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Abstract: Molecular recognition, which is the process of biological macromolecules interacting
with each other or various small molecules with a high specificity and affinity to form a specific
complex, constitutes the basis of all processes in living organisms. Proteins, an important class of
biological macromolecules, realize their functions through binding to themselves or other molecules.
A detailed understanding of the protein–ligand interactions is therefore central to understanding
biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the
protein-ligand recognition and binding will also facilitate the discovery, design, and development
of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand
binding, including the binding kinetics, thermodynamic concepts and relationships, and binding
driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding
models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and
their underlying thermodynamic mechanisms are discussed. Finally, the methods available for
investigating protein–ligand binding affinity, including experimental and theoretical/computational
approaches, are introduced, and their advantages, disadvantages, and challenges are discussed.

Keywords: binding mechanisms; thermodynamics; kinetics; binding driving forces; isothermal
titration calorimetry (ITC); surface plasmon resonance (SPR); fluorescence polarization (FP); docking;
free energy calculations

1. Introduction

Molecular recognition refers to the process in which biological macromolecules interact with
each other or with various small molecules through noncovalent interactions to form a specific
complex [1]. This process has two important defining characteristics: (i) specificity, which distinguishes
the highly specific binding partner from less specific partners; (ii) affinity, which determines that a high
concentration of weakly interacting partners cannot replace the effect of a low concentration of the
specific partner interacting with high affinity [2]. Of greatest importance is the fact that the molecular
recognition is not a process in itself, but an element of a more complex, functionally important
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mechanism involving the essential elements of life—self-replication, metabolism, and information
processing. For example, DNA replication occurring before cell division is accomplished by a series
of complicated enzyme-catalyzed reactions relying on the recognition and binding between helicase
and DNA double helix (responsible for DNA unzipping), DNA polymerase and single strand DNA
(responsible for base insertion and DNA synthesis), and ligase and discontinuous DNA segments
(responsible for stitching these segments). Similarly, the highly efficient and specific molecular
recognition and binding, which act as a prerequisite for enzyme-catalyzed reactions, play a critical
role in running and regulating a metabolic network consisting of thousands of chemical reactions
running in parallel [3,4]. Cellular signal cascades proceed through a series of recognition, binding, and
dissociation events, i.e., they are initiated by small molecular messenger recognition, transmitted via
transmembrane receptor segments, and accomplished by the functional response of a cell involved in
a multitude of biomolecule binding phenomena [3,5].

Proteins are a very important class of macromolecules because they play a vast variety of roles
in the cell, including structural (cytoskeleton), mechanical (muscle), biochemical (enzymes), and
cell signaling (hormones) functions. Essentially, proteins realize their biological functions through
their direct physical interaction with other molecules, including proteins and peptides, nucleic acids,
membrane, substrates, and small molecule ligands such as oxygen, solvent, and metal. For purpose
of clarity, in this review we define the “ligand” as any molecule capable of binding to a protein with
a high specificity and affinity. A prerequisite for a deeper understanding of protein functions is to
understand thoroughly the mechanisms responsible for the protein–ligand interactions, for which the
full description, characterization, and quantification of the energetics that govern/drive the formation
of a complex are crucial [6]. In addition, because the aim of the rational drug design is to make use of
knowledge of the structural data and protein–ligand binding mechanisms to optimize the process of
finding new drugs, an in-depth understanding of the nature of the molecular recognition/interaction
is also of great importance in facilitating the discovery, design, and development of drugs [7].

This review includes three parts. The first part aims to elucidate the physicochemical mechanisms
that govern the protein–ligand association. After introducing the molecular association-relevant
concepts such as binding kinetics, free energy, enthalpy, and entropy, the forces/factors that drive
the protein–ligand binding are rationalized, followed by an introduction of the phenomenon of
entropy–enthalpy compensation and its influence on binding affinity. In the second part, the presently
existing three conceptual models describing and interpreting the protein–ligand binding, i.e., the
“lock-and-key”, “induced fit” and “conformational selection”, will be introduced and the underlying
driving factors and how they work in these models will be discussed. The third part is dedicated
to experimental and theoretical methods applied to assess protein–ligand binding affinity. The
experimental methods mainly focus on isothermal titration calorimetry (ITC) [6,8], surface plasmon
resonance (SPR) [9,10], and fluorescence (de)polarization (FP) [11,12] due to their capacity to provide
information both about the binding kinetics and thermodynamics. The computational methods
introduced include the protein–ligand docking and binding free energy calculations. The docking
methods, which rely on efficient heuristic ligand placement searching algorithms and fast empirical
scoring functions, offer the ability to predict quickly and cheaply the binding mode (pose) and affinity
of a ligand for the protein receptor of interest and, therefore, are widely used in virtual screening
of compound libraries and structure-based drug design [13,14]. Free energy calculations, which
try to compute free energies of the protein–ligand systems based on the principles of statistical
thermodynamics, are required to generate thermodynamic averages through extensive conformational
sampling and, therefore, are more time-consuming approaches than the docking methods [3,15]. The
advantages, disadvantages, and challenges of these methods will be discussed and/or compared.

2. Physicochemical Mechanisms of Protein–Ligand Interaction

In order to gain a deeper understanding of the molecular recognition between a protein and its
ligand, it is necessary to understand the physicochemical mechanisms underlying the protein–ligand
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interaction. In this section, the binding kinetics, the basic thermodynamic concepts and relationships
relevant to protein–ligand binding, and the binding driving forces/factors and enthalpy–entropy
compensation, are introduced and/or rationalized.

2.1. Protein–Ligand Binding Kinetics

Protein–ligand binding kinetics describes the process underlying the association between the
protein and ligand, particularly focusing on the rate at which these two partners bind to each other. In
a simple instance, when a protein molecule P and a ligand molecule L with mutual affinity are mixed
in a solution, the time-dependent association between them can be formulated as:

P ` L
kon
é
koff

PL (1)

where PL represents the protein–ligand complex, kon and koff are the kinetic rate constants that account
for the forward binding and reverse unbinding (or dissociation) reaction, respectively. The units of kon

and koff are M´1¨ s´1 and s´1, respectively. At equilibrium, the forward binding reaction P + L Ñ PL
should be balanced by the reverse unbinding reaction PL Ñ P + L, and this is written:

konrPsrLs “ koffrPLs (2)

where the square brackets represent the equilibrium concentration of any molecular species. The
binding constant Kb (in unit of M´1) is then defined by:

Kb “
kon

koff
“

[PL]
[P][L]

“
1

Kd
(3)

where Kd (in unit of M) is called dissociation constant. Therefore, the fast binding rate accompanied
by a slow dissociation rate will give a high/low binding/dissociation constant and, hence, a high
binding affinity.

2.2. Basic Concepts and Thermodynamic Relationships

A protein–ligand–solvent system is a thermodynamic system composed of the solute (i.e., the
protein and ligand molecules) and the solvent (i.e., liquid water and buffer ions). In such a system,
there are very complex interactions and heat exchange among these substances; and the relationship
between these substances and how heat transfer is related to various energy changes are dictated by
the laws of thermodynamics. As a result, the driving forces that dictate the association between protein
and ligands are a synthetic result of various interactions and energy exchanges among the protein,
ligand, water, and buffer ions. Gibbs free energy, which is a thermodynamic potential that measures
the capacity of a thermodynamic system to do maximum or reversible work at a constant temperature
and pressure (isothermal, isobaric), is one of the most important thermodynamic quantities for the
characterization of the driving forces [15,16]. In analogy with any spontaneous process, protein–ligand
binding occurs only when the change in Gibbs free energy (∆G) of the system is negative when the
system reaches an equilibrium state at constant pressure and temperature. Because the protein–ligand
association extent is determined by the magnitude of the negative ∆G, it can be considered that ∆G

determines the stability of any given protein–ligand complex, or, alternatively, the binding affinity of a
ligand to a given acceptor. It should be noted that the free energy is a function of the states of a system
and, as thus, ∆G are defined merely by the initial and final thermodynamic states, regardless of the
pathway connecting these two states.
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The standard binding free energy ∆G˝, which refers to the free energy change measured under
the conditions of 1 atm pressure, a temperature of 298 K, and the effective reactant (protein and ligand)
concentrations of 1 M, is related to the binding constant Kb by the Gibbs relationship:

∆G˝ “ ´RTlnKb (4)

where R is the universal gas constant (1.987 cal¨ K´1¨ mol´1) and T is the temperature in degrees of
Kelvin. Equation (4) makes it apparent that the higher the binding constant Kb, the more negative the
standard free energy of binding, indicating that the kinetic parameters (kon and koff and their ratio
Kb) determine the thermodynamic properties of the complex, i.e., the stability of the complex and the
binding affinity between the protein and ligand.

The binding free energy (∆G) at any moment in time during an association (not necessarily at
standard-state condition) is given by:

∆G “ ∆G˝ ` RTlnQ (5)

where the Q is the reaction quotient, which is defined as a ratio of the concentration of the
protein–ligand complex to the product of the concentrations of the free protein and free ligand at any
moment in time. When Q = Kb (as shown by Equation (3)), an association reaction is at equilibrium,
and ∆G = 0. ∆G can also be parsed into its enthalpic and entropic contributions with the following
fundamental equation:

∆G “ ∆H ´ T∆S (6)

where ∆H and ∆S are change in enthalpy and entropy of the system upon ligand binding, respectively,
and T is the temperature in Kelvin.

Enthalpy is a measure of the total energy of a thermodynamic system, i.e., the sum of the internal
energies of the solute and solvent and the amount of energy required to make room for the system
(calculated as the product of the system volume and the pressure) [17]. ∆H is negative and positive
in the exothermic (i.e., formations of the energetically favorable noncovalent interactions between
atoms) and the endothermic (i.e., disruptions of the energetically favorable noncovalent interactions)
processes, respectively. For a binding process, ∆H, or the binding enthalpy, reflects the energy change
of the system when the ligand binds to the protein. The binding enthalpy in a non-strict sense is
generally treated as the changes in energy resulting from the formations of noncovalent interactions
(van der Waals contacts, hydrogen bonds, ion pairs, and any other polar and apolar interactions) at
the binding interface. However, the heat effect of a binding reaction is a global property of the entire
system, including contributions not only from the solute, but also from the solvent [18], and it is barely
conceivable to form favorable interactions without disrupting any others [6]. In fact, the change in
enthalpy upon binding is a result of forming and disrupting many individual interactions, including
the loss of the hydrogen bonds and van der Waals interactions formed between the protein and solvent
and between the ligand and solvent, the formation of the noncovalent interactions between the protein
and ligand, and the solvent reorganization near the complex surfaces. These individual components
may make either favorable or unfavorable contributions, and the net enthalpy change is a result of the
combination of these contributions [6,19].

Entropy is a measure of how evenly the heat energy will be distributed over the overall
thermodynamic system. The second law of thermodynamics determines that the heat always flows
spontaneously from regions of higher temperature to regions of lower temperature. This reduces the
degree of the order of the initial system, and, therefore, entropy could also be viewed as a measure
of the disorder or randomness in atoms and molecules in a system. ∆S is a global thermodynamic
property of a system, with its positive and negative signs indicating the overall increase and decrease
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in degree of the freedom of the system, respectively. The total entropy change associated with binding
(the binding entropy ∆S) may be parsed into three entropic terms:

∆S “ ∆Ssolv ` ∆Sconf ` ∆Sr/t (7)

where ∆Ssolv represents the solvent entropy change arising mainly from surface burial that results in
solvent release upon binding, which often makes a favorable contribution to the binding entropy due
to its large positive value; ∆Sconf represents the conformational entropy change reflecting the changes
in the conformational freedom of both the protein and ligand upon binding, which may contribute
favorably or unfavorably to the binding entropy because the degree of freedom of the complex
may increase or reduce as compared to those of the unbound, free protein and ligand [20,21]; ∆Sr/t
represents the loss of translational and rotational degrees of freedom of the protein and ligand upon
complex formation, which reduces the number of particles in solution and contributes unfavorably
to the binding entropy. The above three entropic terms determine the net entropy change, with
positive and negative net entropy change contributing favorably and unfavorably to the binding
free energy, respectively. Generally, the binding reactions would have to overcome the inescapable
entropic penalties (i.e., the negative ∆Sr/t upon binding) [22,23] through either large solvent entropy
gain (positive ∆Ssolv) or favorable protein–ligand interactions (which lead to negative binding ∆H) if
binding is to occur [19].

2.3. Binding Driving Forces and Enthalpy-Entropy Compensation

Because (i) only when the change of the system free energy is negative can the protein–ligand
binding occur spontaneously; and (ii) the extent of the difference in free energy between the complex
state and the unbound free state (i.e., the magnitude of the negative free energy change upon binding)
determines the stability of the complex, it can be considered that it is the decrease in system free energy
that drives the protein–ligand binding. In fact, both the protein folding and protein–ligand binding
processes are driven by the decrease in total Gibbs free energy of the system. The only difference
between them is the presence and absence of the chain connectivity, which leads to two different terms:
intramolecular and intermolecular recognition and binding [24,25]. However, the common driving
forces and similar folding/binding processes have led to similar free energy funnel models (folding
funnel and binding funnel) for explaining these two similar processes [26–29].

As introduced above, two thermodynamic quantities, the enthalpy change and entropy change,
determine the sign and magnitude of the binding free energy. We therefore consider ∆H and ∆S as the
driving factors for protein–ligand binding. The contributions of ∆H and ∆S to ∆G are closely related.
For instance, the tight binding resulting from multiple favorable noncovalent interactions between
association partners will lead to a large negative enthalpy change, but this is usually accompanied by
a negative entropy change due to the restriction of the mobility of the interacting partners, ultimately
resulting in a medium-magnitude change in binding free energy [30]. Similarly, a large entropy
gain is usually accompanied by an enthalpic penalty (positive enthalpy change) due to the energy
required for disrupting noncovalent interactions. This phenomenon—the medium-magnitude free
energy change caused by the complementary changes between enthalpy and entropy—is called the
enthalpy–entropy compensation.

It should be noted that this phenomenon has been a subject of debate for decades. The main
criticisms are that the compensation could be (i) a misleading interpretation of the data obtained from
a relatively narrow temperature range [31] or from a limited range for the free energies [32,33]; (ii) the
result of random experimental and systematic errors [34,35]; and (iii) the result of data selection
bias [36–38]. Nevertheless, enthalpy–entropy compensation has been very frequently observed
in thermodynamic binding studies of biological systems [6,21,39–41], and analyses of collected
calorimetric data for protein–ligand binding [36,42,43] and results from theoretical studies [44,45]
suggest that it is a genuine and common physical phenomenon, although stringent criteria for the
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assignment of true compensation effects must be adhered to. The enthalpy–entropy compensation
may be rooted in the formations and disruptions of the weak noncovalent interactions. Multiple
factors seem to influence the compensation behavior, including the structural and thermodynamic
properties of the solvent (hydrophobic effect, solvation, desolvation, and local water structure), the
flexibility of the ligand-binding site/pocket or of the regions in the surrounding of the localized site,
the molecular structure of the ligand, and the changes in intermolecular forces during the binding
process [30,44,46–49]. In addition, the mechanisms of entropy–enthalpy transduction [42] have been
proposed to explain entropy–enthalpy compensation.

Because the enthalpy-entropy compensation does not give rise to dramatic change in the binding
free energy, the discrimination between the entropic and enthalpic contributions to the binding
free energy is important in the fields of medicinal chemistry and rational drug design. The ideal
optimization strategy is to maximize the favorable enthalpic or entropic contribution while minimizing
the entropic or enthalpic penalty. The ultimate goal is to induce the largest decrease in binding
free energy, thereby defeating the deleterious effects of the enthalpy–entropy compensation at the
thermodynamic level [6].

3. Protein–Ligand Binding Models

Three different models, the “lock-and-key” [50], “induced fit” [51] and “conformational
selection” [24,26,52,53], have been proposed to explain the protein–ligand binding mechanisms. The
prerequisites of the lock-and-key model (Figure 1a) are that both the protein and the ligand are
rigid and their binding interfaces should be perfectly matched. As a result, only the correctly sized
ligand (the key) can insert into the binding pocket (key hole) of the protein (the lock). However, the
lock-and-key model cannot explain the experimental evidence that a protein binds its ligand when their
initial shapes do not match well. This leads to the induced fit model (Figure 1b), which assumes that
the binding site in the protein is flexible and the interacting ligand induces a conformational change
at the binding site. Because the induced fit mechanism takes into account only the conformational
flexibility of the ligand-binding site, this model seems to be suitable for proteins showing merely minor
conformational change after the ligand binding. In addition, both the lock-and-key and the induced
fit models treat the protein as a single, stable conformation under given experimental conditions.
However, most proteins are inherently dynamic and the conformational selection model takes into
account this inherent flexibility. The conformational selection model (Figure 1c), which derives from
the free energy landscape (FEL) theory of protein structure and dynamics [54–57], postulates that the
native state of a protein does not exist as a single, rigid conformation but rather as a vast ensemble of
conformational states/substates that coexist in equilibrium with different population distributions,
and that the ligand can bind selectively to the most suitable conformational state/substate, ultimately
shifting the equilibrium towards this state/substate. In other words, the unbound protein can sample
with a certain probability the same conformation as that of the ligand-bound state.

The underlying mechanisms of these three models and relevant case studies have been extensively
reviewed elsewhere [5,53,58–60]. As a supplement, we here mainly focus on discussing how the
protein–ligand binding processes are driven/dominated by the enthalpy and/or entropy changes
under the scheme of the three models. This will facilitate having an in-depth understanding of
the binding mechanisms and could help to improve binding affinity by modifying the acceptor or
the ligand.
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Figure 1. Schematic illustrations of the three protein-ligand binding models: (a) Lock-and-key;
(b) Induced fit; and (c) Conformational selection. Adapted from [52].

3.1. Diffusion Followed by Collision Is the Prerequisite for Binding

For binding to proceed, the initial contacts/collisions between a protein molecule and a ligand
have to occur to form an encounter complex, for which the molecular diffusion plays a decisive
role [61]. Molecular diffusion, which originates from molecular kinetic energy (or heat, thermal
energy), is an entropy-driven process [17]. In a protein–ligand–solvent system, the diffusion (or the
random Brownian motions) of solute molecules have two origins: (i) the kinetic energy of the solute
molecules themselves; and (ii) collisions of the large solute with the small water molecules, which move
with different velocities in different random directions. At the constant temperature and pressure,
the motions of individual water molecules resulting from their atomic kinetic energy could lead to
the maximization of the solvent entropy. On the other hand, it seems likely that the heavy Brownian
bombardments from a large amount of water molecules may play a role in facilitating the rotations,
translations, and wanderings of the solute molecules and, ultimately, the accidental contacts/collisions
between them [62].

It should be noted that the long-range electrostatic attraction can speed up the association
between two solute molecules with opposite charges and as thus overcomes the diffusion limit [63].
A quantitative description of the biomolecular diffusion-collision can be found in [61] and references
therein. The Brownian dynamics (BD) simulation approach can be used to predict diffusion-controlled
association rates and can provide information about association pathways that lead from a freely
diffusing ligand towards a protein–ligand encounter complex [64–66].

3.2. Lock-and-Key: An Entropy-Dominated Binding Process

Using geometric-complementary colloidal particles as study objects, the lock-and-key binding and
the underlying mechanisms have been investigated experimentally [67,68] or theoretically by means of
density functional theory [69], hypernetted-chain integral equation theory [70,71], dissipative particles
dynamics [72], and Monte Carlo (MC) simulations [73,74]. A common conclusion is that the depletion
force [75] originating from the overlapping exclusion volume effect [67], or the depletant/solvent
entropy maximum [74,76], rules the interaction between lock-key colloids. In other words, the
lock-and-key binding between colloidal particles is entropically driven, either in the absence of
attractive forces [73] or even in the presence of electrostatic repulsion [67,74], and it depends only on
the size, shape, or surface roughness of interacting colloids (i.e., how well the lock and key surfaces
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match), regardless of composition and surface chemistry [77,78]. Based on these studies, below we
will give a tentative rationalization of the lock-and-key binding process and its driving forces.

It seems likely that the initial collisions occurring between the complementary interfaces of the
protein and ligand would trigger the displacement of the water molecules surrounding the solute
molecules, which leads to an increase of the accessible volume for the solvent molecules, ultimately
causing a drastic increment of the solvent entropy. Prior to the collision, water molecules formed
a well-defined network (or hydration shell) around the surfaces of the solute molecules [79]. This
solvation process, on the one hand, leads to a negative enthalpy change due to the formation of the
hydrogen-bonding and van der Waals interactions between the solvent and the solute and between
different water molecules, and, on the other hand, results in the decrease in solvent entropy due to
the loss of the degrees of freedom of the hydrated water molecules. The initial collision between the
protein and the ligand may disrupt some of the noncovalent interactions within the water network and,
hence, results in the release of a fraction of water molecules in the water network. The energy required
for disrupting the favorable interactions (positive enthalpy change) comes from the molecular kinetic
energy, while the release of the constrained water increases the solvent entropy [74]. The perfectly
matched interfaces between the protein and the ligand under the key-and-lock model make it possible
for the initial collision to trigger a complete displacement of the water networks surrounding the
interaction interfaces, thus producing a large amount of the solvent entropy. In addition, under the
rigid hypothesis, there is no change in the conformational entropy. Therefore, for the lock-and-key
binding to proceed, the solvent entropy gain should be large enough to overcompensate for not only
the positive enthalpy change arising from the desolvation process, but also the negative entropy change
caused by the loss of rotational and translational motions of the ligand.

Indeed, the negative enthalpy change arising from the favorable interactions (such as van der
Waals forces, hydrogen bonding, electrostatic, and dipole–dipole interactions) can also contribute to
the lowering of the system’s free energy, but the solvent entropy gain arising from the displacement
of the water molecules plays a dominant role in lowering the free energy [74,80]. Therefore, it is
reasonable to conclude that the lock-and-key binding is a entropy-dominated process.

3.3. Induced Fit

Typical induced fit binding has been demonstrated in the designed host-guest systems [45,81].
Through dynamic combinatorial chemistry method, Otto et al. discovered a receptor termed
diastereomer 4 that binds to its ligand NMe4I via the induced fit mechanism [81]: the evidence
for the induced fit recognition comes from the NMR study of the receptor; the ITC data indicate
that this binding is strongly enthalpy driven (∆G˝ = ´9.1 kcal¨ mol´1, T∆S˝ = ´0.2 kcal¨ mol´1,
∆H˝ = ´9.3 kcal¨ mol´1). Using the second-generation mining minima algorithm [82], Chang &
Gilson found that bindings of two ligands (termed barbital 11 and phenobarbital 12) to a flexible
macrocyclic barbiturate receptor 10 are involved in the induced fit mechanism [45]: the formation
of six strong hydrogen bonds between binding partners induces restructuring of the receptor
10 to form a complementary binding site; the negative enthalpy changes are large enough to
overcompensate for the strongly unfavorable losses in conformational entropy, thus achieving more
negative binding free energies (by greater than ´4.0 kcal¨ mol´1) than observed in another complex
(receptor 10-mephobarbital 13), in which the lack of strong interactions between mephobarbital 13 and
the receptor 10 prevents the induced fit seen for the two ligands barbital 11 and phenobarbital 12. With
regard to the protein–ligand system, the evidences from X-ray crystallographic structures suggest that
the sugar binding to permease is likely involved in the induced fit process [83–85]. Furthermore, the ITC
measurement shows that the binding of nitrophenyl-α-galactoside to the sugar permease MelB from
Salmonella typhimurium is solely driven by favorable negative enthalpy change (´10.3 kcal¨ mol´1),
which overcompensates for the unfavorable negative entropy change (´3.8 kcal¨ mol´1) and, hence,
dominates the induced fit binding [86]. These studies, in conjunction with the kinetic model calculations
demonstrating that binding by induced fit makes sense only if there is a certain extent of pre-existing
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complementarity between the interacting species [87], allow us to rationalize tentatively the induced
fit binding process and its driving forces, as described below.

For the binding to take place under the induced fit model, the lack of perfect surface
complementary between binding partners necessitates multiple tentative collisions to achieve an
appropriate match between the interacting sites [17,87]. The initially established contacts (negative
enthalpy change) between the matched sites should be strong enough to provide the encounter
complex enough strength and longevity so that induced fit takes place within a reasonable time [87]. In
addition, the amount of the released constrained water molecules upon encounter complex formation,
although smaller than that in the lock-and-key model due to the imperfectly matched interacting sites,
can also make a favorable contribution to the stability of the encounter complex. The subsequent
induced fit is in essence a process of adjusting conformation of the binding site to suit the needs of
the incoming ligand, ultimately leading to maturation of the encounter complex into a fully bound
complex. This process is also accompanied by the release of the water molecules and, moreover,
because of the excellent shape match between the binding partners in the fully bound complex, the
amount of released water in the overall process of the induced fit binding can be expected to be
as much as that of the lock-and-key binding. As a result, the solvent entropy gain also contributes
favorably to the induced fit binding. Nevertheless, the net entropy change of binding is determined
by the three entropic terms, i.e., ∆Ssolv, ∆Sconf, and ∆Sr/t, as shown in Equation (7). In the case of the
induced fit binding, it can be speculated that the ∆Sconf term is negative since the formed favorable
noncovalent interactions between the binding partners restrict the conformational freedoms of the
interacting interfaces. Such an unfavorable ∆Sconf term, together with the unfavorable (negative)
∆Sr/t term (due to the loss of rotational and translational degrees of freedom of the binding partners),
tends to compensate for the favorable (positive) ∆Ssolv term, ultimately leading to a relatively small
net entropy change compared to the net enthalpy change. Indeed, in the examples of induced fit
binding [45,81,86] described above, the net entropy changes are all negative values, which are, however,
overcompensated for by the relatively larger negative enthalpy changes. It is not impossible that
the net entropy change could be a positive value and contributes favorably to the lowering of the
system’s free energy, but the magnitude of the net negative enthalpy change is larger, thus contributing
substantially to the binding free energy in the induced fit binding.

In the induced fit process, it is hard to imagine that the new noncovalent interactions between
the protein and the ligand will be formed without disrupting any original interaction at the binding
sites. In order to maintain the stable association of binding partners in the maturation complex, the
negative enthalpy change resulting from the newly established interactions should be large enough
to overcompensate for not only the positive enthalpy change resulting from disrupting the original
interactions, but also the possible negative net entropy change. Intuitively, the magnitude of the
negative enthalpy change could be related either to the number of noncovalent interactions, or to
their strength, between the protein and the ligand. Taken together, it is not unreasonable to consider
that the induced fit binding is dominated by the enthalpic term [21], or alternatively, that it is an
enthalpy-dominated process [17].

3.4. Conformational Selection: A Process in Which Entropy and Enthalpy Play Roles in a Sequential Manner

The conformational selection model is based on the FEL theory and explains the binding
events by considering the population distribution and redistribution of protein conformational
states/substates [59,60]. First, the distribution of the conformational states/substates of protein
molecules with different probabilities at the rugged bottom of the funnel-like FEL allows for the
selective interaction of a ligand with the conformational state/substate that has the shape of the
binding site best matching the ligand [24,26,88,89]. This step may not “induce” a conformational
change and is similar to the binding process described by the lock-and-key model [59]. Therefore,
the selective binding may be dominated by the solvent entropy gain. Second, the presence of the
conformational flexibility in the protein allows for the conformational adjustments of the residue side
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chains or even of the backbone to form the strong intermolecular noncovalent interactions [53,90,91].
This step is similar to the binding process described by the induced fit model and as such may be
dominated by the system enthalpy decrease. Third, the formation of the protein–ligand complex alters
the heights of the free energy barriers (or the conformational transition rates) that separate the bound
state/substate and its adjacent states/substates, thus resulting in a population shift towards the bound
state/substate and the conformational redistribution [59,92–94].

For the conformational selection binding scenario, it is difficult to distinguish which factor (the
entropy or the enthalpy) contributes more to the lowering of the system’s free energy because the
large solvent entropy gain in the first step could be offset by the loss of the rotational and translational
entropy and the decrease of the conformational entropy in the subsequent step, and the negative
enthalpy change in the second step could be offset by the positive enthalpy changes due to the
desolvation energy penalty and the disruption of the original noncovalent interactions surrounding
the binding sites. Nevertheless, the selective binding and the following conformational adjustments
are dominated by the solvent entropy gain and the system enthalpy decrease, respectively, suggesting
that they play a role, in a sequential manner, in lowering the system’s free energy. In addition, the
conformational selection model takes into account the distribution and redistribution of the populations
of protein conformational states/substates, which allow a protein to interact with multiple structurally
distinct binding partners and accommodate mutations through shifts in the dynamic FEL, and, as such,
is evolutionarily advantageous [19,89,95].

3.5. The Relationship between Lock-and-Key, Induced Fit and Conformational Selection

Under the background of the funnel-like FEL, the lock-and-key may be viewed as an “extremity”
of the conformational selection [19,59]. A high-rigidity protein has a very smooth folding funnel
where there is no ruggedness around the bottom of the funnel, thus resulting in only one conformer
that occupies a single free energy well in the global free energy minimum region. A high-flexibility
protein has multiple free energy minima (or wells) within which ensembles of different conformational
states/substates are located. However, the conformational selection model assumes that the selective
binding occurs only in one free energy well that contains the most suitable conformer for binding,
thus resembling the lock-and-key binding occurring in the single, global free energy minimum well.
The difference between these two models is that conformational selection induces a population shift
and the redistribution of the states/substates, whereas the population shift cannot be presented in the
lock-and-key model [60]. Another difference between these models, as proposed by Nussinov et al. is
the “selected object” [60], which is a conformer out of many different conformers in the ensemble of
the same protein for the conformational selection model and a protein out of many different proteins
for the lock-and-key model. As a result, they suggested that the lock-and-key mechanism addressed
the question of which protein—out of the many in the cell—will be bound by a given ligand [60].

The induced fit involved in the conformational adjustments is a key step in the conformational
selection mechanism, and the enhanced interactions resulting from this step could accelerate the
population shift, implying that induced fit can extend and optimize conformational selection [60,96].
For the binding process to proceed in the classical induced fit mechanism, the selective initial
interactions must be strong enough to maintain the encounter complex for a relatively long
time [87], which indicates that induced fit also contains the step of selecting the appropriate initial
conformation [17,19] or, alternatively, the “conformational selection” plays a role in induced fit.

For a ligand to bind to a given flexible protein, there has been much debate as to whether
the conformational selection or the induced fit is the governing mechanism. Hammes et al. have
proposed a flux-based method by which the sequence of events during binding can be determined
quantitatively [97]. Applications of this method to two examples—binding of NADPH to dihydrofolate
reductase and flavodoxin folding coupled to binding of flavin mononucleotide—revealed that in both
cases the binding mechanism switches from being dominated by the conformational selection pathway
at a low ligand concentration to the induced fit at a high ligand concentration. More recently, using
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the induced fit fraction index (i.e., the fraction of binding events achieved via induced fit) to quantify
the binding mechanism, Greives and Zhou demonstrated that the conformational selection dominates
at the slow conformational transition of the protein and the low ligand concentration, while the
induced fit dominates when either quantity is increased [98]. Through establishing a solvable model of
active–inactive conformational transitions for the protein, Zhou also showed that, as the active-inactive
transition rates increase, the binding mechanism gradually shifts from the conformational selection
to the induced fit [99]. The above results point to the conclusion that both the ligand concentration
and the timescale of protein dynamics play a role in shifting the binding mechanism between the
conformational selection and induced fit.

Since all three distinct conceptual models have been observed experimentally, it is important to
keep in mind that all three mechanisms may exist both in a simultaneous or in a sequential manner,
covering a broad spectrum of binding events [100].

4. Methods Used to Investigate Protein–Ligand Binding Affinity

4.1. Experimental Methods

Many experimental techniques can be used to investigate various aspects of protein–ligand
binding. X-ray crystallography, nuclear magnetic resonance (NMR), Laue X-ray diffraction, small-angle
X-ray scattering, and cryo-electron microscopy provide atomic-resolution or near-atomic-resolution
structures of the unbound proteins and the protein–ligand complexes, which can be used to study
the changes in structure and/or dynamics between the free and bound forms as well as relevant
binding events. For example, X-ray-diffraction data contain information not only about the enthalpic
contribution (intermolecular noncovalent interactions) but also about some entropic contribution
(spatial distribution around the average structure as reflected by the B-factors) [21,55]; NMR methods
have the advantage of characterizing the protein–ligand dynamics over a wide range of timescales
from picoseconds to seconds [101] and, hence, are powerful for investigating entropic contribution to
the binding free energy [102]; Laue X-ray diffraction can measure simultaneously the structures
and kinetics, with the added advantage of delivering the timescale of local motions [103]; and
cryo-electron microscopy and small-angle X-ray scattering can determine directly the structural
ensemble with relatively low resolution in the experimental conditions, although they cannot
characterize the timescales of conformational transition [55]. Other experimental methods that have
been applied to study the protein dynamics involved in binding include single-molecule fluorescence
spectroscopy [104] and time-resolved hydrogen-deuterium exchange mass spectrometry [105].

Three groups of methods deserving special attention in the context of protein–ligand binding
affinity include ITC [6–8], SPR [9,10,106], and FP [11,12,107], which will be introduced and discussed
in detail in the following.

4.1.1. Isothermal Titration Calorimetry (ITC)

The structural and dynamic data alone, even when coupled with the most sophisticated
computational methods, cannot provide information about the complete thermodynamic profiles
consisting of the binding free energy, entropy, and enthalpy, and, therefore, may not accurately predict
the binding affinity [7]. However, the calorimetric techniques, including the differential scanning
calorimetry (DSC) and the ITC, provide quantitative thermodynamic data that can be used to study
the complex stability and to elucidate the binding driving forces. DSC can measure the enthalpy
and the heat capacity of thermal denaturation and as thus provides a way to estimate the stability of
protein–ligand complexes [108,109]. ITC is the only approach to measure directly the heat exchange
during complex formation at a constant temperature, and has become the gold standard in determining
the forces that drive the binding process or stabilize the intermolecular interactions [6,21]. Next, the
ITC method and its applications will be introduced in more detail.
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Experimental Setup, Principles, and Data Processing of ITC

A typical ITC experiment contains three steps: (i) a ligand is titrated into a solution containing
the bio-macromolecule (e.g., protein) of interest; (ii) the heat released or absorbed that is associated
with a binding event is measured; and (iii) the primary ITC data is processed and fitted to obtain the
binding constant (Kb), Gibbs free energy of binding (∆G), binding enthalpy (∆H) and entropy (∆S),
and the stoichiometry (n) of the binding event [110]. Moreover, when ITC experiments are performed
at varying temperatures, the heat capacity change (∆Cp) of a binding reaction can be obtained.

ITC instruments make use of a power compensation design, which is responsible for maintaining
the same temperature in the sample cell containing the macromolecule and the reference cell filled
with buffer or water. During the experiment, a titration system delivers the ligand to the sample cell
in precisely known aliquots; this causes heat to be either released or absorbed (depending on the
nature of the reaction) and, hence, a temperature imbalance between the reference and sample cell.
Such an imbalance is compensated for by modulating the feedback power applied to the cell heater:
exothermic and endothermic reactions decrease and increase the power to the sample cell, respectively.
The overall measurements consist of the time-dependent input of the power required to maintain
equal temperatures between the sample and the reference cells at each titration.

Figure 2 shows the representative ITC data. The primary data is the power applied to the sample
cell as a function of time, and consists of a series of peaks that return to the baseline, with the area under
each peak corresponding to the heat evolved at each ligand injection (Figure 2a). As the ligand-binding
site becomes gradually saturated, the magnitude of the peak area decreases gradually until only heat
of dilution is observed. The binding curve (the form of a binding isotherm), which is obtained via
transformation of the primary ITC data, represents the heat of reaction per injection as a function of
the ratio of the total ligand concentration to the protein concentration [L]/[P] (Figure 2b). Finally,
fitting the binding curve to a particular binding model can yield the parameters Kb, ∆H, and n from a
single experiment. The models for fitting ITC data can be found in [6,7,111] and references therein.
The binding constant Kb can be used to calculate the standard binding free energy ∆G˝ according to
Equation (4); the binding free energy ∆G can be calculated from ∆G˝ according to Equation (5); and the
binding entropy ∆S can be calculated according to Equation (7). The ∆Cp, which is a thermodynamic
quantity that measures the change in heat with temperature at a constant pressure, can be obtained
through determining ∆H values at a range of temperatures with ITC followed by calculating the
slope of the temperature-dependent ∆H curve with linear regression analysis. ∆H, ∆S, and ∆G are
dependent on the temperature through ∆Cp:

∆HpTq “ ∆HpT0q ` ∆CppT ´ T0q (8)

∆S pTq “ ∆S pT0q ` ∆Cpln
ˆ

T

T0

˙

(9)

∆GpTq “ ∆HpT0q ´ T∆SpT0q ` ∆Cp

ˆ

T ´ T0 ´ Tln
T

T0

˙

(10)

where T and T0 refer to the temperature and an appropriate reference temperature, respectively.
Because there is strong correlation between ∆Cp and the surface area buried on forming a

complex, ∆Cp provides a link between thermodynamic parameters and the structural information
of proteins [6,112]. The hydrated water (particularly those interacting with the hydrophobic surface)
and the bulk water have different behaviors and properties; this will lead to a change in heat capacity
due to the release of water molecules upon complex formation, with the magnitude of ∆Cp being
proportional to the amount of surface area involved. The desolvation of both the protein and ligand
upon binding can make positive or negative contribution to ∆Cp, depending on the burial of the apolar
(leading to negative ∆Cp) or polar (positive ∆Cp) surface areas [6,113].
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Figure 2. Representative ITC data for the binding of cytidine 21-monophosphate (21CMP) to RNaseA:
(a) Primary raw data; (b) Binding curve derived from the raw data. Adapted from [7] Copyright 2008
with permission from Annual Reviews.

If the concentrations of both the protein and the ligand are known, ITC can determine the binding
stoichiometry (n) from the molar ratio of the interacting partners at the equivalence point. In data fitting,
the parameter n can either be fixed as the number of binding sites per macromolecule or be treated
as an additional floating parameter determined from iterative fitting [6]. Proteins with more than
two interacting sites often involve multiple binding events and play an important role in regulating
biological system. Therefore, the determination of n is of central importance in characterizing their
binding mechanisms and, further, in understanding the relevant biological processes.

It is important to keep in mind that the heat exchange detected by the ITC experiment is the total
heat effect in the sample cell upon addition of the ligand, including not only the heat absorbed or
released during binding reactions, but also the heat effects arising from dilution of the ligand and
protein, mixing two solutions containing different compositions, temperature differences between the
sample cell and the syringe, and so forth. As a result, control experiments need to be performed to
determine these non-specific heat effects to obtain the heat of complex formation.

Advantages and Disadvantages of ITC

In addition to its ability to determine basic thermodynamic parameters (enthalpy, binding constant,
entropy, and stoichiometry) from a single titration, ITC has the following advantages as compared to
other biophysical techniques: (i) a non-destructive technique because the thermodynamic parameters
of the interaction can be measured in solution without immobilization, modification, or labelling
of the binding partners and without molecular weight restrictions [114]; (ii) the high precision and
reproducibility, with error of determined binding constant being typically in the range of 5% [115];
(iii) the high robustness and sensitivity, with ability to measure binding affinities in the ranges of
~10´2–103 µM, heat effects as small as 0.1 µcal, and heat rates as small as 0.1 µcal/s [116]; and (iv) the
ability to measure high affinity interactions with binding constant as large as 108–109 M´1 [116–118].

However, there are still certain disadvantages to ITC. Since heat is a universal signal and each
process contributes to the measured global heat effect, the evaluation of the contribution from the
binding is complicated. Despite the high sensitivity, challenges still exist for extracting heat effects of
complex formation when the binding exhibits rather small binding enthalpy (resulting in relatively
low signal to noise) and when the binding processes are very slow (leading to the neglect of kinetically
low processes). ITC generally needs a large amount of sample, which limits its application to certain
bio-macromolecules that are difficult to prepare in large quantities. Traditional ITC is categorized
as a method that is laborious, time-consuming, and low throughput, making it not very suitable
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for biotechnological and pharmaceutical applications that require low labor intensity and high
throughput [7,119]. With the development of the modern ITC instruments by MicroCal (Worcestershire,
UK) and Calorimetry Sciences Corporation (Lindon, UT, USA), this situation is now changing. These
robotic automated instruments realize cell loading and data collection from large numbers of samples
in an almost autonomous fashion, revolutionizing the way that ITC is employed in high-throughput
research. In addition, the developments in the form of array-based nanocalorimeters allow parallel
enthalpy measurements for a true high-throughput screening (HTS).

Case Study Using ITC

As a powerful tool for characterizing interactions of biomolecules in a broad range of
binding affinities, ITC has gained wide applications in fields of biophysics, biochemistry, drug
discovery, design and development, protein engineering, biotechnology, et al. Various applications
of ITC have been reviewed in a series of papers to which the readers are referred for further
details [114,115,117,119–121]. Here, we select one example to demonstrate the power of ITC in
optimizing the affinity of drug candidates.

The affinity optimization of drug candidates is a major goal in drug development. In order to
improve the binding affinity, the binding free energy between the lead compound and the target protein
needs to be lowered through optimizing the enthalpic and/or entropic contributions to overcome
the enthalpy-entropy compensation. The thermodynamic profile/signature (i.e., changes in enthalpy,
entropy, free energy, and heat capacity) measured by ITC provides clues for optimizations of these
binding driving forces/factors [122].

Freire laboratory has performed a series of studies to optimize HIV-1 proteinase inhibitor binding
by consideration of the thermodynamics of the binding interactions [123–128]. Figure 3 shows the
thermodynamic profiles for three pairs of HIV-1 proteinase inhibitors, with the difference in each
pair being merely a single functional group. For the first pair [127] (Figure 3a), the replacement of a
thioether on KNI-10033 by a sulfonyl on KNI-10075 results in a more negative enthalpy change (by
´3.9 kcal¨ mol´1) but a less entropy gain (by ´4.2 kcal¨ mol´1), thus ultimately elevating the binding
free energy by 0.3 kcal¨ mol´1. These results indicate that although the addition of a single polar
group introduces a strong hydrogen-bonding interaction with the target, the quantity of the decreased
enthalpy cannot overcome that of the decreased entropy, resulting in a small rise in binding affinity.
For the second pair [127] (Figure 3b), the replacement of a methyl group (KNI-10052) by a hydroxyl
group (KNI-10054) results in a more negative enthalpy change of ´4.4 kcal¨ mol´1, which is large
enough to overcompensate for the entropic decrease (´3.9 kcal¨ mol´1), ultimately resulting in a slight
lowering of the binding free energy (´0.5 kcal¨ mol´1). However, such a small free energy lowering
corresponds to a large increase in binding affinity by a factor of 2 [122]. These results indicate that
if the negative enthalpy change resulting from the introduction of a polar group is large enough, it
is possible to overcome the entropic loss and increase the binding affinity. For the third pair [128]
(Figure 3c), the addition of a methyl group to KNI-10046 results in a lower free energy of KNI-10030
(´10.9 kcal¨ mol´1) than its precursor (´9.6 kcal¨ mol´1). This is caused by more favorable enthalpy
(by ´0.8 kcal¨ mol´1) and entropy (by 0.5 kcal¨ mol´1) contributions of KNI-10030 compared to those
of KNI-10046. These results indicate that the introduction of an apolar group brings about both
the favorable changes in the enthalpy and entropy, thus resulting in 8.7-fold higher binding affinity
but a more hydrophobic compound. Nevertheless, the highly hydrophobic compounds have been
recognized to have problems with solubility, bioavailability, and selectivity [122]. On the contrary, the
more hydrophilic compounds likely have better physicochemical parameters such as the lipophilicity
and solubility that are necessary for favorable enthalpic binding [129]. Although the enthalpy-driven
optimization is more challenging compared to the entropy-driven optimization, the development of
enthalpically optimized compounds is becoming a trend for drug design [122,125,129].
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Figure 3. Thermodynamic profiles for three pairs of HIV-1 proteinase inhibitors that vary by only a
single group: (a) KNI-10033-KNI-10075 pair within which an apolar group thioether on KNI-10033 is
replaced by a polar group sulfonyl to form KNI-10075; (b) KNI-10052-KNI-10054 pair within which an
apolar methyl group is replaced by a polar hydroxyl group; and (c) KNI-10046-KNI-10030 pair within
which a hydrogen atom on the former is replaced by an apolar methyl group to form the latter. The
binding free energy (∆G), enthalpy (∆H), and entropy (T∆S) are shown. The data shown are taken
from [122,127,128].

4.1.2. Surface Plasmon Resonance (SPR)

SPR, which is an optical-based method to measure the change in the refractive index near a sensor
surface, is label-free and capable of measuring real-time quantification of protein–ligand binding
kinetics and affinities [130]. SPR has been developed and performed predominantly using Biacore™
technology [131–133] (Uppsala, Sweden). In a Biacore instrument, the sensor surface is a thin film
of gold on a glass support, which forms the floor of a flow cell through which an aqueous solution
flows continuously. The protein receptor molecules are immobilized on the sensor surface, and the
ligand (usually called the analyte molecule) is injected into the aqueous solution to detect the binding
reaction. As ligands bind to immobilized receptor molecules, an increase in the refractive index
(expressed in response units, RU) is observed. After a desired association time (i.e., when all binding
sites are occupied), a solution containing no ligand is injected through the flow cell to dissociate the
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protein–ligand complex. As the ligand dissociates from the immobilized protein, a decrease in RU is
observed. The time-dependent RU curves can then be used to calculate the kinetic association rate
constant kon and the dissociation rate constant koff. The binding constant Kb can be obtained according
to Equation (3).

The capacity of SPR to measure the real-time binding data makes it well suited to analyses of
the binding kinetics, although the mass transport limitation makes it difficult to measure accurately
the kon value faster than ~106 M´1¨ s´1 [134,135]. Compared to ITC, SPR has the ability to measure
higher binding affinities, typically in the ranges of 10´6–10 µM [136]. For SPR, the highly reproducible
affinity measurements, in conjunction with precise temperature control, make it possible to estimate
binding enthalpy via van’t Hoff analysis [137], which, although not as rigorous as ITC, requires
much smaller amounts of protein sample [134]. Although traditional SPR technique is not well
suited to high-throughput assays [134], recent developments in SPR instrumentation, sensor chip
design, and sample preparation strategies show that SPR has a high potential for HTS screening
of membrane protein ligands [130,138]. It is important, however, to keep in mind that the protein
immobilization affects the conformational and translational/rotational entropies, and therefore, the
association rate [100].

4.1.3. Fluorescence Polarization (FP)

Fluorescence has a wide spectrum of wavelengths, and, therefore, multiple colors can be applied
for detecting the binding of the fluorescent-labelled ligand to a target. Fluorescence-based techniques
used for investigating intermolecular interactions include fluorescence anisotropy [139], fluorescence
correlation spectroscopy [140], time resolved fluorescence [141], FP [12], etc.

Among them, the fluorescence polarization has the capacity to measure the kinetics and
thermodynamics of protein–ligand binding. The principle of FP derives from the fact that an initially
polarized fluorescence emission becomes unpolarized over time, and this happens faster in the
unbound than in the bound state [142,143]. FP can utilize the competition binding analyses, in which
the fluorescent-labelled ligand molecules are bound and, subsequently are displaced by the unlabelled
competing ligands to measure affinities for both the labelled and unlabelled ligands. The fact that
the linear proportion of FP to the percentage bound/free species can be used to determine the IC50

(concentration of the unlabelled ligand (or inhibitor) necessary to displace half of the labelled ligand).
Subsequently, the corresponding Ki/Kd (Ki is the inhibition constant of the unlabelled ligand) can be
calculated using the appropriate versions of the Cheng–Prusoff equation [144,145]. Kd values measured
at different temperatures can be used to estimate binding enthalpy via van’t Hoff analysis [12].

FP technique makes use of single fluorescent label strategy and does not involve the filtration
or separation steps and, as thus, requires relatively fewer reagents, smaller amounts of protein, and
relatively inexpensive equipment than do SPR and ITC. The other advantages of FP are: the assay
protocol is simple (i.e., mix-and-read or homogenous), the reaction equilibrium is not disturbed, plates
can often be repetitively measured (FP detection does not destroy samples), and the procedure is easily
automated. These advantages make this technique well suited to application to HTS of large numbers
of unlabelled ligands [12]. However, as a ratiometric method, the response determined by FP is not a
direct measure of the binding but rather proportional to the binding [100,146], and this could lead the
measured affinity values to be associated with the experimental conditions used [147]. In addition,
although the ratiometric measurement makes FP relatively insensitive to the absorptive interferences
or inner filter effects, the other effects, e.g., autofluorescence and light scattering, can confound
sample FP calculation [139,143,148]. Moreover, the usage of the fluorescent-labelled ligand that may
affect the binding behavior, incorrect corrections for non-specific binding, presence of non-binding
contaminants or of contaminants that might enhance binding, and the anomalous polarization arising
from aggregation-based non-specific binding due to the use of high test compounds concentrations
may also impede the actual calculations of binding affinity [12,100,149]. Care must be taken to avoid
these potential sources of errors during FP measurement.
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4.2. Theoretical/Computational Methods

Although experimental techniques can investigate thermodynamic profiles for a ligand–protein
complex, the experimental procedures for determination of binding affinity are laborious,
time-consuming, and expensive. Modern rational drug design usually involves the HTS of a large
compound library comprising hundreds or thousands of compounds to find the lead molecules, but
this is still not realistic using experimental methods alone. Most importantly, in the absence of the
structural/dynamic data of the protein–ligand complex and the unbound partners, it is difficult to
establish a link between the structure and the thermodynamics of the binding event. The contributions
of both enthalpic and entropic changes to binding free energy obtained with experiments are the
global thermodynamic parameters that reflect the overall heat effect of energy exchange between
various species within the system and the redistribution of heat energy upon titration and complex
formation. It is therefore necessary to parse the overall heat effect into individual ones such as those of
the solvation and desolvation of the protein and ligand, interactions between the binding partners,
changes in intramolecular interactions and dynamics, and interactions between the solutes and ions.

Theoretical/computational approaches have enormous potential in providing insights into each
of the above effects and in parsing/rationalizing their contributions to the changes in enthalpy, entropy,
and free energy. Therefore, it is indispensable to develop and utilize theoretical methods which will
not only facilitate the interpretation of the existing experimental data, but also direct the design of
new experiments.

In fact, structure-based computational approaches are valuable in all aspects of investigating
protein-ligand binding events. For example, if the experimental structure of a protein is unavailable
(e.g., GPCR member), theoretical approaches such as homology modelling, threading, or ab initio

prediction allow for constructing the structural models that can be used for predicting protein-ligand
binding. Molecular dynamics (MD) simulations can provide time-dependent changes in atomic
coordinates of the protein and ligand in both bound and unbound forms, which are extremely useful in
extracting information about the conformational entropy change upon binding. MD simulations allow
also for investigations of the non-equilibrium effects that result in the transient conformers, which
contribute to the binding event but cannot be readily observed in experiments. Protein-ligand docking
methods can quickly predict the most favorable structure of the complex and assess the binding affinity.
More accurate prediction of binding affinity can be obtained through free energy calculations, which
consider all thermodynamically relevant phenomena such as the protein dynamics/flexibility, explicit
inclusion of the solvent, and the difference between protein-ligand interactions in the complex and
their interactions with water and counterions in their unbound forms. Next, we will mainly focus on
two classes of theoretical methods: the protein-ligand docking and the binding free energy calculations.

4.2.1. Protein–Ligand Docking

Molecular docking is a widely used, relatively fast, and economical computational tool for
predicting in silico the binding modes and affinities of molecular recognition events [14]. Protein–ligand
docking, which is a branch of the molecular docking field, represents a particularly important
methodology due to its importance in the current drug discovery process [14,150,151], i.e., virtual
screening of large databases of available chemicals in order to select likely drug candidates [152].
Therefore, protein–ligand docking has been an active area of research over the past 20 years, leading
to a great variety of available docking software packages. Some well-established ones exist, such
as AutoDock [153], GOLD [154], DOCK [155,156], FlexX [157], and Glide [158], which implement
different algorithms to solve the docking problem and have a large and rather stable number of users.
For an exhaustive review of literature-cited software packages, the reader is referred to [14].

Protein–ligand docking methods contain two essential components: the search algorithm and the
scoring function. The former is responsible for searching through different ligand conformations and
orientations (poses) within a given target protein; the latter is responsible for estimating the binding



Int. J. Mol. Sci. 2016, 17, 144 18 of 34

affinities of the generated poses, ranking them, and identifying the most favorable binding mode(s) of
the ligand to the given target.

Search Algorithms and Their Challenges

In theory, the search space for protein–ligand binding should consist of all possible conformations
of the protein and the ligand in their unbound forms, all possible orientations and conformations of the
ligand within a given protein conformational state, and all possible conformations of the protein paired
with all possible conformations of the ligand [159]. However, it is impossible to exhaustively explore
the search space with the current computational power and search algorithms. In a search algorithm,
two critical elements are the speed and the effectiveness in covering the relevant conformational
space [160]. The biggest challenge is how to efficiently deal with the flexibility of the protein. The
reasons for this are: (i) there is a large number of degrees of freedom that have to be considered, but
neglecting them often leads to poor docking results in terms of binding pose prediction; and (ii) the
extensive sampling of the protein conformational space with MD simulations requires a large amount
of computational time, which improves the accuracy but lowers the efficiency. Nevertheless, the search
algorithms have evolved from the pure rigid-body methods to the flexible-ligand, and further to the
flexible ligand–flexible protein methods [14].

The rigid-body algorithms, which are the simplest approach to sampling the conformational
space resulting from a ligand–protein association, treat both the ligand and the protein as the rigid
body and explore only the six degrees of rotational and translational freedom of the ligand [14]. These
approaches are used by ZDOCK [161], MDock [162,163], older versions of DOCK [164], et al. Actually,
so-called rigid-body algorithms still consider the ligand flexibility by pre-computing ensembles of
putative ligand conformations, followed by rigidly docking each conformation to the protein receptor
of interest [13,165].

The flexible-ligand algorithms consider only the ligand flexibility but neglect the protein flexibility.
In these algorithms, possible ligand conformations may be generated on-the-fly in the binding cavity
of the protein [166] (e.g., DOCK [156] uses of this approach), or using the fragmentation-based method
in which the multiple rigid fragments located in the binding cavity are rotated and linked [167]
(e.g., LUDI [167] uses this approach). In addition, the knowledge-based [168] and force-field energy
evaluation [169,170] approaches, and the hierarchical filters [158,169], have also been often used in
sampling the ligand conformations.

The flexible ligand–flexible protein algorithms introduce the flexibility of the target protein
in addition to that of the ligand and as thus represent the high-end approach. There are several
strategies to handle the protein flexibility. One simple approach to emulate receptor flexibility is
to dock a ligand to the multiple static structures of the same protein [171], which can be either
the experimentally determined (e.g., through X-ray crystallography or NMR) conformations or the
conformational ensemble generated by simulation methods (e.g., MD, MC, or normal mode analysis).
Of interest is that such a simple strategy is in line with the conformational selection mechanism of
protein-ligand binding. Another strategy, which is in line with the induced fit mechanism, is the energy
minimization performed using the MC methods or gradient descent minimization [172]. In addition,
local/partial conformational flexibility can be accounted for by exploring only the conformational space
of the critical residues of the protein [173,174]. For example, through searching the rotamer libraries
of amino acid side chains surrounding binding cavity, one may obtain the alternate but energetically
reasonable protein conformations [175]; through introducing the “soft core potential” and allowing a
certain overlap between protein and ligand, soft docking can detect small-scale rearrangements of the
side-chains on the protein [176].

Scoring Functions and Their Challenges

Scoring functions are fast, approximate mathematical methods used to assess the binding affinity
(generally through measuring the strength of noncovalent interactions) between the protein and the
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ligand after docking. Of note is that the scoring function itself can be utilized within the search
algorithm to accelerate the process of binding mode prediction [156]. A perfect scoring function
would be able to predict the binding free energy of the protein–ligand complex and simultaneously
should be fast enough to allow its application to the high-throughput virtual screening. However, this
goal is challenged by both the computational methods and the computational resources. In order to
calculate accurately the binding free energy, many different physical interactions (especially those
involving the solvent) as well as the entropic effects should be included, but this is unrealistic due to the
algorithm’s complexity and the need for large amounts of computation. As a result, scoring functions
incorporate a number of simplifications to reduce the complexity and computational intensity at the
cost of accuracy [14].

There is a large number of scoring functions available for protein–ligand docking studies, of
which the most commonly used can be divided into three general classes: the force-field-based, the
empirical, and the knowledge-based (or statistical potential) scoring functions.

In the force-field-based approaches, physical-based functional forms and parameters (i.e., the force
fields) derived from experiments and quantum mechanical calculations are employed to estimate the
binding affinities [177]. In order to reduce the complexity, usually only the strengths of intermolecular
noncovalent interactions (the enthalpic contribution) in the complex are estimated. However, a
more accurate estimate of binding affinity should include the changes upon binding in intramolecular
interactions of the two binding partners and in the interactions involved in the solvent and, particularly
importantly, the entropic effects. The solvent effect can be accounted for either by treating water
molecules explicitly or using the implicit (or continuum) solvent models such as Poisson–Boltzmann
surface area (PBSA) model [178,179] and the generalized-Born surface area (GBSA) model [180,181].

Compared to the computationally intensive force-field-based approaches, empirical scoring
functions provide a higher-speed alternative due to a greater degree of simplification. Empirical
scoring functions are based on the parameterization of various types of interactions as favorable or
unfavorable energy terms via regression or machine learning methods [13,182]. These energy terms
may include van der Waals and electrostatic energies, hydrophobic contacts, hydrophilic contacts,
number of hydrogen bonds, number of rotatable bonds that are immobilized upon complex formation,
or change in solvent accessible surface area (SASA) upon complex formation. Of note is that these
terms do not capture the underlying physics of the interactions but are only the simplified terms
attempting to approximate the favorable or unfavorable contributions to the binding affinity. The major
challenge of empirical scoring functions is to develop accurate energy terms that are fast enough to
allow conformational search. Since empirical scoring functions comprise many energy terms, another
challenge is how to avoid double-counting problems (over-fitting) [183]. In addition, their general
applicability may also depend on the training set due to the nature of fitting binding affinities to a
small dataset [183].

The knowledge-based scoring functions are based on the hypothesis that the close inter-atomic
interactions between binding partners that occur more frequently than those expected by a random
distribution are likely to be energetically favorable and, as thus, make favorable contributions to
the binding affinity [184]. In other words, the statistically observed close contacts in a training
set containing suitable samples (obtained from protein structural databases) are used to derive the
statistical potentials. Although several problems (i.e., reference state problem, sparse data problem,
and other problems arising from the physically non-rigorous assumptions) exist in the implementation
of statistical potentials [13], the knowledge-based scoring functions have the advantages of being
simpler and faster than force-field-based potentials, being less prone to over-fitting compared to the
empirical functions, and performing well in cases where the training set provides poor coverage.

Because each scoring function has its own advantages and disadvantages, and none of them is
perfect in terms of the accuracy and general applicability, the consensus scoring strategy has been
introduced to improve the probability of finding correct solutions by combining the scores from
multiple scoring functions [183,185,186].
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4.2.2. Free Energy Calculations

Free energy calculations of the protein-ligand binding try to compute the binding free energies
based on the principles of statistical thermodynamics. Such calculations are commonly based on
extensive computational simulations (i.e., MD or MC) of the protein and ligand and, as such, require
computational efforts several orders of magnitude higher than the traditional scoring functions. As a
reward for the highly intensive computation, the results of free energy calculations ought to be reliable
and almost quantitative. The main advantages over faster scoring functions are that the free energy
calculations include both the energetic (i.e., potential energy and solvation energy) and entropic (i.e.,
dynamics/flexibility of both protein and ligand, and solvent effects) contributions, and require no
case-by-case parameter fitting [3,187]. Anyway, the accurate prediction of binding free energy using
the calculation methods, despite being an ambitious goal, would revolutionize their applications in
basic research and in drug design and discovery.

Free energy calculations rely on the fundamental relationship between Helmholtz free energy F
and the partition function Z [3]:

F “ ´kBTlnZ (11)

where kB and T is Boltzmann’s constant and temperature, respectively. When the system is treated
in terms of the classic approximation of statistical thermodynamics, the partition function can be
expressed as configurational integral [188]:
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latter describes the interactions between the various atoms in system (i.e., potential function). The
difference in free energy between two states A and B can be expressed as a ratio of their partition
functions [189]:

∆F “ ´kBTln
ZB

ZA
(13)

If the conformational sampling is carried out under constant temperature and pressure conditions
(isothermal-isobaric ensemble), the Gibbs free energy can be obtained.

For further detailed theoretical background of free energy calculations, the reader is referred
to [3,15,188,190,191]. Here, we will introduce three main types of calculation methods: the alchemical
calculation, the path sampling, and the endpoint methods. It should be noted that the efficiency and
accuracy of the calculations could be influenced by whether the implicit or the explicit solvent is
used, the length of the simulations, and the choice of calculating the absolute or relative free energy
of binding.

Alchemical Free Energy Calculations

Alchemical free energy calculations employ unphysical (“alchemical”) intermediates to estimate
the free energies of various physical processes. In the case of protein–ligand binding, the ligand is
alchemically transmuted into either another chemical species or a non-interacting “dummy” molecule
via intermediate, nonphysical stages [192–195]. A simple alchemical calculation involves using
thermodynamic cycles to compute the change in free energy when ligand A is changed to ligand B
free in solution (∆Gfree(AÑB)) and within the ligand-binding site (∆Gbound(AÑB)). The difference
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between these two free energy changes is equal to the binding free energy difference of the two ligands
(∆Gbind (B) ´ ∆Gbind(A)):

∆GboundpAÑBq ´ ∆GfreepAÑBq “ ∆Gbind pBq ´ ∆GbindpAq “ ∆∆Gbind (14)

In principle, if the ligand A is transmuted into non-interacting dummy particles, it is possible
to compute the ligand’s absolute binding free energy [196], but this is problematic since severe
convergence problems occur near the end state of the transformation [3]. In many practical applications
of this method, a single alchemical transformation is often broken down into several intermediate steps.

Applications of the alchemical strategy are implemented by the free energy perturbation
(FEP) [197], the thermodynamic integration (TI) [198], and the Bennet’s acceptance ratio (BAR) [199]
methods, each of which has its own advantage in solving problems of conformational sampling
and statistical convergence. For case studies using these methods as well as their challenges and
improvements made to them, the reader is referred to [192] and references therein. Here, we mainly
introduce the basic principles of the FEP and TI methods.

In the FEP method, the free energy difference between states A and B can be evaluated with the
Zwanzig equation [197]:

∆GFEP “ GB ´ GA “ ´kBTln
A

e´pVB´VAq{kBT
E

A
“ `kBTln

A

e´pVA´VBq{kBT
E

B
(15)

where VA and VB are potential functions of the states A and B, respectively, and the triangular brackets
denote the Boltzmann-weighted ensemble average generated according to the potential function of
the corresponding state. Equation (15) indicates that the potential energy differences can be averaged
over an ensemble generated using MD or MC simulations that start from either the state A or the
state B, thus allowing to estimate the convergence through comparing free energy results between the
forward and backward transformations [3]. FEP calculations only converge properly when a small
enough difference exists between the two states. In a practical calculation, the FEP is broken down
into multiple small steps (or windows) by simulating the transition from A to B via intermediate states
and summing all free energy changes for transition in each step as the total free energy change.

In the TI method, the free energy difference between states A and B is calculated by defining a
thermodynamic path connecting them (which is composed of the non-physical coordinate, commonly
called λ), simulating the transition from A to B along this path, and integrating the Boltzmann-weighted
λ-derivative of the mixed potential function over λ. The potential energy function corresponding to a
λ value is defined as:

Vpλq “ VA ` λpVB ´ VAq (16)

where the λ ranges between 0 and 1, and thus the potential energy function V varies from VA when
λ = 0 to VB when λ = 1. The ensemble average of the derivative of the potential energy function with
respect to λ at each value can be obtained through MD or MC simulation. Finally, the integral for the
ensemble-averaged derivatives is computed to obtain binding free energy:

∆GTI “

ż 1

0

B

BV pλq

Bλ

F

λ

dλ (17)

It should be noted that, unlike calculations with the FEP method, there are no forward and
backward transformations in the TI calculations.

Path Sampling

The above described FEP and TI methods calculate the free energy change along the non-physical
or alchemical reaction coordinates (i.e., involving atom type changes). There also exists a set of methods
that aim at computing the binding free energy along a physically possible path associated with the
conformational changes. The obtained free energy map/profile along one or more reaction coordinates
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is traditionally called the potential of mean force (PMF). Since even a small potential barrier along the
reaction coordinate can trap the conformation and prevents sufficient sampling of the conformational
space, enhanced sampling techniques, e.g., the adaptive biasing force algorithm [200], temperature
acceleration [201], umbrella sampling [202], metadynamics [203], and replica exchange [204], may be
utilized to improve sampling and speed up the convergence of PMF calculations.

There are several different approaches to obtaining the protein-ligand binding free energy
with path sampling. One approach is to sample the dissociation path starting from the bound
protein-ligand complex. For example, the smooth reaction path generation (SRPG) method starts with
generating a very rough dissociation path followed by smoothening the path and further performing TI
calculations [205]; the double decoupling methods involve calculating the work of slowly decoupling
the ligand from the binding site and then reintroducing the ligand to the bulk solvent [206,207].
On the contrary, a PMF-based path method performs the binding free energy calculations through
initially restraining the ligand into the bound state in the bulk solvent, followed by translating the
ligand into the binding site and then releasing restraints completely [208]. Also worth noting is the
non-equilibrium methods which are based on the Jarzynski relationship [209–212]. In these methods,
instead of the extensive sampling (equilibrium simulations) at any point in a reaction path, many
non-equilibrium simulations are performed to pull continuously the system from the starting to the
final conformation. It has been shown that these methods are readily parallelized and applied to
alchemical calculations [3,187,213].

Endpoint Methods

Endpoint methods attempt to compute binding free energy from simulating only the free and
bound states of species but do not consider either the physical or the non-physical intermediates.
Therefore, endpoint methods can be more efficient than previously described alchemical calculations
and path sampling methods.

One such approach is the linear interaction energy (LIE) method, which is based on the assumption
that the binding free energy is dependent linearly on the changes in interaction energy of the ligand
with its surroundings [214]. Therefore, only two simulations, one for the ligand in solution (free state),
and the other for the ligand in complex with the protein (bound state), are required. The binding free
energy is then estimated as:

∆GLIE “ α pxVvdwybound ´ xVvdwyfreeq ` β pxVelecybound ´ xVelecyfreeq (18)

where the angle brackets indicate Boltzmann averages over generated conformational states, the
terms within the parentheses represent the differences in van der Waals (Vvdw) and electrostatic (Velec)
interaction energies of the ligand with its environments when the bound and free states are compared,
and α and β are empirical parameters that account for the changes in the internal energies of the
solvent and the protein on the basis of their reorganization energy in response to the ligand [214]. It
has been shown that good correlations between the calculations and the experiments can be obtained
when α and β are set to 0.18 and 0.33, respectively [215], and when the system-specific values are
used [190,216,217]. Because LIE does not take into acount explicitly the changes in the conformational
entropy and the internal energy of the ligand, the main reasons for its success may be due to the
pure ligand comparison within a single chemical series, the enthalpy–entropy compensation, or the
cancellation of the solute entropy decrease by the solvent entropy gain [15]. However, the parameter
dependence of LIE may limit the range of its applications and its predictive power and efficiency.

Another two similar endpoint methods, which have often been applied to the protein-ligand
binding free energy calculations, are molecular mechanics Poisson-Boltzmann surface area (MM-PBSA)
and molecular mechanics generalized born surface area (MM-GBSA) [218,219]. In the MM-PBSA
method, the binding free energy is calculated as:

∆GMM-PBSA “ ∆Gvacu ` p∆Gsolv
PL ´ ∆Gsolv

P ´ ∆Gsolv
L q (19)
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where ∆Gvacu represents the vacuum binding free energy, ∆Gsolv
PL , ∆Gsolv

P , and ∆Gsolv
L are the solvation

free energies of the protein–ligand complex, free protein, and free ligand, respectively. Typically, three
independent MD simulations for the complex, free protein and free ligand may be performed with a
molecular mechanics force field and an explicit solvent model, with the three generated trajectories as
the basis for calculating the above free energy contributions [220]. Alternatively, a single trajectory
obtained from only one simulation of the protein–ligand complex may be used as the basis (trajectories
of the nominally free ligand and free protein are derived simply by removing the other partner in the
complex trajectory, respectively), which accelerates the convergence of the energy average, a problem
confronting the multiple-trajectory approach [15,221].

After stripping the explicit solvent molecules from the ensemble(s), ∆Gvacu is calculated as:

∆Gvacu “ xVPLy ´ xVPy ´ xVLy ´ T∆Ssolute (20)

where the xVPLy, for example, indicates the Boltzmann-averaged potential energy of the protein-ligand
complex computed using the molecular mechanics force filed, and the ∆Ssolute is the change in solute
entropy upon binding, including the contributions from ∆Sconf and ∆Sr/t as shown in Equation
(7). These entropy terms can be estimated with standard statistical thermodynamics models, e.g.,
normal mode [222] or quasi-harmonic analysis [223] for ∆Sconf, and Sackur-Tetrode equation [224] or
alternative models [22] for ∆Sr/t.

The solvation free energy terms are computed by the PBSA implicit solvent model, in which the
∆Gsolv is divided into two components:

∆Gsolv “ ∆Gelec
PB ` ∆G

hydr
SASA (21)

where ∆Gelec
PB is the electrostatic contribution to the solvation free energy calculated with the PB method,

and ∆G
hydr
SASA is an empirical term of the hydrophobic contribution that is linearly dependent on the

SASA. Alternatively, the ∆Gsolv can be computed by the GBSA implicit solvent model, which is faster
and often provides a better accuracy, although its results are sensitive to details in the calculations [225]
and, its performance in calculating absolute binding free energy is no better than MM-PBSA [222].
A common feature of these two approaches is that the choice of the solute dielectric constant has a
large influence on the calculated results. Consequently, this parameter should be carefully determined
according to the characteristics of the protein–ligand binding interfaces [222].

The modular nature of MM-PB/GBSA means that the reliability of the calculated results depends
on the fortuitous cancellation of errors that may differ from system to system. Therefore, careful
checking and comparison of the results with those from experiments or other computational methods
may be required. In addition, the overestimate of the entropy decrease by normal mode analysis, the
lack of information about the number and entropy of water molecules in the binding site, and severe
convergence problems also deteriorate the reliability and efficiency of these two methods. Nevertheless,
MM-PB/GBSA methods have been applied successfully to protein–ligand binding studies and have
generated some encouraging results. Because of their intermediate position between the empirical
scoring and rigorous alchemical calculation methods in terms of both accuracy and computational
intensity, MM-PB/GBSA could be useful for post-processing of the docked structures or be used to
rationalize the observed differences [225].

5. Conclusions

This paper has reviewed extensively three aspects involving protein–ligand recognition and
binding: mechanisms, models, and methods. With respect to physicochemical mechanisms, the
decrease in total Gibbs free energy of the protein-ligand-solvent system, which depends on a delicately
balanced mechanism of opposite effects involving both the enthalpic and entropic contributions, is the
global driving force for the binding reaction. Although the entropy–enthalpy compensation has an
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adverse effect on a large free energy change, the solvent entropy gain (e.g., due to solute desolvation)
and the enthalpy decrease (e.g., due to the favorable interactions between the binding partners) can
still overcompensate for the unfavorable contributions from the enthalpy increase (e.g., the energy
required for desolvation) and the entropy decrease (i.e., conformational entropy decrease and the loss
of the rotational and translational entropy of the ligand), thus lowering the system free energy and
resulting in a funnel-like binding FEL (binding funnel) similar to the protein folding funnel [24,26,29].

With respect to the binding models, the entropy-dominated lock-and-key model, although based
on a unrealistic, rigid hypothesis, may solve the question of why a given ligand will bind specifically
to a protein out of the many different proteins in the cell [60]. The enthalpy-dominated induced fit
model is relatively realistic since it takes into account the protein conformational flexibility, especially
the conformational changes surrounding the binding site; however, it may not explain well binding
where proteins undergo large conformational changes [60]. The conformational selection model may
be a more realistic one because it takes into account not only the inherent protein flexibility, but
also the population shift and redistribution of the conformational states/substates. In this model,
the selective binding of the ligand to a conformer of the protein resembles the entropy-dominated
lock-and-key process, and the following conformational adjustment is essentially the induced fit
process dominated by favorable negative enthalpy change. The conformational selection model could
be used to interpret the phenomena that a protein can interact with multiple structurally dissimilar
but functionally important partners. Of interest is that, for a flexible protein that presents multiple
conformational states/substates, either the conformational selection or the induced fit may dominate
the ligand binding process, depending on the ligand concentration and the protein conformational
transition rate.

With respect to the experimental methods used to investigate the protein-ligand binding, ITC
is a gold standard in estimating the binding driving forces and the stability of the protein-ligand
complex because of its ability to provide a complete thermodynamic signature/profile of the system
studied. SPR can determine directly the kinetic rate constants (kon and koff). FP can estimate the
equilibrium dissociation constant Kd through competition binding analyses. As a result, the latter
two experimental methods are used frequently to measure the binding affinity and can even estimate
the binding enthalpy if measurements are performed at different temperatures. Development and
utilization of the theoretical/computational methods are significant and indispensable because they
may, to a large extent, be relatively less laborious, more economic, and faster than experimental
methods and, further, can facilitate the interpretation of the existing experimental data and direct
the design of new experiments. The protein-ligand docking methods, although less accurate in
estimating the binding free energy than the free energy calculation approaches, can quickly and
cheaply predict the correct bound conformations and, hence, are particularly suitable for application
in high-throughput virtual drug screening. The main challenges confronting docking and scoring
include: how to develop a fast and accurate model for the energetics of protein-ligand interactions;
how to efficiently account for protein flexibility; how to handle the presence of water molecules [13,14];
and how to treat entropy. Since free energy calculations are based on the principles of statistical
thermodynamics and depend on extensive MD/MC simulations, one would hope to obtain higher
accuracy with free energy calculations compared to scoring functions within the docking methods.
The characteristics of low-efficiency and potential high-accuracy of free energy calculations make
them suitable to be applied to more detailed study of protein-ligand interactions. Among the three
types of free energy calculation methods, the traditional alchemical calculations are the most accurate
and robust but are less efficient methods, while the newer endpoint methods are the fastest but are
less accurate methods. The path sampling methods comprise a very promising approach, for which
the problems of how to obtain the right path and how to accelerate sampling convergence should
be addressed. The common challenges of free energy calculations are to improve the speed of the
methods and to increase the accuracy and reliability of calculated results. The development and/or
utilization of more sophisticated/accurate force fields (e.g., incorporation of polarization effects in
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current force fields) [15], more efficient sampling techniques, and more accurate solvent models, and
the combining of existing methods to make use of the strong points of individual methods [187], could
be the main directions to head in.
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