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Insights into the genetic architecture of morphological traits
in two passerine bird species

CNS Silva1,7,8, SE McFarlane2,8, IJ Hagen3, L Rönnegård4,5, AM Billing3, T Kvalnes3, P Kemppainen3,
B Rønning3, TH Ringsby3, B-E Sæther3, A Qvarnström2, H Ellegren6, H Jensen3 and A Husby1,3

Knowledge about the underlying genetic architecture of phenotypic traits is needed to understand and predict evolutionary
dynamics. The number of causal loci, magnitude of the effects and location in the genome are, however, still largely unknown.
Here, we use genome-wide single-nucleotide polymorphism (SNP) data from two large-scale data sets on house sparrows and
collared flycatchers to examine the genetic architecture of different morphological traits (tarsus length, wing length, body
mass, bill depth, bill length, total and visible badge size and white wing patches). Genomic heritabilities were estimated using
relatedness calculated from SNPs. The proportion of variance captured by the SNPs (SNP-based heritability) was lower in house
sparrows compared with collared flycatchers, as expected given marker density (6348 SNPs in house sparrows versus 38 689
SNPs in collared flycatchers). Indeed, after downsampling to similar SNP density and sample size, this estimate was no longer
markedly different between species. Chromosome-partitioning analyses demonstrated that the proportion of variance explained by
each chromosome was significantly positively related to the chromosome size for some traits and, generally, that larger
chromosomes tended to explain proportionally more variation than smaller chromosomes. Finally, we found two genome-wide
significant associations with very small-effect sizes. One SNP on chromosome 20 was associated with bill length in house
sparrows and explained 1.2% of phenotypic variation (VP), and one SNP on chromosome 4 was associated with tarsus length in
collared flycatchers (3% of VP). Although we cannot exclude the possibility of undetected large-effect loci, our results indicate a
polygenic basis for morphological traits.
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INTRODUCTION

Information about the genetic architecture of phenotypic traits is
fundamental to our understanding of how these traits evolve. By
revealing the number and effect size of the loci controlling heritable
traits, we can improve predictions about trait evolution in natural
populations (Barton and Keightley, 2002) and better understand the
potential of populations to adapt to environmental change. For
example, the HMGA2 gene in Galápagos finches explains a substantial
portion of variation in beak morphology, and it was associated with
marked character displacement during a severe, acute drought
(Lamichhaney et al., 2016). Although there has been an increasing
number of studies aiming at identifying genes underlying phenotypic
variation in natural populations (reviewed in Slate et al., 2010;
Schielzeth and Husby, 2014), the genetic architecture (that is, the
number of genes, their effect sizes and location in the genome) of
most morphological traits still remains unknown.
A first step in understanding the genetic architecture is to establish

whether the trait is heritable, something that traditionally has been

done using quantitative genetic methods such as parent–offspring
regressions, sib analyses or the ‘animal model’ (Lynch and Walsh,
1998). These models use the expected genetic relatedness among
individuals to estimate heritability. However, advances in high-density
genotyping have made it possible to use genome-wide marker data to
estimate realized genetic relatedness between individuals and, there-
fore, the ‘genomic heritability’ (Aulchenko et al., 2007; Yang et al.,
2010; Zaitlen et al., 2013; Rönnegård et al., 2016). Genome-wide
marker data from a large number of individuals can also be used to
estimate the proportion of variation in the trait that is tagged by
single-nucleotide polymorphism (SNP) arrays, the so-called SNP-
based heritability (Yang et al., 2010, 2011b). All these approaches have
limitations. For example, pedigree-based heritability estimates (h2ped)
require information from known relatives, and heritability values may
be biased because of shared environmental factors among relatives. At
the same time, SNP-based estimates have been less successful in
capturing the full extent of known trait genetic variance. As a result,
there is often a gap between heritability estimated from pedigree
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approaches and heritability estimated obtained by considering
significant SNPs from genome-wide association studies (GWAS),
which is referred to as the ‘missing heritability’ (Manolio et al.,
2009).
The ‘missing heritability’ phenomenon is partly a result of very

stringent criteria for determining that a SNP contributes significantly
to the trait variance. All SNPs considered jointly explain a much
higher proportion of the variance than individually significant SNPs
considered jointly (Yang et al., 2010). However, this method requires
only unrelated individuals to be used, substantially reducing sample
size. To alleviate this, Zaitlen et al. (2013) developed a method to
estimate both the proportion of trait variance explained by genotyped
SNPs (SNP-based heritability—h2g) and the ‘total narrow-sense
heritability’ (h2gkin), which is equivalent to the traditional pedigree-
based heritability (Zaitlen et al., 2013).
Given high enough marker density, kinship coefficients can also be

estimated on a more regional scale instead of a genome-wide scale. For
example, Yang et al. (2011a) proposed partitioning genetic variance of
traits onto chromosomes. This method can provide novel insights into
the genetic architecture of traits because it is expected that, under a
polygenic model, chromosome size should scale positively with the
amount of genetic variation explained by that chromosome. Chromo-
somes that contribute a disproportionate amount of variation, given
their size, can therefore indicate the presence of large-effect loci on
that chromosome or, alternatively, a cluster of loci of small effect
(Schielzeth and Husby, 2014).
Ultimately, we are interested in understanding how evolutionary

forces act on complex traits. Genome-wide association methods have
been extensively used in human and livestock studies to detect causal
loci (for example, Goddard and Hayes, 2009; Yang et al., 2010), and
the decreasing cost of genotyping many individuals at thousands of
loci means that GWAS are increasingly applied in studies of nonmodel
organisms (for example, Johnston et al., 2014; Barson et al., 2015;
Husby et al., 2015; Santure et al., 2015). Some of these studies have
been successful in identifying large-effect loci (Johnston et al., 2014;
Barson et al., 2015), whereas others have failed to identify genome-
wide significant variants (Santure et al., 2013). Even in cases where
significant variants have been detected, they only explain a relatively
small proportion of the phenotypic variance (for example, Bérénos
et al., 2015; Husby et al., 2015).
Traditionally, GWAS do not utilize repeated measurements of the

same individuals, but many long-term ecological studies follow
individuals throughout their lifetime and re-measure phenotypic traits
over ontogeny. This adds additional information that could be used in
GWAS, and Rönnegård et al. (2016) recently developed a method to
incorporate such repeated measures in a GWAS framework.
Adding repeated measures can lead to increased power if there are
large annual variations in the expression of the trait or unbalanced
records per individual. As many GWAS of natural populations suffer
from a lack of power as a result of low sample size (for example,
Kardos et al., 2016), incorporating repeated measures can therefore be
a useful way to increase power to detect QTLs (Rönnegård et al.,
2016).
In this study, we take advantage of genomic resources that have

recently become available for house sparrows (Passer domesticus;
Hagen et al., 2013) and collared flycatchers (Ficedula albicollis;
Ellegren et al., 2012), two well-studied model passerine species in
evolutionary biology and ecology (Anderson, 2006; Qvarnström et al.,
2010). Of relevance to the present study, Hagen et al. (2013) designed
a custom Illumina (San Diego, CA, USA) 10K SNP array for house
sparrows and Kawakami et al. (2014) designed a custom Illumina 50KT
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SNP array for collared flycatchers. These arrays have an average
marker density of one SNP per 100 000 bp for house sparrows (Hagen
et al., 2013) and one SNP per 22 000 bp for collared flycatchers. These
genomic resources, together with the phenotypic data collected, offer
the opportunity to examine the genetic architecture of phenotypic
traits.
House sparrows and collared flycatchers group into different

phylogenetic clades within Passeriformes, Passeridae and Muscicapidae
that diverged ~ 50 million years ago (Jarvis et al., 2014). Comparing
the genetic architecture of different phenotypic traits in these two
species gives the opportunity to identify patterns of genetic architec-
ture of phenotypic traits within passerines. Here, we first aimed at
estimating genomic heritabilities of morphological traits using both
genome-wide and chromosome-specific approaches (see Table 1).
Second, we used a recently developed method (Zaitlen et al., 2013) to
estimate the proportion of genetic variance captured by the SNP
arrays. To identify SNPs associated with the traits studied, we carried
out GWAS using both repeated phenotypic measures and mean
phenotypic values. Finally, we examined whether the genetic archi-
tecture is concordant across similar traits in the two species and across
different approaches.

MATERIALS AND METHODS

Study populations and phenotypic data
Phenotypic data from house sparrows were collected as part of a long-term
individual-based study on four islands in northern Norway—Aldra (66°25′N,
13°04′E), Hestmannøy (66°33′N, 12°50′E), Leka (65°06′N, 11°38′E) and Vega
(65°40′N, 11°55′E)—that has been running since 1993 (for example, Jensen
et al., 2008). Five phenotypic characters were measured in adults of both sexes
(Figure 1): tarsus length, wing length, body mass, bill depth and bill length. In
addition, both total badge size and visible badge size (see Figure 1) were
measured in adult males as there is evidence of different mechanisms for the
expression of these two traits, and they may act as different signals (Veiga,
1996). Total badge size was measured as the square root of the area covered by
black feathers and feathers with black bases and gray tips on the throat and the
chest, whereas visible badge size was measured as the square root of the area

covered by completely black feathers, that is, excluding the feathers with gray
tips (Jensen et al., 2008). Phenotypic measurements were corrected for
fieldworker variation by adding the mean difference between Thor Harald
Ringsby measurement and a fieldworker measurement when this was sig-
nificant (Po0.05) as judged by a paired t-test (see Kvalnes, 2016). When using
one value per individual (mean phenotypic values), any variation in trait size
because of age and season was accounted for by adjusting trait size to February-
measures at the age of 1 year. This was done by first fitting a general linear
mixed-effects model (using the lme4 package in R, Bates et al., 2015) for each
trait and sex separately, with age, age2 and month as explanatory variables, and
an individual random intercept and slope to separate out any between-
individual variation in the relationship with age. The predicted values from
this model were used to adjust each measurement of a trait through the life of
an individual to its predicted value in February at the age of 1 year. Then, the
mean of all adjusted measurements was used as an individual’s mean trait value
(Kvalnes, 2016). We used this adjusted measurement as the mean trait estimate
in all of the following analyses. The effects of sex, hatch year and hatch island
were accounted for in the models below (heritability estimation, chromosome
partitioning and GWAS) when these factors were significantly associated
with the trait being analyzed (adjusted R2 and P-values in Supplementary
Table S1). For the repeated measurements, we did not adjust trait measure-
ments for age and season prior to the analyses, but accounted for the effects of
sex, hatch year, hatch island, month and age of the individual at the time of
measurement directly in the GWAS (adjusted R2 and P-values in
Supplementary Table S2).
Phenotypic data on collared flycatchers were collected from a nestbox

population on the Swedish island of Öland (57°10’N, 16°58E), which has been
monitored since 2002 (Qvarnström et al., 2010). Individuals were caught and
ringed while breeding, or ringed as nestlings. For all adults, tarsus length, body
mass, wing length and the size of white wing patches were measured. The white
on the wing was measured using sliding calipers as the sum of the amount of
white on primary feathers (two to seven). The effects of sex and study area were
included in the models below (heritability estimation, chromosome partitioning
and GWAS). Sex was included as a fixed effect in the mean models of body
mass, wing length and white patches on the wings, whereas study area was
included in the model of body mass and white patches on the wings (adjusted
R2 and P-values in Supplementary Tables S3). For repeated measures models,
sex was included as a covariate for body mass, wing length and white patches
on the wings, and study area was included in models of tarsus, wing length and

Figure 1 Schematics of phenotypic measurements in house sparrows (BL, bill length; BD, bill depth; TB, total badge; VB, visible badge; WL, wing length;
TL, tarsus length) and in collared flycatchers (TL, tarsus length; WL, wing length; WWP, white wing patches). Photos by H Jensen (male house sparrow) and
A Husby (male collared flycatcher).
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white on the wings. A description of the phenotypic data and number of
records available for the analyses of house sparrows and collared flycatchers is
reported in Table 2.

Genotyping
For both species, a small blood sample was taken from the brachial vein of each
individual and stored in ethanol, Queens lysis buffer or FTA cards for
subsequent DNA extraction. In total, we genotyped 1898 house sparrows with
a 10K SNP array (Hagen et al., 2013) and 825 adult collared flycatchers on a
50K SNP array (Kawakami et al., 2014). We excluded markers with a call rate
less than 95%, minor allele frequency of less than 0.01 and a P-value for
rejection of Hardy–Weinberg equilibrium (HWE) of less than 0.001. We also
excluded one of a pair of individuals in whom the identity by state was greater
than 0.9 (removing accidental duplicated samples—for example, due to
pipetting the same sample twice and avoiding bias errors introduced by these
over-represented genotypes). For this quality-control step, we used the function
check.marker() in GenABEL (Aulchenko et al., 2007). For house sparrows, the
quality control for HWE was conducted independently for each population,
and markers that failed this test in all populations were excluded (that is, when
a marker was not at HWE in all populations, it was excluded). After quality
control, 6348 SNPs were available for analysis in 1851 house sparrows and
38 689 SNPs for 825 collared flycatchers.

Genetic variance and heritability estimation
Three different software packages were used to estimate genetic variance and
heritability (Table 1). We first estimated genomic heritability of the phenotypic
traits using the R package RepeatABEL, using the function ‘rGLS’ (Rönnegård
et al., 2016), which allows the use of repeated measurements of phenotypic
traits when estimating genetic variance. We refer to the genomic heritability
estimates from this approach as h2kin (rep). For comparison with other studies
(Robinson et al., 2013; Santure et al., 2013), we also estimated heritability using
the mean phenotype for each individual in the R package GenABEL, using the
function ‘polygenic’ (Aulchenko et al., 2007). We refer to this estimate as h2kin
(mean). Finally, we used the software GCTA to estimate the genetic variance
using mean phenotypic values. In addition, GCTA was used to estimate the
proportion of variance tagged by the SNP arrays (see below). In each of these
methods, when appropriate (Supplementary Tables S1 and S2), we included
various fixed effects. Ideally, some of the fixed effects would be included as
random effects (hatch year and hatch island), but this was not possible because
not all software allow more than one or two random effects (which are typically
the relatedness matrices).

In addition to estimating genome-wide genetic variance, we also used a
recent method to estimate how much of the genetic variance was captured by
the SNP arrays (h2g). Unlike the method by Yang et al., 2010, which needs
unrelated individuals, Zaitlen et al. (2013) use two genetic relationship matrices
(GRMs) in a restricted maximum likelihood (REML) analysis to calculate both
SNP-based heritability (h2g) and a pedigree-equivalent heritability (h2gkin) using
all individuals. This method has been implemented in the software GCTA
(Yang et al., 2011a).
The variance explained by all autosomal SNPs was estimated using the

mixed-effects linear model y ¼ Xbþ gG þ g relG þ e+, where y is a vector of
phenotypes, β is a vector of fixed effects (for example, sex, hatch island and
hatch year) with its incidence matrix X, gG is a matrix of aggregate effects of all
autosomal SNPs for all individuals and g relG is a matrix of aggregate effects of all
autosomal SNPs where unrelated individuals have off-diagonals that are o0.05
set to 0 to distinguish them from related individuals. This model therefore uses
the mean phenotypic values and estimates additive genetic effects tagged by the
genotyped SNPs (‘SNP-based heritability’—h2g) and the pedigree-equivalent
heritability using information about genetic relationships of kin inferred from
the marker data (‘total narrow-sense heritability’—h2gkin). The estimated total
narrow-sense heritability (h2gkin) can therefore be compared to h2kin (mean)
estimates from GenABEL (Zaitlen et al., 2013). Prediction errors due to
imperfect linkage disequilibrium were adjusted using the –grm-adj 0 function
when estimating genetic relationships (for similar approach, see Bérénos et al.,
2015).
As sample size and marker density differ between species (1898 house

sparrows genotyped on 6348 SNPs versus 825 collared flycatchers genotyped on
38 689 SNPs), this makes it difficult to compare heritability estimates. We
therefore randomly downsampled the number of SNPs (in the collared
flycatcher) and the number of individuals (in the house sparrows) across the
data set such that both sample size and marker density were the same in both
species. Heritabilities were then estimated using the four approaches described
above and in Table 1.

Partitioning of genetic variance between chromosomes
To partition genetic variance among chromosomes, we used the GCTA
software (Yang et al., 2011a) to compute chromosome-specific GRMs for the
autosomes. The genetic variance attributable to each chromosome was
estimated by fitting the GRMs of all chromosomes simultaneously in the
model: y ¼ XbþPm

c¼1 gc þ e, where gc is a vector of genetic effects
attributable to each chromosome with var gc

� � ¼ Ac ´r2c (Ac is the GRM
from the SNPs on each chromosome and s2c is the chromosome variance). The

Table 2 Descriptive information on Ni and Nr of each trait with respective phenotypic mean and s.d.

Ni Nr Mean s.d. Repeated measures Mean values

h2kin(rep) s.e. VP VA h2kin(mean) s.e. VP VA

House sparrow

Tarsus length 1443 3201 19.58 0.851 0.415 0.042 0.724 0.302 0.399 0.041 0.711 0.284

Wing length 1446 3210 79.92 2.032 0.388 0.037 4.865 1.888 0.481 0.040 3.927 1.889

Body mass 1448 3335 31.46 1.983 0.300 0.035 4.758 1.427 0.374 0.041 3.825 1.431

Bill depth 1442 3316 8.11 0.282 0.319 0.036 0.090 0.035 0.459 0.040 0.068 0.031

Bill length 1443 3314 13.74 0.542 0.390 0.037 0.340 0.108 0.495 0.039 0.253 0.125

Total badge size 721 1621 19.97 0.861 0.136 0.042 1.027 0.140 0.228 0.063 0.752 0.171

Visible badge size 720 1624 15.59 1.387 0.139 0.043 2.511 0.349 0.253 0.065 0.908 0.230

Collared flycatcher
Tarsus length 798 1923 19.45 0.67 0.289 0.07 0.48 0.14 0.576 0.079 0.45 0.260

Wing length 800 1981 82.32 2.09 0.242 0.06 4.02 0.97 0.544 0.080 4.41 2.40

Body mass 794 1978 14.19 1.43 0.203 0.06 0.89 0.18 0.338 0.087 2.06 0.70

White wing patches 799 1974 32.93 16.87 0.149 0.05 195.6 29.2 0.267 0.083 284.6 75.97

Abbreviations: h2kin (mean)), genomic heritability with the mean values; h2kin (rep), genomic heritability with repeated measures; Ni, number of individual; Nr, number of record; VA, total additive
genetic variance; VP, total phenotypic variance.
The table describes heritability estimates with respective s.e.'s, VP and VA for phenotypic traits of two passerines estimated using h2kin (rep) and h2kin (mean).
All estimates are contingent on the fixed effects included in the analyses (see Materials and methods for the fixed-effects included).
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maximum number of chromosomes fitted differed between house sparrows
(m= 29) and collared flycatchers (m= 33). If the models did not converge (for
all traits except body mass in house sparrows and for wing length in collared
flycatchers), the chromosomes with the smallest number of SNP markers were
iteratively excluded until the model converged. A maximum of eight chromo-
somes were excluded for house sparrows and 10 chromosomes for collared
flycatchers (Supplementary Tables S5 and S7).
To address convergence problems, we first fitted separate models for

each chromosome with the GRM of the focal chromosome and a GRM for
all other chromosomes combined: y ¼ XbþPm

c¼1 gfocal þ
Pm

c¼1 greste, where
var gfocal

� �
¼ Afocal ´ r2focal and Afocal is the GRM of the focal chromosome.

var grest
� � ¼ Arest ´ r2rest estimates the variation explained by all other chromo-

somes but the focal chromosome. However, this did not solve the convergence
issues. We therefore also tried to estimate a single GRM using marker data from
all microchromosomes jointly. This should estimate the variance due to all
microchromosomes together. Unfortunately, this also did not completely solve
the problem, and we still had some traits where the models did not converge
(Supplementary Table S6). These convergence problems are likely because of
the low number of markers on some chromosomes (the microchromosomes).
We estimated the proportion of variance explained by the Z chromosome in

collared flycatchers compared to the proportion explained by all autosomes
considered together (Supplementary Table S8). Note that we do not have
comparable information in house sparrows (markers on the Z chromosome
were not included here because they have not been mapped to the genome and
a linkage map for the Z chromosome is not available yet), and so we did not
consider this further.
To estimate the relationship between chromosome size and the amount of

variation it explained for each trait, we used linear regression models in R (R Core
Team, 2015). Chromosome sizes for both house sparrows and collared flycatchers
were taken from the reference genome assemblies (house sparrows; NCBI
accession number 17653, collared flycatchers; NCBI accession number 11872).

GWAS
Data on both house sparrows and collared flycatchers have been collected as
part of long-term individual-based monitoring projects. This allowed us to take

repeated measures of individuals and to take this nested data structure into
account when testing for associations between SNPs and the phenotypic traits
using the function ‘rGLS’ in the R package RepeatABEL (Rönnegård et al.,
2016). RepeatABEL allows a mixed model with both a repeated measures effect
as well as relatedness between individuals to be included as random effects. For
comparison, we also used individual mean measurements of phenotypic traits
using the function ‘grammar’ in the R package GenABEL (Aulchenko et al.,
2007). Reported P-values are based on Wald tests and are corrected for
population stratification (structure and relatedness) and the repeated sampling
of the same individuals when using the repeated measures GWAS (Rönnegård
et al., 2016). The genome-wide significance threshold was determined using a
Bonferroni correction by dividing the significance value (P= 0.05) by the
number of markers (Lander and Kruglyak, 1995) resulting in P= 7.80× 10− 6

for house sparrows and P= 1.29× 10− 6 for collared flycatchers. This is a
conservative P-value as it assumes that all markers are independent. We also
report the additive genetic variance explained by each of the five SNPs with the
smallest P-values, estimated as VSNP= 2pqa2, where p and q are the frequencies
of the major and minor allele frequencies, respectively, and a is the additive
SNP effect (Falconer and Mackay, 1996). The heritability of each of these SNPs
(h2SNP) was then estimated as VSNP/VP (where VP is the phenotypic variance
estimate obtained from the GWAS).

RESULTS

Genomic heritability
Heritability estimated using repeated phenotypic measures (h2kin
(rep)) ranged from 0.136 for total badge size to 0.415 for tarsus
length in house sparrows, and from 0.149 for white wing patches to
0.289 for tarsus length in collared flycatchers (Table 2). In general,
when using the mean phenotypic values heritability estimates
(h2kin (mean)) tended to be higher for both species across all traits,
ranging from 0.228 for total badge size to 0.495 for bill length in house
sparrows, and from 0.267 for white wing patches to 0.576 for tarsus
length in collared flycatchers (Table 2).
When jointly estimating the SNP-based heritability (h2g) and total

narrow-sense heritability (h2gkin) using the method by Zaitlen et al.
(2013), we found that SNP-based heritability ranged from zero for
wing length to 0.185 for body mass in house sparrows, and from 0.080
for body mass to 0.538 for wing length in collared flycatchers. For
most traits, the total narrow-sense heritability estimates from the
method by Zaitlen et al. (2013; Table 3) were similar to the h2kin
(mean) values from GenABEL (Table 2).
In general, SNP-based heritabilities were higher for collared

flycatchers compared with the house sparrows. To examine this in
more detail, we thinned both data sets down to 825 individuals and
6348 SNPs. In house sparrows, the reduction of sample size caused an
inflation for many h2 estimates and an increase in standard errors,
whereas a reduction in marker density in collared flycatchers had little
effect (Tables 4 and 5).

Chromosome partitioning
We found a significant linear relationship between the proportion of
variance explained by each chromosome and chromosome size for
tarsus length, body mass, bill length and visible badge size in house
sparrows (Figure 2), but not for wing length, bill depth and total badge
size (Figure 2 and Supplementary Table S5). The variance explained by
each chromosome ranged from 0 to 0.092 across all traits
(Supplementary Table S5). Chromosome 2, which is the largest
chromosome in house sparrows, did not explain much of the variation
for most traits, except for visible badge size. On the other hand,
chromosome 1 (the second largest chromosome) explained a high
proportion of the variance in most morphological traits (tarsus length,
wing length, bill depth, bill length and total badge) except for body

Table 3 Descriptive information on heritability values with respective

s.e., VP and VA for phenotypic traits of two passerines estimated using

the Zaitlen et al. (2013) approach

VP

SNP-based heritability

Total narrow-sense

heritability

h2g s.e. VA h2gkin s.e. VA

House sparrow
Tarsus length 0.700 0.052 0.078 0.037 0.399 0.073 0.279

Wing lengtha 2.408 0.000 0.051 0.000 0.114 0.065 0.275

Body mass 3.767 0.185 0.082 0.697 0.270 0.077 1.017

Bill depth 0.066 0.045 0.072 0.003 0.168 0.080 0.011

Bill length 0.240 0.119 0.081 0.028 0.147 0.074 0.035

Total badge 0.736 0.120 0.151 0.088 0.148 0.148 0.109

Visible badge 0.894 0.031 0.114 0.028 0.058 0.115 0.052

Collared flycatcher
Tarsus length 0.464 0.45 0.17 0.209 0.651 0.080 0.302

Wing length 3.39 0.538 0.178 1.82 0.538 0.083 1.824

Body mass 0.649 0.080 0.181 0.052 0.310 0.082 0.201

White wing patches 141.19 0.083 0.162 11.70 0.185 0.094 26.12

Abbreviations: SNP, single-nucleotide polymorphism; VA, total additive genetic variance; VP, total
phenotypic variance.
SNP-based heritability (h2g) and total narrow-sense heritability (h2gkin).
Note that h2gkin is the sum of h2g+h2kin (proportion of phenotypic variance not explained by the
SNPs, not reported here).
aOne variance component was constrained from the second iteration. When using the –reml-no-
constrain option, the variance was negative.
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mass and visible badge size. Interestingly, a relatively small chromo-
some (14) explained a large proportion of the variation for wing
length (Figure 2 and Supplementary Table S5).
Some models failed to convergence when including all chromo-

somes and estimating the variance using all microchromosomes
together did not solve convergence issues (for example, wing length).
These values were similar to estimates when fitting the GRMs of all
chromosomes simultaneously in the model (Supplementary Tables S5
and S6). Fitting separate models with the GRM for a focal

chromosome against the rest also did not solve convergence problems
(see Materials and methods). Some of the chromosome-specific
estimates should therefore be treated with caution.
For collared flycatchers, the relationship between the proportion of

variance explained by each chromosome and chromosome size was
significant for tarsus length (r= 0.656), but not for wing length
(r= 0.269), body mass (r= 0.144) or white wing patch (r=− 0.041;
Figure 3 and Supplementary Table S7). The proportion of variance
explained by a single chromosome ranged from 0 to 0.150 across all
traits. As with house sparrows, chromosome 2 did not explain
substantial variation in any trait, whereas chromosome 1 contributed
substantially to both tarsus and wing length. Chromosome 4 also
contributed substantially to tarsus length (Supplementary Table S7),
which reflects the presence of a significant marker for tarsus length on
chromosome 4 (see below).

GWAS
After correcting for multiple testing, one SNP (11485) on chromosome
20 was significantly associated with bill length in house sparrows when
using the mean phenotypic values, and explained 2% of the phenotypic
variation (Supplementary Table S11 and Supplementary Figure S3). This
SNP also had the lowest P-value when using repeated measures,
although it was no longer significant after Bonferroni correction
(Supplementary Table S9 and Supplementary Figure S1). In general,
each one of the top five SNPs (ranked by P-value) explained only a
small proportion of the phenotypic variation, and these values were
similar between the two approaches. The total amount of variation
explained by the top five SNPs ranged from 3% for wing length to 5.8%
for total badge using the repeated measures, and from 3.3% for wing
length to 10.9% for total badge using the mean values (Supplementary
Tables S9 and S11). The ranking of the top five SNP associations was
often similar between the two approaches, although they were not
always shared (Supplementary Tables S9 and S11).
As for house sparrows, the results from the two GWAS in collared

flycatchers were also concordant. In neither approach did we find
significant associations between SNP markers and any phenotypic
traits with the exception of tarsus length (SNP N00199:174262 on

Table 4 Descriptive information (for between-species comparison) on Ni and Nr of each trait with respective phenotypic mean, s.d. and VP

Ni Nr Mean s.d. Repeated measures Mean values

h2kin(rep) s.e. VP VA h2kin(mean) s.e. VP VA

House sparrow

Tarsus length 816 1560 19.63 0.84 0.484 0.066 0.720 0.348 0.459 0.065 0.711 0.330

Wing length 816 1564 80.18 2.25 0.376 0.057 3.962 1.490 0.505 0.064 3.927 2.001

Body mass 815 1612 31.61 2.21 0.287 0.056 4.198 1.205 0.410 0.066 3.825 1.721

Bill depth 816 1605 8.15 0.30 0.257 0.055 0.068 0.017 0.375 0.066 0.068 0.026

Bill length 816 1603 13.78 0.60 0.368 0.059 0.257 0.095 0.503 0.064 0.253 0.129

Total badge size 393 746 20.07 0.99 0.132 0.072 0.752 0.099 0.262 0.112 0.752 0.197

Visible badge size 390 747 15.88 1.56 0.099 0.066 0.952 0.094 0.099 0.097 0.908 0.094

Collared flycatcher
Tarsus length 819 1923 19.45 0.67 0.284 0.06 0.48 0.14 0.466 0.07 0.45 0.20

Wing length 822 1981 82.32 2.09 0.233 0.06 4.02 1.60 0.397 0.07 4.41 1.75

Body mass 815 1978 14.19 1.43 0.203 0.05 0.89 0.26 0.290 0.08 2.06 0.60

White wing patches 820 1974 32.93 16.9 0.140 0.05 195.6 46.4 0.237 0.07 284.6 67.5

Abbreviations: GWAS, genome-wide association studies; h2kin (mean), GWAS with mean values; h2kin (rep), GWAS with repeated measures; Ni, number of individual; Nr, number of record; SNP,
single-nucleotide polymorphism; VA, total additive genetic variance; VP, total phenotypic variance.
These analyses use a thinned data set for both species such that marker density and sample size are identical (n=825 individuals, n=6348 SNPs). Note that sample size for badge size traits in
house sparrow is smaller (only present in males).
Heritability estimates with respective s.e.'s and total VA for phenotypic traits of two passerines estimated using h2kin (rep) and h2kin (mean).

Table 5 Descriptive information (for between-species comparison) on

heritability values with respective s.e., VP and VA for phenotypic traits

of two passerines estimated using the Zaitlen et al. (2013) approach

VP

SNP-based heritability

Total narrow-sense

heritability

h2g s.e. VA h2gkin s.e. VA

House sparrow
Tarsus lengtha 0.722 0.000 0.136 0.000 0.412 0.140 0.297

Wing lengthb 2.320 0.000 0.149 0.000 0.282 0.144 0.654

Body mass 4.051 0.358 0.163 1.451 0.358 0.145 1.450

Bill depth 0.065 0.342 0.165 0.022 0.342 0.145 0.022

Bill length 0.245 0.103 0.141 0.025 0.205 0.128 0.050

Total badge 0.763 0.149 0.311 0.114 0.257 0.305 0.196

Visible badge 0.970 0.000 0.314 0.000 0.258 0.291 0.250

Collared flycatcher
Tarsus length 0.465 0.232 0.117 0.108 0.620 0.083 0.288

Wing length 3.38 0.417 0.122 1.411 0.529 0.083 1.791

Body mass 0.649 0.163 0.126 0.106 0.307 0.081 0.199

White wing patches 141.22 0.048 0.126 6.77 0.186 0.093 26.27

Abbreviations: SNP, single-nucleotide polymorphism; VA, total additive genetic variance; VP, total
phenotypic variance.
SNP-based (h2g) and total narrow-sense heritability (h2640 gkin).
These analyses use a thinned data set for both species such that marker density and sample
size are identical (n=825 individuals, n=6348 SNPs). Note that sample size for badge size
traits in house sparrow is smaller (only present in males).
aOne variance component was constrained from the second iteration.
bOne variance component was constrained from the first iteration.
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chromosome 4); this SNP explained a small amount of the variation
(3% using repeated measures and 4% using mean values). Across all
the traits measured, allelic variation at the top five SNPs was
responsible for between 3.3 and 11.4% of the phenotypic variation
(Supplementary Tables S9 and S12, Supplementary Figures S2 and S4).

DISCUSSION

Understanding the genetic architecture of traits in wild populations
can better elucidate the mechanisms responsible for trait evolution,
including the expected rate of evolutionary change (Barton and

Keightley, 2002). In this study, we used large-scale genotype data
from custom SNP arrays from two passerine species to examine the
genetic architecture of morphological traits. Using genomic data, we
demonstrate that these traits are heritable (Tables 2 and 3), and
chromosome partitioning revealed that for many traits the proportion
of variance explained by a chromosome scaled with its size, suggesting
a polygenic basis (Figures 2 and 3). This interpretation was further
supported by the GWAS that did not detect any large-effect loci
(Supplementary Tables S9–S12). Overall, our results add further
support for a polygenic basis in morphological, sexually selected and
life-history traits as earlier documented, for example, in great tit
(Santure et al., 2013, 2015), Soay sheep (Bérénos et al., 2015) and
collared flycatcher (Husby et al., 2015; Kardos et al., 2016).
The different approaches used here to estimate heritability gave

similar values to that seen in previous studies using pedigree
approaches in both species (Gustafsson, 1986; Jensen et al., 2003,
2008). As documented in a previous pedigree study (for example,
Åkesson et al., 2008), the use of repeated measures resulted in
somewhat lower estimates of heritability, and this was also the case
for genomic heritability in the GWAS context (Rönnegård et al.,
2016). Our results support this finding (Table 2), which is a result of
reduced residual variance in the mean trait models. Our estimates of
heritability were generally lower than the average heritability estimates
for morphological traits in wild systems (Postma, 2014), which seems
consistent with previous reports that genomic heritabilities tend to be
lower than heritabilities estimated from pedigree-based animal models
(Zaitlen et al., 2013; de los Campos et al., 2015).
A relatively new measure is the SNP-based heritability, which

estimates how much of the variation in a trait is tagged by the SNP
array used after accounting for the variance explained by similarity
between relatives. Studies in humans have demonstrated that the SNP-
based heritability is generally lower than the pedigree heritability (Yang
et al., 2010), suggesting that not all causal sites are tagged by the SNP
arrays used. We used a recent approach developed by Zaitlen et al.
(2013) to simultaneously estimate the SNP-based heritability (h2g) and
the total narrow-sense heritability (h2gkin). In general, and as

Figure 2 Scatterplot of the relationship between chromosome size (Mb) and the variance explained by each chromosome for seven phenotypic traits of house
sparrows (Pearson correlation: Po0.05 for tarsus length, body mass, bill length and visible badge; P40.05 for wing length, bill depth and total badge).

Body Mass (r=0.144)

V
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 e

ac
h 

ch
ro

m
os

om
e

Tarsus length (r=0.656)

Wing length (r=0.269)

Chromosome Length (Mb)V
ar

ia
nc

e 
ex

pl
ai

ne
d 

by
 e

ac
h 

ch
ro

m
os

om
e

0 50 100 150

0.00

0.10

0.20

0 50 100 150

0.00

0.10

0.20

0 50 100 150

0.00

0.10

0.20

0 50 100 150

0.00

0.10

0.20

White wing patch (r=-0.041)

Chromosome Length (Mb)Chromosome size (Mb) Chromosome size (Mb)

Figure 3 Scatterplot of the relationship between chromosome size (Mb) and
the variance explained by each chromosome for tarsus length (Po0.01),
wing length (P=0.215), mass (P=0.431) and white wing patches
(P=0.824) for collared flycatchers.
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expected, the SNP-based heritability tended to be lower than the total
narrow-sense heritability (Tables 3 and 5). This could be because of a
relatively low density of SNPs, compared with relatively many related
individuals. Thus, we might estimate a higher heritability by using
genomic relatedness to assess resemblance between relatives than by
assessing the phenotypic variance explained by tagged SNPs. The SNP-
based heritability in house sparrows was generally lower than that in
collared flycatchers (0–0.185 versus 0.080–0.538, respectively), which
was not unexpected, given that marker density is higher for collared
flycatchers than house sparrows. These differences in SNP-based
heritability may also be the result of house sparrows being more
related than collared flycatchers as a consequence of their life-history
characteristics.
We therefore thinned the collared flycatcher data set to have 6348

SNPs and the house sparrow data set to have 835 individuals.
Interestingly, both h2gkin and h2(mean) showed that there was an
upward bias in the heritability estimates in house sparrows compared
with the full data set (Tables 4 and 5). This indicates that there may be
an inflation of heritability estimates and effect sizes at lower biological
sample sizes. We did not see a similar effect in flycatchers, where we
thinned the number of markers. This could be because the number of
markers in the full data set was already relatively low, particularly for
the linkage disequilibrium structure typical in passerines (Kawakami
et al., 2014; Kardos et al., 2016).
The method by Zaitlen et al. (2013) has not yet, to our knowledge,

been used in other studies of natural populations. Surprisingly, the
proportion of the heritability explained by the SNPs in our study is
similar or higher to that seen in humans (Yang et al., 2010). However,
these data sets have substantial differences in terms of SNP density,
sample sizes, level of relatedness between individuals and chromosome
architecture. As we have demonstrated by thinning the sparrow data
set to fewer individuals, there may be an inflation of the amount of
phenotypic variation explained by kinship-based methods when fewer
individuals are included in an analysis. Simulations are needed for a
robust comparison and to understand the effects of these differences
in the data set when estimating SNP-based heritabilities.
For some traits, chromosome-partitioning analyses demonstrated a

significant positive association between the amount of variation
explained by a chromosome and the size of that chromosome, as
would be expected if the trait was polygenic (Figures 2 and 3).
However, we did not find significant correlation between chromosome
size and proportion of variance explained for wing length, bill depth
and total badge in house sparrows, or wing length, body mass and
white wing patches in collared flycatchers, although some larger
chromosomes explained substantial amounts of the overall variation
(Figures 2 and 3). Similar morphological traits have been identified as
polygenic in other species—for example, wing length, weight, tarsus
length, clutch size and egg weight in great tits (Robinson et al., 2013;
Santure et al., 2015) and jaw size and body mass in Soay sheep
(Bérénos et al., 2015). In addition, Schielzeth et al. (2012) used a QTL
linkage mapping approach to find six genomic regions linked to
variation in wing length in a captive population of zebra finches. All
putative regions showed similar effect sizes (3.9–8.3%) and together
explained only about half of the heritability in wing length. The many
candidate genes within the QTL regions further suggest a polygenic
basis for wing length in zebra finches. In total, it seems that these
morphological traits in passerines could generally be polygenic.
One may still argue that our results are not totally consistent

with previous findings. However, it is important to keep in mind
that the larger chromosomes tended to explain substantial variance
also in traits that did not show significant correlation between

chromosome size and proportion of variance explained
(Supplementary Tables S5–S7), as expected under a polygenic model.
Moreover, estimating relatedness on the microchromosomes is
difficult because we have very few markers on these, which makes
estimation difficult (and potentially unreliable), as indicated by the
problems with model convergence. An additional consideration is that
it is not clear that chromosomes that contribute disproportionately to
trait variation, given their size should harbor large-effect QTLs because
it is equally plausible that many small-effect loci cluster on that
chromosome. As pointed out by Schielzeth and Husby (2014), such
clustering of many loci of small effect on a single chromosome is not
uncommon and can involve association with biologically relevant
pathways for a specific trait. Some caution is, therefore, warranted
when making predictions about the genetic architecture of traits from
regressions of chromosome size on proportion variance explained.
Finally, we did not find any significant single large-effect-size markers
for these traits on the chromosomes that explained a disproportional
part of the variance. Taken together, most evidence, therefore, points
in the direction of a polygenic basis also for these traits.
We only detected two SNP markers that met the genome-wide

significant threshold: one SNP on chromosome 20 for bill morphology
in house sparrows that explained 1.9% of the phenotypic variation and
one SNP on chromosome 4 in the collared flycatcher for tarsus length
explaining 3% of the variation. SNP 11485 on chromosome 20
associated with bill length in house sparrows might be related to a
previously detected QTL on chromosome 20 for beak morphology in
zebra finches (Knief et al., 2012). In the zebra finch, this QTL was
found to be located at 0.86–14.17 Mb, and the position of the SNP in
our study is 7.6 Mb. We are not aware of any previous studies on
tarsus length that show an association in the region on chromosome 4
where the QTL for tarsus length in the collared flycatcher was located.
Another interesting finding in our study was the presence of two

shared SNPs for different traits in house sparrows. SNP 15053 was
among the top five SNPs associated with both total badge and visible
badge size when using repeated values (Supplementary Table S9), and
SNP 11485 was among the top five SNPs associated with bill depth and
bill length when using the mean values (Supplementary Table S11).
Shared loci among traits will result in a genetic correlation between
these traits (that is, total badge versus visible badge size and bill depth
versus bill length), and these are traits that have previously been found
to be genetically correlated in this species (Jensen et al., 2008).
In summary, we genotyped a large number of individual house

sparrows and collared flycatchers on custom genome-wide SNP arrays
and examined the genetic architecture of a number of phenotypic
traits. By estimating and using kinship matrices based on genome-
wide SNP data, we demonstrated that all traits showed substantial
amount of genetic variance, in line with results from previous
pedigree-based approaches. When applying a novel method to
estimate the proportion of variance in the traits captured by the
genotyped SNPs (SNP-based heritability, h2g), our estimates were
somewhat larger than those expected considering the sample size and
number of SNPs used. The SNP-based heritability was lower than the
total narrow-sense heritability in both species, suggesting that not all
causal sites are tagged by the SNP arrays used. Chromosome
partitioning as well as GWAS showed several lines of evidence,
suggesting that the investigated traits are polygenic. This was indicated
by a positive correlation between chromosome size and amount of
variance explained for most traits, a lack of any large-effect QTLs and
the small amount of total variation explained by the top SNPs in the
GWAS. Our results are in line with other recent studies showing a
polygenic basis to phenotypic traits in natural populations.
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Finally, one major conclusion to make from this work is that
genomic techniques, even with low marker densities, can be useful to
provide a better understanding of short-term evolutionary change of
phenotypic traits in natural populations. We are currently transition-
ing to studies at the level of entire genomes but low-density SNP
arrays can be very useful tools. In particular, these SNP arrays are a
cost-efficient resource for addressing questions that require large
sample sizes from natural populations.
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