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Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various 
cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell 
signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane 
shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins 
with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery 
and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein 
functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by 
intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming 
more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, 
we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, mem-
brane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and 
generation by ordered/disordered proteins.
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Introduction

Biological membranes are the essential structures in all 
kingdoms of life on earth as they compartmentalize dis-
tinct intracellular organelles [such as the Golgi apparatus, 
endoplasmic reticulum (ER), and nucleus] and define the 
cell’s outer boundary [i.e., plasma membrane (PM)] (Alberts 
et al. 2002). The membranes are composed of phospholipid 
bilayers, and their primary function is to serve as a physical 
barrier that not only separates distinct intracellular compart-
ments but also separates the cell interior from the external 
environment (extracellular space) (Fakhree et al. 2019a). Far 
more than just a passive interface, membranes can adopt a 
variety of intricate and beautiful shapes as they are highly 
dynamic (Simunovic et al. 2019). The majority of which 
are thought to have evolved for a specific cellular function. 
A striking example of how membrane shape and cellular 
function are intimately interconnected is found in membrane 
trafficking pathways (Zeno et al. 2019a).

Most membrane-bound intracellular organelles have 
highly complex shapes. For example, ER is an intercon-
nected network of tubules and flat sheets. Golgi apparatus 
contains a stack of perforated sheets. The mitochondrial 
inner membranes are divided by cristae, which are thin 
sheet-like structures with dimensions similar to ER sheets 
and Golgi cisternae (Shibata et al. 2009; Kozlov et al. 2014). 
Across all these structures, there is a large membrane cur-
vature in their cross-sections. The radii of these curvatures, 
varying between 20 and 50 nm (Cui et al. 2013), are just 
a few times greater than the membrane thickness (3–5 
nm) (Tsai et al. 2021). On the other hand, PM is usually 
a large, relatively flat structure but contains numerous fine 
micro-membrane structures that aid large curvature to the 
flat PM. The local and dynamic deformations of a limited 
area of the PM result in the generation of protrusions like 
filopodia and lamellipodia, as well as invaginations like cav-
eolae and endocytic clathrin-coated pits (CCPs) (Suetsugu 
et al. 2014).

The examples mentioned above indicate that the deforma-
tion of the membrane such that they adopt large curvatures 
is imperative for various cellular events. A membrane, none-
theless, is naturally resistant to deformation (Helfrich 1973). 
Therefore, to generate (induce or drive) membrane curvature, 
proteins are employed by cells  (Zimmerberg and Kozlov 
2006; Stachowiak et al. 2013). It is well known that a variety 
of protein-driven pathways are involved in generating large 
membrane curvatures in a highly orchestrated fashion (Shibata 
et al. 2009; Baumgart et al. 2011; Has and Das 2021; Tsai et al. 
2021). In addition, proteins also have the potency to sense the 
membrane curvature and bind to specific geometric cues, and 

then utilize the curvature as molecular information to organize 
many cellular processes spatiotemporally (Has and Das 2021). 
Note that proteins bound or embedded to the membrane are 
generally required for communication with the outside world 
and response to external stimuli (signal transduction path-
ways) (Cho and Stahelin 2005; Grecco et al. 2011). In short, 
proteins play a crucial role in precise cellular function because 
of their capability to transport molecules and chemical signals 
in/out of distinct cell compartments.

Proteins interact with a membrane by introducing their 
hydrophobic domains into the hydrophobic region of bilayers 
and attracting their hydrophilic domains to the bilayer sur-
face via physical forces such as electrostatic interactions and 
hydrogen bonding (Israelachvili 2015). Until recently, it was 
thought that a protein’s function depended on its ability to form 
a single, well-defined three-dimensional (3D) molecular struc-
ture. This structure–function paradigm can be observed for 
many proteins or protein domains (White and Wimley 1999). 
In recent decades, the discovery of disordered (or unstructured 
or unfolded) proteins and protein regions (discussed in the next 
section) shattered the structure–function paradigm. Similar to 
structured proteins, recent studies have shown that disordered 
proteins and protein regions are also capable to sense/induce 
membrane curvature (Zeno et al. 2019a; Busch et al. 2015; 
Snead et al. 2017; Zeno et al. 2019b). After a quick overview 
of disordered proteins and protein regions in this review, we 
will focus on how proteins recognize their binding targets and 
facilitate interaction with them using conserved sequence 
motifs. We then explore how membrane-bound disordered pro-
teins and protein regions remodel membrane characteristics, 
which in turn determines membrane trafficking processes. We 
next go through many experimental assays and computational 
approaches for curvature sensing and generation by proteins 
utilized for quantitative and qualitative analysis. Although 
most of the assays have been employed for structured proteins, 
they may be tried for unstructured ones to study their curvature 
sensitivity and driving capacity. At the end of our overview, 
we highlight open research areas that need to be addressed in 
the future. We believe that this detailed analysis will help bio-
physicists to understand the role of many disordered proteins 
in curvature sensing and generation of the membrane.

Abundance of Intrinsically Disordered 
Proteins (IDPs) and Protein Regions (IDPRs) 
in Membranes

In the human genome, around 5500–7500 genes have been 
predicted to translate into membrane-interacting proteins, 
which indicates that approximately 26–36% of the human 
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genome’s protein-coding genes are translated into mem-
brane proteins (Fagerberg et al. 2010). The protein–lipid 
mass ratio in a PM is found to be around 1:1, whereas it is 
greater than 3:1 for mitochondrial membrane (Müller et al. 
2008). The average center-to-center gap between proteins 
in the PM, based on a 1:1 protein–lipid ratio, is estimated 
around 10 nm (Phillips et al. 2009), which is comparable to 
the space between proteins in cytoplasm (Ellis 2001). Given 
the importance of membrane proteins in intra/intercellular 
communication, chemical gradient maintenance, and mem-
brane remodeling activities, it is no wonder that they are the 
key participants in human physiology, disease pathology, 
and drug development (Marinko et al. 2019). Understand-
ing the molecular functions of membrane proteins requires 
determining their structures. In general, proteins are made 
up of single or many domains, each of which can perform 
different molecular functions. These domains are structured 
(or ordered or folded) domains that fold independently and 
make precise tertiary interactions. Such domain-containing 
proteins are called structured proteins and they exhibit small-
scale undulations under physiological conditions. Their 
function has long been thought to be inextricably related 
to a well-defined 3D structure, which is determined by the 
protein’s primary amino acid (AA) sequence (polypeptide 
chains). This close relationship between shape and function 
has been studied for many membrane proteins (White and 
Wimley 1999).

Unlike many structured proteins which must have a rigid 
3D structure to fulfill their function, a substantial fraction 
of eukaryotic proteome consists of AA sequences that do 
not form a stable 3D structure but remain disordered in 
physiological conditions (Wright and Dyson 1999; Uversky 
2002, 2003; Dyson and Wright 2005; Tompa 2005; Uver-
sky and Dunker 2010; van der Lee et al. 2014). Proteins 
can have a structural disorder at short stretches (i.e., folded 
proteins with small disordered segments), long regions (i.e., 

disordered proteins with residual folded domains), or even 
the entire structure (Fig. 1A–D). It is essential to note that 
the majority of proteins do not have a completely disordered 
segment but are composed of some secondary structure with 
local disordered loops (see Fig. 1B), and some are even 
composed of structural domains connected by disordered 
linkers (Fukuchi et al. 2006). According to Protein Data 
Bank (PDB), only a slight fraction of crystal structures are 
entirely devoid of unstructured regions (Obradovic et al. 
2003). Almost all human proteins contain unstructured 
regions within their N/C-terminus regions. Approximately 
97% of proteins are predicted to have disordered regions 
in the first or last five AAs (Pentony and Jones 2010). The 
protein regions that demonstrate intrinsic disorder are called 
intrinsically disordered protein regions (IDPRs) (van der Lee 
et al. 2014; Habchi et al. 2014; Cornish et al. 2020), for 
instance, Epsin1 and CALM/AP180 proteins, as well as Bin/
Amphiphysin/Rvs (BAR) domain proteins such as Amphi-
physin (Amph) and Endophilin (Endo) (Pietrosemoli et al. 
2013). Proteins, such as ubiquitin (Robustelli et al. 2018) 
and SEC22A/SEC22C (Pietrosemoli et al. 2013), without 
IDPRs are called ordered proteins. In addition, proteins 
[such as alpha-synuclein ( �S) (Jensen et al. 2011; Robus-
telli et al. 2018)] with entirely disordered AA sequences 
that lack any tertiary structure are referred to as intrinsically 
disordered proteins (IDPs) (van der Lee et al. 2014).

The IDPs/IDPRs behave more like random polymers 
than stably ordered domains (Pietrosemoli et al. 2013). 
Consequently, protein’s intrinsic disorder represents 
a highly dynamic ensemble of conformations  (Uver-
sky 2002; Uversky et al. 2012). According to decreas-
ing free energy and increasing compaction (from left to 
right, see Fig. 1A–D), conformations of a protein can be 
unfolded (random coil), premolten globule (PMG), molten 
globule (MG), and native folded states. Proteins disorder 
can be split into two classes based on structural features. 

Fig. 1  The dynamic ensemble of IDPs/IDPRs. Proteins can be char-
acterized as either coil-like structures (non-compact unfolded chains, 
called IDPs) with maybe little or no secondary structures throughout 
the entire AA sequences (A), or as having a module with both IDPRs 
and folded domains as shown in B and C, or as native folded struc-
tures (D). The folded domains in B and C are the secondary struc-
tures composed of �-helices and/or �-sheets. While secondary struc-

tures fluctuate around their native position in premolten globules (B), 
molten globules possess almost native-like secondary structures and 
folding patterns with no close packing of their side chains (C). The 
disordered loop shown in B connects two distinct secondary struc-
tural elements. Schematic reproduced from Uversky and Finkelstein 
(2019)
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Despite their flexibility, members of the first group are 
compact and have a well-defined secondary structure but 
lack a stable 3D shape, i.e., they have the characteristics 
of typical MGs. Proteins from another group may behave 
almost as random coils or as PMGs (significant second-
ary structure but less than that found in MGs) (Uversky 
2002). Random coils can be considered as IDPs (Fig. 1A). 
The structure of IDPR-containing proteins is similar to 
that of PMG (Fig. 1B) or MG (Fig. 1C), which retain the 
structural elements of a native secondary structure and the 
approximate location of the folded state, but are flexible 
at the loops and ends. Both IDPs and IDPRs have now 
been identified as essential components of numerous pro-
teins involved in membrane remodeling and coated-vesicle 
formation (Owen et al. 2004; Dafforn and Smith 2004; 
Pietrosemoli et al. 2013).

In eukaryotes, the total protein fractions disordered in 
entire sequence are predicted to be around 5–15%, and 
around 35–52% have at least one long IDPR ( > 30AAs

) (Ward et al. 2004; Orosz and Ovádi 2011). In contrast, the 
long IDPRs in prokaryotic proteins are < 5% (Ward et al. 
2004; Tompa 2005). As a large portion of the human pro-
teome, membrane proteins also possess IDPs and IDPRs. A 
considerable fraction of the transmembrane (TM) proteins 
( ∼ 70% ) involved in signaling have IDPRs of substantial 
length ( > 30AAs) (Iakoucheva et al. 2002), with a some-
what lower total prevalence in all TM proteins (41%) (Min-
ezaki et al. 2007). Specifically, IDPRs are enriched in the 
regions extending from membrane-attached proteins into the 
cytoplasm, and cells use these cytoplasmic tails to transmit 
external signals across the membrane (Minezaki et al. 2007). 
An array of TM proteins has been found to have membrane-
bound tails (Cornish et al. 2020).

In humans, IDPRs length profile follows a power law, 
with many-short disordered regions and a significant inci-
dence of longer ones (Tompa and Kalmar 2010). Both struc-
tured and unstructured regions are necessary for the reper-
toire of the functions that proteins can have in many cellular 
processes, including transcription, translation, membrane 
trafficking pathways, and signal transduction (Iakoucheva 
et al. 2002; Tompa 2005; Dyson and Wright 2005; Snead 
and Eliezer 2019). According to both experimental and 
computational investigations, IDPRs have been observed in 
many types of proteins, i.e., globular, fibrous, and membrane 
proteins (Andreeva et al. 2014). Primary structural features 
of IDPs/IDPRs have been investigated mainly using small-
angle X-ray scattering (SAXS), gel filtration, analytical 
ultracentrifugation, NMR, and various other spectroscopic 
methods (Kalthoff et al. 2002b; Dyson and Ewright 2002; 
Dyson and Wright 2005; Meier et al. 2008). These features 
include their molecular size, level of structural heterogene-
ity, the role of transient structure in coupled folding and 
binding events, aggregation tendencies, and presence of 

persistent structure (Dyson and Wright 2002, 2005; Meier 
et al. 2008).

The inability of IDPs/IDPRs to fold into a stably folded 
3D structure is imprinted in the biased AA sequences, which 
are depleted in the hydrophobic regions that usually drive 
protein folding. Moreover, they are enriched in hydrophilic 
regions (charged and polar side chains) that prefer to remain 
in contact with water (Kotta-Loizou et al. 2013; van der Lee 
et al. 2014). The high degree of conformational entropy, 
high net charge, and a paucity of hydrophobic segments are 
all characteristics of IDPs/IDPRs (Cornish et al. 2020). As a 
result, IDPs/IDPRs assume a disordered and extended struc-
tural ensemble that is highly adaptable and compatible with 
particular functional modes (Varadi et al. 2014).

Intrinsically Disordered Yet Functional 
Motifs

Structured proteins achieve a global lowest energy state by 
folding, making the structure stable and functional. The 
energy minimization during the folding process leads to the 
burying of hydrophobic AAs inside the protein core instead 
of exposing them in the aqueous milieu. Under physiologi-
cal conditions, structured proteins show small-scale fluctua-
tions. In contrast to structured proteins, most IDPs/IDPRs 
are rich in AAs with charged or polar side chains that are 
not energetically penalized by exposure to the aqueous envi-
ronment. Therefore, they do not need to be hidden inside 
the protein structure (Awile et al. 2010; Babu 2016). IDPs/
IDPRs are thus unstructured due to a high net charge and 
low hydrophobicity. Albeit the unstructured regions have 
only a few hydrophobic AAs, those that do exist have their 
side chains exposed to an aqueous environment and are thus 
primed to be buried.

The energy landscape of IDPs/IDPRs is characterized 
by a large number of local minima with comparatively 
low transition barriers between different conformations 
[see “Abundance of intrinsically disordered proteins (IDPs) 
and protein regions (IDPRs) in membranes” section]. Such 
a wide range of interconverting conformations enable IDPs/
IDPRs to interact with various binding partners. Indeed, one 
IDP/IDPR can act as diverse binders, interacting not only 
with numerous proteins (which can be other IDPs/IDPRs 
or folded proteins/domains) but also with lipid membranes, 
nucleic acids, as well as inorganic ions (Uversky and Dunker 
2010). Conversely, some IDPRs do not interact with any 
biological targets but rather serve as flexible linkers between 
domains that keep them moving throughout functional activ-
ities or as flexible tails that regulate ordered domains (Uver-
sky 2002; Tompa 2005). While IDPs/IDPRs-protein 
binding reactions have been extensively explored, IDPs/
IDPRs–membrane interactions are still underinvestigated.
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The IDPs/IDPRs are frequently involved in high speci-
ficity but low affinity ( ∼ � M range) interactions, allowing 
for fast binding site interchange between several interacting 
partners. Interactions usually involve the folding of many 
IDPs/IDPRs upon their binding to the targets. The folding 
might take place for the entire unstructured protein, sub-
stantial portions, or only a few brief segments (Mittag et al. 
2010). While some IDPs/IDPRs undergo disorder-to-order 
transitions only upon binding to a specific partner, many 
others form the so-called disordered, dynamic, or fuzzy 
complexes in the case when they stay disordered in bound 
state (Tompa and Fuxreiter 2008; Sharma et al. 2015). The 
majority of coupled folding and binding processes feature 
amphipathic motifs that are embedded inside more extensive 
disordered sequences (Dyson and Wright 2002, 2005). IDPs/
IDPRs, like structured proteins, have unique motifs in their 
AAs that allow them to interact with other binding partners 
and become functional. The existence of one or more of the 
three structural elements listed below determines how an 
unfolded protein functions (van der Lee et al. 2014).

Short Linear Motifs (SLiMs)

SLiMs are usually 3–10 contiguous AA residues (Fakhree 
et al. 2019a) found mostly in IDPRs (over 80%) of a protein, 
and they serve as docking sites for protein–protein interac-
tions. A SLiM interaction with a protein domain is some-
times called domain–SLiM interactions (Hugo et al. 2010). 
They form well-defined structures when they bind with their 
partners (Fuxreiter et al. 2007; Strome et al. 2018). SLiMs 
have low affinity for their binding targets [i.e., interaction 
dissociation constant ( Kd) is in 1–150 μM range (Diella et al. 
2008)], allowing them to participate in reversible and short-
lived interactions (Wright and Dyson 2009). Multiple SLiMs 
in the same protein normally compensate for the low binding 
affinity of individual SLiM-mediated interactions (Fig. 2) 
with the target proteins. Consequently, the apparent affinity 
due to multiple SLiMs dramatically increases (Davey et al. 

2012). Due to their small size and low binding affinity, the 
functional importance of the SLiMs is inherently difficult to 
determine by bioinformatic approaches (Davey et al. 2012), 
and much information about these SLiMs, as well as the 
confirmation of their biological activities, are procured from 
experimentation (Neduva and Russell 2005).

Many dynamic networks rely on reversible yet high-avid-
ity SLiM-mediated interactions, such as those dictating cell 
signaling, where several multi-protein complexes quickly 
assemble and disintegrate (Diella et al. 2008). A promi-
nent example of SLiMs in IDPRs is the recognition sites 
for diverse post-translational modifications (PTMs) (Babu 
2016; Lin et al. 2017) like phosphorylation and ubiquity-
lation (Woodsmith et al. 2013). Recently, researchers have 
identified a set of SLiM candidates in AEC2 and integrin 
TM proteins, likely to act in the host cell entry system of the 
novel coronavirus 2 (SARS-COV-2) (Mészáros et al. 2021; 
Kliche et al. 2021). In another example, motif PXXP that 
mediates interaction with the SH3 domain can be considered 
a SLiM (Diella et al. 2008). SLiMs are also involved in pro-
tein targeting to particular cellular compartments. A couple 
of examples are C-terminally located motifs such as KDEL 
and KKXX. As the KDEL motif causes the disordered pro-
tein to reside within the ER lumen, the KKXX promotes 
cytoplasmic or TM localization (Stornaiuolo et al. 2003).

Molecular Recognition Features (MoRFs)

MoRFs are longer interaction motif than SLiMs (usu-
ally 10–70 AAs), and they are also located within IDPs/
IDPRs (van der Lee et al. 2014). In contrast to SLiMs, 
MoRFs are not described based on AA sequences but 
as interaction-prone unfolded regions that can generate 
secondary structure when bound. They can be divided 
into three categories, based on the secondary structure 
that they adopt when they bind to cellular targets, i.e., 
�-MoRF (Fig. 2), �-MoRF, and i-MoRFs, which repre-
sent alpha helices, beta strands, and irregular structures, 

Fig. 2  Motif/domain structures of Epsin1. This protein contains an 
ordered domain (i.e., ENTH domain) and a bulky disordered region 
(i.e., IDPD). The ENTH domain comprises a small disordered seg-
ment (i.e., MoRF motif), which acquires an �-helical secondary 

structure upon binding to the membrane. The IDPD, which remains 
unstructured in solution, contains multiple SLiMs that attach to the 
N-terminal domain of clathrin and �-appendage domain of AP2 pro-
tein. Reproduced from Kalthoff et al. (2002a)
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respectively (van der Lee et al. 2014). Alpha helices are 
the most common membrane-interacting structure adopted 
upon binding, undergoing a disorder-to-order transition. 
As MoRFs name implies, they are thought to play a role 
in molecular recognition, the first step in interactions. 
Further, studies reveal that the unique AA composition, 
structural and physicochemical characteristics of these 
interfaces play a central role in the interaction between 
MoRFs and their binding partners  (Vacic et al. 2007). 
Moreover, similar to SLiMs, MoRFs usually engage with 
their molecular targets with a modest affinity but high 
specificity. Many IDPs/IDPRs go through coupled folding 
and binding steps after recognizing their binding partners, 
resulting in stable secondary structures (Dyson and Wright 
2002). According to MoRFs functional analysis, around 
20% of MoRF-containing proteins are TM (Mohan et al. 
2006). A typical example of a MoRF binding domain is 
the N-terminal IDPR of p53 protein, which changes from 
disordered to an �-helical form (40–60 AAs) by interacting 
with Mdm2 protein (Xue et al. 1834). Membrane-interact-
ing MoRFs are discussed in detail in “Coupled folding and 
binding mechanism” section.

Intrinsically Disordered Protein Domains (IDPDs)

Most protein domains are structured, but some can be 
entirely or largely unstructured on membranes, excluding 
the formation of �-helices upon membrane binding. Such 
disordered domains are usually referred to as IDPDs. The 
IDPDs often comprise bulky, yet flexible parts of the IDPs/
IDPRs (Fig. 2). The unstructured state of IDPDs is what 
makes them functional (van der Lee et al. 2014). Intrigu-
ingly, IDPDs are observed in many proteins (see Table 1) 
involved in membrane trafficking, suggesting that IDPD-
containing proteins play a role in remodeling of cellular 
membranes that is still poorly understood. The action of 
IDPDs (i.e., bulky IDPRs) with the membrane is further 
discussed in “Entropic effects” section. Henceforth, we will 
use the term IDPDs in place of bulky IDPRs.

Interestingly, a single IDPR-containing protein can 
contain all the motifs as mentioned above multiple times 
(see the example of Epsin1 protein in Fig. 2). SLiMs/
MoRFs can both be located within IDPDs. Furthermore, 
SLiMs themselves can be seen in MoRFs (O’Shea et al. 
2017). The existence of multiple motifs can function 

Table 1  The potential involvement of intrinsically disordered protein domains (IDPDs) in membrane remodeling

CT C-terminal, NT N-terminal, CCP Clathrin-coated pit, EGFR Epidermal growth factor receptor

Protein % IDPD (location) Membrane interaction Binding proteins Protein function References

Epsin1 78 (CT) ENTH domain Cargo, AP2, clathrin CCP Schmid and McMahon (2007) 
and Pietrosemoli et al. 
(2013)

AP180 28 (CT) ANTH domain Cargo, AP2, clathrin CCP Schmid and McMahon (2007) 
and Pietrosemoli et al. 
(2013)

Amphiphysin1 60 (middle) N-BAR domain AP2, clathrin, dynamin CCP Schmid and McMahon (2007) 
and Pietrosemoli et al. 
(2013)

SNX9 27 (middle) PX-BAR domain Dynamin, AP2, clathrin CCP Schmid and McMahon (2007) 
and Pietrosemoli et al. 
(2013)

Endophilin A1 33 (middle) N-BAR domain Dynamin, synaptojanin CCP Pietrosemoli et al. (2013) and 
Ambroso et al. (2014)

FCHo1 48 (middle) F-BAR domain Eps15, intersectin CCP Henne et al. (2010)
FBP17 11 (middle) F-BAR domain SNX2 EGFR endocytosis Tsujita et al. (2006) and Su 

et al. (2020)
Intersectin1 28 (middle) PH, C2 domains AP2, clathrin, Eps15, 

FCHo1/2
CCP Schmid and McMahon (2007) 

and McMahon and Boucrot 
(2011)

Auxilin 45 (middle) – Hsc70, dynamin, clathrin Clathrin uncoating Schmid and McMahon (2007) 
and Pietrosemoli et al. 
(2013)

SEC16A 71 (NT/CT) – SEC13/31, SEC23/24, Sar1 COPII route Whittle and Schwartz (2010) 
and Pietrosemoli et al. 
(2013)

SEC31A 34 (middle) – SEC13, SEC23/24, SEC16 COPII route Fath et al. (2007) and Piet-
rosemoli et al. (2013)
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synergistically to enhance the binding affinity of IDPRs 
for their target partners. While short IDPRs containing 
individual SLiMs/MoRFs may act as linkers, longer IDPs/
IDPRs can have multiple SLiMs/MoRFs, which may serve 
as a scaffold for generating large membrane curvature. 
For example, the accessory protein Epsin1 dynamically 
interacts with clathrin and adopter protein AP2 through 
multiple SLiMs that are located in the IDPD during clath-
rin-mediated endocytosis (CME) (Kalthoff et al. 2002a). 
The ordered ENTH domain of this protein contains an �
-MoRF motif that binds to the membrane.

IDPs/IDPRs‑Membrane Interactions: 
A Biophysical Study

The interplay between proteins and lipid membranes is 
complex while determining the biological membrane 
properties. The studies reveal that proteins precisely gen-
erate the large membrane curvature, whereas they also 
can sense the curvature and bind to the specific geometri-
cal cues (Has and Das 2021). In principle, there should be 
more curvature sensors than inducers because some sen-
sors that are too flexible to bend the membrane may not 
be able to drive the curvature (Zimmerberg and Kozlov 
2006). In reality, there are far fewer proteins that have 
been demonstrated to sense membrane curvature than 
those that deform membranes  (Antonny 2011). It has 
been proposed that the same protein can induce and sense 
curvature under varying concentration regimes (Suetsugu 
and Gautreau 2012; Simunovic et al. 2018). Nonetheless, 
it remains unclear whether all proteins that induce cur-
vature are, by default, curvature sensors (Madsen et al. 
2010). This complex relationship between lipid mem-
brane and proteins leads to the organization of proteins by 
the membrane and vice-versa. It is well known that pro-
tein–membrane interaction is primarily driven by the par-
titioning of hydrophobic residues into the membrane and 
also by electrostatic interactions between charged protein 
residues and polar headgroups of the lipids (Seelig 2004; 
White and Wimley 1998, 1999). It is not surprising that 
electrostatic interactions can be quite effective in guiding 
IDPs/IDPRs to their target membrane surfaces. In addi-
tion, environmental factors such as pH, salts, electrolytes, 
temperature, and other critical chemicals can influence 
the interaction between membrane and proteins. The pres-
ence of protein functional motifs/domains (MoRFs and/or 
IDPDs), protein intrinsic shape and surface density, lipid 
composition, packing, and membrane curvature all play 
a role in how IDPs/IDPRs interact with the membranes.

Coupled Folding and Binding Mechanism

A characteristic hallmark of IDPs/IDPRs function is the 
transition from an unfolded state in the solution to a more 
ordered form inside the membranes. The interaction of a 
protein with its binding partner results in a conformational 
change in the protein, known as the induced fit (IF) model. 
In contrast, several systems follow the conformational selec-
tion (CS) paradigm in which the binding partner chooses the 
suitable conformation (prefolded state) from an ensemble 
as a protein binds to its target (Berlow et al. 2015; Cornish 
et al. 2020). In general, conformational selection is expected 
in ordered proteins (Kim et al. 2007; Pozzi et al. 2012; Vogt 
et al. 2014) and appears to be comparatively rare for IDPs/
IDPRs. Perhaps because the preferred model is determined 
by inherent secondary structure propensity (Arai et al. 2015), 
and IDPs/IDPRs in their free state often lack a very stable 
secondary structure.

The membrane protein folding event is investigated by 
molecular interactions between protein and lipid moieties. 
The energetics involved with the partitioning of AA resi-
dues from an aqueous solution into membrane interfacial 
region [thickness around 1.5 nm, this region comprises 
lipid headgroups and considerable bound water  (Bowie 
2005)] is a major driving force behind the IDPs/IDPRs 
folding. An essential component of this energetics is the 
reduction in free energy per AA residue at the membrane 
interface, which causes secondary structures to form. Here, 
the required energy is also termed partitioning energy, and 
it is provided by hydrophobic side chains of AAs (Wim-
ley and White 1996). Often folding occurs when AAs are 
partitioned into membranes, resulting in the development 
of the secondary structures (mostly alpha helices) oriented 
parallel to membrane plane [Fig. 3A(a, b)]. This is known 
as the partitioning-folding coupling process (White et al. 
2001). A question arises, why do AAs fold and remain in the 
membrane? Soluble IDPs/IDPRs form a continuum struc-
ture with various shapes, from random coil-like chains to 
premolten to molten globules (Uversky et al. 2012). In the 
case of coil-like conformation, it will have a few hydrogen-
bonded peptide bonds that are thermodynamically unstable 
in the hydrophobic region of the membrane. The membrane-
embedded IDPs/IDPRs will have to be minimally organized 
into backbone hydrogen bonds internally, most likely in an 
�-helical secondary structure. The helical structure in the 
bilayer region resembles soluble PMG or MG (Kjaergaard 
2015).

The helical structure can span the entire bilayer once or 
multiple times (i.e., TM proteins). Alternatively, it can only 
be embedded transiently into one of the membrane monolay-
ers (i.e., peripheral membrane proteins). The �-helical motifs 
composed primarily of non-polar and hydrophobic resi-
dues have generally traversed the membrane [Fig. 3A(b)], 
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whereas helical motifs containing both hydrophobic and 
hydrophilic residues [known as amphipathic �-helix (AH)] 
penetrate the bilayer region shallowly  (Campelo et  al. 
2008; Mahata and Das 2017; Li 2018) [Fig. 3A(a)]. Vari-
ous parameters, including the size of those residues’ side 
chains, their placement relative to the interface, and their 
helical periodicity, all influence the finer control of bind-
ing specificity (Antonny 2011). In the case of AHs inser-
tion, hydrophobic and polar/charged residues are partitioned 
across the two faces of the helix. Membrane-inserting AHs 
lie parallel to the membrane, where their hydrophobic and 
polar/charged faces are respectively hidden and exposed to 
the cytosol and lipid headgroups (Giménez-Andrés et al. 
2018), as shown in Fig. 3A(a). Here, electrostatic and hydro-
phobic interactions may play a role in protein binding to the 
membrane. Hydrophobic segments can penetrate the lipid 
bilayer, whereas polar residues can force lipid headgroups 
apart. Membrane bending can occur when anionic lipids 
interact with positively charged side chains on the polar face 
of the AH. On the other hand, the AHs consisting mainly 
of negatively charged residues cannot effectively interact 
with a flat membrane. AHs with negatively charged or even 
without charged residues are unable to induce the curvature, 
and such helices require a membrane to be already curved to 
insert. In this case, lipid headgroups are stretched apart, and 
thus the interaction is primarily driven by the hydrophobic 
effect (Drin et al. 2007; Drin and Antonny 2010; Gallop 
et al. 2006; Mesmin et al. 2007). From here, we can con-
clude that proteins can induce as well as sense the membrane 
curvature through their AH motifs [Fig. 3B(a,b)].

The amount of curvature increase is determined by 
two factors, i.e., the size of inserted AH and surface 

density of IDPs/IDPRs. A typical example of a disorder-
to-order transition that senses and generates the curva-
ture occurs in ∼ 100-residues N-terminal of � S [an IDP 
in solution (Jensen et al. 2011), associated with Parkin-
son’s disease] (Davidson et al. 1998). This protein can 
integrate two separate membrane-binding AHs connected 
through a non-helical linker, making it potentially able 
to bridge two membranes in close proximity (Dikiy and 
Eliezer 2012). The binding of � S with negatively charged 
membrane results in the formation of an N-terminal 
AH, which induces the curvature by changing the mem-
brane surface area of the outer monolayer when an AH 
is inserted into the outer membrane monolayer (Braun 
et al. 2012). Note that an N-terminal AH is believed to be 
inserted into the membrane like a wedge, thereby inducing 
membrane bending (Peter et al. 2004). In-vitro investiga-
tions with model lipid vesicles have proven the transition 
to the alpha-helical state and the resultant generation of 
curvature (Ferreon et al. 2009; Varkey et al. 2010; Braun 
et al. 2012, 2014). However, the curvature sensitivity of �
S (Jensen et al. 2011) is more pronounced compared to its 
curvature-inducing potency [Fig. 3B(b)]. The binding of 
� S on a flat membrane with sparse and shallow packing 
defects is hampered by a poorly developed hydrophobic 
face having multiple polar threonine residues, resulting in 
curvature sensitivity and preferred binding to negatively 
charged membranes (Pranke et al. 2011). If the membrane 
has no net charge, � S interacts weakly with the mem-
brane. Due to the lack of a requirement for lipids binding 
specificity or protein structural features, the authors (Jiang 
et al. 2013) speculate that � S may induce curvature by 

Fig. 3  IDPR folding into alpha helices. A By folding-upon-binding 
transition, membrane-interacting IDPRs adopt amphipathic �-heli-
cal (a), or only �-helical structures (b). To find a better amphipathic 
orientation, AH is rotated 90◦ along its longitudinal axis relative to 
its original conformation (leftmost). Reproduced from Cornish et al. 
(2020). Alpha helices are formed if helices are made of non-polar 
hydrophobic residues (b). Once helices are formed, they change the 
orientation and insert into the hydrophobic core of the membrane, 
referred to as TM helices. Next, TM helices are assembled into func-
tional structures. The non-membrane part of the protein attached 
to the helix has not been shown in the schematic. Reproduced 

from White et al. (2001). B Lipid-binding mechanisms for AHs that 
sense and induce membrane curvature. (a) It is believed that proteins 
involved in curvature generation can bind to flat membranes by using 
hydrophobic and electrostatic interactions (specifically PIP2  lipid for 
Epsin1). In high protein:lipid (P:L) ratios, the wedge effect, and the 
bilayer-couple mechanism cause curvature. (b) Some motifs, such as 
ALPS, require an already bent membrane for binding, as membrane 
insertion is driven only by hydrophobic interactions. In another exam-
ple, the binding of � S with its small and poorly hydrophobic residues 
and zwitterionic polar face is dependent on curvature and anionic 
lipids. Reproduced from Drin and Antonny (2010)
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protein–protein crowding mechanism (discussed in 
“Molecular crowding” section).

The curvature-sensing/inducing ability of many proteins 
and protein domains, such as BAR domains of Amph, Endo, 
PICK1, and MIM/ABBA  (Peter et al. 2004; Lee et al. 2007; 
Hatzakis et al. 2009; Bhatia et al. 2009; Sorre et al. 2012; 
Herlo et al. 2018), epsin N-terminal homology (ENTH) 
domain of Epsin  (Ford et  al. 2002), amphipathic lipid 
packing sensor (ALPS) motifs of ArfGAP1 (Bigay et al. 
2005) and Golgin GMAP-210 (Drin et al. 2008), ANTH 
(AP180 N-terminal homology) domain of CALM (Miller 
et al. 2015), small GTPases Arf1 and Sar1 (Lee et al. 2005; 
Lundmark et al. 2008; Beck et al. 2008), and Annexin B12 
(AnxB12) (Fischer et al. 2007; Jensen et al. 2011) have been 
identified by their N-terminal AHs. In the case of BARs, 
these domains are isolated from the full-length proteins 
and shown to fold their membrane inserting IDPRs (i.e., �
-MoRFs) into AH motifs in the presence of lipids. Although 
BAR domains are usually well structured even when iso-
lated in aqueous solutions, the presence of an AH coordi-
nates to amplify the curvature sensing and induction (Peter 
et al. 2004; Gallop et al. 2006). However, the recent study 
shows that the presence of N-terminal AH of Endo has no 
significant contribution to its molecular curvature driv-
ing potency (Chen et al. 2016). Similarly, Epsin1 (clath-
rin pathway) capacity to induce large curvature through 
the ENTH domain by inserting its N-terminal AH (called 
H0) is doubted, and it can drive the curvature when bound 
to high surface coverage (discussed in “Surface density of 
IDPs/IDPRs on membrane surface” section) (Stachowiak 
et al. 2012; Snead et al. 2017; Busch et al. 2015). Further-
more, membrane curvature-sensing properties of Epsin1 
and ArfGAP1/GMAP-210 arise, respectively, from an AH-
containing structured ENTH domain and disordered ALPS 
motifs. It has been shown that the ALPS senses curvature by 
forming a stable AH upon binding to the membrane (Bigay 
et al. 2005; Drin et al. 2007). Note that membrane inser-
tion in the case of ALPS is driven by only the hydrophobic 
effect [Fig. 3B(b)], as ALPS does not have charged resi-
dues in the hydrophilic region (Drin and Antonny 2010). 
In another example, Complexin (CPX) protein senses the 
curvature of synaptic vesicle (SV) membranes by tandem 
motifs found in C-terminal domain (CTD), i.e., a C-termi-
nal (CT) and an adjacent AH motifs (Snead et al. 2014). 
Although CPX is thought to bind SV membranes rather than 
other membranes, its molecular mechanism remains largely 
unclear.

Besides AHs, proteins with disordered stretches of 
hydrophobic motifs are also capable of forming short 
wedged-shaped hydrophobic loops (HLs) in the membrane, 
which can cause the membrane to bend [see e.g., Has and 
Das (2021)]. The HLs are also expected to sense defects 
between lipid headgroups, and are more prevalent on 

highly curved membrane surfaces. Proteins with HLs such 
as PACSIN2  (Wang et  al. 2009; Plomann et  al. 2010), 
EHD2 (Daumke et al. 2007), Dynamin (Ramachandran and 
Schmid 2008; Ramachandran et al. 2009), FAPP (Cao et al. 
2009; Lenoir et al. 2010), and Synaptotagmin1 (Syt1) (Mar-
tens et al. 2007) have shown their ability to sense/derive 
the membrane curvature. Many TM proteins are believed to 
sense/induce the membrane curvature by inserting hydropho-
bic helical segments, e.g., potassium channel KvAP (Aimon 
et al. 2014). Another example is M2 TM protein of influ-
enza causes membrane scission by deep insertion of its AH 
motif (Martyna et al. 2017). Furthermore, some TM proteins 
such as reticulons, DP1/Yop1p, and Caveolins sense/induce 
the curvature by the insertion of short wedged-shaped �-heli-
cal hairpins (Shibata et al. 2009) and AH motif (Brady et al. 
2015; Breeze et al. 2016; Wang et al. 2021).

The capability of IDPs/IDPRs to adopt the �-helical struc-
ture upon binding membranes has also been linked with dis-
ease. The hIAPP (Pannuzzo et al. 2013b) and A � (Pannuzzo 
et al. 2013a), respectively, are involved in developing type 2 
diabetes and Alzheimer’s disease. It has been claimed that 
the interaction of these proteins with the membrane leads 
to the formation and aggregation of membrane-embedded �
-helical peptides, which is suggested to be hazardous.

Many IDPRs also sense the curvature by binding to the 
membranes while remaining unfolded and interacting 
with charged lipid headgroups, covalently linked mem-
brane lipids, or through ionic bridges. Examples include 
Annexin family proteins that bind to phosphatidylserine 
(PS)-rich membrane bridged by Ca2+  (Moreno-Pescador 
et al. 2019), Rhodopsin-like G protein-coupled receptors 
(GPCRs) (Escribá et al. 2007), Ras proteins (Larsen et al. 
2015; Liang et al. 2019), and MARCKS-ED (Morton et al. 
2013) bind to the membrane through lipid anchors. GPCRs 
also contain 7 TM domains and an AH (Huber et al. 2004). 
Membrane curvature sensing/generation due to the insertion 
of hydrophobic/amphipathic helical motifs for a plethora of 
TM and peripheral membrane proteins have been extensively 
reviewed recently (Has and Das 2021).

Membrane Curvature Modulation by Scaffolding

Many proteins, through the scaffolding mechanism, gener-
ate the large curvature either by their intrinsically curved 
shape or oligomerization (Has and Das 2021). They are also 
thought to sense the curvature through a scaffolding path-
way in which a membrane having large curvature attracts 
such protein domains with matching curvature (Peter et al. 
2004). These proteins induce forces capable of deforming 
a flat membrane, resulting in membrane fission or fusion in 
extreme cases (Snead et al. 2017; Snead and Eliezer 2019). 
To locally induce membrane curvature, the protein–mem-
brane binding energy must be greater than the membrane 
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bending energy (Zimmerberg and Kozlov 2006). The well-
known examples of curvature-inducing proteins can be seen 
in the process of CME, where N-BAR domain-containing 
proteins Amph and Endo, with a large curved surface and 
strong affinity towards membrane surface (due to elec-
trostatic interactions), facilitate the scaffold for curvature 
generation (Chernomordik and Kozlov 2003; Zimmerberg 
and Kozlov 2006). The bulky C-terminal domains remain 
unfolded (C-terminal IDPD) in physiological conditions for 
these proteins. Many scaffold-forming proteins oligomer-
ize to create massive rigid structures and thus can enhance 
curvature generation, for instance, BAR domains (Peter et al. 
2004; McDonald and Gould 2016), clathrin proteins (Takei 
et al. 1999), Dynamins (Roux et al. 2010), ESCRT machin-
ery (Hurley and Hanson 2010), and the bacterial tubulin 
FtsZ (Sundararajan and Goley 2017). Note that clathrin 
induces the membrane curvature by indirect scaffolding, 
where membrane and clathrin are bridged by accessory/
adopter proteins such as Epsin and AP180/CALM. Here, the 
structured ANTH domain of AP180 interacts with negatively 
charged membrane, whereas disordered CTD interacts with 
the N-terminal domain of clathrin heavy chain (Zhuo et al. 
2010). As a result, AP180 appears to be a fuzzy complex, a 
disordered protein even when linked to a partner (Tompa 
and Fuxreiter 2008).

Membrane curvature modulation can occur due to the 
cooperated actions of structured and unstructured regions 
of membrane proteins. Accordingly, the curvature is driven 
by a combination of asymmetric binding of a partly struc-
tured scaffold protein or by inserting a partially structured 
protein into one of the bilayer monolayers and introducing 
lateral pressure through the unstructured, solvent-exposed 
segment (Fakhree et al. 2019a). For example, the cooperative 
action between structured and unstructured regions can be 
seen in curved BAR domain scaffold protein and � S that is 
partially inserted into the membrane through the formation 
of an AH (Zeno et al. 2018; Fakhree et al. 2019b; Snead and 
Eliezer 2019).

Surface Density of IDPs/IDPRs on Membrane Surface

Molecular Crowding

Proteins not only generate curvature by the insertion of 
hydrophobic residues or scaffolding mechanisms but also 
can modulate the curvature at large or small membrane 
surface coverage. The fractional coverage can be com-
puted by the product of the projected area of proteins on 
the membrane surface and the number of interacting pro-
teins per unit membrane area (Zeno et al. 2019a). In the 
case of large surface coverage (or surface density), collision 
among the crowded adsorbed or anchored proteins leads to 
the generation of steric pressure (analogous to compressed 

gas) (Carnahan and Starling 1969; Carignano and Szleifer 
1995), which provides an efficient force for expanding the 
membrane surface (Montesano et al. 2001; Scheve et al. 
2013). Unless equally crowded molecules counter this pres-
sure on the opposite membrane surface, the membrane will 
bend towards the more crowded surface, and this is com-
monly known as a molecular crowding (MC) mechanism 
(Fig. 4A), which happens at very large surface density (Sta-
chowiak et al. 2012; Snead et al. 2017). For asymmetric 
protein distribution, increasing the curvature of the mem-
brane expands the area of the outer leaflet of the bilayer, 
thus lowering the pressure. The crowding mechanism has 
been studied for ordered and disordered domains (IDPDs). 
This mechanism for disordered domains has been discussed 
in “Entropic effects” section.

The curvature induction by a few ordered domains, 
including Epsin ENTH and AP180 ANTH, was investigated 
almost a decade ago (Stachowiak et al. 2012). The experi-
mental approach confirmed that the ENTH domain with and 
without AH had no significant role in membrane curvature 
generation. However, curvature sensitivity was attributed 
to AH insertion. Moreover, no evidence of ENTH domain 
oligomerization was observed (Stachowiak et al. 2012), con-
trary to past reported data (Yoon et al. 2010). As a result, 
it may be argued that the ENTH domain is responsible for 
membrane curvature via the MC mechanism. At high sur-
face coverage, the membrane deformation activity was also 
described by crowding of helix lacking ANTH domain (Sta-
chowiak et al. 2012).

Entropic Effects

As discussed, through their intrinsic curved shape or AHs/
HLs motifs, most of the proteins directly interact/bind to the 
membrane and sense/deform the curvature. Both of these 
mechanisms are dependent on the structural features of pro-
teins. These structured domains often account for only a 
small portion of the mass of protein molecules that con-
tain them (Busch et al. 2015). A substantial region of the 
same protein molecules that do not directly interact with 
the membrane remains disordered in solution (Dyson and 
Wright 2005). Thus, the folding transition has not been 
proven to occur in these disordered domains. There are 
several examples of accessory/adopter proteins in the CME 
pathway. The membrane-interacting regions of adopters are 
composed of structural motifs/domains (e.g., AH motifs and 
BAR domains). The other part of these proteins is mem-
brane non-interacting domains that interact with clathrin, 
and another component of the coat, typically CTDs, are 
often IDPDs [see “Intrinsically disordered protein domains 
(IDPDs)” section and also Table 1] (Kalthoff et al. 2002b; 
Zhuo et al. 2010). Specifically, Epsin1 protein consists of an 
ENTH domain followed by an IDPD ( > 400AAs) (Kalthoff 



247Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered…

1 3

et al. 2002b). Similarly, AP180/CALM consists of an ANTH 
domain plus a substantial disordered domain ( > 500AAs

) (Kalthoff et al. 2002b; Zhuo et al. 2010). Moreover, BAR 
domains are also typically associated with extensive disor-
dered regions. For instance, Amph and FCHo1 have a cres-
cent-shaped BAR domain and an IDPD ( ∼ 400AAs) (Piet-
rosemoli et al. 2013; Zeno et al. 2018). Similarly, Sorting 
Nexin 9 (SNX9) contains a BAR domain and an IDPD of 
more than 100 AAs (Lundmark and Carlsson 2009). Finally, 
clathrin-case disassembly Auxilin protein contains more 
than 260 disordered AAs (Scheele et al. 2003). Generally 
speaking, IDPDs are exceptionally high in the CME path-
way, where it has been recently reported that 30% of pro-
teins contain IDPDs of > 100AAs . It includes the adaptors 
discussed above as well as other well-studied proteins such 
as Dynamin and Eps15 (Pietrosemoli et al. 2013). IDPDs 
are also seen in intracellular trafficking proteins. SEC16, 
for example, contains an IDPD of > 1000AAs (Fath et al. 
2007), which is assumed to be critical for capturing COPII 
components across a long distance. In addition, COPII coat 
component SEC31 has an IDPD of over 400 AAs that may 
serve as a binding site for SEC23/24 complex (Fath et al. 
2007).

Curvature-sensing/induction properties of structured 
domains have been extensively studied previously (Peter 
et al. 2004; Bhatia et al. 2009). However, the unstructured 

domains have been disregarded in these studies, owing to the 
widespread belief that curvature sensing/induction necessi-
tates specific structural motifs. As a result of new findings of 
biophysical roles for disordered domains (Busch et al. 2015; 
Snead et al. 2017; Zeno et al. 2018, 2019b), it has become 
even more critical to reconsider the mechanisms behind 
membrane remodeling in trafficking routes. Recently, it has 
been experimentally demonstrated that the IDPDs can poten-
tially drive/sense the membrane curvature through a com-
bination of entropic and electrostatic mechanisms (Busch 
et al. 2015; Zeno et al. 2018). The polymer-like behavior 
of IDPD facilitates a wide range of conformational diver-
sity. When an IDPD is tethered onto the membrane surface, 
its chain entropy is considerably diminished, as the surface 
restricts the number of IDPD conformations (Lipowsky 
1997; Nowicki et al. 2009). However, the geometric restric-
tion is alleviated, and the IDPDs conformational entropy 
increases when the surface bends away from the protein and 
takes on a convex shape. Increasing chain entropy thus leads 
to IDPDs preferentially binding to curved surfaces (Fig. 4C) 
rather than planar surfaces (Zeno et al. 2018, 2019b).

At the large density, proteins become crowded on the 
membrane surface, and lateral steric pressure is gener-
ated between neighboring IDPDs. The membrane needs to 
be bent away from densely crowded proteins to alleviate 
this steric effect, which produces a larger average distance 

Fig. 4  Schematic illustrations of crowding and entropic/electrostatic 
mechanisms by which proteins can induce/sense the membrane cur-
vature. A Membrane bending by ordered protein domains. B Long 
IDPRs, i.e., IDPDs, drive membrane curvature. IDPDs crowding on 
membrane surfaces is more efficient than ordered domains of similar 
molecular weight. Reproduced from  Snead and Stachowiak (2018). 
C Illustration of entropically driven curvature sensing by IDPDs. D 
Representing the electrostatically driven curvature sensing by IDPDs. 
Reproduced from  Zeno et  al. (2019b). E Schematics of Epsin1 and 
its domains employed for studying membrane curvature sensing 

(reproduced from Zeno et  al. (2018)). Full-length Epsin1 comprises 
an ordered domain ENTH and an IDPD at the C-terminus  (a). Cur-
vature sensitivity of IDPD (b) and ENTH (c) are studied in isolation. 
In the case of IDPD, a lipid-binding engineered His-tag is attached 
near the N-terminal, represented by His-EpsinCTD. His-tag replaces 
the AH to investigate the ability of mutant ENTH (His-ΔENTH) in 
curvature sensing and induction (d). The curvature-sensing ability is 
found in the order of FL-Epsin > His-EpsinCTD > ENTH > His-Δ
ENTH (insensitive) (Zeno et al. 2018)
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between them (Stachowiak et al. 2010, 2012), thus generat-
ing the curvature, as shown in Fig. 4B. A significant advan-
tage of IDPDs is that their expanded conformations make 
them effective curvature inducers (Busch et al. 2015; Snead 
et al. 2017). IDPDs, which have much greater hydrodynamic 
radii than structured domains of identical molecular weight, 
are thought to contribute the most to membrane crowding 
because they occupy the most area on the membrane surface 
(Fig. 4A, B). The study reveals that the density of the protein 
in solution required to induce substantial membrane curva-
ture is inversely proportional to IDPD’s projected area (Zeno 
et al. 2019a). The structured Epsin1 ENTH domain occu-
pies a membrane surface area of 16  nm2 (Boucrot et al. 
2012), while the disordered CTDs of Epsin and AP180 are 
projected to occupy 70 and 90  nm2, respectively, based on 
analytical modeling (Hofmann et al. 2012) as well as exper-
iments (Kalthoff et al. 2002b). The projected area of the 
disordered domain of Amph is estimated as 75  nm2, while 
this area for N-BAR is approximately 24  nm2 per monomer, 
based on its crystal structure (Campelo et al. 2008; Zeno 
et al. 2018). We can summarize that IDPDs cause higher 
steric pressure, which causes a stronger membrane bending 
per molecule than ordered protein domains (see Fig. 4B).

In addition to entropic effects, a second mechanism that 
can sense/drive membrane curvature may also arise from 
electrostatic effects (Fig. 4D), especially when there is a sub-
stantial net negative charge in the disordered regions (Zeno 
et al. 2019b). Such IDPDs lead to a strong repulsive elec-
trostatic interaction with a membrane containing anionic 
lipids (Sun and Drubin 2012). Average separation between 
IDPDs and the membrane surface increases when membrane 
curvature is large enough (convex shape), thus decreasing 
in repulsive interaction. It is believed that both entropic and 
electrostatic mechanisms work together to enhance the over-
all curvature sensitivity. For instance, adding anionic lipids 
to the membrane increases the overall curvature sensitivity 
of AP180CTD (Zeno et al. 2019b).

To investigate the curvature sensitivity of disordered 
CTDs (i.e., IDPDs) in isolation, the membrane-binding 
structured regions are truncated. Accordingly, it is con-
cluded that the CTDs contain no significant motif for mem-
brane binding. An N-terminal hexahistidine-tag (His-tag, 
for brevity) is added to protein CTDs for binding to the 
membrane containing nickel-chelating lipid DGS-Ni-NTA 
(1,2-dioleoyl-sn-glycero-3[N-(5-amino-1-carboxypentyl)
iminodiacetic acid]succinyl(nickel salt)) (Busch et al. 2015). 
Nickel nitrilotriacetic acid (Ni-NTA) headgroups of chelat-
ing lipid form a strong complex with His-tag to facilitate 
efficient membrane recruitment (Nye and Groves 2008). 
Importantly, His-tagged IDPDs do not interact to membranes 
lacking DGS-NTA lipids, suggesting that additional motifs 
or residues within the disordered proteins do not signifi-
cantly interact with membranes (Zeno et al. 2018). Recently, 

a few His-tagged IDPDs (e.g., AP180CTD, EpsinCTD, and 
AmphCTD) have been shown to sense membrane curvature 
through entropic mechanism at comparable levels as ordered 
curvature-sensing domains. They can synergistically aug-
ment the sensitivity of these domains (Busch et al. 2015; 
Zeno et al. 2018; Zeno et al. 2019a; Zeno et al. 2019b; Zeno 
et al. 2021). For example, full-length Amphiphysin1 (FL-
Amph) and Epsin1 (FL-Epsin) sense membrane curvature 
more effectively than their structured domains, N-BAR and 
ENTH, respectively (Zeno et al. 2018). Even CTD of Epsin1 
has more sensitivity than the ordered ENTH domain. Fig-
ure 4E exhibits the cartoons of FL-Epsin and its domains 
that have been used to investigate the curvature sensitivity. 
Table 2 summarizes the curvature-sensing/induction mecha-
nism by some ordered/disordered protein domains.

From the above discussion, we can conclude that the 
extent of each mechanism’s contribution to driving curva-
ture is determined by the sizes of structured and unstructured 
domains, and protein surface density. The latter is deter-
mined by the bulk concentration and membrane affinity.

IDPs/IDPRs and Membrane Lipid Composition

It is thought that the lipid composition in a membrane can 
affect its physiological functions owing to the possibility of 
accommodating many different types of phospholipids in a 
bilayer. The major lipids found in eukaryotic membranes are 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), 
sphingomyelin (SM), and PS. Additionally, two species are 
less abundant, phosphatidylinositol (PI) and phosphatidic 
acid (PA). Also, PIs are not only a source of phosphati-
dylinositols but also of phosphoinositides, a phosphorylated-
phosphatidylinositol derivative which is known as phos-
phatidylinositol phosphate (PIP). It is important to note that 
lipid composition is different between cellular organelles and 
between their outer and inner monolayers. The PC and SM 
are mainly found on the cell’s outer membrane, whereas the 
PE is primarily found on the inner leaflet. Meanwhile, PS 
and PI are located at the inner PM monolayer (Alberts et al. 
2002; Suetsugu et al. 2014).

These differences are introduced and maintained by 
membrane proteins at two different levels. A primary 
mechanism is the asymmetric incorporation of newly syn-
thesized lipids in the bilayer of lipids. Flippases are nota-
ble proteins that contribute to maintaining asymmetry of 
the lipid composition (Devaux et al. 2008; Hankins et al. 
2015). They are the enzymes that cause an asymmetric 
distribution of lipids between inner and outer membrane 
monolayers by transporting the lipid from extracellular to 
cytosolic leaflet. IDPRs are found in flippases and serve to 
connect the structured regions. Targeting the unstructured 
segment of a flippase (i.e., PglK) has been found to dimin-
ish its flipflop action (Perez et al. 2017). This suggests that 
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the unstructured portions of these proteins are required for 
their function by potentially allowing the structured com-
ponents of the enzyme to move around freely. The second 
mechanism involves the modification of lipid headgroups 
on the membrane surface. For example, Phosphatidylino-
sitol phosphate kinases (PIPKs) are kinase proteins that 
phosphorylate phosphatidylinositol lipids on the mem-
brane surface. A specificity loop in PIPKs consists of an 
unstructured region that dictates the PIPK substrate specific-
ity (Muftuoglu et al. 2016). The PIP can be either PI(3, 4)P2 , 
PI(4, 5)P2 , or PI(3, 4, 5)P3 , depending on the PIPK class and 
type (Muftuoglu et al. 2016). Each PIP serves as a trigger 
for a specific protein–membrane interaction. For instance, 
PI(3, 5)P2 is a specialized cue for early endosomes, whereas 
PI(4, 5)P2 is a cue for PM inner monolayer (Muftuoglu et al. 
2016). Among all PIPs, PI(4, 5)P2 or simply PIP2 is the most 
abundant phosphoinositide, accounting for 0.5–1% of total 
lipids, while the levels of other phosphoinositides are signifi-
cantly lower (Suetsugu et al. 2014). PIP2 is thought to play 
a key role in many cellular processes such as cytoskeleton 
remodeling, endocytosis, and membrane deformation, all of 
which are triggered by the interaction of PM with particular 
cytosolic IDPRs (Di Paolo and De Camilli 2006; Vicinanza 
et al. 2008; Rusinova et al. 2013).

The electrostatic characteristics of the membrane very 
much depend on the distribution of PS and PIP. PS can 
operate as a partial alternative for PIPs in membranes due 
to its electrostatic nature, especially when interacting with 
cationic motifs of IDPs and IDPR-containing proteins, 
for instance, AnxB12 binding to PS (Lizarbe et al. 2013). 

Membrane-interacting domains, such as N-BAR, F-BAR, 
I-BAR, E/ANTH, and some additional lipid-binding 
domains in BAR proteins like PH (pleckstrin homology) and 
PX (phox homology), as well as PH domain of Dynamin, 
are an example of cationic motifs that use electrostatic inter-
actions (Suetsugu et al. 2014). However, PIP2 appears to 
be preferred by these domains over PS (McLaughlin and 
Murray 2005; McMahon and Gallop 2005). PIPs are the 
preferred phospholipids for many proteins rather than PS 
because of their higher charge. It has been proposed that 
PIP2 binding plays an important role in the correct targeting 
of these proteins to the PM (Ford et al. 2002). Several studies 
involving mutagenesis support this hypothesis, demonstrat-
ing that proteins with mutations in their PIP2 binding sites 
do not localize appropriately (Ford et al. 2002). Several PIP-
binding domains have been shown to deform liposomes into 
tubules and small vesicles. The PH domains of dynamin, for 
example, play an essential role in their electrostatic interac-
tions with PIP2-containing membrane (Roux et al. 2010).

Assays to Measure IDPs/IDPRs–Membrane 
Interactions

Research has grown steadily into IDPs/IDPRs properties 
and behavior in recent years as researchers understand its 
importance in cellular physiology. These proteins interact 
with biological membranes and function as hubs in signal-
ing and trafficking pathways (Cornish et al. 2020). In addi-
tion to being a valuable player in many biological processes, 

Table 2  Mechanisms of 
membrane curvature sensing/
generation by some ordered and 
disordered protein domains. 
Adapted from Zeno et al. (2018, 
2019a, 2019b, 2021)

OPD Ordered protein domain, IDPD Intrinsically disordered protein domain, FL Full-length, MC Molec-
ular crowding, IC Intrinsic curvature, OLG Oligomerization, His-tag Hexahistidine-tag, wt Wild-type, 
CTD C-terminal domain, Amph Amphiphysin, PIP

2
 Phosphatidylinositol 4,5-bisphosphate, DGS-Ni-NTA 

1,2-dioleoyl-sn-glycero-3[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl(nickel salt)
a Curvature-sensing AH is replaced with His-tag
b Wild-type Epsin is known to sense membrane curvature through inserting its AH
c Structured domains are truncated, and an N-terminal His-tag is added to protein CTDs for binding to the 
membrane
 dThe molecular crowding of IDPDs on the membrane surface is more efficient than the OPDs

Protein/domain Domain types Membrane-
binding 
domain

Preferred lipid Sensing Induction

FL-Espin OPD, IDPD ENTH PIP2 AH, Entropic MCd

His-Epsina OPD, IDPD His-tag DGS-NTA Entropic MC
wt-ENTHb OPD ENTH PIP2 AH MC
His-ΔENTHa OPD His-tag DGS-NTA Insensitive MC
His-EpsinCTDc IDPD His-tag DGS-NTA Entropic MC
His-AP180CTDc IDPD His-tag DGS-NTA Entropic MC
FL-Amph OPD, IDPD N-BAR PIP2 AH, IC, Entropic AH, IC, OLG, MC
Amph N-BAR OPD N-BAR PIP2 AH, IC AH, IC, OLG
His-AmphCTDc IDPD His-tag DGS-NTA Entropic MC
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the study of IDPs/IDPRs–membrane interactions may also 
contribute to constituting novel drug targets (Ambadipudi 
and Zweckstetter 2016; Neira et  al. 2017; Hosoya and 
Ohkanda 2021). Several recent methodological advances 
have enhanced our understanding of how and why different 
protein domains/motifs interact with specific curvatures. We 
briefly review a few tools that can characterize such interac-
tions in the following sections.

In‑Vitro IDPs/IDPRs–Membrane Interactions

In-vitro assays are often utilized in studies on protein 
potency to recognize or induce the membrane curvature. 
For this, artificial model membrane structures with fixed 
lipid composition, such as size-regulated liposomes (Has 
and Sunthar 2020) and supported lipid bilayers (SLBs), 
have been employed to construct bilayers free from protein 
constituents. A quantitative and reproducible analysis of pro-
tein–membrane interactions can be achieved through such 
in-vitro approaches (Carvalho et al. 2008; Salzer et al. 2017; 
Chand et al. 2019). Generally, proteins and membranes are 
made visible by being tagged with different fluorescent dyes.

Microscopy-based assays One of the basic approaches 
to dictate the mechanism of membrane deformation by any 
protein is using the plethora of microscopy-based tech-
niques. To this aim, giant unilamellar vesicles (GUVs) are 
found to be a suitable choice since their usual diameters (a 
few microns to tens of microns) closely resemble cell mem-
branes and may be examined using an optical microscope. 
Several BARs (Saarikangas et al. 2009; Tanaka-Takiguchi 
et al. 2013) and other proteins (Has and Das 2021) have been 
employed to study the membrane deformation. Nonetheless, 
merely visuals cannot be used to extract quantitative meas-
urements of membrane shape induced by proteins.

Sedimentation, flotation, and PLiMAP assays Sedimen-
tation assay (SA) (Peter et al. 2004; Carlton et al. 2004; 
Pylypenko et al. 2007), flotation assay (FA) (Bigay et al. 
2005; Mesmin et al. 2007), or Proximity-based Labeling of 
Membrane-Associated Proteins (PLiMAP) assay (Jose et al. 
2020) may be employed for measuring the protein affinity 
to the membranes of different mean curvatures. Liposomes 
of different curvatures are synthesized in these assays by 
extruding them through filters with predefined pore sizes, 
followed by incubation with proteins. A mixture of protein 
and extruded liposomes is either spun directly down (in 
sedimentation) or spun up in a sucrose density gradient (in 
flotation). Both assays work at a high-speed centrifugation 
spin to isolate the fraction of membrane-bound proteins. 
Further, a recent report (Jose et al. 2020) has obviated the 
requirement of ultracentrifugation spin using PLiMAP assay. 
In PLiMAP assay, a bi-functional reactive fluorescent lipid 
(RFL) is incorporated into the liposomes and used as an 

indicator for membrane–protein interactions. Upon photo-
activation (exposed with ultraviolet light), the membrane-
bound protein is crosslinked with RFL. The sample is 
then centrifuged at low speed. Eventually, the fraction of 
any protein (not just IDPs/IDPRs) bound to the liposomal 
membrane (in SA, FA, or PLiMAP) is quantified by protein 
analysis techniques (e.g., SDS-PAGE).

Even though SA is faster, more versatile, and requires 
fewer proteins and lipids, it has reduced sensitivity and 
cannot distinguish membrane-bound proteins from protein 
aggregates. Instead FA, which is less susceptible to protein 
aggregation, is recommended. Furthermore, PLiMAP assay 
can be integrated with existing liposome-based assays to 
improve the sensitivity. Unfortunately, these assays cannot 
investigate dynamic protein recruitment to curved mem-
branes. Moreover, because the liposome sizes vary when 
they are extruded, it is difficult to assess the range of curva-
ture-sensing ability of individual protein domains (Kunding 
et al. 2008; Simunovic et al. 2015).

Single liposome curvature or tethered vesicle assays It has 
been proven that single liposome curvature (SLiC) assays 
overcome the limitations of ensemble experiments (Bhatia 
et al. 2009; Madsen et al. 2010). In SLiC, liposomes (size 
50–800 nm) doped with biotinylated BSA are immobilized 
through streptavidin–biotin linkages to a BSA-coated glass 
substrate (Stamou et al. 2003). The nanosized vesicles are 
isolated by tethering them onto passivated surfaces at low 
densities. Next, the solution of labeled protein is added in 
solution to the surface-tethered vesicles, and imaging is 
done using fluorescent/confocal microscopy after 20–30 
min of incubation to achieve a faithful reconstruction of 
the liposome population (Zeno et al. 2019b; Larsen et al. 
2020). In this study, vesicle diameters (d) are estimated 
from the intensities (I) of lipid fluorescent channel by the 
relation d ∝

√

I . The curvature-dependent protein bind-
ing to the membrane is estimated using integrated intensity 
ratios between protein and liposome (Bhatia et al. 2009). 
In the last decade, SLiC assay has been widely utilized to 
investigate the curvature-sensing/driving ability of many 
ordered/disordered proteins and protein domains, such as 
BAR domains (Bhatia et al. 2009), AHs containing pro-
teins such as � S and AnxB12 (Jensen et al. 2011), lipi-
dated protein N-Ras (Larsen et al. 2015), C2AB domain of 
Syt1 (Larsen et al. 2020), AP180CTD (Zeno et al. 2019b), 
Epsin1CTD (Zeno et al. 2018), and Amph1CTD (Zeno et al. 
2019a), as well as FL-Epsin, FL-Amph (Zeno et al. 2018), 
and clathrin (Zeno et al. 2021).

In SLiC, a large number of isolated/distinct membrane 
curvatures may be quickly recorded in a high-throughput 
manner  (Bhatia et  al. 2010; Madsen et  al. 2010). Even 
though this method has opened up new avenues for system-
atically studying curvature-dependent protein dynamics, 
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tiny vesicles have shown considerable heterogeneity in lipid 
composition (Larsen et al. 2011), which could contribute to 
measurement error as curvature rises. Finally, considering 
that SLiC often requires elaborate experimental procedures 
and technical expertise, they are a bit tedious to implement.

Supported lipid bilayers In addition to the studies as 
mentioned above based on vesicles, supported lipid bilay-
ers (SLBs) constructed with predetermined topographies by 
lipid deposition on a solid hydrophilic substrate (such as 
glass, silica, and gold) have been routinely used to simulate 
biological membranes under more straightforward experi-
mental conditions (Tanaka et al. 2020). To drive membrane 
curvature, SLBs use either static (Parthasarathy and Groves 
2006) or switchable (Sanii et al. 2008) topographic patterns. 
These assays provide a means for probing membrane geom-
etries that may otherwise not be possible using liposome-
based assays (e.g., saddles, cylinders) (Ebrahimkutty and 
Galic 2019). The thin hydration layer between the lipid 
bilayer and the solid support might not accurately simulate 
the properties of the cytosolic fluid. As a result, the precision 
and usability of SLBs are limited. Using a nanobar-assisted 
SLB system has recently shown that the protein FBP17 
senses the curvature. Still, its curvature sensitivity is mostly 
derived from its IDPD, not the structured F-BAR domain 
itself, contrary to popular perception (Su et al. 2020).

Tether-pulling assays In order to overcome the limitations 
associated with the previous approaches and to enhance the 
detection accuracy, tether-pulling assays (TPAs) have gained 
immense popularity in studying the dynamic recruitment 
of curvature-sensitive proteins  (Ambroggio et al. 2010; 
Sorre et al. 2012; Ramesh et al. 2013; Prévost et al. 2015) 
and/or curvature generation by proteins (Sorre et al. 2012; 
Ramesh et al. 2013; Prévost et al. 2015; Knorr et al. 2014). 
In a TPA, a transient membrane nanotube or tether from a 
GUV is pulled with the help of an optical tweezer (OT). 
As a result, we may investigate transient protein enrichment 
as soon as the membrane is deformed. All BAR proteins 
that have been investigated experimentally thus far, such 
as N-BARs (Sorre et al. 2012; Zhu et al. 2012; Wu et al. 
2014), F-BAR (Ramesh et al. 2013), and I-BAR (Prévost 
et al. 2015), are enriched on the tether. Furthermore, curva-
ture-dependent enrichment of KvAP (Aimon et al. 2014), 
ArfGAP1, and Arf1 (Ambroggio et al. 2010) has also been 
reported. Although TPA has been mostly used for ordered 
proteins and protein domains, it can be easily implemented 
separately for disorder domains or proteins containing both 
ordered and disordered domains.

In‑Vivo IDPs/IDPRs–Membrane Interactions

In-vitro approaches carried out on artificial lipid membranes 
have proved to be powerful tools for quantifying the func-
tion of proteins as curvature sensors/inducers. Still, they are 

restricted by a requirement to use model membranes of well-
defined lipid composition, a constraint that fails to allow for 
asymmetry in lipid composition in biological membranes. 
To address such shortcomings, living cell assays (LCAs) 
can be used to explore how membrane curvature impacts 
cytoplasmic proteins and cellular processes under pristine 
physiological conditions. A variety of fluorescence- and 
electron-based techniques (Galic et al. 2012, 2014; Bege-
mann and Galic 2016) can be used to investigate the protein 
sensitivity to brief- and/or long-lived membrane deforma-
tions in living and fixed cells. Alternatively, experiments 
that artificially generate membrane deformations in living 
cells have proven to be effective. For example, tethers or 
nanotubes can be extruded either directly from the cell 
PM (Breuer et al. 2019) or cell-derived giant PM vesicles 
(GPMVs)  (Moreno-Pescador et  al. 2019). Here, a brief 
membrane deformation is induced at a predefined location, 
and the subsequent curvature-dependent protein recruitment 
is investigated. In another approach, cells may be cultured on 
patterned nanostructure platforms, and fluorescence micros-
copy can be used to examine the protein dynamics on live 
cells (Galic et al. 2012; Li et al. 2019). Nanostructure- and 
tether-assisted LCAs, although being effective techniques, 
employ static membrane curvature, making real-time moni-
toring of a cell’s reaction to membrane deformation difficult. 
We note that the curvature sensing and induction by IDPs/
IDPRs are yet to be explored using live cells.

Computational Approaches for IDPs/IDPRs–
Membrane Interactions

When taken as a whole, each experimental strategy has 
its own set of benefits. Unfortunately, no single technique 
allows for the unbiased analysis of membrane curvature 
sensing/generation by proteins. So, what is the next step? 
Because experiments to quantify curvature-dependent IDPs/
IDPRs–membrane interactions are still tricky, molecular 
dynamics (MD) modeling can help us learn more about 
these interactions. All-atom MD simulations can simulate 
how BAR-containing proteins drive membrane curvature 
in-silico, thanks to advanced force fields (Yu and Schulten 
2013). Because all-atom MD simulation is computationally 
expensive, coarse-grained (CG) approximation models are 
frequently used for such complex systems (Das and Eliezer 
2019). Using CG MD simulations, it has been demonstrated 
an aggregation behavior of N-BAR proteins on membrane 
curvature (Simunovic et al. 2013). MD studies have fur-
ther revealed that the positive residues on BAR domains 
and membrane lipid components are found to be essential 
features in curvature-dependent protein distribution/sort-
ing (Takemura et al. 2017; Stanishneva-Konovalova and 
Sokolova 2019). Despite their potency, MD simulations are 
limited to short spatiotemporal intervals. Continuum models 
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(CM) can be an excellent option for expanding these limits 
and gaining more understanding of biological assumptions.

In contrast to MD simulations, which include discrete 
molecules, CM takes the atomistic data and averages it to 
get a continuous mass. A wealth of models, such as Dynamic 
Triangulated Monte Carlo (DTMC), have been developed 
in recent years that facilitate to bridge the molecular, meso-
scopic, and cellular scales (Ebrahimkutty and Galic 2019). 
Using DTMC, it has been recently reported that both cur-
vature sensing and induction can be found in the same sys-
tem as a function of protein binding affinity on the mem-
brane (Krishnan et al. 2019). The researchers can accurately 
link the model (Tourdot et al. 2014) to the experimental 
data (Shi and Baumgart 2015) using these approaches. For 
learning more about this rapidly evolving field, an interested 
reader is referred to reviews by Ramakrishnan et al. (2018).

Conclusions and Future Perspectives

In this review, we have focused on the interplay between 
IDPs/IDPRs and membrane and how this dynamic cross-talk 
is crucial for signaling and trafficking pathways (Cornish 
et al. 2020). Cellular membranes are lipid bilayers that are 
fluid-like in appearance and in which proteins are embed-
ded or to which proteins are anchored that assist the mem-
branes in performing their functions. It has been discussed 
how membrane lipids can potentially affect the binding and 
organization of proteins. Compared to structured domains, 
the IDPRs of identical molecular weight possess a larger 
projected area, more flexibility, and undergo disorder-to-
order transition upon binding to the membranes. Cells use 
these characteristics for functional reasons.

We have discussed how IDPs/IDPRs are employed to 
regulate the membrane properties and thus influence mem-
brane trafficking. Specifically, proteins and membranes 
interact in a two-way fashion. First, membrane curvature 
is generated by constituent proteins. Second, proteins sense 
the membrane curvature, or in other words, membrane cur-
vature provides a cue to recruit distinct proteins selectively. 
It has become clear that curvature sensing and induction are 
two biophysical processes that are related but not the same. 
From various assays discussed in this article, we can state 
that curvature sensing is most effective when proteins are 
sparsely bound to the membranes (Sorre et al. 2012). On the 
other hand, proteins begin to induce curvature as their cover-
age of the membrane surface grows (Stachowiak et al. 2010, 
2012). We have seen that full-length proteins have a larger 
capacity to sense/generate the membrane curvature than the 
structured and/or unstructured domains studied in isolation.

The current review underscores the need to research the 
synergistic connection between ordered and disordered pro-
tein domains in a larger context. The IDPRs are common in 

the protein machinery that controls membrane trafficking, 
and they are frequently paired with ordered domains in the 
same protein molecule (Pietrosemoli et al. 2013). In bio-
physical investigations of interactions of proteins with mem-
brane, it has become more apparent that IDPRs cannot be 
overlooked. To date, only a few IDPRs have been identified 
as curvature sensors and drivers. Because IDPRs make up 
around one-third of the proteome, they are a diverse group 
of proteins, implying that there are still many more potential 
sensors and drivers of membrane curvature to be charac-
terized. As a result, understanding the biophysical roles of 
IDPRs in membrane remodeling is an essential priority for 
future research. Using hybrid strategies that combine cel-
lular and biophysical experiments with techniques that can 
evaluate the IDPRs contribution in the membrane environ-
ment like NMR and MD simulations will help researchers to 
understand the proteins involved in signaling and trafficking 
pathways in which they are found.
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