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[1] We study and explain the origin of early breakthrough and long tailing plume behavior
by simulating solute transport through 3-D X-ray images of six different carbonate rock
samples, representing geological media with a high degree of pore-scale complexity. A
Stokes solver is employed to compute the flow field, and the particles are then transported
along streamlines to represent advection, while the random walk method is used to model
diffusion. We compute the propagators (concentration versus displacement) for a range of
Peclet numbers (Pe) and relate it to the velocity distribution obtained directly on the
images. There is a very wide distribution of velocity that quantifies the impact of pore
structure on transport. In samples with a relatively narrow spread of velocities, transport is
characterized by a small immobile concentration peak, representing essentially stagnant
portions of the pore space, and a dominant secondary peak of mobile solute moving at
approximately the average flow speed. On the other hand, in carbonates with a wider
velocity distribution, there is a significant immobile peak concentration and an elongated
tail of moving fluid. An increase in Pe, decreasing the relative impact of diffusion, leads to
the faster formation of secondary mobile peak(s). This behavior indicates highly anomalous
transport. The implications for modeling field-scale transport are discussed.
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1. Introduction

[2] Flow and solute transport play an important role in a
number of applications in geological porous media, includ-
ing storage of carbon dioxide, contaminant transport and
the associated access to clean drinking water, safe disposal
of nuclear waste, and enhanced oil recovery. Although car-
bonate formations contain more than half of the world’s
conventional oil reserves [Chilingar et al., 1972; Ahlbrandt
et al., 2005], the interplay of physical processes involving
transport through their complex structures with heterogene-
ities from the pore scale upward is not fully understood.
[3] Experimental studies of transport behavior in carbon-

ate rock in both the laboratory [Baker, 1977; Bretz and
Orr, 1987; Gist et al., 1990; Hidajat et al., 2004; Oshita
and Okabe, 2005; Fourar et al., 2005; Fourar and Radilla,
2009] and the field [Cacas et al., 1990; Gelhar et al., 1992,
and references therein; Maloszewski and Zuber, 1993;
Meigs and Beauheim, 2001; Witth€user et al., 2003; Birk
et al., 2005; Gouze et al., 2008a] have typically found an
early breakthrough of the solute and a long tailing of the
concentration at late times. At the core scale, effluent
breakthrough curves (BTCs) of a sucrose tracer injected
into brine-saturated San Andres carbonate cores have

shown a considerable degree of tailing due to significant
core heterogeneity [Bretz and Orr, 1987]. Gist et al. [1990]
associated longtime tails of NaCl brine tracer BTCs in het-
erogeneous carbonate rocks (including dolostone and a
Middle Eastern carbonate) with macroscopic permeability
heterogeneities on the millimeter-to-centimeter scale, in
contrast to BTCs in less heterogeneous carbonates (includ-
ing Austin chalk, Oolitic limestone, and Indiana limestone)
that did not show pronounced tailing. Hidajat et al. [2004]
measured both in situ (by X-ray computed tomography
(CT) scanning) and outlet NaI tracer concentrations in
vuggy carbonate samples from a west Texas field and
observed a very early breakthrough followed by a long tail :
this implied the existence of a sample-spanning high-per-
meability streak in a tight matrix. At the field scale, good
examples of prolonged tailing of BTCs in carbonate rock
can be found in the experimental studies of Meigs and
Beauheim [2001], Witth€user et al. [2003], Birk et al.
[2005], and Gouze et al. [2008a].
[4] This late-time behavior cannot be modeled by a

deterministic advection-dispersion equation (employing
Fick’s law at the macroscale) in a homogenous domain;
more sophisticated theories are required, such as multirate
mass transfer models [Haggerty and Gorelick, 1995;
Haggerty et al., 2000] and continuous time random walks
(CTRWs) [Berkowitz et al., 2006]. The review by Berko-
witz et al. [2006] provides an excellent overview of these
and other transport modeling approaches. Behavior that
cannot be described by the advection-dispersion equation
has been coined ‘‘anomalous,’’ or non-Fickian, and is very
often encountered in complex geological media, from labo-
ratory studies to the field scale [Levy and Berkowitz, 2003;
Becker and Shapiro, 2003; Gouze et al., 2008a].
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[5] Studying BTCs is very useful in assessing solute first
arrival times. However, having an accurate description of
plume concentration as a function of distance in either a
core or at the field scale provides full information on the in
situ transport processes. If the injected tracer particles rap-
idly fully sample the velocity field, the transport is Fickian
and can be described by the advection-dispersion equation,
resulting in a concentration profile whose peak moves at
the average flow speed with a Gaussian spread: this is typi-
cal of homogeneous media where each particle encounters
the relatively narrow range of flow speed after traveling
through only a few pores, as shown for unconsolidated
bead packs [e.g., Scheven et al., 2005]. However, in com-
plex porous media, such as carbonate rock, the solute expe-
riences a very wide range of transit times across pores of
very different size; consequently the particle transport
deviates from Fickian behavior, resulting in large variations
of plume shape from a Gaussian profile, as discussed by
Berkowitz and Scher [2001] and Scher et al. [2002].
[6] The transport can be described by a probability den-

sity function (PDF) of either the displacement or transit
time of solute particles. PDFs have been studied experimen-
tally by nuclear magnetic resonance (NMR) measurements
where the distribution of displacement of moving protons is
obtained [Callaghan, 1991; Gladden, 1994]; these are also
called the NMR flow propagators [K€arger and Heink,
1983]. The propagators have been measured on consoli-
dated rock cores in Fontainebleau sandstone [Packer and
Tessier, 1996; Tessier et al., 1997; Tessier and Packer,
1998], Bentheimer sandstone [Waggoner and Fukushima,
1996; Johns et al., 2003; Scheven et al., 2005; Verganela-
kis et al., 2005; Singer et al., 2006; Mitchell et al., 2008a],
Portland carbonate [Scheven et al., 2005; Verganelakis
et al., 2005; Mitchell et al., 2008b], and a dolomite [Zhao
et al., 2010]. A critical discussion of these measurements is
presented by Gladden and Mitchell [2011]. These experi-
ments clearly distinguish the nature of non-Fickian transport
in a homogeneous bead pack from that in sandstones and
even further, from that in carbonate rock. Scheven et al.
[2005] have demonstrated that the propagators measured in
a bead pack show a non-Gaussian shape only for a short
time and then become Gaussian about the mean displace-
ment; for Bentheimer sandstone a pronounced peak is
observed representing the stagnant fluid regions that gradu-
ally disappears with time; for Portland carbonate the stag-
nant peak is both larger and more persistent than that for
sandstones, implying a much greater degree of particle
retardation.
[7] In this modeling study we compute PDFs of solute

displacement for a suite of carbonate rock images over a
wide range of Peclet numbers (Pe¼ uavL/Dm, where uav is
the average flow speed, L is the characteristic length, and
Dm is the molecular diffusion coefficient) to demonstrate
the nature of non-Fickian transport in different classes of
carbonate. To describe advection and diffusion at the pore
scale, random-walk-based particle tracking techniques have
been a common choice, either simulating transport directly
on the voxelized images of the pore space, or on extracted
pore networks. Network modeling has been widely used for
studying solute transport [Saffman, 1959, 1960; Sahimi
et al., 1986; Sorbie and Clifford, 1991; Damion et al.,
2000; Bruderer and Bernabe, 2001; Bijeljic et al., 2004;

Picard and Frey, 2007; Acharya et al., 2007; Rhodes
et al., 2008]. Advection is solved analytically in a unit net-
work bond, and random walk movement is superimposed
to simulate diffusion. Advances have been made in the
description of the asymptotic dispersion coefficients over a
wide range of Peclet numbers [Bijeljic et al., 2004;
Acharya et al., 2007] including an explanation for the
power-law dependence of longitudinal dispersion coeffi-
cient as a function of Pe, reconciling experiment, pore-
scale modeling, and CTRW theory for Berea sandstone
[Bijeljic and Blunt, 2006; Dentz et al., 2004]. Propagators
have been studied using network models representing
Berea sandstone [Picard and Frey, 2007] and for a dolo-
mite [Zhao et al., 2010]. The latter study has shown a good
agreement with NMR experiments using an adjustable pa-
rameter to describe the pore dynamics.
[8] In parallel with network modeling, a number of

approaches have been developed to simulate transport
directly on a 3-D voxel representation of the porous me-
dium obtained by direct X-ray (synchrotron or micro-CT)
scanning or by reconstructing pore space from 2-D thin
section images. The finite difference method has been used
to compute flow in reconstructed Fontainebleau sandstone
[Salles et al., 1993; Tessier et al., 1997; Stapf et al., 2000],
reconstructed Vosges sandstone [Yao et al., 1997], recon-
structed random spherical and aspherical packings [Coelho
et al., 1997], micro-CT images of Berea and Bentheimer
sandstones [Bijeljic et al., 2011a; Mostaghimi et al., 2012;
Blunt et al., 2013; Bijeljic et al., 2013], and an image of
Portland carbonate [Bijeljic et al., 2011a, 2013]. The finite
element method was used on a model sand pack [Cardenas,
2008, 2009], while the finite element/finite volume method
was employed to compute flow in an image of Fontaine-
bleau sandstone [Zaretskiy et al., 2010]. In addition, parti-
cle-based approaches have been used to find the flow field
and simulate the transport of solute. The lattice-Boltzmann
method has been employed to compute flow in computer
model-generated bead packs [Lowe and Frenkel, 1996;
Maier et al., 2000; Kandhai et al., 2002], directly on an
NMR image of a spherical bead pack [Manz et al., 1999],
and on an NMR image of a spherical bead pack that was
modified to represent a Bentheimer sandstone core [Johns
et al., 2003]. The modified moving particle semi-implicit
method was used to compute dispersion through micro-CT
images of Berea and two other sandstones [Ovaysi and
Piri, 2011].
[9] Significant progress in describing Fickian and non-

Fickian dispersion has been made in the studies that use
direct transport simulation on the pore space. Findings on
Fickian dispersion include description of the asymptotic
dispersion coefficients over a wide range of Peclet numbers
directly in the pore space of unconsolidated bead packs
[Coelho et al., 1997; Maier et al., 2000] on sandstones
[Salles et al., 1993; Ovaysi and Piri, 2011; Bijeljic et al.,
2011a; Mostaghimi et al., 2012] and carbonate rock
[Bijeljic et al., 2011a, 2013]. Non-Fickian dispersion
results include agreement between direct pore-scale simula-
tions and experimentally measured NMR propagators for
bead packs [Manz et al., 1999; Kandhai et al., 2002; Maier
et al., 2008], sandstones [Tessier et al., 1997; Blunt et al.,
2013; Bijeljic et al., 2013], and a carbonate [Bijeljic et al.,
2011a, 2013]. However, almost all of the abovementioned
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studies deal with bead packs, sand packs, and sandstones
that have a narrower distribution of pore size giving, as
shown later, a narrower spread of local velocities than in
carbonates.
[10] Despite huge advances in computer power and algo-

rithmic efficiency, studies of dispersion have, to date, been
limited to relatively small samples. The Fontainebleau
sandstone image used for mesh generation in the study by
Zaretskiy et al. [2010] had 2003 voxels with a resolution of
7.5 mm giving an overall size of 1.5 � 1.5 � 1.5 mm3.
Ovaysi and Piri [2011] used 42 � 42 � 190, 66 � 66 �
298, and 52 � 52 � 234 voxels for Berea and the two other
studied sandstones, respectively. The corresponding image
resolutions were 10.69 mm for Berea and 6.796 and 8.683
mm for the other two sandstones, resulting in sample sizes
of approximately 0.45 mm in the x and y directions and
2.03 mm in the flow direction.
[11] In our previous work [Bijeljic et al., 2011a] we

employed an efficient streamline-based algorithm with a
random walk method to study solute dispersion on micro-
CT images of a sand pack, Berea sandstone, and Portland
limestone containing 3003 grid blocks (voxels) at a resolu-
tion (voxel size) of 10 mm, 5.345 mm, and 9 mm, respec-
tively, representing a cube of side length 1.6–3.0 mm. The
qualitatively different signature of transport through the
major porous rock types encountered in the subsurface
(sand packs, sandstones, and carbonates) was demon-
strated. A very good agreement was found between NMR
measurements [Scheven et al., 2005; Mitchell et al.,
2008b] and the model results [Bijeljic et al., 2011a, 2013].
[12] However, while the connection between non-Fick-

ian transport behavior as a result of a wide range of transit
times has been made [Berkowitz and Scher, 2001; Scher
et al., 2002; Bijeljic and Blunt, 2006], in this paper we pro-
vide a systematic study to describe the non-Fickian behav-
ior arising from the relationship between the complex pore
structure and velocity field to characterize transport in het-
erogeneous carbonates. To date, there have been no model-
ing studies performed directly on the images of carbonate
rocks for a suite of samples and over a range of Pe : the aim
of this work is to predict quantitatively the non-Fickian
transport characteristics in carbonate rock of different
structures and over a range of flow conditions. We study
the nature of early breakthrough and long tailing plume
behavior by simulating transport of a solute through 3-D
X-ray images of six different carbonate rock samples, rep-
resenting geological media with a high degree of pore-scale
complexity. A Stokes solver is employed to compute the
flow field, and the particles are then transported semiana-
lytically along streamlines to represent advection, and the
random walk motion is used to model diffusion. We
describe the different non-Fickian transport behaviors in
different types of carbonate by analyzing propagators (con-
centration versus displacement) for a wide range of Peclet
numbers and explain this behavior by analyzing PDFs of
the velocity distribution.

2. X-Ray Images and Mathematical Model

2.1. Images

[13] For transport studies we use four quarry carbonate
samples (Indiana, Estaillades, Ketton, and Mount Gambier

limestones) and two carbonate samples from a Middle East
aquifer (denoted Middle Eastern carbonate 1 (ME1) and
Middle Eastern carbonate 2 (ME2)). The dry scan images
were acquired on cylindrical cores having 5 mm diameter
and 25 mm length with a synchrotron beamline (Synchro-
tron Radiation MEdical Physics (SYRMEP) beamline at
the ELETTRA Synchrotron in Trieste, Italy) at a resolution
of 7.7 mm (for Indiana, Estaillades, Ketton, ME1, and
ME2) and 9 mm (for Mount Gambier), corresponding to
two different detector pixel sizes of 3.85 mm and 4.5 mm;
the charge coupled device (CCD) camera binned the results
giving the final voxel size of twice the detector pixel size.
The range of energy used was 27–33 keV, and each scan
lasted between 3 and 4 h. Reconstruction was performed by
in-house software, resulting in images of around 6003 vox-
els from which a central cubic section was taken for our
simulations. The 2-D cross sections of 3-D gray-scale
images for the six carbonates studied are shown in Figures
1a–1f. Segmentation into binary images was based on a his-
togram analysis employing Otsu’s thresholding algorithm
and using ImageJ software [Sahoo et al., 1988]. In addition,
we acquired an additional image at a higher resolution, 3.3
mm voxel size, for Estaillades using a micro-CT scanner
(Xradia Versa).
[14] The voxel size, number of voxels, system size,

porosities, permeabilities, characteristic length, and aver-
age coordination number of the carbonate rocks studied are
given in Table 1. The average coordination numbers are
obtained by extracting pore networks from the images
using the maximal ball algorithm [Dong and Blunt, 2009;
Gharbi and Blunt, 2012]. The pore networks are a topologi-
cal representation of the pore space as wide pores con-
nected by throats. The coordination number is the number
of throats connected to each pore. We define the character-
istic length L (needed for calculating Pe) for each carbonate
image based on a cubic packing of regular spheres. For this
idealized system, the grain diameter is �V/S, where V is
the volume of the porous medium (pore plus grain), and S
is the area of the pore-solid interface. We use the same defi-
nition for our images since the volume and the pore-solid
area are readily computed, while it is difficult to identify
individual grains unambiguously. The image sizes are
3203�3803 voxels in total representing cubes of side length
2.46–3.15 mm, representing 8–43 characteristic lengths;
the higher-resolution Estaillades image is 6503 voxels in
total and has a side length of 2.1 mm.
[15] Porosities are computed on the images from the ratio

of number of pore voxels, Npvox, divided by total number of
voxels, Nvox. Voxels that are not connected to the inlet or out-
let are excluded from the analysis and the flow calculations.
It can be seen that the carbonates that have a low porosity
tend to be poorly connected and have a lower permeability,
provided that the characteristic length is similar.

2.2. Mercury Injection Capillary Pressure Curves

[16] Mercury injection capillary pressure (MICP) was
measured at a commercial laboratory (Weatherford) on
samples taken from the same block of stone from which the
images were obtained. Figures 2a and 2b show the inferred
throat radius distributions normalized to a maximum value
obtained from MICP for (a) Ketton, Mt Gambier, and ME2
and (b) Estaillades, Indiana, and ME1. Plotted also are the
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Figure 1. 2-D cross sections of 3-D gray-scale images for the six carbonate rock samples studied: (a)
Indiana limestone, (b) Estaillades limestone, (c) ME1, (d) ME2, (e) Ketton limestone, and (f) Mount
Gambier limestone. The images were acquired with a SYRMEP beamline at the ELETTRA Synchrotron
in Trieste, Italy.

Table 1. Description of the Seven Carbonate Images Studied, Including Voxel Size, Number of Voxels, Image Size, Porosity, Perme-

ability, Characteristic Length Estimate, and Average Coordination Number

Sample
Voxel Size
(mm)

Number of
Voxels

1 D Size
(mm) Porosity

Permeability
(mD)

Characteristic
Length Estimate

(mm))

Average
Coordination
Number

ME1 7.7 3803 2926 0.093 32 166.2 2.50
Indiana 7.7 3303 2541 0.110 292 299.6 2.97
Estaillades 7.7 3503 2695 0.133 328 158.2 3.03
Estaillades high resolution 3.3 6503 2145 0.118 492 243.2 3.32
Ketton 7.7 3503 2695 0.149 8476 320.7 3.08
ME2 7.7 3203 2464 0.175 1538 161.65 3.64
Mt. Gambier 9.0 3503 3150 0.556 16607 72.2 7.41
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straight black solid and dashed lines that mark half the
voxel size of the images studied, representing the smallest
throat radius that can be detected in the images.
[17] Carbonate rocks are, in general, characterized by a

wide range of pore size and significant microporosity:
pores less than 1 mm across. This microporosity is not
imaged and hence not accounted for in our simulations.
With the image resolution we had available, most of the
macroporosity of the pore space is captured for Indiana,
Estaillades, Ketton, Mt Gambier, and ME2, while less of
the macropores are scanned for ME1. We will discuss later
that consideration of microporosity would further empha-
size the findings from this study associated with a large
fraction of stagnant solute. A complete discussion of micro-
porosity is beyond the scope of this paper and requires the
acquisition of much higher-resolution images.

2.3. Flow Model

[18] Incompressible steady viscous flow is simulated
directly through the pore-space images by solving the

volume conservation equation (1) and the Navier-Stokes
equation (2):

r � u ¼ 0; (1)

�
@u

@t
þ u � ru

� �

¼ �rpþ �r2
u; (2)

where u is the velocity vector, � is viscosity of water
(�¼ 0.001 Pa s), � is the density of water (�¼ 1000 kg/
m3), and p is the pressure. We use a standard finite volume
method implemented in OpenFOAM [2011]. The pressure
and velocity are solved iteratively based on the pressure
implicit with splitting of operators (PISO) algorithm of Issa
[1986] (see Raeini et al. [2012] for further details).
[19] The simulations are run at a Re¼ �uavL/m � 1

assuming a steady state @u/@t¼ 0. This means that slow
flow is simulated; the second term on the left in equation
(2) is small compared to the second term on the right (vis-
cous) term. The average flow speed is calculated as
uav¼ q/", where q¼Q/LyLz is the Darcy velocity, Q (m3/s)
is the total volumetric flux calculated as Q ¼

R

uxdAx, where

Ax (m
2) is the cross-sectional area of void voxels perpendic-

ular to the direction of flow x, and ux is the face velocity that
is normal to Ax ; Lx, Ly, and Lz are the image lengths in each
direction, and " is the porosity. Each voxel in the image is
converted to a grid block in the finite volume mesh.
[20] The flow domain is cubic. We use constant pressure

boundary conditions for pressure at the left and the right
faces of the images (the pressure drop is �P). For the other
faces of the images and for the solid walls, no-flow bound-
ary conditions are used. We obtain the velocities and pres-
sures for each voxel and calculate absolute permeability k
(m2) from Darcy’s law:

k ¼ � Q Lx

�P LyLz
: (3)

[21] The permeability values in Table 1 are given in mD,
where 1 mD¼ 9.869233 � 10�16 m2.
[22] An illustration of how flow is computed on the syn-

chrotron images of Estaillades limestone (that is an exem-
plar for a carbonate with a wide spread of velocities) and
Mount Gambier limestone (that is an exemplar for a car-
bonate with a narrower spread of velocities) is presented in
Figures 3a–3f. The pore geometry, pressure field, and ve-
locity field are shown. The velocity field figures show a
subset of pore voxels where advection is dominant in com-
parison to diffusion: the stagnant flow voxels are not repre-
sented in Figure 3.
[23] Figures 3c and 3f show the very different nature of

the velocity fields: while in the low-connectivity Estail-
lades limestone flow is concentrated in a few channels with
much of the pore space largely stagnant, in the highly con-
nected Mount Gambier limestone flow is evenly distributed
throughout the sample and is characterized by less tortuous
channels. Qualitatively similar flow fields to that of Estail-
lades limestone can be seen in Figures 4a and 4b for Indi-
ana limestone and ME1. Figure 4d represents the flow field
in Ketton limestone that is qualitatively similar to that of
Mt Gambier and ME2 (Figure 4c). This will be discussed
in more detail later.

Figure 2. Throat radius distributions obtained from
MICP measurements for (a) Ketton, Mt Gambier, and ME2
and (b) Indiana, Estaillades, and ME1. The straight black
solid lines in (a) and (b) mark half the voxel size (3.85 mm)
for images of Indiana, Estaillades, ME1, ME2, and Ketton.
The dashed line in (b) marks half the voxel size (4.5 mm)
for the image of Mt Gambier, while the dashed line in (a)
marks half the voxel size (1.65 mm) for the high-resolution
image of Estaillades. This is the smallest throat radius that
can be detected in the images.
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[24] The correlation structure is shown in Figure 5,
where the variograms for porosity, �p, and velocity in the
direction of flow, �ux , for the images of (a) Ketton, Mt
Gambier, and ME2 and (b) Indiana, Estaillades, and ME1
are plotted. The functions are calculated as

�p �xð Þ ¼
PN
1 I xið Þ � I xi þ�xð Þ½ �

2N

2

; (4)

�ux �xð Þ ¼
PN
1 ux xið Þ � ux xi þ�xð Þ�2

2N
; (5)

where I xið Þ is the indicator function for porosity (I xið Þ ¼ 1
for pore voxels and I xið Þ ¼ 0 for grain voxels), ux xið Þ are
velocities in the direction of flow across faces oriented nor-
mal to the x direction, and N is the number of voxels. Plotted
are the �p and �ux values normalized to the theoretical values
at infinite range (uncorrelated limit) �p;1 ¼ 1� "ð Þ" and
�ux;1 ¼ hux2i � huxi2. The x axis values are normalized
to the characteristic length L estimated for each carbonate
sample: the values for L are presented in Table 1.
[25] The variograms for porosity indicate a correlation

length (the distance when the variogram reaches its maxi-
mum-sill-value) that is approximately the characteristic

Figure 3. Estaillades limestone image: (a) the geometry shown as the pore volume represented by
gray color; (b) normalized pressure field with a unit pressure difference across the model; (c) normalized
flow field, where the ratios of the magnitude of u at the voxel centers divided by the average flow speed
uav are shown using cones that are colored using a logarithmic scale spanning from 5 to 500. The same
figures are shown for the Mount Gambier limestone image, denoted as (d), (e), and (f), respectively.
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Figure 4. Normalized flow fields for (a) Indiana limestone, (b) ME1, (c) ME2, and (d) Ketton lime-
stone. Again, the ratios of the magnitude of u at the voxel centers divided by the average flow speed uav
are shown using cones that are colored using logarithmic scale spanning from 5 to 500.

Figure 5. Variograms showing the normalized functions for porosity, �p=�p;1, and velocity in the direc-
tion of flow, �ux=�ux;1 , for the images of (a) Ketton, Mt Gambier, and ME2 and (b) Indiana, Estaillades,
and ME1. The variograms are shown as a function of distance x normalized by the characteristic length L.
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length—a typical grain size, although it is larger than this
in some cases, particularly for Estaillades. The correlation
length for the velocity field is, in general, greater than for
porosity, especially for the more heterogeneous samples.
Mt Gambier also has a large apparent correlation, but its
characteristic length (see Table 1) is less than half of that
for the other samples, while the approach to the sill is
smooth, unlike the more structured correlation displayed by
the heterogeneous samples in Figure 5b. The correlation
length for Mt Gambier (measured in mm) is comparable
with the other homogeneous samples.
[26] In Figure 6, PDFs of the ratio of the magnitude of u

(at the voxel centers) divided by the average flow speed uav
are presented as semilog and log-log plots. The PDFs are
calculated as histograms of the velocity distributions
sampled uniformly in 256 bins of log(juj/uav). For reference
on the same plots we present the homogeneous limit : the

analytical PDF of juj/uav for a single circular cylindrical
tube. The PDFs of juj/uav exhibit different characteristics in
terms of the spread between low and high velocities, and
the magnitude of the peak centered on juj/uav¼ 1. It is evi-
dent from Figure 6a that in all the carbonate samples many
velocities are many orders of magnitude lower than the av-
erage flow speed, while the values for higher velocities
show different spreads. We will use these characteristics to
interpret the shapes of dispersion propagators in section 3
that explain the origin of early breakthrough and long tail-
ing plume behavior.
[27] Indicated on Figure 6b by the vertical line is the ve-

locity umin at which the time taken to traverse a voxel of
size �x by advection tadv ¼ �x=umin is 100 times longer

to that traversed by diffusion tdiff ¼ �xð Þ2=Dm for a base-
case Peclet number of 200. The base-case value for molec-
ular diffusion coefficient Dm is 1.5 � 10�9 m2/s which for

Figure 6. PDF of the velocity distributions for the carbonates studied presented as (a) semilog and in
(b) log-log plot. The dashed line indicates a diffusive cutoff for which the time taken to traverse a voxel
by advection is 100 times longer to that traversed by diffusion for a base-case Peclet number of 200.
Velocities lower than this are practically not sampled since the solute diffuses out of these stagnant
regions. The solid line shows the velocity distribution in a single circular tube, representing the homoge-
neous limit.
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Indiana limestone yields Pe¼ 200 (using the characteristic
length of L¼ 0.2996 mm and uav¼ 1 mm/s). Smaller veloc-
ities are unlikely to have much impact on transport in these
regions of the pore space since diffusion will dominate. As
we discuss later, for larger Pe this limit is shifted to smaller
velocities. Note that there are always a significant number
of very small speeds, indicating that some diffusion is nec-
essary to allow solute to move throughout the pore space.

2.4. Transport Model

[28] We simulate transport by moving an ensemble of
particles by advection along streamlines, using a semiana-
lytic description of the velocity field within a grid block for
all combinations of solid boundaries [Mostaghimi et al.,
2012]. A random walk method is used to describe molecu-
lar diffusion: a particle instantaneously jumps over a mean

free path � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

6Dmdt
p

in a random direction. The time step
dt for all simulations is 10�4 s, and it does not change with
Pe ; the average motion of particle at each time step is less
than one voxel. We change Pe by varying Dm. Particles are
placed throughout the image volume in uniformly spaced
voxels ; within each voxel the particle is placed at random.
The number of particles ranges from 1,000,000 to
2,000,000. We apply a reflection boundary condition for
the particles that hit the surface of the solid voxels. If a par-
ticle exits the inlet or outlet face of the cubic image, it is
randomly reassigned to the opposite face: flux-weighted
during the advective step and area-weighted for the diffu-
sive step [Bijeljic et al., 2004]. Reflecting boundary condi-
tions are used for the other image faces.
[29] We track particles and plot concentration profiles as

a function of particle displacements (propagators). Propa-

gators are calculated such that
R1
�1 P �ð Þ � d� ¼ 1, where

P(�) is the probability of particle displacement �. The prop-
agator is the probability that a particle has moved a dis-
tance � in the main flow direction and is equivalent to the
concentration profile resulting from an initial delta-function
pulse (mathematically, the Green function for the
transport).

3. Transport Results

[30] First, we study the impact of structure on the nature
of early breakthrough and long tailing plume behavior by
analyzing displacement probabilities (propagators) on our
suite of carbonate images for Pe¼ 200. Second, we extend
our study to examine the impact of Peclet number. For both
parts, we use the velocity distributions from Figure 6 to
explain the behavior.

3.1. Non-Fickian Propagators in Carbonates: Impact
of Pore Structure

[31] We first present the evolution of the propagators rel-
ative to the expected mean displacement in the main flow
direction in carbonates with a relatively narrow spread of
velocities (as shown in Figure 6): Ketton (Figure 7a), Mt
Gambier (Figure 7b), and ME2 (Figure 7c). These will be
later compared to the propagators in carbonates with a
wider spread of velocities.
[32] We define a dimensionless time td ¼ t=�diff , where

�diff ¼ L2=Dm. This is the ratio of the time to the time to
traverse a characteristic length by diffusion. In this paper

we study preasymptotic, non-Fickian transport where
td< 1; only for td >> 1 does Fickian behavior emerge,
once diffusion has allowed the solute to sample to entire
flow field [Salles et al., 1993]. Dimensionless time td multi-
plied by the Peclet number represents the number of char-
acteristic lengths the solute has traveled on average. Our
focus is on td< 1 but where tdPe> 1.

Figure 7. Probability of molecular displacement P(�) in
the images of (a) Ketton limestone, (b) Mt Gambier lime-
stone, and (c) ME2 as a function of displacement in the flow
direction � for the set of times td¼ 0.0015, 0.015, 0.075, and
0.15. The coordinates are rescaled by the expected nominal
mean displacement h�i0¼ uavt in the direction of flow.
Pe¼ 200. The insert in (c) shows larger scale for P(�)�h�i0.
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[33] Probabilities of displacement are plotted in Figure 7
for dimensionless times td¼ 0.0015, 0.015, 0.075, and 0.15
for Pe¼ 200. At early times (td¼ 0.0015), due to a signifi-
cant portion of fluid residing in stagnant zones for which
diffusion is the main mechanism of transport, the solute
can move against the main flow direction (a negative dis-
placement). There is a concentration peak of stagnant sol-
ute centered around zero, while the flowing solute has an
elongated moving tail with no pronounced mobile peaks.
As time progresses, more and more particles diffuse out of
the stagnant regions, which results in the stagnant peak
becoming narrower with time on rescaled distance axes,
while there is a formation of a secondary mobile solute
peak in concentration that becomes prominent around
td¼ 0.075 and dominates at later times (td¼ 0.15). This
reflects the particles that eventually diffuse out from the
slow-moving regions and then move rapidly through the
better connected, wider regions. The diffusion time for
the particles to diffuse a characteristic length (say, the dis-
tance between pores) is td¼ 1. This is 14.4 s for Mt Gamb-
ier limestone, 32.3 s for ME2, and 64.1 s for Ketton
limestone. The emergence of Gaussian behavior can be
seen in Figure 8, where propagators for Mt Gambier are
plotted for td¼ 0.8 and td¼ 1.2. The mobile peak in solute
concentration increases with time and almost entirely dom-
inates the slow-moving region that is gradually disappear-
ing at longer times.
[34] More persistent non-Fickian behavior is observed

for the carbonates with a wide spread of velocities. Figure
9 show the propagators for Estaillades limestone, Indiana
limestone, and ME1, where large, long-lasting concentra-
tion peaks of stagnant fluid are seen. This indicates that
more solute is retarded in diffusion-dominated zones, while
less is free to flow through connected channels, resulting in
an elongated plume tail at early times and a smaller mobile
peak at later times (td¼ 0.15).
[35] The characteristic time to diffuse out of a single

stagnant pore is similar in these cases, and yet the approach
to Gaussian-like behavior is slower than in the less hetero-
geneous samples. This indicates that there is correlated

heterogeneity in the flow field, as indicated in Figure 5,
meaning that to reach a fast-flowing domain, particles have
to diffuse through several stagnant pores, giving a much
larger timescale to see the emergence of approximately
Gaussian behavior.
[36] We can explain the complex non-Fickian transport

behavior of propagators described in Figures 7–9 by look-
ing at the velocity distribution curves in Figure 10. The

Figure 8. Probability of molecular displacement P(�) in
the Mt Gambier image as a function of displacement � for
times td¼ 0.8 and 1.2. The coordinates are rescaled by the
expected nominal mean displacement h�i0¼ uavt in the
direction of flow. Pe¼ 200.

Figure 9. Probability of molecular displacement P(�) in
images of (a) Estaillades limestone, (b) Indiana limestone,
and (c) ME1 as a function of displacement in the flow direc-
tion � for the set of times td¼ 0.0015, 0.015, 0.075, and
0.15. The coordinates are rescaled by the expected nominal
mean displacement h�i0¼ uavt in the direction of flow.
Pe¼ 200. The inserts show larger scale for P(�)�h�i0.
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exemplars taken are Mt Gambier limestone for a narrow
spread of velocities and Estaillades limestone for a wide
spread. Note that they are different in both low-velocity
regions where diffusion is the only mechanism of transport
leading to largely immobile solute, and the high-velocity
region that produces the elongated tail of fast-moving sol-
ute. These characteristics define the nature of transport
revealed by the different shapes of the propagators.
[37] In the carbonates with a narrow spread of velocities

(Ketton and Mt Gambier and ME2 in Figure 7), transport is
characterized by a smaller immobile concentration and a sig-
nificantly larger secondary peak in mobile tracer concentra-
tion. On the other hand, in samples with a wider spread of
velocity (Estaillades, Indiana, and ME1 in Figure 9), trans-
port is characterized by a significant immobile concentration
and an elongated tail of fast-moving solute.
[38] The generic transport behavior can be predicted

from the velocity distribution (Figures 6 and 10), pore size
distribution (Figure 2), and the connectivity combined with
the velocity field (Figures 3 and 4). While a lower porosity
and connectivity with a wide spread of velocities result in
most anomalous transport (Estaillades, Indiana, and ME1),
a higher porosity and connectivity and a narrow spread
of velocities result in less anomalous transport behavior
(Ketton, Mt Gambier, and ME2).
[39] We explore the effect of image resolution in Figures

11a and 11b where we compare the velocity fields and
propagators for Estaillades for the 3503 image with a voxel
size of 7.7 mm and the 6503 Estaillades higher-resolution
image with a voxel size of 3.3 mm. The velocity fields are
virtually identical with, perhaps, more slow-flowing regions
identified in the higher-resolution image. There is very little
difference in the predicted propagators. Improving the image

resolution allows more of the pore space to be captured,
although there is still unresolved microporosity. However,
there is, with finite computational resources, a trade-off
between resolution and total system size. One cannot both
resolve microporosity and run simulations on an image that
spans several characteristic lengths, and which is therefore
representative of core-scale transport.
[40] The complex non-Fickian transport behavior of

propagators described has significant implications for mix-
ing and large-scale transport. In order to describe long tail-
ing plume behavior from the core scale, the plume
retardation arising from stagnant flow regions needs to be
incorporated, while the early breakthrough behavior needs
to account for secondary mobile peaks. This requires, as
discussed in section 1, a more sophisticated large-scale
transport model, such as those based on CTRW or multirate
transfer models [Haggerty and Gorelick, 1995; Haggerty
et al., 2000; Berkowitz et al., 2006].

3.2. Dependence on Peclet Number

[41] We study the effect of Pe on transport by taking
exemplars representing the two generic types of behavior
mentioned previously: Mt Gambier and Estaillades
limestone.
[42] Figures 12a and 12b compare the propagators for

Mt Gambier at dimensionless times td¼ 0.015 and
td¼ 0.15, for Pe ¼10, 50, 200, and 700. At early times
(td¼ 0.015) lower Pe leads to a more diffusive transport
with displacement centered on zero. On the other hand, the
fast flow in mobile zones is more pronounced at higher Pe,
where advection is more important, leading to the faster
formation of the secondary mobile peaks (as seen for
td¼ 0.15).

Figure 10. Voxel velocity distributions for Mt Gambier limestone and Estaillades limestone. Mt
Gambier limestone has a narrow spread of velocities, while Estaillades limestone has a wide spread of
velocities. This results in a different shape of propagators (stagnant concentration regions, elongated mo-
bile tails) and hence the different nature of transport. The lines indicate diffusive cutoffs at Pe¼ 10, 50,
200, and 700 for which the time taken to traverse a voxel by advection is 100 times longer to that trav-
ersed by diffusion for Mt Gambier limestone. The arrow shows that diffusive cutoff decreases with an
increase in Pe. The solid line shows the velocity distribution in a single circular tube, representing the
homogeneous limit.
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[43] The impact of Pe on the propagators for Estaillades
is presented in Figures 13a and 13b for the same set of
dimensionless times and Pe as in the case of Mt Gambier.
Immobile fluid regions are seen for both times and all Pe.
For late times (td¼ 0.15) the formation of mobile peak is
seen at highest Pe ¼700, although even in this case the per-
sistent stagnant region is still present.
[44] The impact of Pe on the shape of the propagators

can be analyzed by looking at the velocity distributions. In
Figure 10 we plotted diffusive cutoffs at Pe¼ 10, 50, 200,
and 700 for which the time taken to traverse a voxel by
advection is 100 times longer to that traversed by diffusion
for Mt Gambier limestone. This means that essentially the
only transport mechanism for these voxels is diffusion.
With an increase in Pe, the diffusive cutoff moves to a
lower value resulting in fewer voxels for which diffusion is
the dominant mechanism of transport. Hence, as we vary
Pe (either the overall flow rate or diffusion coefficient), the
sampling of the velocity distribution changes. Thus, the

diffusion-controlled stagnant regions of concentration are
less pronounced at higher Pe, as shown in Figures 12 and 13.

4. Discussion and Conclusions

[45] The transport behavior in carbonates is character-
ized by a stagnant peak concentration and a long fast-mov-
ing tail, controlled by the relative impact of diffusion and
advection coupled to a wide range of flow velocities in a
heterogeneous pore space.
[46] In carbonates with a wide pore size distribution

coupled with a low connectivity that consequently exhibit a
wide distribution of velocities, the peak plume position is re-
tarded relative to the mean flow field with a very wide
spread. There is an effectively immobile peak concentration
and an elongated tail of fast-moving solute, characterized by
secondary peaks in the mobile plume concentration. This
new explanation is consistent with other studies of transport
from the pore to the field scales in heterogeneous media

Figure 11. (a) Voxel velocity distributions and (b) probability of molecular displacements P(�) for
time td¼ 0.015 for two images of Estaillades limestone. Computations on a 3503 image with a voxel size
of 7.7 mm (labeled Estaillades in Table 1) are compared to the results from a 6503 image with a voxel
size of 3.3 mm (Estaillades high resolution in Table 1).
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[see, for instance, Berkowitz et al., 2006; Gouze et al.,
2008b]. For the carbonates where the impact of structure (i.e.,
a narrow pore size distribution and/or a highly connected
pore space) results in a narrow distribution of velocities,
quantitatively different non-Fickian behavior is observed, as
the concentration peak of stagnant fluid is much smaller.
There is an elongated plume at early times and a single mo-
bile peak moving at the average flow speed at later times.
This behavior of propagators has significant implications for
mixing, physical and chemical reaction, and large-scale trans-
port: in order to describe long tailing plume behavior, the
plume retardation arising from stagnant flow regions needs to
be incorporated, while accounting for the early breakthrough
with secondary single or multiple mobile peaks. This implies
that simple average values for transport and reaction parame-
ters, based on a Fickian formulation at the core scale, cannot
be used for accurate upscaling in geological media with mul-
tiple heterogeneity scales. Appropriate approaches to deal
with multiple-scale heterogeneity, from the pore scale
upward, have been discussed by Berkowitz et al. [2008] and
Bijeljic et al. [2011b].
[47] We have provided the evolution of propagators for

different carbonates as a function of Peclet number and
quantified the impact of flow rate and diffusion on the na-
ture of non-Fickian transport. These can, in principle, be
used in a larger-scale simulation of transport without the

need to presume a governing transport equation. The propa-
gator P(x,t ;Pe) is simply the Green function for displace-
ment. As a consequence, the concentration profile can
formally be computed from

C x; tð Þ ¼
Z

C x0; 0ð ÞP x� x0; t;Pe x0ð Þð Þdx0 (6)

for an arbitrary initial concentration C(x,0). In a numerical
simulation, permeability heterogeneity at, say, the core
(cm) scale could be computed to find a flow field. This then
defines a locally varying Peclet number Pe(x). If we have
characterized the propagators as a function of Pe, then
equation (6) allows the time evolution of an arbitrary initial
plume to be computed in a domain that is heterogeneous at
the core-to-field scale. Further details of a possible
approach to this problem using a generalized network anal-
ysis and a CTRW approach can be found in Rhodes et al.
[2008]. The development of this methodology is a topic for
future work.
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Figure 13. Probability of molecular displacement P(�) in
images of Estaillades limestone as a function of displacement
in the flow direction � for different Pe¼ 10, 50, 200, and 700
at times (a) td¼ 0.015 and (b) td¼ 0.15 (b). The coordinates
are rescaled by the nominal mean displacement h�i0¼ uavt.

Figure 12. Probability of molecular displacement P(�) in
images of Mt Gambier limestone as a function of displacement
in the flow direction � for different Pe¼ 10, 50, 200, and 700
at times (a) td¼ 0.015 and (b) td¼ 0.15. The coordinates are
rescaled by the nominal mean displacement h�i0¼ uavt.
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