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Insights into rumen microbial biosynthetic gene
cluster diversity through genome-resolved
metagenomics
Christopher L. Anderson1 & Samodha C. Fernando 1✉

Ruminants are critical to global food security as they transform lignocellulosic biomass into

high-quality protein products. The rumen microbes ferment feed to provide necessary energy

and nutrients for the ruminant host. However, we still lack insight into the metabolic pro-

cesses encoded by most rumen microbial populations. In this study, we implemented

metagenomic binning approaches to recover 2,809 microbial genomes from cattle, sheep,

moose, deer, and bison. By clustering genomes based on average nucleotide identity, we

demonstrate approximately one-third of the metagenome-assembled genomes (MAGs) to

represent species not present in current reference databases and rumen microbial genome

collections. Combining these MAGs with other rumen genomic datasets permitted a phy-

logenomic characterization of the biosynthetic gene clusters (BGCs) from 8,160 rumen

microbial genomes, including the identification of 195 lanthipeptides and 5,346 diverse gene

clusters for nonribosomal peptide biosynthesis. A subset of Prevotella and Selenomonas BGCs

had higher expression in steers with lower feed efficiency. Moreover, the microdiversity of

BGCs was fairly constant across types of BGCs and cattle breeds. The reconstructed gen-

omes expand the genomic representation of rumen microbial lineages, improve the anno-

tation of multi-omics data, and link microbial populations to the production of secondary

metabolites that may constitute a source of natural products for manipulating rumen

fermentation.
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W
ith the expected population growth and changes in
food consumption patterns, ruminant agriculture is
critical to meeting global demands for animal

products1. The rumen microbial community is central to the
conversion of indigestible plant biomass into food products via
the breakdown of complex carbohydrates to volatile fatty acids
that provides the ruminant animal with ~70% of its caloric
requirements2. Consequently, rumen microbes are paramount to
ruminant health and productivity. Advancing the understanding
of the structure–function relationship of the rumen microbiome
is critical to improving ruminant agriculture.

Recent investigations of the rumen microbiome have expanded
rumen microbial genomic databases3–5; however, the genomic
characterization of rumen microbes is far from complete. The
Hungate1000 project provided high-quality reference genomes for
hundreds of cultured rumen microbial strains3. New culturing
efforts and strategies are bound to bring more rumen microbes into
culture, but currently, the majority of populations have not been
isolated. In a recent cultivation experiment with defined and
undefined media, 23% of rumen microbial operational taxonomic
units were recovered6. Metagenomic binning approaches have been
employed to bypass the cultivation bottleneck and generate rumen
microbial population genomes4,5,7,8. Stewart et al. reconstructed
4,941 metagenome-assembled genomes (MAGs) from cattle and
highlighted the carbohydrate-active enzyme diversity residing in
uncultivated taxa4,5. However, a notable fraction of metagenomic
reads from previous studies did not map to genomes from
the Stewart et al. and Hungate1000 collections4,5, suggesting many
rumen microbial species are yet to be characterized. Increasing the
number of reference genomes for rumen microbes by identifying
MAGs across different ruminant species would enhance our
understanding of structure–function relationships within the rumen
microbiome and improve metagenomic inference.

Secondary metabolites are involved in a broad range of func-
tions, including as antimicrobial agents and mediating microbial
interactions9. Given the evidence linking the transmission of
antibiotic resistance from livestock to humans10,11, there is a need
to reduce the use of antimicrobial feed additives by identifying
alternatives12,13. Due to the intense competition for nutrient
resources, the rumen microbiome may provide novel opportu-
nities to develop alternatives using endogenous antimicrobial
peptides and probiotic microbial species14. A previous analysis
found 45.4% of 229 rumen genomes encoded at least one bac-
teriocin gene cluster15. Secondary metabolites also have ecological
roles in intercellular communication9,16. In support, a recent
study of rumen metatranscriptomic data demonstrated
increased expression of nonribosomal peptide (NRPS) and
polyketide synthetases (PKS) in some rumen species during
colonization of plant biomass, suggesting roles for these mole-
cules in establishing niches in the rumen17. Thus, expanding on
these findings and gaining additional fundamental knowledge on
microbial secondary metabolism in the rumen is important for
understanding host–microbe and microbe–microbe interactions,
as well as for developing alternative compounds to improve
ruminant health and modulate rumen fermentation.

Here, we used publicly available metagenomes from ruminants
(cattle, deer, moose, bison, and sheep) in combination with new
cattle rumen metagenomic datasets to reconstruct 2,809 MAGs.
The MAGs expand the genomic representation of rumen
microbial lineages and provide unique genomic insights into
rumen microbial physiology. Moreover, we present a phyloge-
netic characterization of the secondary metabolite biosynthetic
gene clusters (BGCs) of rumen microbial genomes and demon-
strate the vast potential present within the rumen microbiome for
the discovery of novel metabolites and probiotics to improve
animal health and productivity.

Results
2,809 draft MAGs from the rumen ecosystem. We amassed 3.2
terabase pairs (Tbp) of data from 346 publicly available and 66
new rumen metagenome datasets (Supplementary Table 1). The
metagenomes were from cattle (312 samples, 2.1 Tbp), sheep
(75 samples, 888.4 gigabase pairs (Gbp)), moose (9 samples,
108.8 Gbp), deer (8 samples, 62.9 Gbp), and bison (8 samples,
52.3 Gbp). Metagenomes were assembled independently to reduce
the influence of strain variation and improve the recovery of
closely related genomes18,19. Following refinement, dereplication,
and filtering of resulting population genomes, we identified 2,809
nonredundant MAGs satisfying the following criteria: dRep20

genome quality score ≥60, ≥75% complete, ≤10% contamination,
N50 ≥5 kbp, and ≤500 contigs.

The median estimated completeness and contamination of the
MAGs were 89.7% and 0.9%, respectively (Fig. 1a and Supple-
mentary Data 1). Further, recovered MAGs had a median genome
size of 2.2Mbp, a median of 131 contigs, and a median N50 of
28.3 kbp (Fig. 1b). The proposed minimum information about a
MAG (MIMAG) specifies high-quality draft genomes to have an
estimated ≥90% completeness, ≤5% contamination, at least 18
tRNAs, and contain 23S, 16S, and 5S rRNA genes21. It remains
challenging to reconstruct rRNA genes from short metagenomic
reads due to the high sequence similarity of rRNA genes in closely
related species. As a result, despite high estimated completeness
and low contamination rates, only 20 MAGs meet the MIMAG
standards for a high-quality draft genome. We identified a 16S
rRNA gene in 197 of the MAGs. The remaining MAGs are
characterized as medium-quality MAGs under the MIMAG
standards.

The majority of bacterial MAGs belonged to phyla Firmicutes
or Bacteroidota (2,326; Fig. 2a and Supplementary Data 1).
Additionally, we assembled 12 bacterial genomes from the
superphylum Patescibacteria. At lower taxonomic ranks, Lach-
nospiraceae (415) and Prevotella (398) were the dominant family
and genus identified among the assembled bacterial genomes. The
most prevalent archaeal family and genus were Methanobacter-
iaceae (45) and Methanobrevibacter (35), respectively (Fig. 2b).
The recovered MAGs represent several new taxonomic lineages,
as four genomes could not be classified at the rank of order, 16 at
the rank of family, and 243 at the genus rank.

Species-level overlap between reference genomes, the Hun-
gate1000 Collection, and rumen MAGs. To further characterize
the assembled genomes, we compared the MAGs to other rumen-
specific genome collections, specifically genomes generated from
the Hungate1000 project3 and MAGs identified from the Stewart
et al. studies4,5. We clustered genomes based on approximate
species-level thresholds (≥95% ANI) and calculated the inter-
section between MAGs in the current study and the Hungate1000
Collection (410 genomes)3, MAGs from Stewart et al. (4,941
genomes)4,5, and a dereplicated genome collection from the
GTDB (22,441 genomes, see Methods)22, which includes refer-
ence isolate genomes and some environmental MAGs23. It should
be noted that we used the raw data from the first of the
Stewart et al. studies4 (Supplementary Table 1), but with different
assembly and binning approaches. Approximately one-third of
the MAGs (1,007) did not exhibit ≥95% ANI with a genome in
the GTDB, Stewart et al. MAGs, or the Hungate1000 isolates
(Fig. 3a). When considering the pairwise intersections between
the datasets, 98 (3.5%), 933 (33.2%), and 1,438 (51.2%) of the
MAGs in the current study had ≥95% ANI with a genome in the
Hungate1000 Collection3, GTDB22, and Stewart et al.4,5, respec-
tively. One hundred twenty-one (29.5%), 552 (2.5%), and 3,125
(63.2%) of the genomes from the Hungate1000 Collection3,

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02331-7

2 COMMUNICATIONS BIOLOGY |           (2021) 4:818 | https://doi.org/10.1038/s42003-021-02331-7 | www.nature.com/commsbio

www.nature.com/commsbio


GTDB22, and Stewart et al.4,5 displayed ≥95% ANI with a MAG
from the current study. Together, these results indicate that we
recovered a majority of previous rumen genomic diversity with
additional lineages not previously identified in other major rumen
genomic collections.

We applied an additional clustering approach to identify the
approximate number of species represented by the rumen-specific
genomes assembled in this study, in the Hungate1000 Collection3,
and Stewart et al.4,5. A 95% ANI threshold yielded 3,541 clusters
from the combination of the datasets (Supplementary Data 2). Of
the 3,541 clusters, 2,024 contained a MAG from the current
study, and 1,135 were composed exclusively of MAGs from the
current study. In comparison, 2,175 and 286 clusters were
comprised of genomes from Stewart et al.4,5 and the Hungate1000
Collection3, respectively. The majority of 95% ANI clusters
(2,166) are only comprised of a single genome (Fig. 3b).

Furthermore, a rarefaction curve suggests the 8,160 genomes
from the genomic collections analyzed here only represent a
fraction of the estimated microbial species diversity in the rumen
(Fig. 3c). The genome with the best dRep score from each cluster
was used to generate a phylogenetic tree highlighting the species
diversity within each rumen genomic collection and represents
the vast diversity of rumen bacterial (Fig. 3d) and archaeal
(Fig. 3e) genomes published to date.

As stated previously, the median genome size of reconstructed
MAGs was 2.2 Mbp, smaller than the median size of genomes
from the Hungate1000 project (3.1 Mbp)3. To provide an
assessment at a finer resolution, genome sizes of MAGs and
Hungate1000 genomes3 belonging to the same 95% ANI cluster
were compared (Supplementary Fig. 1). Adjusted sizes of MAGs
and Hungate1000 genomes that are ≥95% complete displayed a
regression coefficient of 0.96 with a slope of 0.86, indicating the

Fig. 1 Genomic properties of 2,809 rumen MAGs. a CheckM completeness and contamination estimates for the 2,809 population genomes recovered

from rumen metagenomes. The size of the point on the scatter plot corresponds to the dRep genome quality score, where Quality=Completeness−

(5 ⋅ Contamination)+ (Contamination ⋅ (Strain Heterogeneity/100))+ 0.5 ⋅ (log (N50). The reported MAGs meet the following minimum criteria: genome

quality score ≥60, ≥75% complete, ≤10% contamination, N50 ≥5 kbp, and ≥500 contigs. b The frequency distribution of the number of contigs and

genome sizes of reconstructed MAGs.
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binning process likely did not lead to extensive losses and
systematic biases in the reconstructed genomes. Instead, it further
highlights that current culturing approaches have not brought
large portions of rumen microbial diversity into culture and
putatively supports previous findings from the human gut that
revealed genome-reduction in uncultured bacteria24.

Rumen metagenome classification rates using reference and
rumen-specific genomes. Utilizing an approach similar to
Stewart et al.4,5, we investigated the influence of MAGs on rates of
metagenomic read classification. The baseline for read classifi-
cation was the standard Kraken database containing bacterial,
archaeal, fungal, and protozoal RefSeq genomes25. Each rumen-
specific dataset was incrementally added to the Kraken RefSeq
genomic database in the following order to build new databases:
the Hungate1000 Collection3, MAGs from Stewart et al.4,5, and
MAGs from the current study. Each individual and collective
database was used for classification of sample reads that under-
pinned metagenomic binning and from a rumen metagenomic
dataset not used in the reconstruction of MAGs26. MAGs from
the current work classified more reads from deer, moose, and
sheep metagenomes, while the more numerous MAGs from
Stewart et al.4,5 classified more reads from bison and cattle
metagenomes (Supplementary Fig. 2a). The addition of MAGs
improves classification relative to databases primarily based
on cultured isolates, like the Hungate1000 Collection3 (Supple-
mentary Fig. 2b). Using the combination of all reference and
rumen-specific genomes, the median classification rate on an
independent set of cattle metagenomes was 62.6%.

Phylogenetic characterization of biosynthetic gene clusters.
Microbial genome mining is a powerful tool for natural product
discovery. We sought to explore the extent of secondary

metabolite diversity coded by the MAGs in the current study, the
Hungate1000 Collection3, and Stewart et al. MAGs4,5. We iden-
tified 14,814 BGCs encoded by the 8,160 rumen-specific genomes
using antiSMASH27 (Fig. 4a and Supplementary Data 3). The
majority of BGCs were NRPS (5,346), followed by aryl polyenes
(2,800), sactipeptides (2,126), and bacteriocins (1,943). Only a few
PKS were identified (75). Firmicutes harbored the vast majority of
clusters for NRPS, sactipeptide, lantipeptide, lassopeptide, and
bacteriocin synthesis (Fig. 4b). At lower taxonomic ranks,
DTU089 (979), Bacteroidaceae (934), and Lachnospiraceae (923)
coded for the bulk of NRPS gene clusters. Moreover, Acid-
aminococcaceae genomes contained 21.2% of identified bacter-
iocins and Ruminococcus spp. possessed the bulk of sactipeptides
and lantipeptides. Archaea were predicted to code 737 BGCs,
including an average of 3.8 NRPS gene clusters per genome
(Fig. 4a).

NRPS exhibit high molecular and structural diversity resulting
in a wide array of biological activities. The diversity of NRPS,
combined with their proteolytic stability and selective bioactivity,
has resulted in the development of many NRPS as antimicrobials
and other therapeutic agents28. Given the prevalence of NRPS
among the recovered MAGs (Fig. 4a), the peptides appear to be
important bioactive metabolites in the rumen. To gain funda-
mental insight into the phylogenetic diversity of rumen NRPS, we
built a network based on BGC similarity using BiG-SCAPE29.
BiG-SCAPE uses protein domain content, order, copy number,
and sequence identity to calculate a distance metric. We assessed
the similarity of NRPS gene clusters identified in Firmicutes,
Bacteroidota, and Euryarchaeota, as these three phyla coded for
96.4% of assembled NRPS gene clusters from rumen genomes.
With a BiG-SCAPE similarity threshold of 0.3, the resulting
network consisted of 3,436 nodes (NRPS BGCs on contigs
≥10 kbp) and 79,112 edges (Fig. 4c and Supplementary Data 4).
As expected, the network analysis depicted high inter- and

Fig. 2 Phylogenetic relationships and coverage patterns of near-complete MAGs. a Phylogenomic analysis of 1,163 near-complete (≥90% complete,

≤5% contamination, and N50 ≥15 kbp) bacterial MAGs and (b) 20 near-complete archaeal MAGs inferred from the concatenation of phylogenetically

informative proteins. Layers below the genomic trees designate bacterial phylum or archaeal genus based on GTDB taxonomic assignments, genomic size

(0–5Mbp), and the mean number of bases with ≥1× coverage in a rumen metagenomic dataset (layer color indicates the ruminant the data was collected

from). The mean number of bases with ≥1× coverage was used as input for hierarchical clustering of rumen metagenomic datasets based on Euclidean

distance and Ward linkage. The bacterial and archaeal phylogenetic trees are provided as Supplementary Data 6 and Supplementary Data 7, respectively.
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intra-phylum genetic diversity among the NRPS gene clusters.
The median intra-phylum, -family, and -genus similarity was
0.40, 0.44, and 0.46, respectively, while the median inter-phylum,
-family, and -genus similarity was 0.32, 0.34, and 0.34,
respectively. Further, only 2.6% of edges were inter-phylum and
69.0% were intra-family. Of the 6,594 Euryarchaeota edges, 8.1%
were Euryarchaeota-Firmicutes (median similarity of 0.32) and
2.0% of edges were Euryarchaeota-Bacteroidota (median similar-
ity of 0.31). To further examine the phylogenetic relationships of
rumen Euryarchaeota NRPS, we clustered 265 NRPS gene clusters
(≥10 kbp) from 85 near-complete Euryarchaeota genomes at a
higher similarity threshold of 0.75, yielding 57 NRPS clusters
(Fig. 4d). The distribution of NRPS clusters amongst the genomes
suggests there exists a strong relationship between methanogen
phylogeny and NRPS similarity. Only Methanobrevibacter
genomes contain NRPS gene clusters, and genomes of the
same species often possessed many of the same NRPS clusters
(see genomes highlighted in blue in Fig. 4d). However, there are
instances in which closely related methanogens code for a
contrasting pattern of NRPS clusters or no NRPS clusters at all
(see genomes highlighted in red in Fig. 4d).

Bacteriocins likely serve as regulatory elements in complex
microbial communities such as the rumen. Consequently,
bacteriocins have been studied and characterized for their
bactericidal activity and as agents that modulate the microbiota
structure and function30. In particular, lanthipeptides, a class of
ribosomally synthesized and post-translationally modified pep-
tides (RiPPs) with thioether cross-linked amino acids31, are of
pharmaceutical, preservative, and agricultural interest due to
their strong antimicrobial properties against gram-positive
pathogens31–33, low levels of antimicrobial resistance34, and
stability35. We identified 195 rumen lanthipeptide BGCs from the
Hungate1000 genomes and MAGs from Stewart et al. and the
current study. Rumen lanthipeptide BGCs were clustered with
22,870 lanthipeptide BGCs from RefSeq genomes36,37 into gene
cluster families (GCFs; groups of BGCs that may generate highly
similar products). Clustering with BiG-SCAPE29 yielded 4,565
GCFs, 120 of which contained a rumen lanthipeptide. The 120
GCFs were composed of 519 lanthipeptide BGCs, where 324 were
from RefSeq isolates and 195 from rumen genomes (Fig. 5a). The
324 RefSeq BGCs fell into only 18 GCFs. Lanthipeptides from the
Hungate1000 isolates clustered into 36 GCFs, while rumen MAG

Fig. 3 Genomes sharing ≥95% ANI between databases and the characterization of rumen-specific 95% ANI clusters. a The approximate number of

species overlapping amongst rumen-specific and reference genomic datasets. Genomes demonstrating ≥95% ANI were considered to be shared between

two datasets. Presented are a subset of intersections in which a MAG from the current study was the query genome. b The number of genomes comprising

each of the 3,541 95% ANI clusters generated from 8,160 rumen microbial genomes in the current study, the Hungate1000 Collection3, and Stewart et al.

studies4, 5. c Rarefaction analysis based on subsampling 95% ANI clusters at steps of 500 genomes indicates the 8,160 genomes from recently published

rumen genomic collections still only represent a fraction of expected microbial species diversity in the rumen ecosystem. Phylogenomic relationships of the

1,781 near-complete bacterial (d) and 35 near-complete archaeal (e) representative genomes with the highest dRep genome quality score from the 3,541

95% ANI clusters generated from 8,160 rumen-specific genomes. Near-complete genomes were defined as being ≥90% complete, having ≤5%

contamination, and contig N50 ≥15 kbp. Layers surrounding the genomic trees indicate the bacterial phyla or archaeal genera and the log normalized

number of genomes from each rumen genomic collection belonging to the same 95% ANI cluster. The bacterial and archaeal phylogenetic trees are

provided as Supplementary Data 8 and Supplementary Data 9, respectively.
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lanthipeptides belonged to 92 GCFs, 82 of which were exclusively
composed of MAG lanthipeptides. Together, this evidence
suggests rumen MAGs code for diverse and novel lanthipeptides
not represented in cultured isolates, including the Hungate
Collection.

We sought to further examine the differences in rumen MAG
lanthipeptides relative to isolates and the taxonomic diversity of
rumen microbes coding for lanthipeptides. The 195 rumen
lanthipeptides were mainly found in Firmicutes genomes, with a
subset from Bacteroidota and Actinobacteriota (Fig. 5b). Fifty-
two of the 55 lanthipeptides from the Hungate Collection isolates
were from Firmicutes (94.5%). At the family-level, these 52
Firmicutes BGCs were distributed evenly between Lachnospir-
aceae and Streptococcaceae. In contrast, 19.2% and 8.6% of
lanthipeptides from rumen MAGs belonged to Bacteroidota and
Actinobacteriota, respectively. Lanthipeptides from MAGs were
also found in Muribaculaceae and Oscillospiraceae. Moreover,
26.4% of rumen MAG lanthipeptides, compared to 3.6% of
Hungate Collection isolates, were found in Eubacterium genomes.
The majority of Eubacterium MAG lanthipeptides (62.1%)
belonged to a single GCF, suggesting they code for very similar
products. Lastly, antiSMASH predicted the bulk of the rumen
lanthipeptides were Class II lanthipeptides, with fewer Class I and

Class III types (Fig. 5b). Nearly all of the Class I lanthipeptides
were from Hungate isolates. The above analysis of lanthipeptide
diversity further supports that rumen MAGs code for novel
secondary metabolites not represented in cultured isolates.

We aligned previously published rumen metatranscriptome
data from steers characterized as having high and low feed
efficiency to the BGCs to demonstrate if the identified BGCs are
active and to explore potential ecological roles of secondary
metabolites. Despite data from the metatranscriptome study not
being applied to reconstruct genomes in the current study, we
identified the expression of 554 gene clusters from rumen-specific
genomes in the 20 metatranscriptomes (≥100 aligned reads).
Metatranscriptome read count data were normalized indepen-
dently for each genome to better account for the variation in
taxonomic composition across samples38. Genome-specific nor-
malization resulted in the identification of 17 differentially
expressed gene clusters between steers with high and low feed
efficiency (DESeq239 false discovery rate adjusted P < 0.05;
Supplementary Data 5). Of the 17 differentially expressed BGCs,
16 exhibited higher expression levels in the rumen samples from
less efficient steers with higher residual feed intake. Further,
Prevotella and Selenomonas coded for 12 of the differentially
expressed BGCs (70.6%). All of the differentially expressed

Fig. 4 Characterization of BGCs from 8,160 rumen genomes and MAGs. a Number and types of BGCs identified from select phyla in genomes from the

Hungate1000 Collection3, Stewart et al. studies4, 5, and the current study. b Phylogenomic analysis of 1,766 near-complete Firmicutes genomes inferred

from the concatenation of phylogenetically informative proteins. The inner layer surrounding the genomic tree designates taxonomic annotations, while the

remaining layers depict the log normalized number of BGCs in the genome with the ascribed function. Bacterial class and order labels are displayed for

those lineages in which more than 50 genomes were identified. Near-complete genomes were defined as being ≥90% complete, having ≤5%

contamination, and contig N50 ≥15 kbp. The phylogenetic tree is provided as Supplementary Data 10. c A relational network of NRPS gene clusters in

Firmicutes, Bacteroidota, and Euryarchaeota highlights the similarity of NRPS BGCs from Euryarchaeota and Firmicutes. Edge weight represents the

similarity of two BGCs, as determined by BiG-SCAPE (i.e. darker edges demonstrate more similarity between two BGCs). Edges are only shown for BGCs

with ≥0.3 BiG-SCAPE similarity. Nodes from each phylum are duplicated to illustrate intra-phylum relationships and nodes along a given axis are ordered

alphabetically by taxonomic family. d The association between genome phylogeny and the similarity of NRPS gene clusters coded by near-complete

Euryarchaeota genomes. BGCs designated as NRPS were clustered with BiG-SCAPE. The relationship between NRPS clusters was portrayed through the

hierarchical clustering of pairwise inter-cluster similarities. The number of NRPS clusters coded by each genome (range of 0–3) is presented alongside the

assigned genus. A group of Methanobrevibacter genomes, likely of the same species (≥95% ANI), possessed very similar NRPS clusters (highlighted in

blue). Yet, phylogenetically closely related genomes, belonging to two different 95% ANI clusters, did not code for any identified NRPS gene clusters

(highlighted in red). The phylogenetic tree is based on the concatenation of 122 phylogenetically informative archaeal proteins and is available as

Supplementary Data 11.
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Selenomonas BGCs were sactipeptides (n= 7), while the
Prevotella BGCs were more diverse and included NRPS and aryl
polyenes.

Microdiversity of BGCs and MAGs. Phylogenetic analyses of
BGC often revealed high inter-species diversity (i.e, methanogen
NRPS diversity in Fig. 4d). We next investigated patterns of sub-
species microdiversity in rumen BGCs. In order to reduce the
influence of study-to-study effects, we focused on the micro-
diversity of MAGs across 282 metagenomes in the Stewart et al.
studies4,5. MAGs with ≥50% of its genome covered by at least 5
reads were considered as detected in a sample and used for
microdiversity analyses. The within-sample microdiversity of
genes and genomes were assessed using InStrain40. Our phylo-
genetic analysis identified that different classes of BGCs are
enriched in certain lineages (Fig. 4a, b). As a result, the nucleotide
diversity values for genes were normalized using the mean
genome-wide nucleotide diversity for each MAG to account for
lineage-specific evolutionary processes and more accurately
compare patterns of microdiversity in BGCs across lineages.
There were significant differences in the nucleotide diversity of
genes from the four major classes of BGCs identified in rumen-
specific genomes (Kruskal–Wallis H= 1795.5, ε

2= 0.001, P <
2.2 × 10−16; Fig. 6a), but the effect size (ε2) between BGC types
was negligible. Outliers with high microdiversity were bacteriocin
genes from RC9 and UBA3207 sp. as well as NRPS genes from
CAG-710 and UBA9715 sp. Additionally, we explored the asso-
ciation of genome-wide and secondary metabolism gene micro-
diversity with cattle breed. The mean nucleotide diversity of
MAGs (Kruskal–Wallis H= 1027.5, ε2= 0.0265, P < 2.2 × 10−16;

Fig. 6b) and the normalized nucleotide diversity of genes from
BGCs (Kruskal–Wallis H= 403.84, ε

2= 0.0003, P < 2.2 × 10−16;
Fig. 6c) were both significantly different between the four breeds.
The effect size (ε2) of microdiversity difference between breeds
was much larger for the genome-wide comparison than for genes
from BGCs. This finding raised the question if genes from BGCs
have different nucleotide diversity relative to other genes. We
found that genes across all BGCs had lower normalized nucleo-
tide diversity compared to all other genes from investigated
MAGs (Wilcoxon rank-sum W= 6.11 × 1013, Vargha and Dela-
ney’s A= 0.507, P < 2.2 × 10−16; Fig. 6d). The raw nucleotide
diversity values were higher for genes in BGCs than other genes
(Wilcoxon rank-sum W= 5.801 × 1013, Vargha and Delaney’s
A= 0.481, P < 2.2 × 10−16). Regardless, again we find the effect
size of the difference to be very small though. Together, micro-
diversity analyses suggest rumen microbial BGC diversity is
comparable across the prevalent BGC classes, breeds, and similar
to other genes.

Discussion
Ruminant agriculture is critical to the global food system. How-
ever, with land constraints and associated environmental impacts,
ruminant production systems will need to become more efficient
and sustainable to feed a growing population. Due to the
importance of microbial processes in ruminant health and pro-
duction, rumen microbes are central to nearly all aspects of
ruminant agriculture41. Actionable insights into the roles
of rumen microbes have lagged though, partly due to a lack of
genomic references that underpin analyses and contextualize
community data.

Fig. 5 Phylogenetic diversity of 195 lanthipeptide BGCs coded by rumen genomes. a Network depicting the similarity between lanthipeptide BGCs

identified from complete and draft isolate genomes in RefSeq and rumen genomes of the Hungate1000 collection, Stewart et al. MAGs, and MAGs from

the current study. The BGCs were clustered into gene cluster families (GCFs) with BiG-SCAPE29. Only the GCFs containing a rumen genome and at least

two BGCs were visualized. Nodes in the network represent BGCs and edges connect BGCs with BiG-SCAPE defined similarity ≥0.3. b Phylogenetic

relationships of 120 near-complete rumen bacterial genomes coding for lanthipeptide BGCs. Near-complete genomes were defined as being ≥90%

complete, having ≤5% contamination, and contig N50 ≥15 kbp. Layers surrounding the genomic trees indicate the bacterial phyla and family, if the genome

is a MAG or Hungate Collection isolate, and the class of lanthipeptide, as predicted by antiSMASH27. Genomes without an indicated lanthipeptide class

were not classified by antiSMASH. The phylogenetic tree is based on the concatenation of 120 phylogenetically informative bacterial proteins and is

available as Supplementary Data 12.
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We reconstructed 2,809 metagenome-assembled population
genomes from several ruminant species to advance our under-
standing of the structure–function relationship of the rumen
microbial ecosystem. Nearly half of the MAGs are estimated
to be ≥90% complete with minimal contamination. Based on
pairwise ANI comparisons, the MAGs in this study constitute
~2,024 species (95% ANI clusters), greatly expanding the genomic
representation of rumen microbial lineages. Moreover, clustering
the genomic data reported in this study with genomes from the
Hungate1000 Collection3 and Stewart et al. studies4,5 suggest
there are at least 3,541 rumen microbial species with a draft
reference genome now. It is worth emphasizing that some of the
MAGs reported in this study may have been reported as part of
metagenomic binning efforts in other recent studies42–44 (Sup-
plementary Table 1). The aggregating of data from multiple
studies and contrasting assembly and binning approaches may
have recovered different microbial populations. In particular, the
pooling and binning of contigs from an increased number of
samples followed by re-assembly likely yielded more MAGs,
MAGs of improved quality, and the recovery of different genetic
elements.

Approximately one-third of the resolved MAGs did not have a
species-level representative in the compared genomic databases.
Among the fraction of genomes that did exhibit high similarity,
only 3.7% of MAGs formed a cluster with 29.8% of genomes in
the Hungate1000 Collection3. Further, 64.6% of the Hungate1000
Collection genomes did not cluster with a MAG from the current
study or the Stewart et al. studies4,5, implying metagenomic
binning did not recover some of the cultured rumen isolates. The
poor reconstruction of isolate genomes may be because the
Hungate1000 strains are in low abundance in vivo or have high
intra-species diversity. An examination of culturing with defined
and undefined media found that a large number of cultured
OTUs were not detected in the 16S rRNA gene profile from the
same rumen sample or were unique to a culture plate, suggesting
cultured OTUs often constituted rare rumen microbial
populations6. The addition of rumen MAGs to classification
indices may improve statistical power and allow for a more
accurate interpretation of shallow rumen metagenomic datasets45.
Therefore, the MAGs presented here are valuable for interpreting
future and previously sequenced rumen metagenomic datasets
and serving as a scaffold for other multi-omics data.

Moreover, we linked microbial populations to the coding and
expression of BGCs to demonstrate the utility of genome-resolved
metagenomics in the rumen ecosystem. This analysis identified
14,814 gene clusters from 8,160 rumen-specific genomes, indi-
cating the rumen is a rich resource for secondary metabolites.
Previous investigations of rumen secondary metabolites have
primarily focused on bacteriocin production. A similar genome
mining approach revealed 46 bacteriocin gene clusters from 33
rumen bacterial strains15. Roughly half the clusters were related
to lanthipeptide biosynthesis. In this study, we have considerably
expanded the phylogenetic diversity of known rumen bacteriocins
and related peptides, identifying 4,326 putative bacteriocins,
sactipeptide, lanthipeptide, and lassopeptide clusters. We exam-
ined the diversity of rumen lanthipeptides relative to lanthipep-
tides from cultured isolates. This analysis revealed several
novel class II lanthipeptides encoded by rumen MAGs from
diverse taxa that were predominantly found in Eubacterium and
Streptococcus. Class II lanthipeptides contain a multifunctional
lanthipeptide synthetase (LanM) that carries out both the dehy-
dration and cyclization reactions31. LanM can possess high sub-
strate tolerance46,47 leading to diverse products and are currently
used as promising targets for bioengineering48. Future research
focusing on detailing the genetic organization and precursor
peptide diversity of rumen class II lanthipeptides is needed as the
rumen may be an untapped resource for novel class II lanthi-
peptides. The fraction of Hungate Collection isolates coding for
lanthipeptides relative to MAGs suggests these genomic regions
may be relatively difficult to assemble or bin from metagenomic
data. The high number of rumen isolates harboring lanthipep-
tides and the diversity of lanthipeptides in MAGs suggest the
rumen may be a promising source for novel lanthipeptide dis-
covery. Similarly, a recent analysis of lassopeptides from the
Hungate isolate genomes suggests Firmicutes are capable of
producing several novel lassopeptides49. The recovered MAGs
increase the number of bacteriocins native to the rumen ecosys-
tem and available for targeted isolation and functional screening
to develop novel probiotics and alternatives for antibiotics in
ruminant production.

Given the abundance of NRPS gene clusters harbored by
recovered genomes, we explored the diversity of this family of
natural products through a relational network based on the BiG-
SCAPE implemented distance metric. The network analysis

Fig. 6 Comparison of the microdiversity of MAGs and BGCs from cattle metagenomes in the Stewart et al. studies4, 5. The within-sample nucleotide

diversity of BGCs was statistically different between BGC types, but the effect size of the difference was small (ε2= 0.001) (a). The difference in

nucleotide diversity across breeds was greater for MAGs (ε2= 0.0265) (b) than for genes in BGCs (ε2= 0.0003) (c). Additionally, the effect size of the

difference between the normalized nucleotide diversity of genes from BGCs and other genes was small (Vargha and Delaney’s A= 0.507) (d). Genome-

wide normalized nucleotide diversity is the nucleotide diversity of a gene relative to the mean nucleotide diversity of the MAG. The genome-wide

normalized nucleotide diversity metric was used to reduce the influence of lineage-specific evolutionary processes, allowing for a more accurate

comparison of gene nucleotide diversity across microbial populations. The same conclusions were identified using the raw nucleotide diversity in the place

of genome-wide normalized nucleotide diversity. The outlier points have been removed from the boxplots for clarity.
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confirmed that NRPS BGCs have immensely diverse gene content
and highlighted that ~70% of the network edges were between
BGCs of the same taxonomic family. We further identified 687
NRPS gene clusters encoded by 125 archaeal genomes. Archaeal
NRPS have been described previously, notably in Methano-
brevibacter ruminantium50. A 2014 genomic survey found only
three instances of archaeal NRPS in classes Methanobacteria and
Methanomicrobia51, and a recent analysis identified 73 BGCs
from 203 archaeal genomes52. Phylogenetic analyses suggest that
archaeal NRPS were acquired through horizontal transfer from
bacteria50,51. Our network analysis appears to support this
hypothesis as we established that there are NRPS in Eur-
yarchaeota with high similarity to NRPS in different Firmicutes
families. Given the proposed roles of NRPS in signaling and
intercellular communication in ecosystems, it has been suggested
that methanogen NRPS may be involved in perpetrating syn-
trophic interactions that are important for inter-species hydrogen
transfer50. We noted methanogen genomes of the same species
often contain very similar NRPS gene clusters, while other closely
related genomes could lack NRPS gene clusters altogether. As
such, we hypothesize that methanogens without NRPS may
typically exist as symbionts of protozoa or other microbes and
have lost the need to produce the compound. It is difficult to
confidently assess the expression of populations in low abun-
dance, but future work should aim to establish the expression
patterns of methanogen NRPS gene clusters under various
conditions.

In addition to predicting thousands of BGCs from MAGs,
we also demonstrated a subset of BGCs that were expressed in
rumen samples from high and low efficient steers. The differen-
tially expressed BGCs were mainly sactipeptides encoded by
Selenomonas and aryl polyenes and NRPS encoded by Prevotella.
Host-associated microbes may mediate important interactions
through the production of secondary metabolites53. Prevotella
and Selenomonas populations are often linked to feed efficiency.
Our approach using genome-resolved metagenomics and
organism-specific normalization suggests secondary metabolites
may play a role in this association. Further, the findings fit the
emerging hypothesis that inefficient cattle have higher microbial
diversity and produce a broader range of less usable metabolites
for the animal’s energy needs54,55.

Inter-species diversity of BGCs appeared to be high in the
rumen, while sub-species microdiversity analyses suggest strain-
level BGC diversity may be more constant across samples. The
majority of genes within BGCs had similar nucleotide diversity as
other genes, with a few outliers that displayed very high diversity.
We know little regarding the relationship between genetic and
functional diversity of BGCs in the rumen. As such, future
work may focus on obtaining a better understanding of the
evolutionary processes shaping the microdiversity patterns
of BGCs. The mean genome-wide nucleotide diversity of sub-
species MAGs was more different across breeds than it was
for genes of BGCs, suggesting host genetics may influence
microdiversity.

In this study, we have provided a phylogenomic characteriza-
tion of rumen-specific genomes that may serve as a foundation
for future in silico and laboratory experiments to better explore
the rumen as a source for alternative peptides and metabolites to
modulate rumen fermentation. The genomes reported here and in
other recent genetic explorations of the rumen microbiome
appear to only provide a glimpse into rumen microbial diversity.
Moving forward, we anticipate using the combination of cultured
and uncultured genomes to populate a bottom-up systems biol-
ogy framework that advances towards mechanistic under-
standings and modeling dynamics of the rumen microbial
ecosystem.

Methods
Rumen metagenomic datasets. We used 412 metagenomes for assembly and
metagenomic binning (Supplementary Table 1). Rumen metagenomic studies with
sufficient depth and quality were identified from the Sequence Read Archive,
European Nucleotide Archive, and MG-RAST in early 2018. All publicly available
metagenomes were sequenced on Illumina next-generation sequencing platforms.
The remaining metagenomic datasets were previously unpublished.

The first two unpublished metagenomic datasets were from an 84-day growing
study utilizing 120 steers to compare the influence of forage quality on methane
emissions and subsequent 125-day finishing study with 60 steers to investigate the
impacts of dietary fat, monensin, nitrate, and sulfate supplementation on methane
emissions at the University of Nebraska Agriculture Research and Development
Center56. The University of Nebraska-Lincoln Institutional Animal Care and Use
Committee approved animal care and management procedures. From the original
120 animals in the growing study, 23 animals across different treatment groups
were randomly selected for metagenomic sequencing. Sixty of the steers were
utilized in a finishing study to evaluate the influence of dietary nitrate and sulfate
on methane emissions and animal performance. From this study, 27 animals across
different treatment groups were selected randomly for metagenomic sequencing. In
both studies, sampling was conducted via esophageal tubing and snap-frozen with
liquid nitrogen. Total DNA was extracted from rumen samples with the PowerMax
Soil DNA Isolation Kit (MO BIO Laboratories, Inc.) according to the
manufacturer’s protocols. Metagenomes were prepared with the Nextera XT DNA
Library Prep Kit and sequenced on the Illumina HiSeq platform using 150 bp
paired-end sequencing. Raw data from these two datasets is associated with NCBI
BioProject PRJNA627299 (Supplementary Table 1).

Paz et al. characterized the rumen microbiomes of 125 heifers and 122 steers to
identify bacterial operational taxonomic units linked to feed efficiency57. From this
cohort, 16 steers displaying divergent feed efficiency phenotypes were selected for
metagenomic sequencing. In brief, rumen samples were collected through
esophageal tubing and snap-frozen in liquid nitrogen. Total DNA was extracted
from rumen samples with the PowerMax Soil DNA Isolation Kit (MO BIO
Laboratories, Inc.) according to the manufacturer’s protocols. Metagenomes were
prepared using the NEBNext Ultra II DNA Library Prep Kit (New England
Biolabs) and sequenced on the Illumina MiSeq platform (600 cycles, MiSeq
Reagent Kit v3). Raw data from this study is associated with NCBI BioProject
PRJNA627251 (Supplementary Table 1).

Quality control of metagenomes. Initial quality control of sequencing reads and
adapter trimming were performed using BBDuk of the BBTools software suite
(version 38.16; parameters: ktrim= r, k= 23, mink= 11, hdist= 1)58. VSEARCH
(version 2.0.3) was used to remove sequences based on the presence of ambiguous
bases (-fastq_maxns 0), minimum read length (range from -fastq_minlen 36 to
-fastq_minlen 100 based on sample median read length and sequencing technol-
ogy), and the maximum expected error rate (-fastq_maxee_rate 0.02 or -fas-
tq_maxee_rate 0.025 depending on quality of the sequencing data and
technology)59

Assembly and metagenomic binning. Paired-end and single-end sequences from
each sample were assembled independently with MEGAHIT (version 1.1.1; para-
meters: -min-contig-len 1000, -k-min 27, -k-step 10)60. No co-assemblies were
performed. We applied a maximum k-mer size of 87 (-k-max 87) for samples in
which the longest read length was ≤100 bp. For samples with longer read lengths,
we employed a maximum k-mer size of 127 (-k-max 127). The single-sample
assemblies were input for both single-sample and multi-sample binning strategies
with MetaBAT followed by re-assembly and dereplication61. Reads from each
sample were mapped to assembled contigs (minimap2, parameters: -ax sr)62. The
resulting alignments were used to bin contigs with a minimum length of 2000 bp
for single-sample binning and 2500 for multi-sample binning strategies. Due to the
total size of the collected datasets, the multi-sample binning was conducted
independently for cattle (312 metagenomes) and other ruminant metagenomic
datasets (100 metagenomes). Estimates of the completeness and contamination of
the resulting bins were assessed using the lineage-specific workflow (lineage_wf) of
CheckM (version 1.0.11)63. Bins ≥50% complete were re-assembled with SPAdes
(version 3.13.0; -careful parameter)64. MAGs stemming from the single-sample
binning pipeline were re-assembled only with reads from that same sample. MAGs
reconstructed through multi-sample binning were re-assembled from the sample
with the most reads aligning to the bin and from all reads aligning to the bin. The
quality of re-assembled bins was assessed with CheckM. The best assembly (ori-
ginal or re-assembly) was retained based on the dRep quality score, where Genome
Quality= Completeness− (5 ⋅ Contamination)+ (Contamination ⋅ (Strain Het-
erogeneity/100))+ 0.5 ⋅ (log (N50)20. Contigs with divergent genomic properties
(GC content and tetranucleotide frequency) were identified and removed with
RefineM to reduce genome bin contamination23. Refined genomes from single-
sample and multi-sample binning strategies were pooled and dereplicated with
dRep at a threshold of 99% ANI20. Genomes meeting the following thresholds were
retained: dRep quality score ≥60; N50 ≥5 kbp; ≤500 contigs; genome size ≥500 kbp;
CheckM contamination estimate ≤10%; and CheckM completeness estimate ≥75%.
Near-complete genomes were defined as MAGs with CheckM completeness esti-
mate ≥90%, CheckM contamination estimate ≤5%, and N50 ≥15 kbp.
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Taxonomic and functional annotations of MAGs. Taxonomy was assigned to
MAGs using the classify workflow (classify_wf) of the Genome Taxonomy Database
Toolkit (GTDB-Tk 0.2.2) with the associated Genome Taxonomy Database (release
86 v3). In short, the GTDB-Tk classifies each genome based on ANI to a curated
collection of reference genomes, placement in the bacterial or archaeal reference
genome tree, and relative evolutionary distance. For consistency, genomes from the
Hungate1000 project3 and Stewart et al.4,5 were also assigned taxonomy with the
GTDB-Tk. Depending on the taxonomic annotation, MAGs were functionally
annotated with Prokka by evoking either the -kingdom Bacteria or -kingdom
Archaea parameter (version 1.13.7)65. Prokka annotations were used to sum the
number and types of tRNAs and rRNAs in each MAG (Supplementary Data 1).

Inference of genome trees. Phylogenetic trees were inferred with near-complete
genomes (CheckM completeness estimate ≥90%, CheckM contamination estimate
≤5%, and N50 ≥15 kbp) using the GTDB-Tk (default parameters for the identify,
align, and infer commands). Anvi’o was used to visualize the resulting Newick trees
and associated metadata (version 5.5)66. We estimated how well a MAG was
represented in a sample by calculating the percent of a MAG’s bases with at least
1× coverage in the sample. The mean number of bases in a MAG with at least 1×
coverage is presented for each metagenomic study and was used to compute the
hierarchical clustering of rumen metagenomic datasets (Euclidean distance and
Ward linkage).

Similarity of reconstructed MAGs to GTDB reference genomes, the Hun-

gate1000 Collection, and rumen-specific MAGs. Recent analyses support a 95%
ANI threshold to delineate microbial species67,68. The ANI values of MAGs from
the current study and genomes from the GTDB (a curated and dereplicated col-
lection of 22,441 genomes in the GTDB-Tk FastANI database22), Hungate1000
project3, and Stewart et al.4,5 were compared in a pairwise fashion with FastANI
(version 1.1)67. Genome pairs with ≥95% ANI were denoted as overlapping species
between the datasets. We visualized the number of overlapping genomes between
each pair of datasets with UpSetR69,70. Additionally, genomes from the current
study, the Hungate1000 project3, and Stewart et al.4,5 were clustered at 95% ANI
thresholds with dRep20 to approximate the number of microbial species repre-
sented across the rumen genomic collections. The number of genomes belonging to
each 95% ANI cluster was used to calculate rarefaction curves in which cluster
counts were subsampled without replacement at steps of 500 genomes with 10
replications at each step (QIIME version 1.9)71.

The average genome size of reconstructed MAGs was smaller than was observed
in the Hungate1000 Collection. In order to provide a better comparison of genome
sizes across similar species, we evaluated the adjusted genome sizes of MAGs and
Hunagte1000 Collection genomes that belonged to the same 95% ANI cluster based
on Pearson correlation and linear regression, where Adjusted Genome Size=
Genome Size/(Completeness+ Contamination).

Classification of metagenomic reads. Reads from the 412 rumen metagenomes
used to assemble MAGs and reads from 16 samples of an independent cattle
metagenomic dataset26 not used in binning were classified with different databases
to assess the value of the reconstructed MAGs to improve metagenomic read
classification. Reads were classified with Kraken2 (version 2.0.7; default
parameters)25 using a combination of the Kraken2 standard database containing
bacterial, archaeal, fungal, and protozoa RefSeq genomes, 410 genomes from the
Hungate1000 project3, 4,941 MAGs from Stewart et al.4,5, and the 2,809 MAGs
from the current study.

Phylogenetic analysis of biosynthetic gene clusters. BGCs were identified
within MAGs, the Hungate1000 collection3, and the Stewart et al. MAGs4,5 using
antiSMASH 4.0)27. A network was constructed based on the BiG-SCAPE calculated
distances between two BGCs (version “20190604”)29. In short, BiG-SCAPE com-
bines three approaches to measure the similarity of BGC pairs: (1) the Jaccard
Index, which measures the percentage of shared domain types; (2) the Domain
Sequence Similarity index that takes into account differences in Pfam domain copy
number and sequence identity; (3) the Adjacency Index, a measure of the pairs of
adjacent domains that are shared between BGCs. The raw BiG-SCAPE distances
were converted to similarities for all analyses. Only NRPS ≥10 kbp (71.6% were
≥10 kbp) were evaluated and the network analysis was limited to Bacteroidota,
Firmicutes, and Euryarchaeota phyla because these three phyla coded for 96.4% of
NRPS gene clusters. Two BGCs (nodes in the network) were connected with an
edge if the pairwise similarity was ≥0.3. We visualized the network as a hive plot
with the R tidygraph package to demonstrate the inter- and intra-phylum diversity
of NRPS BGCs. Nodes on an axis were ordered by the family of the genome coding
the NRPS. Archaeal NRPS were further evaluated by placing BGCs into clusters
based on a BiG-SCAPE glocal similarity threshold of 0.75. The distance between
clusters was calculated as the mean pairwise similarity between the BGCs of two
clusters. The resulting distance matrix was clustered with hierarchical clustering to
produce a Newick tree (Euclidean distance and Ward linkage). The number of
NRPS from near-complete archaeal genomes (CheckM completeness estimate
≥90%, CheckM contamination estimate ≤5%, and N50 ≥15 kbp) that belong to

each BiG-SCAPE cluster were tabulated and visualized alongside a phylogenetic
tree inferred with the GTDB-Tk (default parameters for the identify, align, and
infer commands)22,63. The data were visualized with Anvi’o (version 5.5)66.

Lanthipeptide BGCs from the Hungate1000 genomes, Stewart et al. MAGs, and
MAGs from the current study were clustered with lanthipeptide BGCs from RefSeq
complete and draft isolate genomes. As part of BiG-FAM (version 1.0)36, the RiPP
BGCs of RefSeq genomes were made available at: https://doi.org/10.5281/
zenodo.410668037 (predicted with antiSMASH verison 5.0). BiG-SCAPE (version
“20190604”; –mode auto –cutoffs 0.3)29 was used to cluster rumen and RefSeq
lanthipeptide BGCs into GCFs and construct the relational network. Lanthipeptide
classes were predicted with antiSMASH (version 5.1.2)27. A phylogenetic tree of
near-complete rumen bacterial genomes encoding lanthipeptides was inferred with
the GTDB-Tk (default parameters for the identify, align, and infer commands)22,63.
The tree and associated data were visualized with Anvi’o (version 5.5)66.

Rumen metatranscriptomic data72 sequenced from steers with high
(10 samples) and low (10 samples) residual feed intake were used to assess the
expression of rumen microbial BGCs. ORF abundances for all rumen genomes
were quantified with kallisto (version 0.45.0; default parameters)73. Kallisto
generates pseudo-alignments based on exact k-mer matches. Differences in
expression may be attributed to both variations in organism abundance and
changes in microbial behavior under different conditions. Taxon-specific scaling of
count data should reduce the influence of taxonomic composition changes38. Thus,
to account for variations in taxonomic composition, count data for each genome
were first partitioned and normalized separately with DESeq2 (version 1.24.0)39.
The genome-specific normalization factors were used to scale raw BGC abundances
from the same genome. Normalized BGC counts from each genome were re-
combined to identify differentially expressed clusters between steers with high and
low feed efficiency with DESeq239. Only genomes with at least one read in all
20 samples (6,630 genomes) and BGCs with a minimum count of 100 reads were
included in the analysis (648 BGCs).

Microdiversity analyses were carried out with InStrain (version 1.2.4)40. Reads
from the 282 Illumina metagenomes described in Stewart et al. were mapped to
the 4,941 MAGs previously recovered4,5. MAGs with an unmasked breadth ≥0.5
(i.e., ≥50% of the genome has 5× coverage) in a sample were considered to be
present in that sample. That is, only genes from detected MAGs were used in
subsequent analyses. Of the 4,941 MAGs, 2,926 had an unmasked breadth ≥0.5 in
at least one sample. Further, genes were only considered present if they had ≥5×
coverage in a sample in which the MAG was detected. The profile module of
InStrain calculates the nucleotide diversity of scaffolds within a given sample.
InStrain can use this profile to calculate the nucleotide diversity of genes
(profile_genes module) and the mean nucleotide diversity of the genome
(genome_wide module). The nucleotide diversity of detected genes was
normalized based on the mean genome-wide microdiversity of the MAG (gene
nucleotide diversity/genome-wide microdiversity) to reduce lineage-specific effects
when comparing the microdiversity of BGCs. The normalized gene nucleotide
diversity represents the nucleotide diversity of the gene relative to the nucleotide
diversity of the rest of the genome. Statistical differences were assessed with
Kruskal–Wallis and Wilcoxon rank-sum tests. All statistical comparisons were
also carried out using raw nucleotide diversity values.

Statistics and reproducibility. We aligned rumen metatranscriptome data from
steers characterized as high and low feed efficiency to the BGCs72. Read count data
were normalized independently for each genome to better account for the variation
in taxonomic composition across samples, as demonstrated previously38. Only
genomes with at least one read in all 20 samples (6,630 genomes) and BGCs with a
minimum count of 100 reads were included in the analysis (648 BGCs). Differ-
entially expressed gene clusters between steers with high and low feed efficiency
were identified with DESeq239 and false discovery rate adjusted P < 0.05 was
considered statistically significant.

We also compared the raw and normalized nucleotide diversity (defined above)
between the following groups: BGCs of different BGC classes, BGCs and other
genes, and BGCs in four different breeds of cattle (Aberdeen Angus, Limousin,
Charolais and Luing). The reads and MAGs for this analysis were previously
described in the Stewart et al. studies4,5. Reads from the 282 metagenomes were
mapped to the 4,941 MAGs and used as input to InStrain40 to calculate the
nucleotide diversity of a MAG or gene in a given sample. Statistical differences
between groups were assessed with Kruskal–Wallis and Wilcoxon rank-sum tests
in R and P < 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The accessions for all metagenomes analyzed are available in Supplementary Table 1.
Metagenomes previously not publicly available were deposited under NCBI BioProject
PRJNA627299 and PRJNA627251. The 2809 reconstructed MAGs are available at:
https://doi.org/10.6084/m9.figshare.1216425074. The authors declare that all other data
supporting the findings of this study are available in the supplementary data files.
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