G�s, G�q/11, and G�12/13 (Table 1). G�-subunits contain two
domains: a GTPase domain that is involved in the binding
and hydrolysis of GTP and a helical domain that buries the
GTP within the core of the protein (Fig. 2A). The helical
domain is the most divergent domain among G� families and
may play a role in directing specificity of receptor- and ef-
fector-G protein coupling. Comparison of G�t-GDP and G�t-
GTP�S crystal structures has revealed the presence of three
flexible regions, designated switches I, II, and III, which
become more rigid and well ordered in the GTP-bound active
conformation (3, 4). Little is known about the structure of the
extreme amino (N-) and carboxy (C-) terminal domains of
G�-subunits because in the isolated G protein crystal struc-
tures solved thus far, the N and C termini of G� were either
removed from the protein or disordered (3–6). However, in
two separate crystal structures of heterotrimeric complex, the
N-terminal helix is ordered by its interaction with the �-
propeller domain of G� (Refs. 7 and 8 and Fig. 2A). Bio-
chemical studies suggest that these terminal regions play a
key role in the activation process and in directing specific
protein-protein interactions, as is discussed in the following
section.

The G�-subunit of heterotrimeric G proteins has a �-
propeller structure containing seven WD-40 repeats (Ref. 7
and Fig. 2A). The G�-subunit interacts with the G�-subunit
through an N-terminal coiled coil and makes extensive con-
tacts along the base of the G�-subunit (Ref. 7 and Fig. 2A).
The G��-dimer binds to a hydrophobic pocket present in
G�-GDP. GTP binding to G� removes the hydrophobic
pocket and reduces the affinity of G� for G�� (4).

III. Molecular Basis for G Protein Activation

The rate-limiting step in G protein activation is the release
of GDP from the nucleotide-binding pocket. GDP is spon-
taneously released from the heterotrimeric G protein at a rate
that varies depending on the G�-subunit. For example, the
G�o GDP release rate (koff) is 0.19 min�1 whereas the G�i2
release rate is 0.072 min�1 (11). However, the inactive state
of the G�-subunits is controlled by G�� binding. Higashijima
et al. (12) showed that in the absence of Mg2�, G�� increases
the affinity of G�o for GDP about 300-fold. GDP release is
greatly facilitated by receptor activation of the G protein (13).
Mutations (14–16) of residues in the critical TCAT guanine
nucleotide-binding motif present in the �6-�5 loop of the
GTPase domain (4) enhance receptor-independent sponta-
neous GDP release. Iiri et al. (14) identified such an activating
mutation in G�s (A366S) in male patients with pseudohypo-
parathyroidism and gonadotropin-independent precocious
puberty. Enhanced GDP release was also observed when
similar mutations were generated in G�i [A326S; (15)] and
G�o [C325S; (16)] suggesting that this region serves as a com-

FIG. 1. Receptor-mediated G protein activation. The interaction of an endogenous ligand with its cell surface receptor (R) facilitates the coupling
of the activate receptor (R*) with intracellular heterotrimeric G proteins. The R*-G protein coupling promotes the exchange of GDP for GTP
on the G�-subunit. G�-GTP then dissociates from G�� and R*. Both subunits are free to modulate the activity of a wide variety of intracellular
effectors. Termination of the signal occurs when the �-phosphate of GTP is removed by the intrinsic GTPase activity of the G�-subunit, leaving
GDP in the nucleotide binding pocket on G�. G�-GDP then reassociates with G�� and the cycle is complete. RGS proteins accelerate the intrinsic
GTPase activity of G�-subunits, thereby reducing the duration of signaling events.
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mon mediator of GDP release. Posner et al. (15) also dem-
onstrated that GDP release can occur without inducing a
large conformational change in G�.

In addition to the TCAT motif, most recent work has
identified residues within the helical domain as well as
within the N- and C-terminal domains of G�-subunits that
are also integral mediators of spontaneous GDP release. For
example, in G�t mutation of three residues located in the
inward-facing surface of the �5-helix causes a dramatic in-
crease of basal nucleotide exchange rate in addition to en-
hanced receptor-catalyzed nucleotide exhange rate (17). Mu-
tation of five residues within the switch IV helical domain in
G�s decreases the rate of GDP release, GTP�S binding, and
GTP hydrolysis (18) and disruption of contacts between the
helical and GTPase domains also influences basal GDP dis-
sociation rates (19, 20). By fluorescently labeling the C-
terminal residue Cys347 of a G�t/G�i chimera, Yang et al. (21)
determined that the C terminus moves into a more hydro-
phobic environment upon AlF4

� activation. The authors sug-
gest that this movement may reflect an interaction between
the C terminus and the �2-�4 loop of G�t/G�i. In addition,
these divergent terminal domains have been implicated as
the source of variation in the intrinsic GDP release rates
among G�-subunits. Substitution of 31 N-terminal residues
of a G�t/i chimera (low intrinsic exchange rate) with corre-
sponding 42 residues of G�s (high intrinsic exchange rate)
significantly enhanced the nucleotide exchange rate (22).
This same group also reported that disruption of a specific
contact between Val30 (N terminus) and Ile339 (C terminus)
alters the rate of GTP�S binding, which was inferred as an
indirect index of GDP release. Hence, structural interactions

between N and C termini of G�t are important to the main-
tenance of a slow GDP release rate for G�t.

Receptor-mediated GDP release is dependent on the abil-
ity of the receptor to interact with the G protein and trigger
conformational changes in G� that cause release of GDP.
Comparing the crystal structure with biochemical data, we
can deduce that the receptor contacts G� at a site that is more
than 20 Å away from the guanine nucleotide binding site (1,
21), thus working at a distance to release GDP. Current
theory is that receptor contact with the C terminus of the
G�-subunit leads to conformational changes that are prop-
agated through G� to the GDP binding site (1, 21). However,
the requirement for G�� in receptor-G protein interaction
and G protein activation suggests that G�� may actively
participate in GDP release by opening an exit route for the
guanine nucleotide to leave the complex (23). The heterotri-
mer contains a prominent cavity between G� and G�� that
is believed to be oriented toward the plasma membrane (7,
24). Activated loops of the receptor might use this cavity to
tilt G�� away from G� causing the contacts between G� and
G�� to be disrupted, including contacts near switch I and the
�3-�2 loop in G�, the potential exit route for the nucleotide.
In this way the receptor could use G�� as a lever to release
GDP (25). Ala substitutions in G� at the G�-G�� interface
near the GDP exit route inhibit receptor-induced GDP/GTP
exchange without affecting G�-G�� binding (26). Thus, the
G��-dimer is not merely a passive binding partner with the
sole purpose of stabilizing G� but, rather, G�� actively par-
ticipates in receptor-mediated G protein activation.

IV. Structural Determinants of Receptor-G
Protein Specificity

For the purposes of this review, we will limit ourselves to
a discussion of regions within G� and G�� that have been
determined to mediate receptor-G protein specificity. For a
thorough review of specific sites on heptahelical receptors,
which direct receptor-G protein coupling specificity, the
reader is referred to Refs. 27 and 28 for reviews. The extreme
C terminus of G� (in particular the last five residues) has
been established as an important mediator of receptor-G
protein interaction (23, 29–31). For example, ADP ribosyla-
tion of residue �4 by pertussis toxin uncouples Gi/Go pro-
teins from receptors (32). Phosphorylation of a tyrosine res-
idue at �4 in Gq/11 was shown to be required for coupling
to metabotropic glutamate receptors (33) although this has
not been demonstrated in intact cells. In addition, the re-
quirement of phosphorylation at the tyrosine residue of Gq/11
cannot be generalized as M1 muscarinic receptors, and
thrombin receptors were shown to couple readily to Gq/11
proteins in reconstitution experiments (34, 35). Many exam-
ples of mutations in this region that alter receptor-G protein
specificity have been also reported (36–38). In addition, sev-
eral investigators have generated sequence-specific C-termi-
nal peptides or antibodies targeting the C-terminal domain
to study receptor-G protein interaction. Antibodies recog-
nizing G� C-terminal domains block receptor-G protein sig-
naling (39). Instead, sequence-specific C-terminal synthetic
peptides either stabilize the active agonist-bound form of the

TABLE 1. Classification of G�-subtypes and their effectors

Family Subtype Effector

Gs G�s(S)
a 1 AC

G�s(L)
a 1 GTPase of tubulinb

1 srcb

G�olf 1 AC

Gi G�i1 2 AC
G�i2 Rap 1 GAP
G�i3 GRIN 1 and 2
G�oA

a 1 GTPase of tubulinb

G�oB
a 1 srcb

G�z Ca2� and K� channelsb

G�t1 1 cGMP-PDE
G�t2
G�g Unknown

Gq G�q 1 PLC�s
G�11 1 Bruton’s tyrosine kinase (G�q)
G�14
G�15 or 16

G12 G�12 1 NHE-1b

1 PLDb

G�13 1 p115RhoGEF
1 iNOSb

PDE, Phosphodiesterase E; iNOS, inducible nitric oxide synthase;
NHE, Na�/H� exchanger; PLD, phospholipase D; GEF, guanine nu-
cleotide exchange factor.

a Two splice products of G�s and G�o genes.
b See Refs. 169 and 228–234.
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FIG. 2. Schematic diagrams of Gt, the RGS4-G�i1 complex, and effector contact sites on G�. A, Ribbon diagrams depicting the probable
membrane orientation of heterotrimeric Gt. The refined rhodopsin structure is from Ref. 240 [Protein databank (PDB) file 1F88]. G�t (purple);
GDP molecule (red); G� (green); G� (yellow); rhodopsin helices [color gradient from red (N terminus) to navy blue (C terminus]; the retinal
molecule within rhodopsin (magenta). Diagrams were generated using coordinates from PDB files (1GOT and 1BOK) and visualized with
WebLab ViewerPro. B, Ribbon diagram depicting the RGS4/G�i1 complex. RGS 4 (green); G�i1. (red); G�i1 �-sheets (cyan); GTP molecule
(magenta). Diagrams were generated using coordinates from PDB file 1AGR and visualized with WebLab ViewerPro. C, Solvent-accessible
surface model of G�1�1 highlighting residues identified as important mediators of effector interaction (26). The crystal coordinates of G�1�1
[PDB entry 1TBG] were used to generate a surface model of the dimer in Graphical Representation and Analysis of Structural Properties. G�
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receptor mimicking the G protein (40–42) or serve as com-
petitive inhibitors of receptor-G protein interface (43). Al-
though blocking peptides are commonly interpreted as ev-
idence of a direct receptor-G protein contact site, peptides
may also stabilize or disrupt regions of the protein that trans-
mit conformational changes to the guanine nucleotide bind-
ing motif and thereby indirectly affect receptor-mediated G
protein activation.

The C terminus is not the only region directing receptor-G
protein interactions. Several G�-subunits possess identical or
nearly identical residues within the extreme C-terminal do-
main yet exhibit differential coupling to receptors. For ex-
ample, within the last 11 amino acids of G�i1 and G�t, only
a single residue is divergent, yet the serotoninIB receptor fails
to couple to G�t and readily couples to G�i. Investigation into
the molecular determinants of this specificity indicated that
two residues within the �4-helix of G�i1 are critical mediators
of this receptor-G protein coupling profile (44, 45). Key res-
idues for coupling specificity have been also identified
within the N terminus (36, 39, 46), the �2-helix, and �2-�4
loop regions (47, 48) as well as within the �4-helix and �4-�6
loop domain (44, 48, 49). Segments of G�- and G�-subunits
may also contribute to the receptor interacting surface of
heterotrimers (46, 50–53). Using a peptide specific for �-
helical residues in G�s, Krieger-Brauer et al. (54) blocked
�-adrenergic receptor-mediated activation of both G�s- and
G��-effectors. In contrast, a C-terminal sequence-specific
peptide for G�s only prevented G�s-mediated effector acti-
vation, suggesting that the extreme C terminus of G�s is
required for G�-mediated signaling but is not critical for
�-adrenergic receptor recognition and dissociation of G�
from G�� (54). Together, these studies suggest that the rel-
ative importance of the C terminus for directing receptor-G
protein interactions may be dependent on G� and receptor
subtypes. Receptor-G protein specificity is clearly not me-
diated solely by one structural feature of G�-subunits but
appears to result from a network of specific contacts between
the receptor and G protein which differs for each G�-subunit
and for each receptor and results in a large number of pos-
sible combinations that can bring remarkable specificity into
a system with only a few central players. As suggested by
Blahos et al. (36), one of the difficulties in isolating the specific
determinants of receptor-G protein coupling has been that G
protein coupling may still occur even when interactions at
certain contact points are weak, absent, or negative if these
frailties can be overcome by a stronger interaction at other
contact points or when regions that may weaken coupling are
removed from either the receptor or the G protein.

V. Receptor-Independent Activators of G Protein
Signaling (AGS Proteins)

A novel class of signaling proteins, termed AGS proteins,
has been identified (55, 56). AGS proteins activate heterotri-

meric G proteins independently of receptor activation. The
mechanism for AGS activation differs among members of
this family. AGS1 has been found experimentally to promote
GTP�S binding. AGS2 selectively associates with G��,
whereas AGS3 binds to G� and exhibits a preference for
GDP-G� vs. GTP-G�. AGS3 has been shown to prevent the
reassociation of G�� with the G�-subunit and function as a
guanine dissociation inhibitor for G�i-subunits (57). AGS3
contains a G protein-regulatory motif. This G protein regu-
latory motif or GoLOCO repeat is an approximately 20-
amino acid domain found in several proteins that interact
with and/or regulate G proteins, e.g., AGS3, the Partner of
Inscuteable and its mammalian homolog, LGN, Purkinje cell
protein 2, and Rap1 GTPase-activating protein (GAP). The
physiological role of these proteins in vivo remains to be
determined, but one possible role for these proteins may be
in the regulation of G proteins that do not reside near the
plasma membrane and cannot be activated directly by re-
ceptors, e.g., G proteins in the Golgi that regulate vesicular
trafficking (58). Little is known about the role of this pool of
G proteins, and the discovery of AGS proteins may stimulate
research into a new dimension of heterotrimeric G protein
signaling.

VI. The Receptor-G� Protein Interface as a
Therapeutic Target

Traditionally, the extracellular surface and transmem-
brane domains of G protein-coupled receptors have served
as a target for the development of drugs that can selectively
activate or inactivate specific cellular pathways. However,
some receptor isoforms, such as the dopamine D2L and D2S
receptors, and the D4 receptor variants differ only on the
intracellular surface of the protein (59, 60) and cannot be
readily distinguished by targeting the ligand-binding site.
Moreover, many receptors promiscuously couple to several
G protein subtypes in what may be a tissue- or cell-specific
phenomenon. Therefore, additional therapeutic targets will
certainly be required to more specifically influence intracel-
lular signaling events. One avenue being explored by our
laboratory and others is the use of peptide inhibitors that
target the receptor-G protein interface (43, 61, 62). Currently,
these peptides represent either G� C-terminal-specific se-
quences or peptides isolated from a combinatorial library
based on C-terminal G�-sequences and screened for high-
affinity receptor binding (31). These studies are based on the
idea that the C terminus of G�-subunits serves as a key
receptor contact site and mediator of receptor-G protein
specificity. In the short term, these peptides may provide
useful tools for exploring specificity of G protein-mediated
signaling.

The delivery of peptide inhibitors represents a challenge
to the therapeutic use of these tools. Possible delivery

(gray); G� (pink). The area on G� that is covered by G� in the G protein heterotrimer crystal structure is highlighted in light green. The
effector-interacting residues on G� are circled with colored dashed lines as follows: �-adrenergic receptor kinase (orange); PLC�2 (red); AC II
(green); K� channel (blue); Ca2� channel (yellow). G�-GDP, when bound to G��, covers all these distinct yet partially overlapping effector
interaction regions on G� and, thus, blocks G�� regulation of all the effectors. [Figure 2C reprinted with permission from Ford et al.: Science
280:1271–1274, 1998 (26). © 1988 American Association for the Advancement of Science.]
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systems include the use of inducible retroviral minigene
vectors (64), incorporation of peptides into liposomes (65),
or the fusion of peptides to a viral peptide sequence that
carries the C-terminal peptide into the cell (66). Alterna-
tively, peptidomimetics may prove to be more stable and
bioavailable. Selective targeting to specific organs is likely
to prove beneficial, because Akhter et al. (67) have dem-
onstrated that transgenic mice selectively expressing a Gq
C-terminal minigene in the myocardium exhibit a marked
inhibition of �1B-adrenergic receptor-mediated inositol
phosphate production and blockade of cardiac hypertro-
phy. The identification of peptide inhibitors with high
affinity for specific receptor subtypes and/or variants
would also allow for more selective inhibition of signaling
pathways. Despite the significant hurdles, targeting the
receptor-G protein interface will clarify the complex co-
ordination of players in signaling cascades and may prove
therapeutically useful in the future.

VII. G� Interaction with Effectors

Once G�-GTP has dissociated from the G��-dimer, G� can
directly interact with effector proteins to continue the sig-
naling cascade. The specific effector proteins activated by G�
are dependent on the G�-subtype and are summarized in
Table 1. Well-defined G� effectors, such as adenylyl cyclase
(AC) and phospholipase C (PLC), have been the topic of
several excellent reviews (68, 69).

Overall, several patterns emerge upon examination of the
G�-effectors. First, each G�-family activates a distinct profile
of effectors. The molecular basis for this divergence has not
been completely elucidated. Cocrystallization studies of G�s
and the catalytic domains of AC have identified specific
contacts within G�s at the �2-helix (SII) and the �3-�5 loop
(70). In addition, the �4-�6 loop of G�s also plays a role in
AC activation (71). Sunahara et al. (72) demonstrated that
GDP-bound G�s can also stimulate AC, albeit with a lower
potency than the GTP-bound �-subunit. These data are in-
triguing because they suggest that reassociation of G� with
G�� is required for the complete termination of G�s signal-
ing, and inhibition of reassociation could prolong both G�-
and G��-mediated signaling. In addition, G�� could serve to
prolong signaling because it can block the PLC�-mediated
acceleration of GTPase activity at G�q-proteins (73). Second,
within a family, each G�-subunit exhibits a differential pro-
file of effector activation. For example, G�i2 is required to
inhibit forskolin-stimulated AC activity whereas G�i3 serves
to inhibit G�s-activated AC (74). In addition, �1-adrenergic
receptors elevate intracellular Ca2� by two distinct mecha-
nisms that are dependent on the G�-subunit coupled to the
receptor: G�q releases Ca2� from the endoplasmic reticulum
whereas G�11 activates a nonselective cation channel (75).
Third, some G�-subunits have only one identified effector,
such as cGMP phosphodiesterase for G�t whereas others
more promiscuously couple to several effector proteins.
Lastly, effectors for some G�-subunits have yet to be defin-
itively identified, and the search for novel G�-effectors is a
rapidly growing area of research. A number of proteins that
directly interact with G�-subunits have been identified, yet

further evidence awaits as to whether guanine nucleotide
binding to G� regulates the activity of these proteins in vivo
in response to receptor activation. Nonetheless, some of the
most recent studies identifying novel putative G�-effectors
are discussed below.

Using a yeast-two-hybrid screen, Jordan et al. (76) iden-
tified direct interactions between G�o and Rap1 GAP, Gz
GAP, and RGS17. This group also determined that Rap1
GAP interacts with G�i-proteins but not with G�q or G�s.
However, receptor-mediated activation of these proteins
was not demonstrated. Interestingly, Rap1 GAP interacted
preferentially with GDP-bound G�o, suggesting that G�o-
GDP may sequester Rap1 GAP away from Rap1, resulting
in a sustained activation of MAPK. These findings reveal
a novel mechanism of G protein function that is dependent
on GDP-liganded G proteins. G��-subunits might then be
considered as inhibitors of G�-GDP proteins (and vice
versa).

In search of G�z-effectors, Chen et al. (77) screened a cDNA
expression library using phosphorylated G�z-GTP�S as a
probe. This group identified two proteins that interact with
G�z and named them GRIN1 and GRIN2 for G protein-
regulated inducer of neurite outgrowth 1 and 2. Both GRIN1
and GRIN2 bound to activated G proteins (G�o, G�i, and
G�z) and were identified in neural tissue, but the regulatory
mechanism for neurite growth is unknown.

The Ca2� binding protein calnuc (nucleobindin) is a po-
tential effector for G�i3 and G�s (78, 79). The binding of
calnuc to G�i3 has been shown to be Ca2� and Mg2� depen-
dent (80). This ion dependence has not been shown explicitly
for G�s, probably because calnuc undergoes a conforma-
tional change after Ca2� binding (81) that could be necessary
for G protein interaction.

Bruton’s tyrosine kinase (Btk) has been identified as a
novel effector for G�q proteins because G�q activates Btk both
in vitro and in vivo, and this activation is required for recep-
tor-mediated stimulation of p38 MAPK (82). However, the
generalization of these results to other Gq family members
remains to be determined.

Although a role for G�12/13-proteins had been established
in several physiological events such as stress fiber formation,
cellular transformation, regulation of Na�/H� exchange,
modulation of inducible nitric oxide synthase expression,
and regulation of Erk and c-jun kinase activity (83), direct
interaction of G�12/13 with effector proteins has been estab-
lished recently, when Hart et al. (84) identified p115RhoGEF
as a direct effector for G�13. A RGS protein, p115RhoGEF, is
also shown to serve as a GAP for both G�12 and G�13. How-
ever, only activated G�13 is able to stimulate p115RhoGEF to
trigger GDP/GTP exchange on the small molecular weight
G protein Rho. In addition, the cytoskeletal-associated pro-
tein radixin has been found to interact with G�13 (85) whereas
an interaction between G�12 and heatshock protein 90 is
required for G�12-induced serum response element activa-
tion, cytoskeletal changes, and mitogenic response (86).

VIII. G�� Interaction with Effectors

Initially, G�� was thought to facilitate the completion of
intracellular information transfer passively by binding to G�
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and hastening the return of the heterotrimer to the plasma
membrane, thereby preventing noise or spontaneous G� ac-
tivation in the absence of receptor stimulation (87). This belief
changed when G�� was shown to activate a K�-selective ion
channel (IKACh) in cardiac atrial cells (88). Today, G�� is
known to interact with and activate several effectors, includ-
ing PLC�2 and �3 (89, 90), ACs (91), �-adrenergic receptor
kinase (92), phosphoinositide 3-kinase (PI3 kinase) (93, 94),
components of the MAPK cascade (95), and K� and Ca2�

channels (88, 96–98) (Table 2). As the list of G��-effectors
continues to grow, recent attention has turned toward ex-
amining the mechanisms responsible for G��-specific
signaling.

At present, five different G�-subunits and 12 different
G�-subunits have been identified (10, 99–102), meaning that
if G��-dimers formed randomly, there would be 60 possible
combinations. Although, in general, most G�-subunits can
dimerize with most G�-subtypes, biochemical studies have
demonstrated exceptions to the rule. For example, G�2
dimerizes with G�2 in vitro but not with G�1, and G�3 does
not dimerize with either G�1 or G�2 (103–105). Likewise, G�5
dimerizes poorly with G�2 in a yeast-two-hybrid assay (106),
but other studies suggest that these dimers can form in vitro
(107) and can activate PLC�2 (102). Conversely, G� and G�
combinations that were excluded in in vitro assays (104)
display functional effects when transfected into cells (108).
Although G��-dimers of varying composition may form in
vivo as well, G��-dimer combinations may also exhibit cell
type or tissue specificity. For example, in the retina the pri-
mary G��-dimer is G�1�1 whereas G�1�2 is the most com-
mon dimer formed in the brain (109, 110).

A. G��-Dimer composition directs effector and
receptor coupling

What is the physiological significance of the formation of
different G��-dimers? Although it was previously thought
that G��-dimers were for the most part interchangeable,
current research indicates that G��-dimer composition de-
termines the quality and efficiency of effector activation and

may mediate receptor-G protein coupling specificity similar
to G�-subunits. For example, when nine unique dimers of
G�1 or G�2 with G�(1, 2, 3, 5 or 7) were tested for the ability to
activate various PLC� isoforms, all dimers could activate the
various PLC� isoforms except retinal-specific G�1�1 (111,
112). Likewise, G�1�1 was markedly less effective at stimu-
lation of ACII and inhibition of ACI than other G�� dimer
combinations (111, 112). A comparison of G�1�2 with G�5�2
demonstrated that G�5�2 is a much weaker inhibitor of ACI,
ACV, and ACVI. In addition, G�1�2 stimulated ACII activity,
whereas G�5�2 inhibited the activity of this enzyme (113). In
contrast, both G�1�2 and G�5�2 activated PLC�2 with similar
potency and efficacy (114). Finally, the rank order for G�-
subtype inhibition of voltage-dependent N-type Ca2� cur-
rents differs from enzyme activation [G�1 � G�2 �
G�5��G�3 � G�4; (115)], and this potency difference may be
related to the ability of the various G�-subunits to physically
interact with the LI-II loop of the Ca2� channel (115). To-
gether, these data demonstrate that the primary sequence of
the G�-subunit is a major determinant of effector coupling
efficiency and specificity. Isolation of the structural features
responsible for effector variation remains to be completely
determined. Recently, Mirshahi et al. (116) have shown that
Ser67 in G�1 is part of a functional domain that regulates
several different effectors whereas other residues of the
�-propeller seem to direct the effector specificity.

With respect to receptor-G protein coupling specificity,
both G�1�2 and G�5�2 can couple G�q-proteins to endothelin
B and M1 muscarinic receptors. However, G�1�2 but not
G�5�2 promotes endothelin B receptor-G�i-protein interac-
tion (107). Thus, the G�5�2-dimer specifically couples G�q-
proteins to receptors (117). With the exception of G�5, the
identity of the G�-subunit does not currently appear to be a
critical determinant of receptor-G protein specificity. For ex-
ample, A1 adenosine receptors couple equally well to G�i-
proteins containing G�1�2-, G�1�3-, G�2�2-, or G�2�3-dimers
as measured by reconstitution of high-affinity agonist bind-
ing (118). In contrast, G proteins containing a farnesylated
�-subunit coupled less efficiently to the A1 receptor, sug-
gesting that lipid modification of the G��-dimer can influ-
ence receptor-G protein coupling efficiency (52).

B. Structural determinants of effector specificity

Unlike G�-subunits, the conformation of G��-dimers does
not significantly change whether G�� is in the inactive het-
erotrimeric complex or in the free active state. One notable
exception to this idea is that phosducin binding to G��
induces a conformational change primarily in blades 1 and
7, thus preventing G�� association with additional effectors
(119). Once dissociated from G�, G�� can interact with a
number of effectors. Using alanine scanning mutagenesis,
our laboratory (26) and others (120, 121) previously identi-
fied residues on G� that contact G� and that mediate a
number of effector interactions including ion channels,
PLC�2, and ACII (Fig. 2C). Regions important for ACII
interaction map roughly to blades 2, 3, and 5, whereas the N-
terminal interface of G� interacts with G protein-activated,
inwardly rectifying potassium channels, 1 and 4 (26). In
addition, point mutations either on the G� interacting face of

TABLE 2. Effectors regulated by G�� dimers

Effector Regulation

PLC�s Stimulation
AC I Inhibition
AC II, IV, and VII Stimulation
K� channels (GIRK1, 2, 4) Stimulation
Ca2� channels Inhibition
G protein receptor kinase Recruitment to membrane
PI3 kinase Stimulation
Bruton’s tyrosine kinase Stimulation
Tsk tyrosine kinase Stimulation
Protein kinase D Stimulation
Calmodulin Inhibition of calmodulin kinase
Tubulin Increased GTPase activity
Dynamin I Increased GTPase activity
Shc phosphorylationa Indirect activation of MAPK (?)
Raf-1 protein kinase Sequestration of G��
Ras exchange factora Indirect activation of MAPK (?)
KSR-1 Sequestration of G��

GIRK, G protein-activated inwardly rectifying potassium channel;
?, unknown.

a See Refs. 235 and 236.
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blades 1–4 or mutations in the outer loops of blades 2, 6, and
7 inhibit PLC�2 activity (26, 120); whereas, PLC�3 is inhibited
by point mutations within blades 2 and 5 (121). Therefore,
each effector contacts a unique but overlapping set of resi-
dues on G�, and some of these sites also represent G� in-
teracting sites. These studies are consistent with the idea that
interaction with � precludes G�� binding to effector pro-
teins. Mutational studies continue to reveal the molecular
basis for effector interaction as well as the structural basis for
variations between G��-subunits in effector coupling effi-
ciency. However, one key question yet to be resolved is how
G�� activates a particular effector once freed from G�, in a
cytoplasmic milieu full of potential partners. Signaling spec-
ificity could be brought about by factors such as discrete
subcellular localization of effectors, compartmentalization of
scaffolding components, and cell type-specific expression of
signaling molecules (122). The formation of signaling net-
works that bring together specific receptors, G proteins, reg-
ulatory proteins, enzymes, and substrates is a hot area of
research and will likely reveal key factors regulating signal-
ing specificity.

C. Novel G��-effectors

At the current discovery rate of G��-effectors, the final
tally of proteins that interact with the G��-dimer is likely to
exceed that for G�-subunits (68). As shown in Tables 1 and
2, G��- and G�-subunits interact with a number of common
effectors, such as PLC�, Bruton’s tyrosine kinase, and certain
types of ACs. These effector interactions can be independent,
synergistic, or antagonistic. For example, G��-subunits po-
tentiate ACII activation by G�s, but inhibit G�s-stimulated
ACI activity. In addition, G��-dimers interact with a number
of novel effectors that are not regulated by G�-subunits.
These novel effector interactions expand the role of G pro-
teins in the regulation of various cellular processes and are
briefly discussed below.

Putative G��-effectors recently identified include protein
kinase D (123), PI3 kinase (93, 94), tubulin (124), KSR-1 (125),
dynamin I (126), Raf-1 protein kinase (127), Tsk protein ki-
nase (128), and calmodulin (129) (see Table 2 and references
therein). Although previous data suggest that G��-effectors
bind to an overlapping domain on G�-subunits, additional
studies also indicate that G�� binding to one particular ef-
fector does not necessarily preclude G�� interaction with a
second effector protein. For instance, G�� binding to cal-
modulin does not prevent G��-mediated stimulation of
PLC� (129). The ability of G�� to simultaneously regulate
different effectors suggests that the G�� conformation is not
disturbed upon effector binding. One notable exception to
this idea is that phosducin binding to G�� induces a con-
formational change primarily in blades 1 and 7 preventing
G�� association with additional effectors (119). Likewise,
G�� interaction with the protein kinase KSR-1 prevents G��-
mediated stimulation of MAPK (125). However, the mech-
anism responsible for this exclusivity remains to be eluci-
dated. As mentioned before, Chidiac and Ross (73) showed
that G�� could prevent the acceleration of the GTPase ac-
tivity of G�q by PLC�, which implies a dual role for G��

because it can stimulate PLC� activity directly and indirectly
(through prolonged activation of G�q).

Although most G��-effectors are believed to directly in-
teract with the G�-subunit, a role for the G�-subunit has also
been suggested. Using a yeast-two-hybrid screen with the
protein kinase KSR-1, Bell et al. (125) identified G�2, G�3, and
G�10 as interacting proteins. The C terminus of G�-subunit
seems to play a direct role in modulating PLC� functions
(130). To date, no specific G� or G� binding domain has been
identified, although an intriguing number of G�� interacting
proteins contain pleckstrin homology domains. Future re-
search is likely to identify an increasing number of G��-
effector proteins. Recently, our laboratory found that the
receptor for activated C kinase 1 and the dynein intermediate
chain interact with the G�1�1-dimer (131). G�� can inhibit
neurotransmitter release independently of second messen-
ger formation and ion channel modulation, perhaps by direct
interaction with the exocytotic fusion machinery, because
both syntaxin 1B and SNAP25B are G�� binding partners
(132).

D. Additional role for G�5

G�1–4 share 80%–90% sequence homology and are ubiq-
uitously expressed (133). In contrast, G�5 shares only about
50% identity with the others and is preferentially expressed
in the central nervous system (134). G�1–4 are entirely par-
ticulate proteins, whereas G�5 can exist both in the soluble
and membrane fractions (134), and the N-terminal domain of
G�5 is significantly longer than the other G�-subunits. Al-
though this region is important for G� interaction (135), G�5
can dimerize with G�, form functional heterotrimers with
G�, and interact with a number of effectors in response to
receptor activation (102, 113, 114, 117, 134). However, unlike
other G�-subunits, G�5 can readily dissociate from G� under
low-stringency conditions and is stable in solution without
being complexed to G� (136, 137). Free G�5 has been shown
to interact with certain GAPs known as regulators of G pro-
tein signaling (RGS proteins) through a G protein G�-
subunit-like domain (138, 139). The G protein G�-subunit-
like domain is a 64-amino acid region (34% identical to G�5)
that is present in RGS6, RGS7, RGS9, RGS11, and the Cae-
norhabditis elegans RGS protein EGL-10 (140). G�5 binding to
RGS proteins enhances the ability of the proteins to accelerate
the GTPase activity of G�-subunits (141). In addition, G�5
binding to RGS6, -7, and -11 allows for the selective inacti-
vation of G�o (140) and may localize these RGS proteins
within the cytosolic compartment (142). Is G�5 always as-
sociated with an RGS protein in vivo, or does it shuttle be-
tween RGS proteins and G�-subunits? In native prepara-
tions, RGS9 exists in a tight complex with the long splice
variant of G�5 (G�5Long) in vertebrate photoreceptors (138).
The G�5L-variant was absent from the retinal tissue of RGS9-
deficient mice despite the presence of normal levels of G�5
mRNA (143). In contrast, G�5Short protein levels were normal
in knockout mice. Therefore, RGS9 may be required for the
translation or stability of G�5L in photoreceptor cells whereas
G�5S may be free to interact with G�-subunits (143). Other
questions yet to be resolved include: does G�5 interact with
other proteins outside the RGS family? Do free G�-subunits

772 Endocrine Reviews, December 2003, 24(6):765–781 Cabrera-Vera et al. • Regulation of G Protein Signaling

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/24/6/765/2567218 by guest on 25 August 2022



have a signaling role on their own? What is the brain-specific
role for G�5? The discovery of G�5 independent of G� has
clearly disproved the previous dogma that G�-subunits as-
sociate only with G�, and that only through this association
do they elicit a physiological response.

IX. Molecular Basis for G Protein Inactivation

A. Intrinsic GTPase activity

As previously mentioned, the duration of G protein-me-
diated effector activation is dependent on the intrinsic
GTPase activity of the G�-subunit. Like the intrinsic GDP
release rates, intrinsic GTP hydrolysis activity varies among
G�-subunits (83). For example, the catalytic rate constant
value for GTP hydrolysis for G�z is approximately 200-fold
lower than that of G�s and G�o (83, 144, 145). The GTPase
domain is highly homologous among G�-subunits and the
side chain of a conserved arginine residue (Arg174 in G�t;
located within the helical domain) forms hydrogen bonds
with oxygens of the �- and �-phosphates and the �-� phos-
phate bridging oxygen. This Arg residue plays a key role in
GTP hydrolysis. Thus, mutations of either this Arg or resi-
dues contacting it have been reported to alter the GTPase
activity of G�-subunits (2, 146). Because of the conserved
nature of the GTPase domain of G�-subunits, the determi-
nants of G�-hydrolysis variability are likely to lie in the
divergent helical domain and within the N and C termini or
be the result of subtle flexibility and conformational changes
among G�-subunits. The mechanisms responsible for vari-
ations in GTP hydrolysis rates have not been studied in
detail. Research in this area has focused instead on identi-
fying proteins that directly interact with G�-subunits to reg-
ulate their intrinsic GTPase activity. Some of these key stud-
ies are discussed below. For the interested reader, detailed
descriptions of the mechanism of GTP hydrolysis can be
found elsewhere (2, 9).

B. G� Interaction with GTPase-activating proteins (GAPs)

Several years ago, researchers noted that the intrinsic
GTPase activity of G�-subunits occurs in vitro at a much
slower rate than can account for the observed deactivation
rates of G protein-controlled processes (147, 148). Therefore,
speculation mounted that, in vivo, an additional protein was
rapidly terminating signal transduction, returning the sys-
tem to an agonist-responsive state. In mammals, the G�-
effectors PLC� and the �-subunit of phosphodiesterase (P�)
were two of the earliest identified GAPs for G�q and G�t,
respectively (149–151). Most recently, Scholich et al. (152)
have determined that the effector ACV serves as a GAP for
G�s. Thus, after activation by G�, an effector can feed back
on the activated G�-subunit and significantly reduce the
duration and amplitude of the signal generated.

In addition to effector-mediated feedback inhibition, RGS
proteins enhance the GTPase activity of G�-subunits,
thereby reducing the duration and amplitude of both G�-
and G��-mediated cellular responses (153–156). RGS pro-
teins share a common approximately 125-amino acid domain
termed the RGS box (157, 158). To date, more than 30 mam-

malian RGS proteins have been identified (156, 158–160),
each containing 23 conserved hydrophobic residues at the
core of the RGS domain (155, 156, 159, 161). In vitro, the RGS
core domain is both necessary and sufficient for GAP activ-
ity. However, in vivo this is not the case. Our laboratory and
others (162, 163) have demonstrated that in native retinal
preparations, RGS9 requires effector activation for the full
expression of RGS GAP activity. Likewise, the core RGS
domain of RGS16 can stimulate G�o GTP hydrolysis in vitro
but requires additional N-terminal residues for functional
activity in vivo (164). These studies suggest that in vivo the
noncatalytic domains regulate RGS GAP activity through
interactions with cellular factors. Only two such factors have
been identified to date, G�5 and phosphodiesterase E� (141,
151, 165). Noncatalytic domains of RGS proteins have also
been suggested to mediate signal transduction pathway
specificity and subcellular targeting of RGS proteins (154,
166).

GAPs for heterotrimeric G proteins accelerate GTP hydro-
lysis in a manner that differs from that observed with mo-
nomeric G protein GAPs. For example, Ras GAP inserts a
catalytic Arg residue into the active site that participates in
the hydrolysis step (2). However, this Arg finger is provided
by the helical domain in heterotrimeric G proteins and me-
diates intrinsic GTP hydrolysis as discussed above (2). In
contrast, RGS proteins bind to the switch regions on G� and
thereby stabilize the G� transition state toward GTP hydro-
lysis (167). The mechanism for effector-mediated GAP ac-
tivity has not been clearly delineated. By analogy, effector-
mediated GAP activity may also occur through a similar
stabilizing mechanism. However, differences in activity be-
tween effector GAPs and RGS GAPs have been observed. For
example, Mukhopadhyay and Ross (168) demonstrated that
RGS4 produces a 2-fold greater acceleration of the G�q-
bound GTP hydrolysis rate in comparison to PLC�, but PLC�
is 100 times more potent than RGS4. Although these findings
might suggest different mechanisms of GAP activity for ef-
fectors and RGS GAPs, G�� can inhibit the GAP activity of
both PLC�1 and RGS4 (73). This is consistent with the idea
that G��, effectors, and RGS proteins bind to the same region
on G�, namely the switch regions of the GTPase domain.
Thus, RGS proteins can act as effector inhibitors as well as
GAPs. On the other hand, we and others recently determined
that the effector P� enhances the GAP activity of the regu-
lator of G protein signaling 9 (RGS9) core domain by in-
creasing the affinity of the RGS9 domain for a G�t/i chimera
(163, 170). These studies suggest that RGS proteins may be
regulated through their participation in a signal transduction
complex that may include receptors and effectors and may
be localized near the plasma membrane. A similar suggestion
was proposed by Chidiac and Ross (73). Our laboratory has
also determined that the �-helical domain of G�t (a G�i
family member) is a key molecular determinant of the se-
lectivity that the RGS9 core displays as a GAP for G�t vs. G�i
(163). Therefore, RGS protein affinity and GAP activity for
various G�-subunits may be mediated, at least in part, by the
primary structure of the G�-subunit as well as by the se-
quence of the RGS box. Further in-depth discussion of RGS
proteins can be found in one of several reviews on this topic
(154–156, 161, 166).
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X. Regulation of G Protein Function by
Covalent Modification

G protein signaling cascades are also regulated by post-
translational modification of the G proteins themselves,
which includes phosphorylation and/or acylation of G�-
and G��-subunits. Phosphorylation of G�-subunits by pro-
tein kinase C inhibits signal transduction through G�i family
members (171–174). For G�z, stoichiometric phosphorylation
occurs at N-terminal Ser16 and G�z-GDP is the preferred
substrate (175, 176). Protein kinase C phosphorylation of G�z
prevents heterotrimer formation (175) and inhibits GAP ac-
tivity of RGSZ1 (177). Thus, phosphorylation could signifi-
cantly prolong G��-effector activation while reducing G�-
effector stimulation. The GDP-bound forms of G�t and G�s
are also kinase substrates (178, 179), and phosphorylation of
G�12 prevents interaction with G�� (180). Phosphorylation of
G�- (181) and G�-subunits has also been reported (182), and
phosphorylation of G�1�12 inhibits G��-mediated AC acti-
vation without altering the activation of PLC� (183). Thus,
phosphorylation cannot only dissociate G�- and G��-medi-
ated signaling, but it also regulates the selective modulation
of particular G��-effectors.

A. G protein lipidation

In addition to phosphorylation, G�-subunits are lipidated
(myristoylated and palmitoylated) at their N termini. N-
myristoylation results from cotranslational addition of the
saturated 14-carbon fatty acid myristate to a Gly residue at
the second position after the removal of the initiating Met by
the enzyme methionine amino-peptidase (184). A stable
amide bond links the myristate to the protein. Hence, this
myristoylation is essentially an irreversible modification.
Only G�-subunits of Gi family are myristoylated (see Refs.
174 and 185–187 for review). In addition, all G protein G�-
subunits, except G�t, contain the posttranslationally attached
saturated 16-carbon fatty acid palmitate and some G�-
subunits (G�q, G�11, G�13, and G�16) are palmitoylated at
multiple sites (see Refs. 174, 188, and 189 for review). Pal-
mitoylation of proteins results from the esterification of Cys
thiol groups by palmitate. Due to its unstable character,
palmitoylation is readily reversible and subject to regulation
(188, 190). As yet, palmitoylation cannot be accurately pre-
dicted based on primary sequence. However, palmitoylation
occurs frequently in proximity to other lipid modifications
such as myristoylation or prenylation.

The G�-subunit when dimerized with G� is isoprenylated
posttranslationally. The 15-carbon isoprenoid farnesyl (G�1,
G�8, and G�11) or the 20-carbon isoprenoid geranylgeranyl
(other G�-subunits) is attached via a stable thioether bond to
a Cys residue located in the C-terminal CAAX box of G�,
followed by the proteolytic removal of the C-terminal three
amino acids and then the carboxyl methylation of the new C
terminus (191). The X residue in the CAAX motif is a major
determinant of the isoprenyl group. If X is a Ser, Met, Gln,
or Ala, the proteins are farnesylated, whereas Leu at this
position results in geranylgeranylation (see Ref. 192 for re-
view). Carboxymethylation of the C terminus of G� appears
to modulate the affinity of the membrane attachment (193).

B. The role of lipid modifications in G protein membrane
association and consequent signaling functions

One clear function of fatty acid acylation is to serve as a
hydrophobic membrane anchor. For the Gi family of G�-
subunits that are both myristoylated and palmitoylated, both
modifications contribute to the membrane association. Re-
moval of the palmitoylation site while preserving myristoyl-
ation results in a partial shift in localization from the mem-
brane to the cytoplasm (194–197). Likewise, mutation of the
N-terminal Gly on G�, which abolishes myristoylation, also
inhibits palmitoylation and similarly shifts protein localiza-
tion (184, 198, 199). Shahinian and Silvius (200) have recently
proposed a “kinetic membrane trapping” model for G pro-
teins to account for this localization dependence on both lipid
modifications. Within this two-signal model of membrane
binding, myristoylation and palmitoylation cooperate to tar-
get G�i-subunits to the plasma membrane. Myristoylation
serves as the initial signal bringing the protein to the mem-
brane, and palmitoylation is the second signal that further
secures this interaction. In addition, palmitoylation may spe-
cifically target G proteins to the plasma membrane rather
than to intracellular organelle membranes (174, 195, 201).
Consistent with this two-signal model, in the case of myr-
istoylation-defective mutants of G�z and G�o, the prenylated
G��-subunit can substitute for myristoylation and carry the
�-subunit to the plasma membrane where it can be palmi-
toylated and fulfill its signaling activity (174, 202).

For G�-subunits that are modified solely by palmitate
(G�s, G�q, G�12, and G�13), mutations that prevent palmi-
toylation markedly impair membrane association (203–206).
In addition, G�� appears to be a crucial prerequisite for
membrane anchoring and palmitoylation of G�s and G�q

(207). However, by enzymatically depalmitoylating G�q, He-
pler et al. (208) have determined that Cys residues rather than
palmitoylation per se are critical determinants of G�q-medi-
ated signal transduction. Because most studies investigating
the role of palmitoylation have relied on mutating Cys res-
idues, further studies are needed to determine whether the
significance of palmitoylation itself has been overestimated
thus far. Indeed, a paper by Fishburn et al. (209) used a
mutant G�� complex, which mislocalized to the mitochon-
drial membrane, to investigate the relative contributions of
protein-protein interactions vs. lipid modifications in con-
trolling membrane targeting of G�z. Using this approach,
these authors determined that G�z interaction with G��,
rather than palmitate, directs specific targeting of G protein
G�-subunits to membranes.

Lipid modifications also regulate protein-protein interac-
tions. For example, N-myristoylation of G� modulates G��
(210) and effector interactions (211), and palmitoylation in-
creases the affinity of G�s for G�� (212). In addition, palmi-
toylated G�s�� is more resistant to thioesterase cleavage of
palmitate than free palmitoylated G�s (212). Palmitoylation
can also inhibit the interaction of GzGAP (an RGS protein)
with G�z (213). Thus, the palmitoylation state of G proteins
can affect their ability to serve as signaling molecules. As part
of a feedback mechanism, palmitate turnover can also be
regulated by receptor activity (196, 214).

The addition of the prenyl group to the G�-subunit plays
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a central role in the membrane association of the G�� com-
plex (for review see Ref. 215). Although not required for
G��-dimer formation, isoprenylation of G� is necessary for
productive interaction of G�� with other proteins including
G� (111) and effectors such as AC (216–218), PLC (217, 218),
and PI3 kinase (217, 219, 220) as well as with receptors (52).

XI. Advances for the Future: Investigating the
Dynamic Nature of G Protein Signaling

The resolution of crystal structures for active, inactive,
transition state of G� (3–6) has provided a basis for under-
standing G proteins as molecular switches for signaling path-
ways. These studies also provide a framework for conduct-
ing structural, functional, and biochemical experiments that
can extend our understanding of G proteins along with their
various signaling partners. Because only a few G proteins
have been crystallized to date (see Table 3), interpretations
and conclusions from these structures may not reflect the full
complexity of subunit combinations. Moreover, the static
nature of such structures may actually limit our understand-
ing of the dynamic nature of G protein signaling. To more
accurately assess G protein interactions with receptors, ef-
fectors, and regulators of G protein signaling, it will be nec-
essary to take advantage of new techniques that can provide
insights into the complex nature of G protein activation. A
few of these techniques are described below.

Fluorescence spectroscopic techniques continue to play an
important role in determination of G protein conformational
changes. In particular, fluorescence resonance energy trans-
fer (221) provides a real-time measurement of activation,
deactivation, and protein-protein interactions under basal
and stimulated conditions. Fluorescence resonance energy
transfer involves attachment of different fluorescent donor
and acceptor probes at known residues. Changes in tertiary
structure as a result of binding or activation, which result in
the donor fluorophore coming into close proximity to the
acceptor fluorophore, result in a quenching of donor emis-
sion and a simultaneous increase in acceptor emission as
energy is transferred. This can be measured as a ratio be-
tween donor and acceptor emission in specific timed inter-
vals, resulting in a real-time measurement of dynamic
changes in protein conformation that is both sensitive and
specific to labeled regions of the proteins. For example, Rem-
mers (222) used a fluorescently labeled GTP�S analog,
N-methyl-3�-O-anthranoyl-GTP�S, to measure conforma-
tional changes in heterotrimeric G proteins upon nucleotide

binding. G protein intrinsic Trp fluorescence decreased
whereas N-methyl-3�-O-anthranoyl-GTP�S fluorescence in-
creased upon binding the nucleotide analog. In conjunction
with stopped-flow fluorescence measurements, the kinetics
of the binding reaction can also be determined. Stopped-flow
fluorescence itself has long been used to measure binding
kinetics and has been used recently to measure GAP activity
as a result of RGS proteins binding to activated G�-subunits
(223).

Spin labeling can also be used to examine changes in
protein conformation in real time. This technique requires
introduction of a nitroxide side chain at specific residues and
electron paramagnetic resonance signal from the nitroxide
spin label can detect and report subtle changes in its local
environment. It is possible to determine changes in solvent
accessibility, dynamics, and intermolecular distances of side
chains in solution in real time, yielding information about the
time scale and magnitude of structural changes in the labeled
region of the protein. Spin pairs can be used to determine
changes in the secondary structure of proteins; introduction
of spin labels at positions (i) and (i � 4) allows examination
of helical structure within proteins. Changes can be mea-
sured on a millisecond time scale. Farrens et al. (224) suc-
cessfully employed this technique to determine movements
of helices that accompany rhodopsin activation. They found
that �-helix C of rhodopsin moves as a rigid unit in relation
to �-helix F upon light activation of this receptor. This tech-
nique is being further used in studies to determine confor-
mational changes in the N terminus of G�i upon activation,
because these residues are absent or disordered in most
high-resolution crystal structures of GDP- or GTP�S-bound
form of G�-subunits (3, 4, 6) (see Table 3) with the exception
of the G�i/RGS4 complex. In the crystal structure of RGS4
core domain bound to aluminum fluoride-activated G�i-
GDP subunits, G�i makes two differing sets of contacts with
the RGS molecule. One contact is through the G�i-switch
region binding to the RGS core domain, whereas the second
contact is through the N terminus of the G�i binding to an
adjacent RGS molecule in the crystal. This suggests some
type of crystallization artifact, leaving a question as to the
relevance of the N terminus present in this 2.8-Å structure.
Although it is clear from heterotrimeric structures that G��
binding stabilizes an N-terminal �-helix in G�-subunits, this
may change upon activation. Indeed, site-directed spin-
labeling studies have shown that G�i N terminus is dynam-
ically disordered in the GDP-bound form, but adopts a struc-
ture consistent with an �-helix upon interaction with G��
(225). However, activation of the spin-labeled G�i�� com-
plex by photoisomerized rhodopsin in the presence of GTP�S
causes the N-terminal domain of G�i to revert to a dynam-
ically disordered state similar to that of the GDP-bound form
(225).

Another powerful technique for measuring protein-
protein interactions in real time is surface plasmon reso-
nance. This technique measures changes in refractive index
on the surface of a chemically modified sensor chip as a
binding event occurs. The resultant binding curve allows for
a quantitative measure of affinity of the binding interaction.
Figler et al. (226) used this technique to determine the affin-
ities of G�-subunits for various G�� combinations. Current

TABLE 3. G protein crystal structures

PDB code Structure Resolution
(Å) Ref.

1GOT Heterotrimeric G�t��t complex 2.00 7
1GP2 Heterotrimeric G�i1�1�2 complex 2.30 8
1TAD G�t-GDP�AIF4

� 1.70 5
1TAG G�t-GDP Mg2� 1.80 4
1TND G�t-GTP�S 2.20 3
1AZT G�s-GTP�S 2.50 237
1GFI G�i1-GTP 2.2 238
1TBG G��-dimer 2.1 239

PDB, Protein databank.
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advances include development of methods to immobilize
vesicles to a sensor chip derivatized with lipophilic alkyl
chains, thus anchoring intact vesicles and providing a phys-
ical and chemical environment similar to that of cell mem-
branes, which can be used to measure protein-protein inter-
actions of membrane-associated proteins (227).

Computational approaches such as structure prediction
and three-dimensional modeling and mathematical tech-
niques such as monte-carlo simulations all provide valuable
insights into G protein signaling. More importantly, they are
valuable tools that serve to direct further biochemical and
functional experiments. These approaches, combined with
genetics, can be used to define and examine key components
of the signaling pathway, which will both broaden our un-
derstanding of the complex nature of G protein signaling and
lead to new questions for further investigations.

Structural and functional aspects of heterotrimeric G pro-
teins, their binding partners, and the signaling networks in
which they participate are the subjects of intense investiga-
tion, and dramatic progress has been made in recent years.
The next frontier is to understand how signaling pathways
interact with each other to form signaling networks (241).
Cells are bombarded with a multiplicity of ligands, and the
cellular response is somehow integrated based on all its
responses. The experimental approaches to this problem are
beginning to be available, but are in their infancy. Certainly,
many new approaches to these issues of complexity in cel-
lular signaling will need to be pioneered, and will surely lead
to new insights.
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