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Abstract

Our current knowledge of host–virus interactions in biofilms is limited to computational predictions based on laboratory
experiments with a small number of cultured bacteria. However, natural biofilms are diverse and chiefly composed of
uncultured bacteria and archaea with no viral infection patterns and lifestyle predictions described to date. Herein, we predict
the first DNA sequence-based host–virus interactions in a natural biofilm. Using single-cell genomics and metagenomics
applied to a hot spring mat of the Cone Pool in Mono County, California, we provide insights into virus–host range, lifestyle
and distribution across different mat layers. Thirty-four out of 130 single cells contained at least one viral contig (26%),
which, together with the metagenome-assembled genomes, resulted in detection of 59 viruses linked to 34 host species.
Analysis of single-cell amplification kinetics revealed a lack of active viral replication on the single-cell level. These findings
were further supported by mapping metagenomic reads from different mat layers to the obtained host–virus pairs, which
indicated a low copy number of viral genomes compared to their hosts. Lastly, the metagenomic data revealed high layer
specificity of viruses, suggesting limited diffusion to other mat layers. Taken together, these observations indicate that in low
mobility environments with high microbial abundance, lysogeny is the predominant viral lifestyle, in line with the previously
proposed “Piggyback-the-Winner” theory.

Introduction

Viruses shape phylogenetic and functional diversity of bac-
terial and archaeal communities [1, 2]. Our knowledge of
viruses is rapidly increasing as a result of advances in
computational methods for virus DNA/RNA sequence
detection, which has enabled the development of large
databases of complete viral genomes and viral proteins [3–6].
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To fully understand the effects of viruses on local and
global ecosystems, such as the control of host growth
dynamics [7] or host-cell reprogramming through auxiliary
metabolic genes [8, 9], it is critical to establish host–virus
linkages for viruses found in a given environment.

Most viral sequences are currently not associated with
any host, and for viruses with a known host, their full host
range is usually unknown, hampering ecological and evo-
lutionary insights [10]. Likewise, there are various bacterial
and archaeal candidate phyla that have not yet been linked
to any known viruses [6, 11]. Multiple computational
approaches have been used to predict virus–host linkages in
genome sequence data. For example, algorithms for detec-
tion of prophages in bacterial genomes [11–15] or protein
sequence-based machine learning [16] enabled the detection
of the first viruses for several uncultured bacterial phyla.
However, these approaches are limited to viral sequences
that are integrated into the host genome. Clustered Reg-
ularly Interspaced Short Palindromic Repeats (CRISPRs) in
microbial genomes store short sequences from previous
viral infections and they can be inferred bioinformatically at
the species level [17], but only a limited number of bacterial
lineages use this virus-defense system [18]. In addition,
tRNA sequences acquired by viruses during host infection
[5], along with host and virus similarities of oligonucleotide
signatures [19, 20], can be used to link viruses with
uncultured bacterial or archaeal hosts, but with only limited
accuracy. Recently, it has been suggested that similar DNA
methylation patterns may also allow the assignment of
viruses to hosts within metagenomes, although this
approach remains to be validated [21]. While computational
methods are powerful, the necessary sequence features are
not always present in both virus and host genomes [5, 18],
and predicted associations should still be validated experi-
mentally when possible [22].

Studies of viruses in isolated microbes used to be the
gold standard for providing experimental evidence of
infective strategies [23], but many hosts cannot be culti-
vated [24], and even intensively studied bacteria, such as
those found in the human gut, often lack any isolated
viruses [10]. Single-cell genomics represents a unique
opportunity to link viruses and hosts with experimental
evidence, because a certain portion of cells collected
directly from an environment contain viruses in the cell or
attached to the cell [25, 26]. This approach has shed light on
important aspects of viral biology, such as horizontal gene
transfer [27], the ability of viruses to reprogram their host’s
energy metabolism [28] and micro-diversity within viral
genomes [29]. Single-cell genomics in the context of
studying viruses has been successfully applied to a variety
of habitats, ranging from seawater [30] to hot springs [31].

It has been estimated that 40–80% of microbial cells on
Earth reside in biofilms [32], but surprisingly they are

understudied by single-cell genomics. Biofilms are formed
by aggregates of microorganisms in which cells are
embedded in a self-produced matrix of extracellular poly-
meric substances that are adherent to each other and/or a
surface [33]. Biofilms, which develop in a liquid–solid
interface and contain layered organization of microorgan-
isms, are called microbial mats [34]. Microbial mats are
found across the planet in a variety of habitats [35–40].
Their laminated structure contains bacteria, archaea, and
eukaryotes that work together, often symbiotically, sharing
and cycling nutrients and energy [38, 41]. Often driven by
photosynthesis at their surface and chemosynthesis at their
base, microbial mat structures are a key component of the
living world that provide us with a snapshot of how
microorganisms work together in a complex, ordered
community to propagate and ensure their survival. Micro-
bial mats can also serve as potent biosignatures of life on
Earth. As an example, stromatolites, laminated accretionary
structures found throughout the rock record can be biogenic
and are likely the mineralized, fossil record of microbial
mats across time thus informing the evolution of life
[39, 42, 43].

There are only a few single-cell genomic studies about
bacteria in natural biofilms [44–46], in which viruses were
not considered, leaving a knowledge gap in host–virus
interactions in the microbiomes of these ecosystems. Viru-
ses in biofilms have been typically studied separately from
their hosts as purified viral particles, leaving CRISPR
linkage as the only way of connecting them with their host
[47]. The most common method for analyzing host–virus
interactions in biofilms is computational modeling based on
data from laboratory experiments performed with cultured
bacteria-phage pairs [48–51], which complicates its appli-
cation to complex natural biofilms. On the other hand,
computational predictions have revealed important infor-
mation about host–virus interactions in biofilms. Such work
points out that host–virus interactions depend on a variety
of factors, such as biofilm species composition, structural
heterogeneity [52], and metabolic activity of bacteria in
different layers of the biofilms [53]. It has also been sug-
gested that viruses may enhance biofilm formation through
induction of polysaccharide production [54, 55]. While
computational predictions are the first step for interpreting
dynamics of viral infection in biofilm microbial commu-
nities, experimental studies on naturally occurring biofilms
are instrumental in order to both further our understanding
of viral infections in complex natural biofilms and refine
computational projections [56].

We characterized the host–virus linkages in a laminated
microbial mat within the geothermal pool “Cone Pool”
(Long Valley Caldera, CA, USA). We combined single-cell
genomics with bulk shotgun metagenomics to predict dif-
ferent aspects of host–virus interactions, including viral host
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range, viral genome copy number compared to its host, and
diffusion of viruses across the mat layers. Taken together,
our data point to a narrow host range and a low level of
active viral replication in this microbial mat, indicative of a
higher prevalence of temperate viruses in a lysogenic
infection stage, and limited diffusion of viruses within the
mat system. The Cone Pool mat has many functional
similarities to other microbial mats, such as limited diffu-
sion of viruses into deeper layers and diurnal vertical
migration of redox gradients [57], which suggests that the
results of this study might be more broadly applicable to
other structured biofilms in different environments.

Methods

Sample collection and processing

Samples from a laminated microbial mat at a geothermal
pool (“Cone Pool”), located in the Little Hot Creek geo-
thermal spring area within the Long Valley Caldera, Cali-
fornia (37.6905833° N, 118.844417° W), were collected on
the 15th of August 2015, under the umbrella of the Micro-
bial Dark Matter (MDM) Phase II study, an extension of the
Genomic Encyclopaedia of Bacteria and Archaea MDM
project (GEBA-MDM; [58]). An intact, submerged, den-
drolitic cone, and the laminated mat beneath, was cored
using a sterile drinking straw from the edge of the pool. The
straw was shipped to the Colorado School of Mines,
Golden, Colorado, on ice, and stored at 4 °C. Layers of the
mat were delimited based on color and consistency, desig-
nated “A” through “I” by slicing through the straw using a
sterile scalpel (Fig. 1). The layers “B” to “H” were extruded
from the straw casing and divided for DNA extraction.

DNA for metagenomic and 16S rRNA gene amplicon
sequencing was extracted from 0.25 g of each layer using
the Xpedition™ Soil/Fecal DNA MiniPrep kit (Zymo
Research Corp.), which uses bead beating based lysis pre-
viously shown to break capsids of dsDNA viruses [59]. The
remainder of layer C was divided into replicates (~0.1–0.5 g
each), submerged in 1 ml PBS, vortexed for 30 s, and cen-
trifuged for 30 s at 2000 rpm. The 1 ml supernatant was then
mixed with 100 µL of 0.2 μm filter sterilized GlyTE (20 ml
100× TE Buffer pH 8.0, 60 ml deionized water, 100 ml
molecular grade glycerol), incubated at room temperature
for 1 min, and then stored at −80 °C for downstream single-
cell analysis.

Bacterial/archaeal composition via amplicon
sequencing

The 16S rDNA amplicons of the regions V4 and V5 were
obtained using primers 515F-Y (5′-GTGYCAGCMGC

CGCGGTAA) and 926R (5′-CCGYCAATTYMTTTRA
GTTT) [60] sequenced on an Illumina MiSeq sequencer in
2 × 300 bp run mode. Amplicons from the layer D were not
sequenced due to poor DNA amplification. The sequence
analysis was performed on 3.6 × 105 (±1.1 × 105) sequences
per sample using the JGI iTagger v2.0 pipeline [61] that
cluster sequences into operational taxonomic units (OTU)
with 97% sequence similarity in the USEARCH software
suite [62] and performs ecological analyses in QIIME [63]
using RDP classifier v2.5 [64]. The purpose of 16S rDNA
amplicon analysis was to select mat layers containing the
highest abundance of understudied bacterial phyla [58] for
subsequent shotgun metagenomic and single-cell genomic
analysis.

Bulk shotgun metagenome

Genomic DNA from layers C, E, and H was sequenced on
the Illumina HiSeq-2500 platform (libraries with 300 bp
inserts) at the Department of Energy Joint Genome Institute
in 2 × 150 bp mode resulting in 101 × 106, 63 × 106 and
83 × 106 reads from layers C, E, and H, respectively (JGI
sequencing project Gold IDs: Gp0147099, Gp0147100 and
Gp0147101, respectively). Reads were trimmed and
screened for common laboratory contaminants with
BBTools v.37 (Bushnell [65], http://bbtools.jgi.doe.gov)
and the sequencing errors were corrected by bfc v.181 [66]
with the following parameters: “-s 10 g -k 21”. Mate-pair
reads were assembled using SPAdes v.3.10.0 [67] with
specified kmers 21, 33, 55, 77 and -meta flag. The co-
assembly of all three metagenomic datasets was annotated
using the IMG system [68, 69] and is publicly available
under IMG taxon ID 3300022548. Using the contigs of the
combined assembly, metagenome-assembled genomes
(MAGs) were created by combining initial sets of genome
bins from seven different binning approaches: (1) MaxBin
v1.4.5 [70] using the universal 40 marker gene set and (2)
the 107 marker gene set; (3) MaxBin v2.2.4 [71] with
default parameters; (4) MetaBAT1 v0.32.5 [72] using
the “super-specific” parameter and (5) “super-sensitive”
parameter; (6) MetaBAT2 v2.12.1 [73] using default para-
meters; and (7) CONCOCT v0.4.0 [74] using default
parameters. All binning methods used a minimum
contig size of 3000 bp. Bins generated using the seven
methods were used as input to DAS Tool v1.1.0 [75], which
was run with default parameters to generate the final
MAG set.

Single amplified genomes

Single amplified genomes (SAGs) were generated from
layer C at the Single Cell Genomics Center at Bigelow
Laboratory for Ocean Sciences. Briefly, single cells were
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isolated with fluorescence-activated cell sorting (FACS),
lysed with a combination of freeze-thawing and alkaline
lysis, and genomic DNA was amplified with WGA-X [76].
Barcoded libraries were created using Nextera XT (Illu-
mina) following standard protocols. Low-coverage shot-
gun sequencing (LoCoS) and de novo assembly was
carried out at Bigelow Laboratory for Ocean Sciences as
previously described [76]. SAGs which had at least 50,000
trimmed reads, 1000 normalized reads, and a total

assembly size of at least 50 kb from LoCoS were selected
for deeper sequencing (n= 192). Deep sequencing of
libraries was performed at the DOE Joint Genome Institute
on the Illumina NextSeq platform in 2 × 150 bp mode. Raw
reads were filtered for quality and contamination with
BBTools v.37 (Bushnell [65], http://bbtools.jgi.doe.gov),
then BBTools components BBNorm and Tadpole were
used for read normalization and error correction prior to
assembly with SPAdes (v3.9.0; --phred-offset 33 --sc -k

Fig. 1 Experimental workflow.

a Overview of Cone Pool hot
spring; b section through
microbial mat, showing
dendritic cones and layers of the
mat; c delineation of layers of
the mat; and d Sequencing
workflow for single-cell
genomics (left, layer C) and
shotgun metagenomics (right,
layers C, E, and H). The
numbers at the bottom of the
figure indicate the number of
resulting high quality (HQ),
medium quality (MQ) and low
quality (LQ) genomes, as based
on MISAG/MIMAG standards.
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22,55,95 --12) [77]. After assembly, 200 bp was trimmed
from contig ends, contigs <2 kbp in length or with read
coverage <2 were discarded, and annotation was carried
out according to IMG standard protocols [68, 69].

Taxonomic classification of the host genomes

The overall quality of SAGs and MAGs was categorized
according to published standards [78]. CheckM v1.0.8
using lineage-specific workflow [79] was used to estimate
completeness and contamination. Genomes with more than
10% estimated contamination (n= 62) were excluded from
further analysis.

A set of 56 universal single-copy marker proteins
[80, 81] was used to build a phylogenetic tree for the newly
generated SAGs and MAGs and a representative set of
bacteria and archaea based on all publicly available
microbial genomes in IMG/M ([68]; genomes accessed in
April 2018) and about 8000 MAGs from the Genome
Taxonomy Database (GTDB, [82], downloaded 18 October
2017). Marker proteins were identified with hmmsearch
(version 3.1b2, hmmer.org) using a specific HMM for each
of the markers. For every marker protein, alignments were
built with MAFFT (v7.294b, [83]) and subsequently trim-
med with BMGE using BLOSUM30 [84]. Single protein
alignments were then concatenated resulting in an align-
ment of 10,866 sites. Maximum likelihood phylogenies
were inferred with FastTree2 using the options: -spr 4
-mlacc 2 -slownni -lg [85]. In the following step, a subtree
was built that employed the above described methods but
included only query genomes and reference genomes from
query-genome containing clades in the initial tree. The
genomes were classified at the phylum level using the
naming system of the National Center for Biotechnology
Information taxonomy [86].

In addition, all genomes were classified with the GTDB
Toolkit v0.1.0 [87] according to the GTDB taxonomy,
which was created to standardize microbial taxonomy
according to genomic information [88].

Finally, all MAGs and SAGs were clustered by Mash
v1.1 [89] using a 95% average nucleotide identity (ANI)
cutoff to approximate a species-level resolution.

Putative viral sequence detection

VirSorter [3] and comparison to the IMG/VR database [6]
were used to detect viral sequences in SAGs, MAGs, and
the unbinned fraction of metagenomic contigs.

VirSorter was used on all contigs at least 2 kb in length,
retaining predictions from categories 1 and 2 (fully viral
contigs), and 4 and 5 (integrated viruses). Contigs in which
bitscores of pfam hits were higher than bitscores of viral hits
were not considered as viral contigs.

In the next step, all sequences were queried against the
full IMG/VR database (version IMG_VR_2018-01-01_3)
with BLAST [90]. Hits where alignment length was at least
70% of the query or subject sequence length (whichever
was shorter) were retained (at the “detection” threshold,
[91]), and all overlapping and adjacent hit regions of each
query contig were merged into consensus coordinate range
(s) with the R package plyranges [92]. Single best hits with
at least 90% identity and 75% alignment coverage to IMG/
VR were assigned with the IMG/VR Viral Cluster ID
(“assignment” threshold, [91]); otherwise the contigs were
annotated as a novel virus.

Results from the two prediction approaches were com-
bined to extract viral sequences. The coordinate range(s)
predicted as viral by each method were merged with the R
package plyranges [92], to obtain the most inclusive esti-
mates of viral sequence. The final set of viral sequences was
clustered with MUMmer v3.23 [93], requiring at least 95%
ANI over at least 85% of the length of the shorter of the two
sequences to add sequences to a cluster, in accordance to
community standards [16].

An additional curation step was performed for viral
contigs within MAGs in order to remove viral contigs
erroneously binned together with a bacterial genome. For
that reason, only integrated viruses containing flanking
bacterial sequences (VirSorter categories 4 and 5) and viral
contigs clustering with other integrated viruses were
retained; otherwise they were assigned to the unbinned
fraction which represented 40% of the reads.

CRISPR-based host–virus linking

The host–virus pairings detected in SAGs and MAGs
were tested for their consistency with clustered
regularly interspaced short palindromic repeat (CRISPR)-
based linking prediction [94]. CRISPRs in host genomes
were identified using CRT v1.1 [17] with script mod-
ifications as used in the IMG/M [68], CRISPRCasFinder
[95] and CRISPRDetect [96] and 100% identical
spacers detected by these three programs in the genomes
belonging to the same hosts species (95% ANI) were
de-replicated by cd-hit v4.8.1 [97] and matched
against all viral genomes found in the Cone Pool using
blastn [90], where only identical hits over the complete
length of a CRISPR spacer were scored as a
positive match.

Host–virus ratios

The host–virus genome coverage ratio was assessed by
mapping the metagenomic reads from the layers C, E and
H to a reference database containing host and virus gen-
omes obtained in the previous steps by BBMap (Bushnell
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[65], https://sourceforge.net/projects/bbmap/) using the
default settings. From the viruses that formed sequence-
similarity clusters (see above), only the longest viral
contig was selected as a cluster representative for map-
ping. From the host genomes grouped by ANI (see
above), the genome with the highest genome complete-
ness and the lowest contamination (estimated by CheckM)
was selected as the cluster representative for mapping.
The number of reads per sample used for mapping was
normalized to the lowest number of reads per sample
obtained for the three layers. Only the genomes with reads
distributed across more than 75% of their genome length
(“assignment” threshold, [91]) were considered as
positive hits.

Results and discussion

Cone Pool microbial community data through
amplicons, SAGs and metagenomes

To first assess the overall microbial community structure
of the Cone Pool hot spring microbial mat, 16S rRNA
gene amplicon analysis was performed on the mat layers
B, C, E, F, G and H (Fig. 1), exclusive of the cone tip
(layer A), which has previously been published [57]. The
amplicon data yielded 440 OTUs, of which 24 had aver-
age abundances higher than 1% (Supplementary Fig. S1).
The six mat layers differed remarkably in their microbial
composition. Layer B (Fig. 1) was dominated by aquatic
thermophiles, as was the cone tip previously analyzed
from the same sampling site [57]. In contrast, the lower
layers had a higher proportion of candidate phyla,
including Aminicenantes (OP8), Microgenomates (OP11),
and Edwardsbacteria (AC1). Layer C was selected for
single-cell genomics analysis to capture some of the
candidate phyla representatives while minimizing any
potential challenges that might occur during cell sorting
due to accumulation of calcium carbonate in the lower
layers of the mat. Layers C, E, and H, providing three
reference points across the mat, were selected for shotgun
metagenomic sequencing.

Single-cell genomics from layer C generated 254
SAGs; 192 SAGs met LoCoS selection criteria for deep
sequencing, from which 130 SAGs passed our minimum
genome quality thresholds of genome completeness,
contamination and taxonomic classification as described
in the “Methods” (Fig. 1, Supplementary Table S1). The
130 SAG assemblies averaged 1 ± 0.5 Mbp in size with a
34.1 ± 16.0% estimated genome completeness (range
2.7–74.9%), totaling 21 medium quality and 109 low
quality genomes, as based on MISAG standards [78].
Binning contigs from the co-assembly of metagenomes

from layers C, E, and H resulted in 88 MAGs
which averaged 2 ± 1.2 Mbp in size with 73 ± 19% esti-
mated genome completeness (range 25.4–99.0%), con-
sisting of 15 high-quality, 57 medium-quality, and 16
low-quality genomes, based on MIMAG standards ([78];
Fig. 1, Supplementary Table S1). ANI-based clustering
(>95% ANI, [98]) of the 130 SAGs and 88 MAGs
resulted in 144 bacterial and 15 archaeal ANI-based,
nominal species-level groups, distributed across 36 phyla,
mostly Proteobacteria, Chloroflexi, Ignavibacteriae and
Planctomycetes (genome classification based on 56 mar-
kers genes, see “Methods”, Fig. 2a, Supplementary
Table S1).

Host–virus links in the Cone Pool mat microbiome

To make inferences about different aspects of host–virus
interactions in the Cone Pool mat, virus detection tools were
applied to SAGs and metagenome contigs. Using two dif-
ferent approaches for viral sequence detection (VirSorter
and comparison to IMG/VR), 385 putative viral contigs
were identified: 53 viral contigs (14%) were detected in 34
SAGs, 9 viral contigs were found (2%) in 9 MAGs, and 323
(84%) in the unbinned assembled metagenomes (Supple-
mentary Table S2, Supplementary Fig. S2). Eighty-eight out
of 385 detected viruses (23%) matched viruses from IMG/
VR forming 52 groups with up to 5 viruses (Supplementary
Fig. S3). The low number of matches to IMG/VR (at the
time of analysis containing ~730,000 viruses) highlights the
uniqueness of this sampling site, with a paucity of existing
relatives in the database. The matched IMG/VR contigs
mainly came from different thermal spring environments
with some similarities to Cone Pool (Supplementary
Table S2), but none of them were associated with a host in
IMG/VR. Remarkably, the single-cell genomes from this
study uncovered hosts for four IMG/VR contigs that had no
previous host information.

Twenty-six percent of SAGs in this study contained
1–6 viral contigs (originating from attached/intracellular
virions or integrated viruses), which was similar to
infection rates reported for SAGs from surface ocean
bacterioplankton [30]. When considering the results
across host taxa, viruses were detected in 14 out of 36 host
phyla, and in 21% of host species (95% ANI) detected in
this study (Fig. 2a). Acidobacteria was the phylum in
which viruses were detected most frequently (7 out of 9
genomes had a virus). In contrast, no viruses were asso-
ciated with Aminicenantes, Nanoarchaeota, and WOR-3,
despite these taxa being represented by multiple SAGs or
MAGs. To summarize, we detected a total of 62 viruses in
43 different SAGs or MAGs, which sequence similarity-
based clustering reduced to 59 viruses and 34 host species
(Fig. 2b). These included 56 singletons and three clusters
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of two sequences each, for which both members were
always linked to the same host species (Fig. 2b). The
small size of these viral clusters is not sufficient to assess
the virus–host range in Cone Pool mat, but the wide
diversity of detected viruses suggests that there is no
dominant virus targeting multiple host species. One might
hypothesize that a laminated microbial mat has the
potential to select for broader host ranges of resident
viruses, since viruses and bacteria exist in proximity over
the long-term with limited diffusion between the layers

[52]. However, our single-cell genomic data from Cone
Pool does not support this scenario.

CRISPR-based linking

The detection of viral contigs in SAGs is evidence of
ongoing viral infection in the collected single cells. Addi-
tional host–virus links can be obtained by analyzing the
presence of CRISPRs in the host genomes that can indicate
past viral infections. CRISPRs were detected in 43% of host

Fig. 2 Summary of microbes and viruses found in this study.

a Bacterial and archaeal species recovered by metagenomics and
single-cell analysis. Phylum-level cluster representatives are displayed
in a phylogenetic tree based on concatenated alignment of 56 universal
single copy marker proteins. Each row represents a species based on
95% ANI. The first two columns represent the number of genomes in
each species cluster and the source of the genomes of the given species
(SAGs only, MAGs only or both MAGs and SAGs). The following
three columns show read coverage of each species in metagenomics

samples from layers C, E and H. The last two columns indicate the
number of CRISPR spacers and of viral contigs detected for each
species. b Alluvial plot of virus and host connection. The left panel
represents host species, colored by phylum, and the right panel shows
viral clusters separated by horizontal black lines and singletons. The
black dots indicate viruses detected on MAGs, while other viruses
were detected on SAGs. Full results of this analysis, including the
viruses with unknown host information, are shown in Supplementary
Fig. S3.
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genomes in this study (Fig. 2a). From the 385 viruses
detected in the Cone Pool, only three viruses were linked to
their hosts by CRISPR. These hosts belonged to Aminice-

nantes, Lentisphaerae, and Portnoybacteria phyla and their
CRISPR-associated viruses were found in the unbinned
fraction. The 62 viruses which were detected on 43 SAGs or
MAGs were not targeted by CRISPRs found in these gen-
omes, which suggests that these hosts have not yet built
defenses against these viruses. The low CRISPR-based
links in the Cone Pool highlights the utility of using single-
cell genomics for linking viruses with their hosts.

Lack of active replication of viruses associated with
single cells

To gain insights into the putative interactions of viruses and
hosts within the microbial mat environment, we were
interested in the level of active viral replication. Viral
contigs without flanking bacterial sequences in a SAG do
not necessarily represent attached or intracellular virions
during active infection. Due to the fragmentation of genome
assembly from short reads, inactive integrated viruses might
be found without the flanking bacterial sequences [10]. In
the present study, only four SAGs contained integrated
prophages with flanking bacterial sequences (Supplemen-
tary Table S2). To assess active viral replication in the Cone
Pool microbial mat, we applied two different
methodologies.

First, we applied an approach proposed by Labonté et al.
[30], which relies on the correlation between the amount of
DNA template and the speed of whole-genome amplifica-
tion (WGA). If a SAG contains an actively replicating virus,
WGA proceeds relatively fast (expressed as low crossing
point (Cp) values of real-time WGA kinetics), but results in
low host genome completeness, which is a consequence of:
(a) large fraction of DNA available to WGA being viral, and
(b) partial degradation of host genome by the lytic infection.
The identification of SAGs with actively replicating viruses
is based on comparison with SAGs with no viruses from the
same experiment. In the Cone Pool data, none of the SAGs
containing viral contigs had significantly lower Cp values of
the WGA-X reaction, nor significantly lower genome cov-
erage compared to the SAGs without viral signal (Supple-
mentary Fig. S4), indicating that the viruses in our single-
cell dataset were not actively replicating in the host cell.

Second, according to Schulz et al. [99], genomes present
in multiple copies in a collected MDA-enriched sample, in
theory, could be identified (despite the WGA bias) by
having read coverages that were hundreds of times higher
than other contigs in the sample. This trend was not
observed in our SAG dataset, which further suggests that
the collected single cells did not contain actively replicating
viruses (Supplementary Fig. S5).

Low level of active viral replication across the mat
layers

We also analyzed whether viruses were actively replicat-
ing in all samples from the Cone Pool microbial mat
layers. Replication of viruses can be assessed by mapping
metagenomic reads to host–virus pairs detected in SAGs
obtained from the same sample, followed by the com-
parison of host and virus genome coverage [10]. Typi-
cally, metagenomic samples contain DNA from bacterial
cells as well as from highly abundant intracellular viral
particles (if their capsids are opened during DNA
extraction). Moreover, active replication of viruses inside
the bacterial cells can also be detected in the metagenome
data [100]. Because DNA of hosts and viruses in meta-
genomic reads is not amplified by WGA, it provides a
more robust estimate of genomic DNA copies of both
viruses and their hosts on the community level. By
applying such read recruitment, we assumed that if a virus
has the same genome coverage as its host, it is not actively
replicating (Fig. 3a). In contrast, actively replicating virus
would have a higher genome coverage than their host, due
to the additional viral genome copies either free in the
cytoplasm of a virocell [101–103] or in newly formed
viral particles released from the host cell (Fig. 3a). We
mapped the metagenomic reads from Cone Pool microbial
mat layers C, E and H to de-replicated pairs of 59 viruses
and their 34 hosts. It was possible to calculate the
host–virus genome coverage ratios for 35 of these inferred
pairs; the remaining 24 pairs had coverages below the
detection threshold (>75% of the genome length covered,
Fig. 3b), from which three pairs were not detectable due to
the low coverage of viruses and four pairs due to the low
coverage of the host (Fig. 3c), but the genome coverages
of their detectable counterparts were not exceptionally
high compared to the average in the Cone Pool. The pairs
below the detection threshold involved hosts from seven
host phyla (Fig. 3c). Given that assessing host–virus
relationships directly from metagenomic data in complex
communities is typically limited to highly abundant bac-
teria or archaea and viruses with known predation patterns
[7, 104], our ability to calculate host–virus coverage ratios
for so many pairs highlights the utility of single-cell
genomics for capturing rare host–virus pairings.

From the 35 detectable host–virus pairs, only four pairs
were found across multiple layers. Genome coverage of
hosts was similar to the genome coverage of their viruses
(<1.5× fold difference), and this ratio was conserved
across different layers (Fig. 3d). In total, 76% of all
detectable pairs involved hosts and viruses with nearly
equal genome coverages, indicating a low level of active
viral replication, while also suggesting that induction of
integrated viruses or active infection in the mat is not
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common, or was not occurring at the time of sampling
(Fig. 3e). Alternatively, if some viruses were actively
replicating, they did not form large numbers of progeny or
only infected a small fraction of the available host cells,
such that the host-to-virus genome coverage ratio looked
similar at the population level in a given layer (Fig. 3a).
This is in accordance with previous studies on microbial
mats that were based on the counting of viral particles and
bacterial cells by fluorescent microscopy [105, 106]. The
study of Carreira et al. [106] performed on a photo-
synthetic microbial mat showed microscale (mm) and
seasonal variation of the viruses-to-bacteria ratio, but
viruses never outnumbered bacteria by orders of magni-
tude as is usually reported for the marine environment
[107]. Our metagenomic read mapping analysis revealed
eight viruses that had genome coverages lower than their
hosts (up to 5.3× times lower, Fig. 3e). This suggests that
these viruses were present only in a subset of cells of a
given host species (Fig. 3a), e.g., in a susceptible strain or
in a subpopulation of cells which has transiently lost
immunity [108]. Lower genome coverage of a virus

compared to its host could also be explained by host
genome polyploidy [109]. However, polyploidy is com-
mon only in extremely large bacterial cells and these were
not targeted by FACS in this study. Only two viruses had
a genome coverage higher than that of their host (>1.5×).
The coverage of one of these viruses was 11 times higher
than its Nitrospirae host (Fig. 3e), indicating induction of
integrated viruses, plasmid-like replication, lytic lifestyle,
or existence of additional hosts, which remain uncovered
(Fig. 3a).

Interestingly, each of the 35 inferred viruses was only
detectable in those layers where its host was present, which
indicates that these viruses likely resided in proximity to
and/or within host cells. It is possible that integrated viruses
were spontaneously induced in a small portion of cells to
enhance biofilm integrity, and thus the resulting viral par-
ticles remained near the host cells from which they origi-
nated [110, 111]. However, this does not exclude the
possibility of released virions penetrating adjacent layers,
where they might perish without their hosts and thus remain
undetectable [112].

Fig. 3 Host–virus genome read coverage ratios. a Possible scenarios
for the interpretation of genome read coverage results. If there is a low
rate of viral replication, we expect the genome coverage ratio of the
virus and host to be nearly the same in a metagenome. Higher viral
coverage could result from a higher number of virions compared to
host cells, or more copies of the viral genome in each infected cell, but
could also mean that a lysogenic virus has more than the single pre-
dicted host species. Higher coverage of a bacterial genome suggests
that single-cell genomics captured a very rare infection event or that
the virus infected only a subset of cells (i.e. only certain strains).
b Detection of the 59 de-replicated host–virus pairings in the three
layers. The gray portions indicate the pairs in which virus, host, or
both genomes were below the detection threshold. For 35 pairings

(purple), detection was possible in at least one of the layers (>75% of
the genome length covered). c Number of host genomes in each
phylum for which the host–virus genome coverage ratio could
(Detectable) or could not (Not detectable) be calculated. Virus and
host icons indicate which one from the host–virus pair was above the
detection threshold. d Fold-change of host and virus genome coverage
for the four pairs detected in two or three layers. The dashed line
indicates the 1.5× fold-change range. Dots positioned on the right from
the host-baseline in the middle indicate higher coverage of the viral
genome, while on the left indicate lower coverage of the viral genome
compared to the host. e Fold-change of host and virus genome cov-
erage of all 35 host-virus pairs (dots) grouped by host phyla. The
distribution of points relative to the x-axis is described in (d).
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Mat viruses exhibit high layer specificity

The analysis of the viral distribution in the mat layers
described above was limited to the 35 viruses with identi-
fied hosts detectable in the metagenomic reads, pointing to
only four viruses distributed across multiple mat layers
(Fig. 3d). However, there were another 323 viral contigs
detected in the unbinned fraction that could not be linked to
any host (Supplementary Fig. S2). Given that the bacterial
distribution in the Cone Pool mat is generally layer-specific
(Supplementary Fig. S1, Fig. 2a), these viruses with
unknown hosts could also be used for a more robust ana-
lysis of the viral composition and diffusion across the mat
layers (Fig. 4a).

We mapped the metagenomic reads from the layers C, E,
and H to the viral contigs from the unbinned fraction. We
found that 75% of them were detected only in one layer
(Fig. 4b), which confirms the high layer-specific viral
composition of the Cone Pool microbial mat. Similar spatial
distribution of viruses on a microscale was reported for the
soil sampled in 1-cm resolution [113] and from the surface
and inside of plant leaves [114].

The highest diversity of viruses was detected in layer C
(Fig. 4b), which might be a consequence of this layer
being close to the mat surface where it would be exposed
to viruses from outside of the mat. This observation is in
accordance with reports of higher viral counts on a
microbial mat surface compared to the mat interior
[53, 106]. Because there was no excessive accumulation
of virions in the lower layers compared to upper layers in
the Cone Pool microbial mat (Fig. 4c), gravity is not likely
the principal force of virion diffusion in this mat; rather it
is the tight virion/host-cell association in the spatial

zonation of the mat that determines virion abundance. In
addition, it has been shown that biofilm maturation and
structural complexity are critical for protecting the bac-
teria against a continuous flux of phages from outside of
the biofilm [115].

Interestingly, the metagenomic read mapping showed
that the genome coverage of 93% of the viruses from the
unbinned fraction was lower than the genome coverage of
both MAGs and SAGs in this study. This likely means
that the Cone Pool mat has only a small portion of actively
replicating viruses. Taken together, it is likely that the low
viral progeny number compared to host cells is an effec-
tive strategy for viral survival in the layers of the Cone
Pool mat, as there is a limited supply of new hosts and a
limited possibility to diffuse to other layers. This is in
accordance with the “Piggyback-the-Winner” theory of
viral infection stating that lysogeny is the predominant
viral lifestyle in low mobility environments with high
microbial abundance, where integrated viruses help their
hosts to prevent infection by closely-related viruses which
increases their ability to compete with other host species
[116]. While integration of a virus into the host chromo-
some generally represents an extra energetic expense for
the host, such expenses are probably insignificant in
nutrient-rich and protective environments, such as a
microbial mat [117]. Taken together, the predicted
host–virus interactions in the Cone Pool mat are quite
similar to the gut microbiome, which is generally char-
acterized by a high concentration of bacterial cells and a
high prevalence of lysogeny [118]. In comparison, aquatic
environments with higher mobility of biomass are gen-
erally reported to have dynamic virus–host ratios [119],
but this dynamics can decrease with sampling depth [120]

Fig. 4 Predicted virus diffusion across the mat layers. a Possible
scenarios of virus diffusion across the layers. Given that the layers
differ by bacterial composition, a layer-specific viral composition
suggests limited diffusion across the layers. If the viruses can move
across layers, their abundances would vary across layers. b Genome
coverage of the 323 virus sequences with no host information across

the mat layers. The red, blue, and green stripes above the heatmap
indicate whether the viruses were detected in one, two, or three layers,
and the percentage above the stripes indicate the proportion of each of
these groups. c Histograms of genome coverage fold-change of viruses
detected in upper layer compared to the lower layer.
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or can have seasonal variations when switches between
lytic and lysogenic cycles occur [121].

Conclusions

By detecting viral contigs in both SAGs and MAGs from
the Cone Pool microbial mat, we linked 59 viruses with 34
hosts, many of them belonging to taxonomic groups with no
cultured representatives. Due to the complex bacterial/
archaeal and viral composition of this mat and the limited
direct detection of integrated viruses in host genome
assemblies from this mat metagenomes, we infer that most
of the host–virus pairings in this study could not have been
obtained if not for the employed single-cell genomics
methodology. This highlights the utility of the technique for
linking viruses with their hosts to provide a deeper under-
standing of mat microbial ecology.

Single-cell genomics paired with metagenomic read
recruitment provided insights into viral host range and dis-
tribution across the mat layers, as well as predicted viral
lifestyle. While previous studies on bacterial biofilms have
focused on computational predictions and were based on
laboratory experiments with a limited number of cultivated
phages and bacteria, this is the first study that reports detailed
infection dynamics in a complex natural microbial mat for
host–virus pairs with known identity. Our results point to a
low rate of active viral replication in each layer and a limited
spread of viral particles across the mat layers. This hints to
different factors shaping the mat layers microbial composi-
tion, such as bacterial predation by nematodes [122] or
seasonal variation in bacterial/archaeal metabolism [123].
While our work shed light on diversity of dsDNA and
ssDNA viruses in microbial mats, further work might involve
investigation of ssRNA viruses, as these have been found in
abundance in other environments [124, 125] and could play a
role in biofilm formation [54]. We believe that our obser-
vations can be expanded to other natural biofilms and con-
tribute to the development of novel microbial dynamics
prediction models for biofilms.

Data availability

The sequences and the genome assemblies are accessible on
Integrated Microbial Genomes and Microbiomes website
https://img.jgi.doe.gov/ with IDs listed in Supplementary
Table S1.
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