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Abstract

Motivation: Machine-learning-based prediction of compound–protein interactions (CPIs) is important for drug de-
sign, screening and repurposing. Despite numerous recent publication with increasing methodological sophistica-
tion claiming consistent improvements in predictive accuracy, we have observed a number of fundamental issues in
experiment design that produce overoptimistic estimates of model performance.

Results: We systematically analyze the impact of several factors affecting generalization performance of CPI
predictors that are overlooked in existing work: (i) similarity between training and test examples in cross-validation; (ii)
synthesizing negative examples in absence of experimentally verified negative examples and (iii) alignment of evaluation
protocol and performance metrics with real-world use of CPI predictors in screening large compound libraries. Using both
state-of-the-art approaches by other researchers as well as a simple kernel-based baseline, we have found that effective
assessment of generalization performance of CPI predictors requires careful control over similarity between training and
test examples. We show that, under stringent performance assessment protocols, a simple kernel-based approach can ex-
ceed the predictive performance of existing state-of-the-art methods. We also show that random pairing for generating
synthetic negative examples for training and performance evaluation results in models with better generalization in com-
parison to more sophisticated strategies used in existing studies. Our analyses indicate that using proposed experiment
design strategies can offer significant improvements for CPI prediction leading to effective target compound screening for
drug repurposing and discovery of putative chemical ligands of SARS-CoV-2-Spike and Human-ACE2 proteins.

Availability and implementation: Code and supplementary material available at https://github.com/adibayaseen/
HKRCPI.

Contact: Fayyaz.Minhas@warwick.ac.uk or adibayaseen@gmail.com

1 Introduction

Compound–protein interaction (CPI) prediction is an important
task in target compound screening for identifying protein targets of
compounds, drug design and drug repurposing studies (Schirle and
Jenkins, 2016). Affinity chromatography (Broach and Thorner,
1996) and protein microarrays (Lee and Lee, 2016; Zhao et al.,
2021) are among the most frequently used experimental methods
for the identification of CPIs. However, such wet-lab approaches
can be expensive and time-consuming (Zhang et al., 2017). The
emergence of pandemics such as Ebola and COVID-19 and the glo-
bal challenge of antimicrobial resistance have highlighted the need
of improving efficiency and throughput in drug design (Thafar
et al., 2019). Consequently, CPI prediction using computational
methods has become an attractive area of research (Chen et al.,
2016) as such approaches can improve the cost, time and efficiency
of drug discovery in contrast to experimental methods (Mazandu
et al., 2018).

1.1 Methods for CPI prediction
Conventionally, structure-based and ligand-based virtual screening
is the most well-researched areas of drug discovery (Lim et al.,
2021) but such techniques require tertiary structure of the protein of
interest. As a consequence, machine learning (ML)-based methods
that use sequence characteristics of proteins and chemical structural
representations of compounds for interaction prediction have been
developed (Bleakley and Yamanishi, 2009; Bredel and Jacoby,
2004). Classical ML approaches in this domain range from
similarity-based methods (Chen et al., 2018) to feature representa-
tion and kernel-based approaches (Bleakley and Yamanishi, 2009;
Gönen, 2012); pairwise kernels (Jacob and Vert, 2008), etc.
Comparative analysis by Ding et al. (2014) has shown that pairwise
kernels outperform other approaches. In recent years, researchers
have developed multiple deep learning models for CPI prediction.
DeepDTA (Öztürk et al., 2018) extracts real-valued sparse feature
representations of proteins as well as compounds using
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convolutional neural networks (CNNs) and appends these features
through the final fully connected layer. WideDTA (Öztürk et al.,
2019) and Conv-DTI (Wang et al., 2020) also used an analogous
idea with additional features, ligand structural similarity and infor-
mation about protein domains and motifs to enhance model accur-
acy. For the representation of compound structures, CPI–NN
(Tsubaki et al., 2019) and Graph-DTA (Nguyen et al., 2021) used
novel graph neural networks (GNNs) (Zhang et al., 2021) as an al-
ternative to CNNs resulting in state-of-the-art prediction accuracy.

1.2 Issues in performance assessment of CPI models
Despite increasing sophistication of CPI models through deep learn-
ing, the generalization performance of existing approaches on inde-
pendent or real-world datasets is still not perfect (Riley, 2019). One
of the fundamental issues behind this is biased and overly optimistic
performance assessment strategies arising from the use of unsuitable
datasets, poor non-redundancy control in train-test data splitting in
cross-validation (CV), improper procedures for generation of nega-
tive example, lack of independent test sets and choice of perform-
ance metrics. Here, we discuss each of these issues in further detail.

A number of ML-based CPI prediction models have used the
MUV (Rohrer and Baumann, 2009), DUD-E (Mysinger et al., 2012)
and Human-CPI datasets (Liu et al., 2015; Tsubaki et al., 2019) for
model training and performance evaluation. However, most datasets
in this domain do not contain true or experimentally verified nega-
tive examples and may have a large degree of redundancy between
proteins and compounds which can lead to biased ML models
(Chen et al., 2019, 2020; Sieg et al., 2019).

Another issue associated with the performance assessment of
ML CPI models is the protocol used for generating negative exam-
ples. As there are no standardized datasets of negative examples for
CPI prediction, researchers in this domain resort to one of two
approaches for the generation of ‘synthetic’ negative examples for
training and performance assessment: Random pairing and Inter-
class similarity-controlled negative example generation. In random
pairing, proteins and compounds in the positive set are simply ran-
domly paired for generating synthetic negative examples after exclu-
sion of known positive pairs as in the dataset used in CPI-NN
(Tsubaki et al., 2019). However, researchers have argued that
random-pairing can produce examples that are highly similar to
positive examples and this can add labeling noise in training (Ding
et al., 2014). As a consequence, they have proposed that negative
examples should be generated with controls over inter-class similar-
ity. This process first creates a candidate negative set through ran-
dom pairing of compounds and proteins. Then a similarity function
is used to calculate the degree of similarity between a candidate
negative example and the given set of positive examples. Only those
candidate negative examples are added to the final negative set
whose similarity score with positive examples is lower than a pre-
specified threshold resulting in negative examples that are sufficient-
ly dissimilar to known positive examples (Ding et al., 2014).
However, as in the case of protein–protein interaction prediction
models (Ben-Hur and Noble, 2006), the use of similarity controlled
negative example generation in model evaluation can result in overly
optimistic performance results with a high likelihood of generaliza-
tion failure on real-world test sets.

Many existing approaches also use an equal number of positive
and negative examples even though the number of compounds that
can be expected to bind to a given protein can be significantly
smaller in comparison to the size of the universe of possible com-
pounds. This results in the generation of a large number of false pos-
itives in real-world applications. Furthermore, CV protocols
employed in most existing ML CPI models also do not consider pro-
tein sequence and compound similarity in generating training and
test folds resulting in overly optimistic performance estimates as the
training set can contain examples that are very similar to test exam-
ples. Ideally, the examples in the test folds should be sufficiently dif-
ferent from training examples to reflect real-world use cases.

Lastly, existing methods report areas under the receiver operat-
ing characteristic or precision–recall curves (Area under the Receiver
Operating Characteristic Curve (AUCROC)/Area under the

Precision-Recall Curve (AUC-PR)) as performance metrics.
However, given that such approaches are typically used for screen-
ing interactions from a large number of candidate compound–pro-

tein pairs for wet-lab validation, these metrics do not provide a
directly interpretable estimate of how good a method is at ranking

interacting compounds of a protein.

1.3 Contributions of this work
In this work, we highlight the issues discussed above with a number
of experiments using existing state-of-the-art CPI prediction model
(CPI-NN) (Tsubaki et al., 2019) and Graph-DTA (Nguyen et al.,
2021) as well as a simple heterogeneous kernel-based approach. We
suggest improvements in the evaluation protocol used for perform-
ance assessment of such models in terms of negative example gener-

ation as well as performance metrics. We report the prediction
results of the proposed approach for screening candidate com-

pounds for a number of test proteins not included in the datasets
used in model construction including SARS-CoV-2 Spike and
Human-ACE2 proteins.

2 Materials and methods

In this section, we discuss details of our datasets, experiments and
ML methods for CPI prediction.

2.1 Datasets
2.1.1 Non-redundant Liu et al. human CPI dataset

We use the human protein–compound interaction dataset originally
proposed by Liu et al. (2015) and employed in a number of existing

methods such as CPI-NN (Tsubaki et al., 2019). In this dataset,
positive examples consisting of protein–compound pairs were col-

lected from two experimentally verified databases: DrugBank 4.1
(Wishart et al., 2008) and Matador (Günther et al., 2008). This
dataset has 3364 positive examples of interacting protein–com-

pound pairs constituting 852 unique proteins and 1179 unique com-
pounds. It also contains an equal number of negative examples
obtained by randomly pairing proteins and compounds in the posi-

tive set provided as part of the CPI-NN code repository (Tsubaki
et al., 2019). We found that the aforementioned dataset by Liu et al.
used in CPI-NN (Tsubaki et al., 2019) contained duplicated exam-
ples. We removed these duplicated examples from the positive set
resulting in 2633 unique positive examples that constitute our non-

redundant Liu et al. human CPI (NR-HCPI) dataset together with
negative examples obtained by randomly pairing proteins and com-

pounds in the positive set excluding any pairs already included in
the positive set. We generated different ratios of positive-to-negative
examples (P:N¼1:1, 1:3, 1:5 and 1:7) for the evaluation of predict-

ive performance under more realistic evaluation scenarios with high-
class imbalance. In conjunction with this dataset, we also utilized a

non-redundant CV (NRCV) protocol which is detailed in the per-
formance evaluation section.

2.1.2 Binding DB dataset

As discussed in Section 1, one of the fundamental issues with pro-
tein–compound interaction datasets is the lack of experimentally

verified negative examples. For performance assessment of CPI pre-
diction methods and for studying the impact of various approaches
for generating synthetic negative examples, we have used the bind-

ing affinity values of protein–compound pairs in the latest version
(June 2021) of Binding DB (Gilson et al., 2016) with a total of

22 782 226 examples. For this purpose, we applied a number of
data filtering steps (detailed in GitHub Supplementary Material)
such as using only single-chain protein targets with experimentally

verified inhibition constant values that are sufficiently high to ensure
very low probability of interaction to select our final dataset of 3657
negative examples.
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2.1.3 Superdrug bank for drug repurposing

For drug repurposing analysis, we use the SuperDRUG2 (version 2)
database (Siramshetty et al. 2018) of approved and commercially
available drugs with a total of 3633 unique small molecules. We
have also used the Superdrug bank molecules for screening potential
targets of SARS-Cov-2 Spike protein and the human-ACE2 protein.

2.2 ML models
For performance analysis, we have used the available implementa-
tions of Graph-DTA (Nguyen et al., 2021) and CPI-NN methods
which give state-of-the-art results (Tsubaki et al., 2019). CPI-NN
has been validated for human and Caenorhabditis elegans proteins
with high AUC–ROC (0.95) and under different class ratio settings
over the same datasets. Similarly, Graph-DTA is a state-of-the-art
approach for predicting binding affinity of drugs and proteins which
can be used for CPI prediction. We have used the publicly available
codes of CPI-NN and Graph-DTA for conducting experiments with
various CV and assessment strategies after verifying the reproduci-
bility of the results using the experimental settings as reported in the
original papers.

As a baseline, we have also developed a simple kernel-based ap-
proach for CPI prediction (see Fig. 1). For this purpose, we model
CPI prediction as a classification problem in which every example
x � c; pð Þ consists of a protein p and a compound c with corre-
sponding feature representations w pð Þ and / cð Þ, respectively. Each
example in the training dataset D ¼ pi; cið Þ; yið Þji ¼ 1 . . . N

� �
is

associated with a binary label yi 2 f�1; þ 1g indicating whether
the corresponding protein and compound interact þ1ð Þ or not �1ð Þ.

2.2.1 Protein and compound features

In order to capture amino-acid-specific binding characteristics of
proteins with their target compounds in the predictive model, we
have used the amino acid composition (AAC) of protein (denoted
by wAAC pð Þ) which is a 20-dimensional vector representation of a
protein sequence containing the frequency of occurrence of various
amino acids in the protein sequence. For modeling the physiochem-
ical similarity across amino acids, we used grouped k-mer compos-
ition of proteins as a feature vector. In this approach, each amino
acid in a protein is assigned one of seven predetermined groups
based on its physicochemical characteristics (Hashemifar et al.,
2018) and the counts of all possible group-level k-mers are used as a
feature vector. For k ¼ 2 and k ¼ 3, this results in 72 ¼ 49- and
73 ¼ 343-dimensional features of a protein denoted by w2 pð Þ and
as w3 pð Þ, respectively.

For modeling compound characteristics, we extract features
from SMILES of compounds in the CPI pair using its extended-
connectivity fingerprint (ECFP) (also known as Morgan fingerprint)
(Veselinovic et al., 2015) using RDKit (Cao et al., 2013). This fin-
gerprint is a topological feature of a chemical compound and cap-
tures its structural confirmation within a given radius. The feature
dimension of this representation is 1024 for a radius of three atoms.

2.2.2 Heterogeneous kernel representation

We have developed a simple kernel method for CPI prediction. As
each classification example in this problem comprises a protein and
compound, we first construct non-linear kernel representations of
proteins and compounds separately which are then merged to form
a heterogeneous feature space kernel for classification as shown in
Figure 1.

2.2.2.1 Compound similarity kernel. We use the compound feature
representation / cð Þ to construct a radial basis function (RBF) simi-
larity kernel between pairs of compounds as follows:
Kc ci; cjð Þ ¼ expð�cck/ðciÞ � /ðcjÞk2Þ. In this equation, /ðciÞ and
/ðcjÞ are Morgan fingerprint feature vectors as described in the pre-
vious section. The kernel Kc ci; cjð Þ essentially measures the degree of
similarity of two compounds in the feature space in a non-linear
manner with a single hyper-parameter cc > 0.

2.2.2.2 Protein similarity kernel. For a protein p, all three feature
vectors of protein sequence p are concatenated in a feature represen-
tation w pð Þ resulting in a 412-dimensional column vector of the pro-
tein features as w pð Þ ¼ wAAC pð Þ j w2 pð Þ j w3 pð Þ

� �
.

This feature representation is then used to generate a protein–protein
similarity kernel as follows: Kp pi;pjð Þ ¼ expð�cp kwðpiÞ � wðpjÞk2Þ:

2.2.2.3 Heterogeneous kernel representation and classification.
Based on protein and compound similarity kernels, we construct a
heterogeneous feature space kernel between pairs of examples p; cð Þ
and p

0
; c
0� �

each consisting of a protein and a compound as follows.

Kððp; cÞ; ðp0 ; c0 ÞÞ ¼ huðp; cÞ;uðp0 ; c0 Þi ¼ ðKpðp; p
0 Þ þKcðc; c

0 ÞÞ2

¼ Kpðp; p
0 Þ2 þ Kcðc; c

0 Þ2 þ 2Kpðp; p
0 ÞKcðc; c

0 Þ:

This joint kernel essentially measures the degree of similarity be-
tween pairs of examples with each example being a protein–
compound pair. Note that the joint kernel is a quadratic sum of the
protein and compound kernels which gives rise to an abstract and
nonlinear joint feature space u p; cð Þ for compound–protein pairs
with the kernel K being an implicit generalized dot product between
u p; cð Þ and u p

0
; c
0� �

. The product Kp p; p
0� �

Kc c; c
0� �

in the above for-
mulation implicitly corresponds to the tensor-product of the protein
and compound feature spaces. It is also important to note that two
examples will have a high kernel score if the corresponding proteins
and compounds in the two examples are similar. The joint kernel
over the training dataset D ¼ pi; cið Þ; yið Þji ¼ 1 . . . N

� �
is used for

training a kernelized support vector machine (SVM) which is then
used to infer the prediction score f ðp; cÞ for a given test example
ðp; cÞ. This approach is in line with the work by Jacob and Vert
(2008) with major differences in the choice of constituent kernels
and construction of the joint kernel (see GitHub Supplementary
Material for comparative results between these kernel methods).

3 Performance comparison and screening

We have designed multiple experiments to identify issues in per-
formance evaluation and generalization of CPI predictors which are
described below.

3.1 Cross-validation
For direct comparison with previous methods, we have used strati-
fied 5-fold CV which is typically used for reporting CPI prediction

Fig. 1. Concept diagram of kernel CPI (kernel-CPI) prediction. Protein sequence and

SMILES are given as input, AAC and grouped k-mer (k¼2, k¼ 3) features are

extracted from protein sequence and concatenated into a single feature vector w pð Þ
for computing a protein-level kernel Kp p; p

0� �
: The Morgan fingerprint / cð Þ is

extracted from SMILES representation of a compound to calculate kernel Kc c; c
0� �
:

These kernels are combined into a kernel representation K p; cð Þ; p
0
; c
0� �� 	

for CPI

prediction
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results. Each CV experiment is repeated 10 times to obtain the aver-
age and standard deviation of different performance metrics such as
AUCROC and AUC-PR.

One of the limitations of 5-fold CV is that very similar proteins
or compounds may end up in different folds resulting in an overly
optimistic assessment of prediction performance. To estimate the
generalization performance in a real-world setting where test pro-
teins may not share very high sequence similarity with proteins in
the training set, we have performed a more stringent NRCV analysis
which has not been performed in previous studies. For this purpose,
proteins in the NR-HCPI dataset are first clustered based on a given
sequence identity threshold through CD-HIT (Huang et al., 2010).
These clusters are then divided into 5-folds such that no 2-folds have
examples from the same cluster while ensuring that the number of
examples in every fold remains approximately the same. This guar-
antees that the sequence similarity of proteins in examples in a test-
fold is always less than a specified threshold with proteins in the
training set. We used two different sequence similarity thresholds
(40% and 90%) in our analysis.

3.2 Validation over experimentally verified negative

examples
We have also analyzed the prediction quality of different CPI predic-
tors on an external set containing experimentally verified negative
examples from Binding DB as described in the dataset section. In
this experiment, the ML models are trained on 4-folds of NRCV as
described above. However, the original negative examples in the test
fold are replaced with experimentally verified negative examples
from Binding DB. This process is repeated by alternating across dif-
ferent folds and then multiple runs to generate mean and standard
deviation values of performance metrics.

3.3 Analysis of negative example generation strategies
As discussed in Section 1, there are two strategies used in the
literature for generating negative examples: random pairing and
similarity controlled negative example generation. In this work, we
systematically compare these strategies for training and performance
assessment of the proposed model. For this purpose, we have devel-
oped the algorithm shown in Algorithm 1 to generate negative
examples at different inter-class similarity thresholds using kernel-
based calculations. This algorithm can be used to generate a desired
number of synthetic negative examples by controlling their degree of
similarity to examples in a given positive set based on an inter-class
similarity threshold a 2 [0,1]. For our systematic comparison, we
first pick a value of a and then generate synthetic negative examples
through this algorithm for training and performance evaluation. It is

important to note that for sufficiently high values of a (a!1), this
algorithm essentially generates randomly paired negative examples
which can be similar to known positive examples whereas for low
values (a!0), the generated negative examples are highly dissimilar
to known positive examples. The resulting data of positive and syn-
thetic negative examples are then divided into 5-folds in a stratified
manner as for NRCV. Similar to NRCV, training is performed on
4-folds followed by testing on examples in the held-out set in two
different ways: first by using the held-out set of positive and synthet-
ic negative examples and, secondly, by using the held-out set of
positive examples and ‘true’ negative examples from Binding DB.
The process is then repeated for different values of a. Differences in
predictive performance of a given method between the CV protocol
and the evaluation with true negative examples from Binding DB
indicate systematic biases resulting from synthetic negative example
generation strategies.

3.4 Target compound screening
In a practical setting, CPI prediction approaches are used for screen-
ing a large number of compounds for potential binding with a target
protein of interest. Ideally, interacting compounds of a given protein
should rank close to the top in comparison to non-interacting com-
pounds in the screening library based on prediction scores of all test
examples from the predictor. However, CV experiments used in pre-
vious works do not model this ‘screening’ use case as they are
restricted to a fixed evaluation dataset and do not analyze how a
predictor would rank known interacting partners in a setting in
which all compounds are paired with all proteins. In this work, we
have performed in silico screening of all unique compounds against
all proteins in a given test set. This all-versus-all pairwise screening
is useful for drug discovery and repurposing studies and is carried
out by computing the prediction score of all possible pairs of pro-
teins and compounds in a test set using a prediction model and cal-
culating how often a predictor ranks a known interacting pair in its
top predictions. We have performed multiple screening experiments
for comparison between CPI prediction models:

3.4.1 Screening with NRCV

In this experiment, we train a model using training folds of the
NRCV dataset and then compute prediction scores of all-versus-all
compound–protein pairs in the test fold using the trained model (see
GitHub Supplementary File for an illustration of the experimental
setup). This process is repeated for all 5-folds of the dataset to
compute a rank-based performance metric [rank of first positive
prediction (RFPP)] described in the next subsection.

3.4.2 Screening SuperDRUG2 for drug-repurposing

For drug-repurposing analysis with the proposed model, we used the
SuperDRUG2 dataset containing 3633 FDA-approved drugs. In this
experiment, the model is first trained on all examples in training
folds of the NRCV dataset and then used to generate prediction
scores for all proteins in the test fold paired with all compounds in
the SuperDRUG2 database (see Supplementary Material on GitHub
for an illustration of the experimental setup). These scores are used
to rank known interacting compounds of each protein in the test set
relative to the compounds in SuperDRUG2 to compare the predict-
ive performance of different models and identify putative com-
pounds in SuperDRUG2 that can bind test proteins in the NRCV
dataset.

We have also used Kernel-CPI to generate predictions for inter-
actions of SARS-CoV-2 Spike protein and human-ACE2 protein
across all compounds in SuperDrug2. We performed a literature
search for any experimental evidence of interaction of the top-
scoring compound with these proteins or their association with
SARS-CoV-2 treatment effects.

3.5 Using ranks for performance evaluation
For quantifying the prediction quality of CPI predictors in screening
experiments, we have developed an interpretable performance

Algorithm 1. Algorithm for negative example generation with inter-

class similarity a

Inputs:

Set of positive examples } ¼ pi; cið Þji ¼ 1 . . . P
� �

Set of unique proteins PU (PU ¼ fpj p; cð Þ 2 }g)
Set of unique compounds CU (CU ¼ fcj p; cð Þ 2 }g)
Desired number of negative examples N (based on P:N ratio)

Desired inter-class similarity threshold a 2 ½0; 1�
Output: Set @ of N negative examples with similarity to positive

examples } less than a
Algorithm:

Initialize @  fg
While @j j < N:

Randomly select a protein–compound pair p; cð Þ from PU � CU

Calculate similarity of candidate negative example with positive set

as follows:

apc ¼ maxp02PU�fpgKpðp; p0Þmaxc02CU�fcgKcðc; c0Þ
If apc < a and p; cð Þ 62 } [ @: @  @ [ p; cð Þ

� �
Return @
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metric called RFPP inspired from our previous work on protein–pro-
tein interactions (Minhas et al., 2014). It essentially shows the
expected number of compounds that will need to be screened in the
wet lab to identify at least one true interacting partner of a protein.
For a given protein in the test set, RFPP is obtained by first pairing
all possible test compounds with the protein and computing the pre-
diction scores of all such examples using the CPI model under evalu-
ation. Then the rank of the highest scoring compound that is a
known interacting partner of the test protein is used as the RFPP
value of that protein (see GitHub Supplementary Material for an il-
lustration of this experimental setup). Note that for an ideal predict-
or, the RFPP for all test proteins should be 1, that is, the top-ranked
compound of each test protein should be an interaction partner of
that protein. In order to quantify the predictive quality of a CPI
model across all test proteins, we first compute RFPP for all test pro-
teins and then calculate percentiles of the RFPP values across all pro-
teins. The percentile values across all proteins can be used to
compare the predictive performance of screening models based on
their ability to rank putative CPIs. The rth percentile of RFPP of a
predictor will be q (denoted as RFPPðrÞ ¼ q) if r% test proteins have
at least one known interacting compound in the top q predictions
from the predictor. For an ideal predictor, the RFPP value for all
proteins in the test set should be 1, that is, RFPP (100) ¼1. We have
generated the RFPP percentile plots of different CPI predictors. As a
baseline, we have also plotted the RFPP percentiles of a random pre-
dictor which generates random prediction scores given a protein and
compound. These values provide more directly interpretable esti-
mates of prediction quality for such screening experiments.

4 Results and discussion

4.1 NRCV analysis is essential for realistic performance

evaluation
Previous approaches have used 5-fold CV or multiple bootstrap runs
for performance evaluation. In order to provide a direct comparison
between different methods, we have performed stratified 5-fold CV
on the original Liu et al. dataset as well as after removing duplicated
examples from it (Table 1). This analysis shows that the predictive
performance in terms of AUROC CPI-NN (94%) and GraphDTA
(97%) is comparable to kernel-CPI baseline (99%). As expected, re-
moval of duplicated examples reduces the prediction accuracy of
these methods. In order to get a more realistic estimate of the gener-
alization performance of these methods, we have performed 5-fold
NRCV analysis with 90% sequence identity threshold as discussed
in the previous section. As expected, the predictive performance of
the predictors decreases significantly with the removal of redun-
dancy between training and test sets through NRCV. These experi-
ments clearly show that it is very important to analyze prediction
performance through NRCV. Results at 40% thresholds are
reported in the Supplementary Material (on GitHub) and follow a
similar trend.

4.2 Validation over true negative examples from

binding DB allows realistic performance evaluation
As outlined in Section 3.2, we have used a set of experimentally veri-
fied negative examples from the Binding-DB dataset to analyze the

generalization performance of CPI predictors. For this purpose,
these models were first trained on the NR-HCPI dataset with a bal-
anced (1:1) class ratio. The results of this analysis are given in
Table 2 which shows that, upon using true negative examples from
Binding-DB in testing, both CPI-NN (AUC–ROC of 76.8%) and
Graph-DTA (AUC–ROC of 61.5%) perform significantly worse
than the simple kernel-CPI approach (AUC–ROC of 89.9%). This
shows generalization failure of these approaches and is line with the
NRCV results discussed in the previous subsection. As expected,
increasing the ratio of negative examples in training for the pro-
posed method improves the prediction performance over the binding
DB test set further.

4.3 Random pairing for generating negative examples

yields more realistic and better generalization

performance
We have analyzed the impact of different strategies of generating
synthetic negative examples (random-pairing versus inter-class simi-
larity controlled negative example generation) on estimation of pre-
diction quality of a CPI model through CV and its generalization
performance on an external dataset containing experimentally veri-
fied negative examples from Binding-DB. For this purpose, we have
used the procedure discussed in Section 3.3 that allows us to gener-
ate synthetic negative examples by controlling their degree of simi-
larity with a given positive set through an inter-class similarity
threshold a. The AUC-PR values of CPI-NN, Graph-DTA and the
proposed model for CV and the external test set for different values
of a are plotted in Figure 2. It shows that, as expected, as the similar-
ity between the synthetic negative examples and the positive set is
increased, the AUC-PR values of all three methods obtained from
CV decrease. This is inline with the findings by Ding et al. (2014)
and support similarity controlled generation of negative examples.
However, if models trained over such ‘easy’ negative examples that
are significantly different from the positive set are tested on an exter-
nal set containing experimentally verified negative examples, the
generalization performance is significantly lower. On the other
hand, generalization performance over experimentally verified nega-
tive test examples improves as the value of a is increased. This ex-
periment clearly shows that using random pairing of proteins and
compounds (corresponding to a!1) can be a superior strategy for
generating synthetic negative examples as it not only gives more
realistic estimates of predictive quality but can improve the perform-
ance of CPI models over unseen test sets in comparison to strictly
controlling the degree of inter-class similarity in model training (cor-
responding to a!0).

4.4 RFPP for interpretable performance evaluation in

screening experiments
Figure 3 shows the RFPP percentiles across all proteins resulting
from the all-versus-all screening experiment over the NR-HCPI
dataset with NRCV detailed in Section 3.4. In this experiment, a
CPI model is first trained over examples in the training folds of the
NRCV dataset and then used to rank all possible pairs of proteins
and compounds in the test set to see how good is the method at
ranking known interacting compounds for all proteins through the
RFPP metric. The total number of all such possible combinations in

Table 1. Mean and standard deviation (in brackets) of AUCs (expressed as percentage) of different CPI methods over NR-HCPI dataset with

stratified 5-fold and non-redundant (NR) CV

Strategy CPI-NN Graph-DTA Kernel-CPI

ROC PR ROC PR ROC PR

5-Fold CV (Liu et al.) 94.41 (1.19) 94.01 (2.21) 96.51 (0.37) 95.08 (1.09) 98.89 (0.14) 99.03 (0.16)

5-fold CV Duplicates removed 93.1 (1.06) 91.44 (0.64) 87.1 (0.74) 85.60 (1.10) 93.84 (2.35) 94.56 (1.31)

5-Fold NR CV 62.58 (1.10) 72.52 (5.20) 68.21 (1.90) 67.3 (1.00) 69.98 (5.70) 77.30 (1.44)

Note: Highest values shown in bold.
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this dataset is �292 500. It shows that for 85% of test proteins, the
kernel-CPI baseline is able to find at least one known interacting
compound of those proteins in its top 10 hits [i.e. RFPP(85) ¼ 10]
whereas for CPI-NN and Graph-DTA only 50% and 12% proteins,
respectively, have at least one known hit in their top 10 predictions
for each protein. In contrast, a random predictor can be expected to
have at least one interacting compound in its top 10 predictions for
only 5% of proteins in this test set. This clearly shows the efficacy of
the proposed approach as well as the ease of interpreting results of
model evaluation through RFPP in screening experiments. As
expected, adding more randomly paired negative examples to train-
ing improves RFPP further.

4.5 Drug repurposing analysis using SuperDRUG2
In order to evaluate the prediction performance for possible drug-
repurposing studies, we have conducted a virtual screening experi-
ment using the FDA approved drugs in the SuperDRUG2 dataset.
For this purpose, we score all possible (�908 250) pairs of proteins
from the NR-HCPI with compounds from SuperDRUG2. All these
predictions from the kernel-CPI model are made available to the
community as Supplementary Results. As an additional step, we
have also calculated the RFPP percentiles across all proteins from
different models for this screening experiment which are given in the
Supplementary File. These results show that for a random predictor
we can expect to find at least one true interacting compound in the
top 10 hits for only 3% of the proteins in this analysis. However,
CPI-NN and kernel-CPI models are able to identify at least one
interacting compound for 50% and 75% of proteins, respectively.

The results of in silico screening of compounds in the SuperDRUG2
dataset for Human ACE2 (Uniprot ID: Q9BYF1) and SARS-Cov-2
Spike (Uniprot ID: P59594) proteins through the proposed method are
given in the Supplementary File (on GitHub) which shows the top 100
predictions of our model for ACE2 and Spike protein along with evi-
dence from the literature supporting the predicted interaction. We have
found that the proposed model is able to identify a number of com-
pounds as potential interaction partners of these proteins even though
these were not included in its training. Specifically, we have identified
Trandolapril, dimethyl sulfoxide (DMSO), Remdesivir, Ramipril, N-
acetylglucosamine, perindopril, sunitinib and glutathione in our top
hits for ACE2 binding with strong support from experiments and in sil-
ico studies in the literature. Similarly, N-acetylglucosamine, DMSO,
Remdesivir, Sunitinib, Nilotinib, Dasatinib and Sorafenib show bind-
ing potential with the spike protein of SARS-Cov-2 with strong support
in recent literature (references added in Supplementary Material).

5 Conclusions

In this work, we have identified a number of shortcomings in experi-
ment design approaches for CPI prediction. We hope that the
insights, performance assessment strategies and baselines discussed
in this work will enable researchers to address these issues so that fu-
ture CPI models are more effective in prediction of CPIs with higher
generalization performance. Further investigation into the role of
surface accessible residues in proteins and other protein feature rep-
resentations can help improve prediction performance.
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