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Abstract: Sepsis is a major cause of death and its incidence and mortality increase exponentially with

age. Most gene expression studies in sepsis have focused in protein-coding genes and the expression

patterns, and potential roles of long noncoding RNAs (lncRNAs) have not been investigated yet.

In this study, we performed co-expression network analysis of protein-coding and lncRNAs measured

in neutrophil granulocytes from adult and elderly septic patients, along with age-matched healthy

controls. We found that the genes displaying highest network similarity are predominantly differently

expressed in sepsis and are enriched in loci encoding proteins with structural or regulatory functions

related to protein translation and mitochondrial energetic metabolism. A number of lncRNAs are

strongly connected to genes from these pathways and may take part in regulatory loops that are

perturbed in sepsis. Among those, the ribosomal pseudogenes RP11-302F12.1 and RPL13AP7 are

differentially expressed and appear to have a regulatory role on protein translation in both the

elderly and adults, and lncRNAs MALAT1, LINC00355, MYCNOS, and AC010970.2 display variable

connection strength and inverted expression patterns between adult and elderly networks, suggesting

that they are the best candidates to be further studied to understand the mechanisms by which the

immune response is impaired by age. In summary, we report the expression of lncRNAs that are

deregulated in patients with sepsis, including subsets that display hub properties in molecular

pathways relevant to the disease pathogenesis and that may participate in gene expression regulatory

circuits related to the poorer disease outcome observed in elderly subjects.
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1. Introduction

Sepsis is a major cause of death in the world and novel mechanisms of bacterial resistance and

virulence are further increasing its incidence in intensive care units. Despite the efforts of the scientific

community, the molecular mechanisms associated to its pathogenesis remain poorly understood.

Evidences obtained through high-throughput gene expression analysis have revealed sustained

upregulation of genes related to innate immunity and the concomitant downregulation of adaptive
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immunity genes in the blood of septic patients [1]. These results suggest that the classic biphasic

model of overall proinflammatory signaling, named SIRS (systemic inflammatory response syndrome),

followed by overt immunodepression, named CARS (compensatory antagonistic response syndrome)

is controversial, indicating that the molecular basis of sepsis is more complex than anticipated [2].

The incidence of sepsis increases exponentially with age, and older age is an independent risk

factor for mortality among adults hospitalized with sepsis [3]. Global gene expression studies of innate

immunity cells have shown that impairment of mitochondrial function significantly contributed to

organ failure in septic patients [4] and that a marked decrease in the expression of genes encoding

components of the mitochondrial respiratory chain occurs in the septic elderly [5].

Most gene expression studies in sepsis have focused on protein-coding genes and generally

overlooked the expression patterns of noncoding RNAs, which comprise different classes of molecules

that are not translated into proteins. Operationally, noncoding RNAs can be broadly divided in

two major classes based on their length: small RNAs (<50 nt) and long (>200 nt) noncoding

RNAs (lncRNAs) [6]. MicroRNAs comprise a class of well-known small (21–23 nt) ncRNAs that

act through the post-transcriptional regulation of their mRNA targets, either by mRNA destabilization

of translational repression [7]. Several microRNA signatures have already been reported in septic

patients [8–10]. Ma et al. described that miR-150 and miR-4772-Sp-iso are able to discriminate septic

patients from those affected by other causes of systemic inflammation [8], and Vasilescu et al. found

miR-150 as a prognostic marker in patients with sepsis [10]. Tacke et al., moreover, identified elevated

levels of miR-133a in serum from septic patients [9] and Wang et al. demonstrated that miR-27a is

upregulated in lungs of septic mice and regulates the inflammatory response [11].

Conversely, the role of lncRNAs in sepsis has not been investigated in detail. Thousands of

lncRNAs have been identified in multiple species [12]. It is an ongoing debate whether all of the

transcriptional activity that produces long noncoding RNAs serves important biological functions,

but it has become evident that changes in the expression levels of many lncRNAs are correlated

with several developmental and disease states, including cancer [13,14]. Detailed biochemical and

functional studies have determined a variety of novel mechanisms of gene expression regulation

mediated by lncRNAs [15,16]. As an example, lncRNAs may regulate gene expression by recruiting

chromatin and histone modifiers to specific genomic sites, thus causing transcriptional gene repression

or activation [17]. In addition to regulating DNA transcription, lncRNAs have been shown to modulate

post-transcriptional processes such as alternative splicing, nuclear trafficking, mRNA stability,

and translation [6,18,19].

Gene co-expression networks are useful to represent functional associations amongst components

of the cellular transcriptome in different experimental conditions [20]. It is expected in biological

systems that some genes are to be more connected than others, acquiring a hub behavior (“hubbyness”),

and when this gene is an lncRNA, it can be hypothesized that it acts as a regulator of other genes to

which it is significantly correlated [21].

In this study, we performed a global analysis of lncRNA expression in neutrophil granulocytes

from septic patients, both adults and elderly, compared to healthy controls. We observed hundreds

of lncRNAs from different classes (intergenic, antisense, and intronic lncRNAs) that are deregulated

in patients with sepsis. Among these, we found subsets of lncRNAs that display hub properties

in molecular pathways previously shown to be preferentially perturbed in elderly individuals and,

therefore, may have regulatory roles that contribute to the worse disease outcome in this group

of patients.

2. Results

2.1. Identification of RNA Expression in the Innate Immune System in Sepsis

To take advantage of the most recent lncRNA compendia, the probes from the commercial Agilent

oligoarray were filtered and reannotated according to updated gene annotation databases (GENCODE,
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Broad Institute Human lincRNA, LNCipedia, NONCODE). Following genome mapping, filtering

of multi-aligning probes, and cross-reference with catalogs of protein-coding and noncoding RNAs

(see Materials and Methods for details) a total of 47,012 array probes were approved and assigned to

protein-coding mRNAs (26,542), lncRNAs (14,832), and pseudogenes (2869). Probes that could not

be unambiguously associated to a known RNA annotation (2781) were labeled as “poorly annotated

RNAs” (Table 1, Figure S1).

The reannotated probes assessed the expression of neutrophil-enriched granulocyte fractions from

24 subjects, including young adults (n = 12) and elderly (n = 12) subjects. Each age group comprised

an equal number of healthy controls and sepsis patients. An additional quality filtering excluded

those with intensity signals near the background values (see Materials and Methods for details).

A total of 11,895 protein-coding mRNAs, 834 pseudogenes and 1185 lncRNAs were detected in at least

one sample group and were further analyzed (Table 1).

Table 1. Classification of array probes after the re-annotation procedure. Criteria for probe approval,

detection and selection of differentially expressed genes (p value ≤ 0.01) in each experimental group

according to disease status or age are detailed in the Materials and Methods section.

Differentially Expressed Genes (DEGs)

Elderly vs. Adults Sepsis vs. Controls

Total Detected Sepsis Control Elderly Adults
In the array 50,599 15,612 37 69 1677 1862
Approved 47,012 14,264 36 65 1411 1615

Protein-coding 26,542 11,895 27 54 1121 1353
Pseudogenes 2869 834 2 5 151 128

lncRNAs 14,832 1185 5 4 114 99
Poorly annotated 2781 350 2 2 25 36

As shown in Figure 1, unsupervised clustering of the 5% most variable lncRNAs (77 transcripts)

correctly grouped the samples according to disease status, indicating the existence of coordinated

changes in the expression of lncRNAs in neutrophil granulocytes from septic patients. Noteworthy,

samples from septic and control subjects showed a trend to cluster adult and elderly samples,

suggesting that the expression of noncoding RNAs is also affected by age (Figure 1). As previously

reported [5], over a thousand protein-coding genes (≈10% of detected) displayed changes in transcript

abundance in septic patients compared to age-matched controls (Table 1). Here, we found that

a comparable fraction of lncRNAs (≈9% of detected) are significantly changed in sepsis (p value ≤ 0.01)

both in the adults and elderly patients (Table 1). A list with all detected probes along with their gene

type (protein-coding, lncRNA, pseudogene, poorly annotated), gene ID, chromosomal location, relative

expression between septic and control samples and associated p values is provided as Supplementary

Material (Table S1).

Two hundred and ten lncRNAs were differentially expressed in sepsis (p ≤ 0.01; Table 1, Table S1).

We asked whether these lncRNAs could be affecting the expression of neighboring protein-coding

genes. We searched for the nearest protein-coding gene in either direction, and for 170 lncRNAs,

the neighboring protein-coding gene was also interrogated in the array. From these, only 88 were

measured above the detection threshold and 55 where differently expressed in sepsis. For each

lncRNA–protein coding pair, we calculated the expression correlation among all samples. We found

that the measured correlations were not significant (Bonferroni-corrected p value > 0.01) compared to

the distribution of correlations measured for all measured gene pairs. A similar result was obtained

using only 39 lncRNA–protein coding pairs for which the neighboring genes was at a distance shorter

than 4000 bp. We did not find any functional gene category or molecular pathway enriched among the

lists of neighboring protein coding gene sets described above. Altogether, these results do not favor the

notion that the lncRNAs deregulated in sepsis act in cis to affect the expression of neighboring genes.
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Next, to gain insights on the possible functions of lncRNAs in sepsis, we investigated their pattern

of co-expression with protein-coding genes in samples from adult and elderly patients.
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Figure 1. Unsupervised hierarchical clustering of samples from sepsis (“se” for elderly and “sa” for

adults) and healthy controls (“ce” for elderly and “ca” for adults) based on long noncoding RNA

(lncRNA) expression. Expression measurements from the top 5% more variable lncRNAs (based on

their coefficient of variation across all samples) were used to group samples using UPGMA clustering

and Pearson correlation as a distance measurement. Samples are labeled according to disease status

(sepsis in red, healthy controls in blue) and age (elderly subjects are shown in darker colors whereas

those from young adults are shown in lighter colors).

2.2. Co-Expression Networks of mRNAs and lncRNAs Are Perturbed in Sepsis

Two separate gene co-expression networks (adult and elderly networks) were constructed

using the WGCNA package [22] using all genes that passed the filtering step (Figure S2). Next, the

connectivity value measured for each gene in each network was retrieved and the highest value

(“major connectivity”, Figure 2, y axis) was plotted as a function of the connectivity ratio, which is the

ratio between the major connectivity/minor connectivity retrieved from the adult and elderly networks

(“connectivity ratio”, Figure 2, x axis). Data from all transcripts that passed the filters (Figure 2A)

or only those that were differentially expressed between septic and control samples (Figure 2B) are

shown. We observed that genes differentially expressed in sepsis are significantly more connected

than stably expressed genes (p < 10−10), with differentially expressed genes (DEGs) showing average

connectivity of 300 (SD = 188) and non-DEGs 112 (SD = 118), suggesting that these may have greater

influence in the establishment of the co-expression networks in the innate immune system both in

adults and in the elderly.

To gain insight into the most functionally relevant components of the networks, we focused

our analysis on the subset of DEGs in sepsis (sepsis vs controls, p ≤ 0.01; Figure 2B). Among these,

we arbitrarily sub-selected the most connected (top 15%, n = 385) and the most differentially connected

genes (top 20%, n = 514) across the adult/elderly networks. With these criteria, we aimed to favor

the selection of genes that are central to sepsis regulation (top 15% most connected) or genes that

are differentially perturbed in sepsis according to the age of the subject (top 20% most differentially

connected), respectively.
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Figure 2. Gene co-expression networks from sepsis and control samples. Each dot represents a gene

plotted as a function of its major network connectivity (y-axis) and the connectivity ratio, which is

the ratio between the major connectivity/minor connectivity retrieved from the adult and elderly

networks (x-axis). ncRNAs are marked with a blue circle. (A) All detected genes colored by differential

expression significance between sepsis and control samples, with differentially-expressed genes (DEGs)

indicated by a darker shade; (B) Only DEGs (p ≤ 0.01) are shown. The most connected (top 15%)

and most differentially connected (top 20%) genes are highlighted. The top 20% most differentially

connected DEGs were selected using the product of the average connectivity in both networks and the

connectivity ratio across networks as a cutoff.

We postulate that the lncRNAs ranked among the top most connected/top most differentially

connected transcripts might participate in the same pathways or share regulatory mechanisms with

the protein-coding gene to which they are connected. Thus, we used the gProfiler tool to evaluate

the enrichment of specific terms among the most connected genes. We found that the top 15% most

connected genes are over-represented, with terms related to protein translation such as “peptide

chain elongation” (REAC:156902, p = 2 × 10−16), “cytosolic ribosome” (GO:0022626, p = 4 × 10−22),

and “protein targeting to the endoplasmic reticulum” (GO:0045047, p = 7 × 10−22). These enriched sets

have a significant overlap (>90%) and predominantly encode ribosomal proteins (Figure S3A). From the

112 lncRNAs present in the top 15% most connected genes, there are five lncRNAs (RP11-159C21.4,

RP11-179H18.5, RP11-302F12.1, RP3-486D24.1 and RPL13AP7) that showed an average local similarity

above the median similarity of the enriched genes (as described in Materials and Methods) and are

also deregulated in sepsis in the same direction (i.e., up- or down-regulated) both in elderly and adult

co-expression networks (Figure 3A and Table 2).
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Table 2. Selected long noncoding RNAs (lncRNAs) among the most connected (top 15%) DEGs in

co-expression networks from both elderly and adult subjects that show an average local similarity

greater than the median similarity of enriched pathways related to protein translation. All these five

lncRNAs are transcribed from ribosomal protein pseudogenes. The average fold-changes (FCs) between

sepsis and control subjects for each age group are shown. Significant p values are in bold.

Sepsis vs. Control

Gene
Connectivity

Type
Elderly Adults

Elderly Adults FC p Value FC p Value

RP11-302F12.1 774 572 pseudogene 0.24 7.5 × 10−5 0.35 1.1 × 10−3

RP3-486D24.1 746 581 pseudogene 0.36 6.0 × 10−4 0.43 3.0 × 10−3

RPL13AP7 735 631 pseudogene 0.40 2.8 × 10−3 0.43 1.5 × 10−3

RP11-159C21.4 676 483 pseudogene 0.39 2.1 × 10−3 0.42 8.8 × 10−3

RP11-179H18.5 660 566 pseudogene 0.35 6.0 × 10−4 0.38 2.1 × 10−3

Likewise, the biological process term “cellular respiration” (GO:0045333, p = 0.049) was

over-represented among the top 20% most differentially connected genes (Figure S3B). Within the

89 lncRNAs present in this set, we note that 11 (RP11-383M4.6, CTC-293G12.1, lnc-THUMPD3-1,

RP11-121L11.3, MYCNOS, MALAT1, AC010970.2, RPL10P3, SNORD11, RPL13P5 and LINC00355)

displayed local network similarity above the median in at least one network while showing an inverted

expression pattern in sepsis between the adult and elderly networks (i.e., upregulated in one network

while downregulated in the other) (Figure 3B and Table 3).

The genomic loci encoding lncRNAs differentially expressed in sepsis and displaying high

connectivity in gene co-expression networks display evidence of evolutionary sequence conservation

and contain putative regulatory DNA elements (promoter-associated H3K4me3, enhancer-associated

H3k27ac, transcription factor binding sites) (Figure S4A–H).

Table 3. Selected lncRNAs among the most differentially connected (top 20%) DEGs between

co-expression networks from elderly and adults that show an average local similarity greater than the

median similarity of enriched pathways related to cellular respiration in at least one network, and show

an inverted expression pattern between networks. The average fold-changes (FCs) between sepsis and

control subjects for each age group are shown. Significant p values are in bold.

Sepsis vs. Control

Gene
Connectivity

Type
Elderly Adults

Elderly Adults FC p Value FC p Value

RP11-383M4.6 15.0 450 lincRNA 0.97 7.4 × 10−1 1.86 3.2 × 10−3

CTC-293G12.1 10.8 414 lincRNA 0.94 5.2 × 10−1 1.95 5.2 × 10−3

lnc-THUMPD3-1 3.7 397 ncRNA 0.94 7.2 × 10−1 2.25 9.7 × 10−4

RP11-121L11.3 16.9 372 lincRNA 0.98 7.8 × 10−1 1.86 4.0 × 10−3

MYCNOS 4.0 298 antisense 0.95 6.7 × 10−1 1.76 9.6 × 10−3

MALAT1 6.6 281 lincRNA 1.21 5.0 × 10−1 0.37 2.0 × 10−4

AC010970.2 7.3 280 pseudogene 0.92 5.8 × 10−1 1.86 4.1 × 10−3

RPL10P3 14.9 274 pseudogene 1.11 8.4 × 10−1 0.41 8.0 × 10−4

SNORD11 5.6 237 snoRNA 1.25 4.0 × 10−1 0.38 3.5 × 10−4

RPL13P5 1.7 235 pseudogene 0.91 8.6 × 10−1 2.37 6.0 × 10−4

LINC00355 291 11.0 lincRNA 1.79 5.3 × 10−3 0.96 7.3 × 10−1
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Figure 3. Elderly and adult co-expression networks of selected lncRNAs (columns) and protein-coding

mRNAs (rows) in molecular pathways enriched among the most connected (A) or the most differentially

connected (B) genes. Heatmap colors show the network similarity between each gene pair, with black

being the most similar and white the least similar. The gene expression ratios are shown as external

bars, where dark blue and red indicate transcripts significantly upregulated or downregulated in sepsis

relative to controls (p ≤ 0.01), respectively.
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3. Discussion

Despite numerous studies investigating the role of lncRNAs in various diseases, their roles in

the innate immune system during infection are only now emerging [23,24]. The lncRNAs are widely

expressed in immune cells during their development, differentiation, and activation, and they can also

control important aspects of immunity [25]. The lincRNA-Cox2, for example, is highly induced by

numerous inflammatory triggers and interferes with NF-κB signaling [26], while the lncRNA Lethe,

a functional pseudogene, physically binds to p65 in mouse embryonic fibroblasts (MEFs), inhibiting its

occupancy at the promoter of target genes, such as interleukins 6 and 8 (IL6 and IL8) [27], and THRIL

controls the expression of tumor necrosis factor α (TNFα) in the human monocyte-like THP-1 cell

line [28].

In this work, we report the global gene expression analysis of neutrophil-enriched cell fractions

from patients with sepsis and age-matched controls, focusing on the noncoding component of the

transcriptome. The expression data was previously generated using a commercially available Agilent

oligoarray platform [5], and we initially performed a probe reannotation procedure to take advantage of

the most updated lncRNA information available in public domain. This updated annotation (GEO entry

GPL22628) will allow researchers to revisit publicly available expression data sets and perform original

analyses focused on lncRNAs. Following this procedure, we identified over 1000 lncRNAs, including

pseudogenes, that are detected in neutrophil-enriched samples, a fraction of which display differential

abundance in septic patients compared to control subjects. For the most part, the biological processes in

which these lncRNAs participate are unknown. We did not observe any significant association between

the expression of lncRNAs and neighboring protein-coding genes differentially expressed in sepsis.

To highlight lncRNAs presumably relevant in the context of sepsis, we incorporated information

from co-expressed protein-coding genes. This approach can indicate trans-acting regulatory lncRNAs.

We found that the most differentially expressed transcripts are also among the most connected in

the sepsis gene expression networks. Furthermore, we observed that the most connected DEGs

are enriched in gene categories encoding protein components of ribosomes, protein synthesis,

and localization. We raise the possibility that the lncRNAs with most network similarity to these

genes are potentially involved in regulatory circuits associated to ribosomal components that are

deregulated in sepsis. Thus, we identified the lncRNAs RP11-159C21.4, RP11-179H18.5, RP11-302F12.1,

RP3-486D24.1, and RPL13AP7 as candidates to be further investigated as biomarkers for sepsis

(Figure S4A–E). Interestingly, all of those are transcribed from pseudogenes related to the ribosomal

proteins RPS13, RPS8, RPS29, RPL7A, and RPL13A, respectively. We think this common ancestry

further supports the idea that these pseudogene-associated lncRNAs have a functional or regulatory

role in protein translation.

Immunosenescence affects many components of the immune system, and sepsis is a disease of

older people [29]. Indeed, 60% of all sepsis events and 80% of septic deaths occur in individuals over

65 years old [30]. Most studies comparing changes in the immune system from septic patients of

advanced age with young adults have evaluated changes in cellular and humoral components of the

immune response [31]. Few studies have investigated changes in elderly septic patients using global

gene expression profiling [5]. To investigate how aging affects the immune response of the elderly, we

selected genes with high connectivity in either the adult or elderly network. The protein-coding genes in

this set were enriched for terms associated to “cellular respiration”. Among the most connected genes in

this set, we found MYC, which is a positive regulator of mitochondrial biogenesis and metabolism [32],

and FASTKD3, which modulates energy balance in stress conditions by functionally coupling

mitochondrial protein synthesis to respiration [33]. It also includes genes encoding components of the

mitochondrial electron transport chain (CYCS, NDUFB2, NDUFA5, COX7C) or involved in transport

across the mitochondrial membrane (MDH1, SLC25A12, PNPT1). All these genes (exception of COX7C)

are downregulated in adult and elderly septic patients. This observation is consistent with a previous

study, which found that genes related to oxidative phosphorylation and mitochondrial dysfunction

are preferentially deregulated in the elderly with sepsis [5]. Mitochondria are the respiratory and
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energetic centers of cells. However, mitochondrial dysfunction enhances reactive oxygen species (ROS)

production [34]. ROS are highly unstable structures that cause cell damage. Oxidative stress results

when ROS production and the antioxidant protection mechanism are imbalanced [35]. Mitochondrial

function in sepsis is highly variable, organ-specific, and predicts a worse outcome [36]. Inhibition

of oxidative phosphorylation results in a reduction of the mitochondrial membrane potential, and

consequently a lack of energy, which can cause organ failure and death [37,38].

Here, we raise the hypothesis that lncRNAs that show an inverted expression pattern in sepsis

and are also differentially connected across elderly and adult networks could participate in gene

expression regulatory loops that potentiate the loss of mitochondrial function in the elderly with sepsis.

These include AC010970.2, MYCNOS, LINC00355, and MALAT1 (Figure S4F–H) that will be mentioned

further. MALAT1 is upregulated in various tumors and has oncogenic roles [16]. MALAT1 has been

implicated in the positive regulation of inflammatory processes induced by hyperglycemia [39], but its

participation in sepsis has not been documented before. Our data suggest that reduced levels of

MALAT1 may contribute to gene expression changes associated to the poorer outcome of elderly

patients. MYCNOS is an lncRNA known to function as an antisense RNA that regulates MYCN,

a member of the MYC family of transcription factors [40]. There is little information available regarding

the two other lncRNAs; LINC00355, the only one of the selected genes from Table 3 to be highly

connected and differentially expressed in the elderly, is a lincRNA that was not previously studied in

the literature, and AC010970.2 is an 18S ribosomal pseudogene.

We note that our study is exploratory and employed a limited sample size, thus future functional

studies will be essential to determine the biological significance of lncRNAs in sepsis and to dissect

their mechanisms of action. Our future plans include the investigation of lncRNAs in other cell types

and tissues during sepsis, such as in the central nervous system. The treatment of sepsis lacks effective

specific drugs. A recent review of the current experimental treatments of mitochondrial dysfunction in

sepsis has been published, and in animal experiments many drugs show good results [41], but clinical

trials still wait to be done, especially in older patients.

In summary, here we report lncRNAs with aberrant expression in sepsis, including subsets that

are significantly co-expressed with protein-coding genes from molecular pathways relevant to the

disease, and that are potentially associated to the worse outcome observed in aged subjects. Further

experimental studies are warranted to investigate the clinical relevance of these lncRNAs for the

development of novel biomarkers or new therapeutic strategies for the disease.

4. Materials and Methods

4.1. Study Design

The current study was a prospective cohort study conducted in the Hospital das Clínicas Intensive

Care Unit (University of São Paulo, Brazil). Blood samples were collected from six aged septic patients

(age range 65–78 years old), six young adult septic patients (age range 22–35 years old), six healthy aged

volunteers (age range 60–82 years old), and six healthy young individuals (age range 20–35 years old).

All sepsis cases were from patients with clinical illness and did not include patients admitted for

trauma or surgical reasons. The majority of patients included in this study were admitted with sepsis,

stroke, altered levels of consciousness, pulmonary edema, and asthma and/or chronic obstructive

pulmonary disease. Patients who were less than 18 years old, pregnant, HIV-positive, or in end-of-life

conditions were excluded. Patients with disseminated malignancies or advanced hepatic disease,

those receiving chemotherapy, and those who refused to participate in this study were also excluded.

Septic shock was defined according to the criteria of the American College of Chest Physicians/Society

of Critical Care Medicine (ACCP/SCCM) Consensus Conference Committee proposed in 1992 [42].

The study protocol was approved by the Hospital das Clínicas Ethics Committee. Patients (or their

close relatives) received detailed explanations and provided written consent prior to inclusion in the

study (HCFMUSP Protocol # 1207/09).
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4.2. Oligoarray Reannotation for the lncRNA Analysis

The commercial oligoarray used in the gene expression experiments (Agilent DNA SurePrint G3

Human Gene Expression 8x60k v2 Oligoarray, design ID # 039494; Agilent, Santa Clara, CA, USA)

contains 58,717 probes of which 36,075 interrogate mRNAs, 14,450 interrogate known or putative

lncRNAs, plus 141 QC control probes. In addition, 5624 probes are poorly annotated (i.e., it is

unclear which transcript evidence was used for probe design), and 2568 have no annotation at all.

A reannotation of the array was performed as follows. The BLAT tool [43] was used to align all probes

to the human genome (version GRCh37). Alignments with up to 2 mismatches and gapped alignments

due to RNA splicing were accepted. Probes that aligned with more than 4 genomic coordinates where

excluded from further analysis. Genomic coordinates of the remaining probes (“approved probes”)

were cross-referenced to different gene annotation databases: GENCODE [44], Broad Institute Human

lncRNAs [45], LNCipedia [46], and NONCODE [47]. For probes that matched more than one database,

the annotation preference was given according to the following order of priority: GENCODE > Broad

Institute > LNCipedia > NONCODE.

As some probes were aligned to regions with more than one annotation type, hierarchical

classification criteria were adopted as follows:

1. If a probe aligned to exons of protein-coding genes, it was annotated as “protein-coding”.

2. If a probe aligned to annotated exons of RNAs classified as any pseudogene, and did not overlap

protein-coding exons, it was annotated as “pseudogene”.

3. If a probe aligned to annotated exons of lncRNAs and was not previously classified as

a protein-coding or pseudogene, it was classified as “lncRNA”.

4. If a probe aligned only to an intron of an annotated gene, to regions in the opposite strand of

a known gene, or to regions without any gene annotations, in either strand, it was classified as

“poorly annotated RNA”.

A summary of the reannotation results is shown as Supplementary Material (Figure S1).

The expression data and probe reannotation information are deposited at the Gene Expression Omnibus

(accession number GSE89376 associated to platform GPL22628).

4.3. RNA Extraction, Oligoarray Hybridization, and Data Pre-Processing

Sample RNA isolation, target labeling, and hybridization to expression oligoarrays were described

in detail in a previous publication reporting an analysis of global expression profiles of protein-coding

genes in sepsis [5].

Twenty-four blood samples (six young adults with sepsis, six control young adults, six elderly

patients with sepsis, and six control elderly) were processed immediately after collection.

The anticoagulant-treated blood was layered on the Ficoll-Paque PLUS solution (GE Healthcare,

Chicago, IL, USA) and centrifuged for a short period of time. Differential migration during

centrifugation results in the formation of layers containing different cell types. The bottom layer

contains erythrocytes that have been aggregated by the Ficoll and, therefore, sediment completely

through the Ficoll-Paque PLUS. The layer immediately above the erythrocyte layer contains the

granulocytes, which, at the osmotic pressure of the Ficoll-Paque PLUS solution, attain a density

great enough to migrate through the Ficoll-Paque PLUS layer. After Ficoll-Paque PLUS density

gradient centrifugation, we separated the second layer containing the granulocytes. This layer was

transferred to new tubes, diluted in lysis buffer and kept on ice for 10 min. After centrifugation at

290× g for 10 min at 4 ◦C, the pellet was resuspended in lysis buffer and kept on ice for an additional

10 min. A new centrifugation step was performed at 2500× g for 2 min at room temperature and the

samples were washed with phosphate-buffered saline (PBS). Finally, the samples were centrifuged

at 1500× g for 2 min at room temperature and the pellet was resuspended in Trizol (Life Technology,

Carlsbad, CA, USA) and stored at −80 ◦C. Total RNA was isolated using Trizol reagent following
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the manufacturer’s protocol and its integrity and concentration were assessed using the Agilent

2100 Bioanalyzer and the RNA 6000 Nano Kit (Agilent Technologies). Expression levels of both

protein-coding and lncRNAs were evaluated using the SurePrint G3 Human Gene Expression

8x60K v2 oligoarray and the Low Input Quick Amp Labeling kit, following a two-color labeling

protocol (Agilent Technologies). Cyanine-3 (Cy3)-labeled RNA from each patient sample and cyanine-5

(Cy5)-labeled reference RNA (Universal Human Reference RNA, Agilent, cat. #740000) were combined

and hybridized to individual oligoarrays following the manufacturer’s protocol.

Data acquisition and pre-processing of oligoarray expression data is described in detail in [5].

Briefly, oligoarrays were scanned using the SureScan Microarray Scanner (Agilent Technologies) and

images were processed using the Feature Extraction Software v12 (Agilent Technologies) for quality

control, determination of feature intensities and ratios, and for background correction. We considered

for further analysis oligoarray normalized features (Cy3/Cy5 ratios) that were consistently expressed,

(i.e., “detected” well-above background (WAB) in at least 5 out 6 subjects in at least one sample group).

4.4. Hierarchical Clustering of lncRNAs

Unsupervised hierarchical clustering of expression measurements from lncRNAs detected in

septic and control patients (top 5% with higher coefficient of variation) was performed using UPGMA

clustering and Pearson correlation as a distance measurement in the Spotfire analysis software

(Tibco Inc., Palo Alto, CA, USA).

4.5. Detection of Differentially-Expressed Genes

Genes differentially expressed in sepsis (DEGs) were identified as described previously [48].

Briefly, genes were considered as DEGs when detected by two statistical methods, namely Significance

Analysis of Microarrays [49] and Rank product [50]. To limit the number of false-positives, we only

considered for further analysis DEGs with a p value ≤ 0.01 by both methods. Gene measurements are

reported as average expression ratios between sepsis and control samples.

4.6. Building Co-Expression Networks in Sepsis

We employed a weighted correlation network analysis (WGCNA) implemented as a package in

R [22] to construct co-expression networks with protein-coding mRNAs and ncRNAs. In the gene

co-expression networks built by WGCNA, each node is linked to all other nodes but with variable

strength. The connection strength is the absolute value of the Pearson correlation raised by the power

of a β constant that assigns greater weight to values closer to 1 in exchange for a possible loss of

information. This adjusted correlation measurement will be referred hereafter as “network similarity”,

and those node pair similarity measurements are the basis to calculate the topological overlap matrix

(TOM), which measures node interconnectivity, ranging from 1 (nodes that are identically connected

to all other nodes) to 0 (nodes that are not mutually connected to any other node). Each gene is

assigned a connectivity measurement that describes how central (or hub) the gene is relative to a given

network, information from which we can infer that its expression exerts some kind of influence on

the connected genes [22]. Here, we used WGCNA to create two networks, one with expression data

from the 12 samples from elderly subjects (septic and controls), and the other with data from the

12 samples from young adult (septic and controls). In both cases, the networks were built with gene

expression from all genes that passed the pre-processing filtering step (see above). For both networks,

the β exponential constant factor to adjust the correlation was set to 13.

For each lncRNA, the average network similarity to all protein-coding genes in a given pathway

was compared to the average network similarities of each member within the pathway. If the average

network similarity of the lncRNA was greater than the median similarity measured within the pathway,

this ncRNA displays more network similarity to that pathway than half of its annotated members.

This indicates a strong pathway interaction, and we used this criterion to select the most relevant

lncRNA–protein-coding nodes in the sepsis co-expression networks.
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4.7. Functional Annotation and Pathway Analysis

Genes with higher connectivity in co-expression networks from elderly or young adult subjects

were sorted by connectivity and analyzed to search for the enrichment of particular gene categories

and molecular pathways using the gProfiler tool [51]. A list with all detected probes was provided as

background for the gene enrichment analysis. Only terms with an enrichment p value < 0.05 and that

contained more than four genes were further considered.

Supplementary Materials: The following are available online at www.mdpi.com/2311-553X/3/1/5/s1, Figure S1:
Summary of the reannotation pipeline, Figure S2: Weighted correlation network analysis (WGCNA) gene
co-expression networks from elderly and young adults with data from sepsis patients and control subjects,
Figure S3: Elderly and adult co-expression networks of ncRNAs and protein-coding mRNAs in molecular
pathways enriched among the top 15% most connected or the top 20% most differentially connected genes,
Figure S4: Genomic context of lncRNAs differentially expressed in sepsis and displaying high connectivity in gene
co-expression networks, Table S1: List with all detected array probes along with their gene type (protein-coding,
lncRNA, pseudogene, poorly annotated), gene ID, chromosomal location, relative expression between septic and
control samples, associated p values.
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