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Abstract: The human face is complex and multipartite, and characterization of its genetic 

architecture remains challenging. Using a multivariate genome-wide association study (GWAS) 

meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals 

(120 also study-wide significant) associated with normal-range facial variation. Follow-up 

analyses indicate that the regions surrounding these signals are enriched for enhancer activity in 

cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with 

associations to different facial phenotypes, and there is evidence for potential coordinated actions 

of variants. In sum, our analyses provide insights for understanding how complex morphological 

traits are shaped by both individual and coordinated genetic actions. 

 

Introduction:  

In 1991, Atchley and Hall epitomized one of the major problems in contemporary 

biology as the need '"to understand how complex morphological structures arise during 

development and how they are altered during evolution" (p.102)1'. This problem continues to 

captivate biologists, geneticists, anthropologists, and clinicians almost three decades later. In 

their review, the authors describe a “complicated developmental choreography” in which 

intrinsic genetic factors, epigenetic factors, and interactions between the two make up the 

progeny genotype, which engages with the environment to ultimately produce a complex 

morphological trait composed of separate component parts1. We now understand that the 

intrinsic genetic factors ultimately contributing to complex morphological traits consist not only 

of single variants altering protein structure and/or function, but also non-coding variants and 

interactions among variants, each affecting multiple tissues and developmental timepoints. This 

realization requires methods capable of describing the genetic architecture of complex 
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morphological traits, which includes identifying the individual genetic variants contributing to 

morphological variation and interactions among those variants2,3. 

The human face, an exemplar complex morphological structure, is highly multipartite and 

results from the intricate coordination of genetic, cellular, and environmental factors4–6. Through 

prior genome-wide association studies (GWAS), over 100 loci have been implicated in normal-

range facial morphology7–23 (Supplementary Table 1). However, as with all complex 

morphological traits, our ability to identify and describe the genetic architecture of the face is 

limited by our ability to accurately characterize its phenotypic variation4, identify variants of 

both large and small effect15, and identify interactions between variants. We previously described 

a data-driven approach to facial phenotyping, which facilitated the identification and replication 

of 15 loci involved in global-to-local variation in facial morphology16. Here, we apply this 

phenotyping approach to two larger cohorts from the US and UK (nTotal = 8,246; Supplementary 

Table 2) and apply multivariate techniques to uncover new biological insights into the genetic 

architecture of the human face. We now identify 203 genome-wide-significant (120 also study-

wide significant) signals, located in 138 cytogenetic bands, associated with multivariate normal-

range facial morphology. Many of these loci harbor genes that are involved in craniofacial 

syndromes but had not yet been observed in GWAS for normal-range facial morphology; 

however, 53 genome-wide significant (26 also study-wide significant) peaks are located in 

regions with no previously known role in facial development or disease, potentially pointing to 

previously unknown genes and pathways involved in facial development. We additionally 

provide evidence that variants at our genome-wide-significant peaks are involved in regulating 

enhancer activity in cell types controlling facial morphogenesis across the developmental 

timeline. Furthermore, we reveal interactions between variants at different loci affecting similar 
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aspects of facial shape variation, identifying gene sets that work in concert to build human faces. 

With this work, we not only push forward our understanding of human facial genetics, but also 

illustrate the potential for researchers to confront Atchley and Hall’s problem: by intensively 

characterizing complex morphological variation and using advanced methods to identify factors 

involved in the developmental choreography of complex morphological structures. 

 

Results 

Multivariate phenotyping and meta-analysis framework 

To study facial variation at both global and local scales, we start with a set of three-

dimensional (3D) facial surface scans, upon which we map a dense mesh of 7,160 homologous 

vertices24. We then apply a data-driven facial segmentation approach, defined by grouping 

vertices that are strongly correlated using hierarchical spectral clustering16,25. The configurations 

of each of the resulting 63 segments are then independently subjected to a Generalized 

Procrustes analysis, after which principal components analysis (PCA) is performed in 

conjunction with parallel analysis to capture the major phenotypic variation in each facial 

segment26,27 (Extended Data Fig. 1). The number of principal components (PCs) kept at this 

stage of the analysis ranged from 7 to 70, with segments containing large numbers of quasi-

landmarks generally requiring more PCs to describe the variation in that segment. The inherent 

shape variability in each segment also plays a role in the number of PCs retained by parallel 

analysis, with more variable segments retaining more PCs. For example, though segments 5 and 

25 contain similar numbers of quasi-landmarks, because the variability of the nose (segment 5) is 

generally greater than that of the lower cheeks (segment 25), the parallel analysis for segment 5 

retained 32 PCs while for segment 25 it retained only 20 PCs (Extended Data Fig. 1B). 
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We then tested for genetic association between the facial PCs and 7,417,619 single-

nucleotide polymorphisms (SNPs) using a data-driven approach (Extended Data Fig. 2). Within 

each segment, instead of a priori selecting the PCs of interest, or treating each of the 63 

segments as a single “trait”, we use canonical correlation analysis (CCA) to first identify the 

linear combination of components in each segment maximally correlated with the SNP being 

tested in the identification cohort. We call this multivariate combination of PCs the “trait.” Thus, 

each SNP is associated (though not always with significance), with its own “trait” in each 

segment. Subsequently, the verification cohort is projected onto each of these traits, creating 

univariate “phenotype” variables which are tested for genotype-phenotype associations by using 

linear regression. The projection ensures that the shape variation tested in the verification step is 

equivalent to the “trait” used in the identification step. The identification and verification P 

values are then meta-analyzed using Stouffer’s method28,29. The whole process is then repeated, 

switching the dataset used for identification and verification, thereby resulting in 126 meta-

analysis P values and traits (63 segments × 2 meta-analysis tracks) for each SNP. Further details 

are available in the Methods and Supplementary Notes 1 and 2. 

 

Sharing of genome-wide signals between facial segments 

We first assessed the degree to which variation in each facial segment shares the same 

patterns of association across the genome by computing the linkage disequilibrium score 

correlation (LDSC) based on genome-wide association P values for each pair of facial 

segments30,31. This 63 × 63 matrix of correlations was visualized on top of the facial 

segmentation hierarchy to assess between-segment correlations within and between facial 

quadrants (Extended Data Fig. 3), though it is important to note that these LDSCs should not be 
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considered “genetic correlations'' in the typical way of a univariate trait, since the z-scores used 

are unsigned. The LDSCs were highest between segments of the same facial quadrant (i.e. lips, 

nose, lower face, upper face), validating the hierarchical clustering used to initially define the 

segments (Extended Data Fig. 3B). Average-linkage hierarchical clustering of the facial 

segments based on the correlation values gave rise to four main clusters, each primarily 

corresponding to segments from the same quadrant (Extended Data Fig. 4). Despite substantial 

within-quadrant similarity, there were notable correlations between groups of segments from 

different quadrants (Extended Data Fig. 3a). Some of these specific correlations reflect close 

physical proximity of the segments in different quadrants (e.g. segments 12 and 33), but some 

correlations seem to reflect the shared embryological origins of groups of segments. Specifically, 

segments representing the nose (quadrant II) and upper face (quadrant IV) cluster together, and 

most segments representing the lips (quadrant I) and lower face (quadrant III) cluster together 

(Extended Data Fig. 4). Quadrants II and IV together approximate the frontonasal prominence, 

which appears earlier in development than the mandibular and maxillary prominences, which are 

approximated by Quadrants I and III32. 

 

Genome-wide-association meta-analysis 

In total, we identified 17,612 SNPs with P values (PMeta-US and/or PMeta-UK) lower than the 

genome-wide threshold (P ≤ 5 × 10-8). Of these, 11,398 SNPs also passed the study-wide 

significance threshold (P ≤ 6.96 × 10-10) (Supplementary Fig. 1). For each peak passing the 

genome-wide threshold, we designated the SNP with the lowest P value across all facial 

segments as the “lead SNP,” refining our results to 218 genome-wide significant lead SNPs. Of 

these, 203 SNPs showed consistent genetic effects on the trait identified in the US- and UK-
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driven meta-analyses in the facial segment with the lowest P value for that SNP (Fig. 1; 

Supplementary Table 3) and 120 of these were also below study-wide significance. Visual 

representations of the LocusZoom33 and effect plots for each of the 203 genome-wide-significant 

SNPs are available in the FigShare repository34. 

 

Figure 1. Overall results of US-driven and UK-driven meta-analyses. On the left, numbered 
blocks representing the 63 facial segments arranged and colored according to quadrant (I = 
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orange; II = red; III = light blue; IV = dark blue), and the full face (white), and segments 2 (light 
orange) and 3 (ice blue). The histogram arranged on the left side represents the number of 
genome-wide-significant lead SNPs reaching their lowest P value in each segment with each 
rectangle representing one SNP. The US-driven meta-analysis results are on the outside of the 
circle and the UK-driven meta-analysis results are on the inside of the circle. In the center, the 
global to local facial segmentation of all 3D images included in this analysis, obtained using 
hierarchical spectral clustering, colored to match with the quadrants on the left. On the right, a 
Miami plot of the US-driven meta-analysis P values on the outside and the UK-driven meta-
analysis P values on the inside, with chromosomes colored and labeled. Values plotted are the 
result of Stouffer’s meta-analysis of one-sided right-tailed identification and verification P 
values, detailed in the Methods, and are -log10 scaled (range: [0-80]). The red line represents the 
genome-wide-significance threshold (P = 5 × 10-8) and the black line represents the study-wide 
threshold (P = 6.96 × 10-10). Created using Circos v0.69-835. 
 

The global-to-local approach means that we often identified associations between a single 

SNP and variation in many facial segments. In this manuscript, we primarily focus on the 

segment in which the SNP had its lowest P value (the ‘Best segment’) and provide information 

on which meta-analysis track (Meta-US or Meta-UK) in which the SNP reached this significance 

level (the ‘Best meta-analysis track’). Thus, throughout the rest of the manuscript, the reported P 

values for each SNP will be in the format of PBest track (Best segment) = value. By plotting the 

strongest association results for each segment (Fig. 1, left), segments 1 and 2 are visibly the 

“Best segment” for most SNPs, with n = 20 SNPs reaching lowest significance in the full face 

(segment 1) in the US-driven meta-analysis (n = 15 for Meta-UK) and n = 19 SNPs reaching 

lowest significance in segment 2 in the US-driven meta-analysis (n = 18 for Meta-UK). 

 

Genes near lead SNPs are enriched for both craniofacial and limb development 

In a GREAT36 analysis of the regions surrounding the 203 genome-wide significant lead 

SNPs, the top ten terms (based on lowest binomial P values) in the mouse phenotype, human 

phenotype, and gene ontology (GO) biological processes categories are all highly relevant to 

craniofacial shape and overall morphology (Extended Data Fig. 5A), with the top human 
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phenotype being oral clefting. A FUMA37 analysis of the same regions highlighted genes 

overlapping several pathways related to abnormal cellular maintenance and also included 

pathways highly relevant for morphological development, like the Wnt, Hedgehog, and TGFβ 

signaling pathways (Extended Data Fig. 5B). 

 

Facial GWAS peaks are enriched for enhancers specific to cell types across the timeline of 

facial development 

To assess the likely cell-types and developmental timepoints in which our GWAS regions 

are active, we compiled H3K27ac ChIP-seq signals detecting a marker of the promoters of 

transcriptionally active genes and active distal enhancers38,39, from approximately 100 different 

cell types and tissues, including cranial neural crest cells (CNCCs), fetal and adult osteoblasts, 

mesenchymal stem cell-derived chondrocytes, as well as dissected embryonic craniofacial tissues 

(Carnegie stages 13-20). Both CNCCs and craniofacial tissues showed the highest H3K27ac 

signals in the vicinity of the 203 genome-wide-significant lead SNPs, whereas no H3K27ac 

signal was observed for 203 random SNPs matched for allele frequency and distance to the 

nearest gene (Fig. 2A). The difference in H3K27ac signal between the 203 genome-wide-

significant lead and random SNPs was significant based on a two-sided Wilcoxon rank-sum test 

for many cell types and tissues, with CNCCs and embryonic craniofacial tissues having the 

greatest median differences (Extended Data Fig. 6; Supplementary Table 4). 
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Figure 2. Regions near the 203 genome-wide significant lead SNPs are enriched for 

enhancers preferentially active in cranial neural crest cells and embryonic craniofacial 

tissue. (A) Each boxplot represents the distribution of H3K27ac signal in 20-kb regions around 
the 203 genome-wide significant lead SNPs (top) or 203 random SNPs (bottom) in one sample, 
with cranial neural crest cells and embryonic craniofacial tissue highlighted. Boxplots plot the 
first and third quartiles, with a dark black line representing the median. Whiskers extend to the 
largest and smallest values no further than 1.5 × the inter-quartile range from the first and third 
quartiles, respectively. The dashed red lines represent the median level of H3K27ac RPM signal 
across all cell types and tissues. A larger labeled version of (A) is available in the FigShare 
repository34. For each class of regulatory element in either (B) cranial neural crest cells or (C) 
embryonic craniofacial tissue, the number of elements within 20 kb of the 203 genome-wide 
significant lead SNPs was compared to the number within 20 kb of 203 random SNPs using a 
two-sided Fisher’s exact test. Points represent estimated odds ratio and surrounding bars 
represent 95% confidence intervals. Asterisk indicates any Benjamini-Hochberg adjusted P value 
< 0.05. For embryonic craniofacial tissue, enrichments were calculated for each Carnegie stage 
separately, as Wilderman et al.40 performed chromatin state segmentation for each stage 
separately. Descriptions of all mnemonics can be found at: 
https://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp. 
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To distinguish enrichment between coding and noncoding elements, we examined 

chromatin signals in CNCCs and embryonic craniofacial tissues in more detail, using ChIP-seq 

data on additional chromatin marks and transcription factors40,41. In the CNCCs, candidate 

regulatory regions in the vicinity of the 203 genome-wide significant lead SNPs were 

significantly enriched for strong and intermediate enhancers and depleted in weak promoters 

(Fig. 2B). In embryonic craniofacial tissue, all developmental stages sampled were significantly 

enriched for the chromHMM states of active enhancers, active enhancer flanks, and weak 

enhancers, and depleted in quiescent/low and heterochromatin states (Fig. 2C). 

Cell-type-specific activity patterns were used to further subdivide the 203 genome-wide-

significant lead SNPs by using k-means clustering of H3K27ac signals (Fig. 3). As expected, 

many lead SNPs showed specific activity for CNCCs and craniofacial tissue (e.g. cluster 5), 

representing activity in an early time point in development. Interestingly, however, some SNPs 

showed preferential activity for either CNCCs or craniofacial tissue (e.g. clusters 1 and 2). 

Greater specificity for CNCCs could arise because CNCCs constitute a relatively small 

proportion of the cells present in craniofacial tissue at Carnegie stages 13-20, while greater 

specificity for craniofacial tissue could be due to activity in further differentiated cell-types of 

the face. 
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Figure 3. Activity of 203 genome-wide-significant lead SNPs in all cell-types studied. 

H3K27ac signal calculation and k-means clustering of SNPs were performed as described in 
Methods. Average linkage clustering on Euclidean distances was performed both within each of 
the 6 row clusters and for all columns. Descriptions of all mnemonics can be found 
at: https://egg2.wustl.edu/roadmap/web_portal/meta.html 
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malformations or animal models), but which had not yet been observed in GWAS for normal-

range facial morphology. Our GWAS additionally revealed 53 genome-wide-significant (26 also 

study-wide-significant) peaks at loci harboring genes with no previously known role in facial 

development or disease. The annotation for each GWAS peak can be found in Supplementary 

Table 3. 

 

Genomic regions harboring multiple lead SNPs 

With our phenotyping and analysis framework, in many cases we are able to provide a 

more nuanced understanding of the underlying genetic architecture of facial variation. For 

example, variants at the TBX15-WARS2 locus (1p12; Fig. 4) were previously reported to be 

associated with forehead prominence16 and self-reported chin dimples11, already indicating that 

this locus has multiple spatially separated effects on the face. In our current analysis, we see the 

same influence on forehead morphology as previously reported by our group16, with lead SNP 

rs3936018, located in the promoter region of WARS2, reaching its lowest significance in segment 

14 (PMeta-US(Seg. 14) = 8.01 × 10-58). Interestingly, this lead SNP overlaps in location with a SNP 

not originally identified in our peak selection approach, rs12027501 (PMeta-US(Seg. 1) = 1.03 × 10-

41). The latter was most significant in segment 1, the full face, and is not a good proxy for the 

former (r2: 0.075, normalized coefficient of linkage disequilibrium D’: 0.979), indicating it is 

likely an independent statistical signal. Another signal, approximately 275 kb upstream of TBX15 

(rs7513680), was most significantly associated with morphology in segment 51 (PMeta-UK(Seg. 

51) = 7.03 × 10-13), representing the cheek area around the corners of the mouth. Lastly, another 

GWAS peak is present approximately 301 kb downstream of WARS2 (rs17023457) with an 

effect in the upper cheeks (PMeta-UK(Seg. 48) = 3.26 × 10-15). Of interest, we observed twenty-four 
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such loci with multiple genome-wide significant peaks that are each associated with different 

facial traits (Supplementary Table 5, Supplementary Data 1). 

 

Figure 4. TBX15-WARS2 multi-peak locus. LocusZoom33 plots and facial effects for four 
association signals near the TBX15-WARS2 locus. Clustering based on r2 was performed to 
separate non-correlated signals, resulting in the separation of four SNPs. Color for each SNP is 
based on cluster association, with saturation indicating r2 correlation with the most significant 
SNP in the cluster. SNPs represented by diamonds are the genome-wide significant lead SNPs 
also present in the 1000G Phase 3 dataset; SNPs represented by circles are adjacent SNPs also 
present in the 1000G Phase 3 dataset; SNPs represented by asterisks are those not present in the 
1000G Phase 3 dataset. For the segment in which each lead SNP had its lowest effect, we plot 
the facial effects for the lead SNPs reaching significance in that segment as the normal 
displacement (displacement in the direction normal to the facial surface) in each quasi-landmark 
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going from minor to major allele, with red colored areas shifting outward while blue colored 
areas shift inwards. 

 

Genetic interactions impacting facial variation 

 To better analyze and rank the effects of multiple genotypes on a facial trait, we utilized 

structural equation modeling (SEM) to refine our understanding of which groups of genome-

wide-significant variants best explain the variance observed in each facial segment. SEM is a 

multivariate statistical analysis technique that analyzes structural relationships between measured 

variables (e.g. genetic variants and covariates) and latent constructs (univariate phenotypes 

derived from the PCs of the analyzed facial segment). This was done in an iterative manner, 

resulting in 50 well-fitting SEM models (corresponding to 50 facial segments; Supplementary 

Data 2). For each of these 50 models, the output included a univariate latent variable and a list of 

variants ranked by their estimated contribution to that variable, highlighting the polygenic nature 

of facial variation captured by the latent variable. Higher correlation of cross-sample H3K27ac 

activity was found when comparing SNPs deemed significant by the same SEM model than 

when comparing SNPs non-significant in the same SEM model (Extended Data Fig. 7). 

Additionally, of the SEM-significant SNPs, four SNP combinations displayed evidence of 

pairwise epistatic interactions (Table 1; Fig. 5; Extended Data Fig. 8; Supplementary Note 3).  
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Figure 5. Phenotypic and marginal distributions for the rs62443772 - rs76244841 epistatic 

pair. Plotted in the first column and last row are the marginal phenotypic distributions of the 
genotypes, which shows the phenotypic distribution that would occur if the two genotypes were 
acting alone. The median phenotype was also calculated for each diplotype as the average of the 
marginal medians of the singular genotypes (blue dashed lines on the colored plots). The 
observed diplotype median (black line on the colored plots) was compared to the expected 
diplotype median (blue dashed lines on the colored blots) via Mood’s Median test42 with one 
degree of freedom. The resulting log transformed P value was used to color the boxplots to 
illustrate significance, unless the difference was non-significant, in which the color was 
automatically set to grey. Within each colored boxplot is the untransformed Mood’s median P 
value as well as the number of individuals used for significance testing. Boxplots plot the first 
and third quartiles, with a dark black line representing the median. Whiskers extend to the largest 
and smallest values no further than 1.5 × the inter-quartile range from the first and third quartiles, 
respectively. 

 

Table 1. Four SNPs with evidence of epistatic interactions. For each of the 50 segments with 
a refined SEM model, we used the latent variables and SNP lists to test for evidence of epistasis 
using a two-sided linear regression epistasis test in Plink 1.9, with Bonferroni multiple testing 
correction. For the four SNP pairs with significant evidence of epistatic interactions, this table 
lists the epistasis P value, rsID, GRCh37 location, and gene annotation. The phenotypic and 
marginal distributions for the pairs are depicted as boxplots in Figure 5 and Extended Data Fig. 
8. 

 SNP 1 SNP 2 Test P value 
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Segment RSID Location Annot. Gene RSID Location Annot. Gene statistic 

6 rs10838269 11:44378010 ALX4 rs11175967 12:66321344 HMGA2 23.9422 9.94 × 10-7 

9 rs76244841 1:2775953 PRDM16 rs62443772 7:42131949 GLI3 16.5745 4.68 × 10-6 

11 rs6740960 2:42181679 PKDCC rs6795164 3:133885925 SLCO2A1 16.3707 5.21 × 10-5 

22 rs7373685 3:128107020 GATA2 rs7843236 8:121980512 SNTB1 15.7837 7.10 × 10-5 

 

Discussion 

 In their review, Atchley and Hall provided a framework with which we can better 

understand and describe the development of complex morphological structures. In this analysis, 

we have focused on one part of this framework and have identified intrinsic genetic factors 

contributing to normal-range variation in the structure of the human face. By implementing an 

open-ended multivariate association method, in which the inherent morphological variation 

within each of these segments drives the association, and by using both standard and modified-

for-multivariate follow-up bioinformatic approaches, we describe the association between SNPs 

and facial traits as well as the likely cellular functions of the regions surrounding these SNPs. 

We also highlight regions with multiple SNPs affecting different facial phenotypes as well as 

evidence for multiple SNPs working in concert to produce a single phenotype. Taken in sum, our 

results illustrate an avenue for investigating the coordinated processes underlying complex 

morphological structures, like the human face, at a deeper level than single associations between 

genotype and univariate phenotype. 

Overall, our association results reflect patterns from known biological processes. For 

instance, LD Score regression correlations between segments seem to reflect the shared 

embryological origins of different parts of the face, indicating that the hierarchical spectral 

clustering of the face based on structural correlations effectively partitions underlying genetic 
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signals into biologically coherent groups. It is additionally clear from the large number of 

genome-wide-significant SNPs reaching their strongest association in the full face and segment 2 

(covering the nose and upper lip) that these facial regions are “hot spots” for genomic signals 

(Fig. 1). In general, Quadrant II (representing the nose) and Quadrant IV (representing the 

forehead and eyes) had the most genome-wide-significant lead SNPs reaching lowest 

significance in segments within each quadrant. This is unsurprising, given the close relationship 

between visible facial features in those areas and the underlying skeletal structure. Indeed, 

regions with less correspondence to underlying skeletal structure, like the upper lip (Quadrant I), 

had many fewer lead SNPs reaching lowest significance in the contained segments, and facial 

regions with some structural correspondence but still greatly impacted by age and adiposity, like 

the lower face and cheeks (Quadrant III), had only slightly more. 

Reassuringly, the genes located within 500 kb of our genome-wide-significant lead SNPs 

were highly enriched for processes and phenotypes associated with craniofacial development and 

morphogenesis in humans and mice (Extended Data Fig. 5). Notably, the top human phenotype 

was oral clefting, indicating a substantial overlap between the genes involved in normal facial 

variation and those implicated in the most common craniofacial birth defect in humans. 

Furthermore, many of the surrounding genes to which the genome-wide-significant lead SNPs 

were annotated are known to be involved in pathways relevant for craniofacial development, 

such as the Wnt signaling and TGFβ pathways (Extended Data Fig. 5B). Our GWAS signals 

were also enriched for processes associated with limb development and related phenotypes, 

pointing to a shared genetic architecture between faces and limbs (Extended Data Fig. 5A) and a 

number of genes near our genome-wide significant loci (e.g. Dlx homeobox genes, BMP genes, 

and FGFR2) have well-established roles in limb development43. These findings are also 
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supported by the large number of human syndromes that present with both facial and limb 

malformations44.  

For the regions surrounding the 203 genome-wide-significant lead SNPs, both CNCCs 

and embryonic craniofacial tissues showed the highest enrichment in H3K27ac signal (Fig. 2A). 

These observations are consistent with (a) activity of our 203 genome-wide-significant lead 

SNPs in CNCCs and embryonic craniofacial tissues and (b) an embryonic origin for human 

facial variation across the timeline of facial development, as CNCCs represent an early time 

point in facial development whereas the craniofacial tissues represent progressively later time 

points. In both CNCCs and craniofacial tissue at all sampled developmental stages, regions in the 

vicinity of the 203 genome-wide-significant lead SNPs were significantly enriched for predicted 

enhancers and not promoters (Fig. 2B and C). This is an especially intriguing result, as recent 

evidence has described the action of multiple enhancers, each showing different tissue or timing 

specificity, in modulating expression levels to affect craniofacial development45. Complementing 

our GREAT analysis results, indicating that some genes near our GWAS peaks are involved in 

both facial and limb development, a subset of genome-wide-significant lead SNPs showed 

preferential activity in additional in vitro-derived cell types relevant to both the face and the rest 

of the skeletal system, including osteoblasts, chondrocytes, differentiating skeletal muscle 

myoblasts, fibroblasts, and keratinocytes (e.g. cluster 3; Fig. 3). Together, these results suggest 

that genetic variation underlying facial morphology operates by modulating enhancer activity 

across multiple cell types throughout the timeline of embryonic facial development. 

 Sixty-one genome-wide-significant peaks from our analysis did not overlap with the 

results of prior GWAS for normal-range facial morphology but were located nearby putative 

craniofacial genes implicated from human malformations or animal models. For instance, MSX1 
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has been implicated in orofacial clefting in humans46,47 and mice47,48, and is also widely 

expressed in lip and dental tissues during development49. We observed two distinct peaks at the 

MSX1 locus (4p16.2), one approximately 55 kb upstream of MSX1 with a pronounced effect on 

the lateral upper lip (lead SNP rs13117653; PMeta-US(Seg. 34) = 4.2 × 10-18) and a second peak, 

about 323 kb upstream of MSX1 and located in the intron of STX18, involving the lateral lower 

lip and mandible (lead SNP rs3910659; PMeta-UK(Seg. 25) = 4.45 × 10-9; Extended Data Fig. 9A-

E). This result could indicate a potential role of STX18 in craniofacial development, though the 

STX18 protein is primarily important for functioning of the endoplasmic reticulum. 

Alternatively, this result could provide further evidence that complex phenotypic effects seen in 

our human sample could be due to the action of multiple regulatory elements within a single 

locus. In support of this, Attanasio et al., demonstrated that the activity of Msx1 in the second 

pharyngeal arch and maxillary process of the e11.5 mouse embryo is recapitulated by the 

combined activity of two separate enhancers45. 

 We also identified 53 genome-wide-significant signals in regions harboring genes with 

no previously known role in craniofacial development or disease, though many of the implicated 

genes are known to have a general role in developmental processes critical to morphogenesis. 

For example, in the current study, variants at the DACT1 locus are associated with mandibular 

morphology (Extended Data Fig. 9F-H). DACT1 is an established antagonist of the Wnt 

signaling pathway, which is known to be involved in craniofacial development50, though DACT1 

is mostly studied for its involvement in gastric cancer. However, DACT1 has also been shown to 

inhibit the delamination of neural crest cells, further supporting its involvement in facial 

development51. These novel signals are promising new candidates of potential roles in facial 

morphogenesis. 
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In addition to better understanding which parts of the face had the most signals, we 

capitalized on the utility of facial segmentation via hierarchical clustering to finely parse out the 

effect of a SNP even within a complex genomic region. Notably, we observed 24 loci with 

multiple genome-wide-significant peaks each associated with different facial traits, suggesting 

that these variants might overlap with or be impacted by regulatory elements that affect the face 

in highly specific ways (Supplementary Table 5, Supplementary Data 1). An important 

consideration to our peak selection procedure is that it is statistical and heuristic in nature, being 

based on investigator-chosen thresholds of both distance and similarity of associated facial 

phenotypes, and thus is not perfect. Refining a peak selection approach based on combinations of 

distance, linkage disequilibrium (LD) patterns, and trait similarity was beyond the grasp of this 

paper, but we believe such an approach has potential for further interrogating the complex 

genetic architecture of facial variation, as we have illustrated using the TBX15-WARS2 locus 

(Fig. 4).  

 Given the complexity of the human face and its component traits, it is likely that the 

genetic architecture contributing to facial variation includes groups of genomic regions that 

contribute to the same facial trait, perhaps through actions in similar cell types or explicit 

interactions among variants. Importantly, genome-wide-significant SNPs that significantly 

explained variance in the same segment, based on the structural equation model (SEM) for that 

segment, showed higher correlations of cross-sample H3K27ac activity than when compared to 

SNPs which did not, indicating that the SEM-refined lists of SNPs for each segment are likely 

those that are similar in either their spatial or temporal cellular activity (Extended Data Fig. 7). 

Tests for epistasis using the SEM-refined SNP lists for each segment identified four SNP 

combinations with significant evidence of pairwise epistatic interactions (Table 1). For example, 
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rs76244841 (PRDM16 associated; PMeta-UK(Seg. 30) = 1.48 × 10-8) and rs62443772 (GLI3 

associated; PMeta-UK(Seg. 22) = 5.35 × 10-16) were found to have a significant interaction in facial 

segment 9, which covers the premaxillary soft tissue from the base of the columella to the oral 

commissure (Table 1; Fig. 5). Interestingly, PRDM16 and GLI3 are both part of a tetrameric 

Hedgehog signaling complex in Drosophila melanogaster (Supplementary Note 3)52–54. Overall, 

these results indicate that the statistical evidence of SNP groups influencing polygenic facial 

variation identified through SEM, and explicit variant interactions suggested by the epistasis 

analysis, are potentially representative of true biological relationships but must be confirmed 

with further study. 

 In conclusion, with this work we have not only reported genomic variants influencing 

normal-range facial variation, but have also sought to use our in-depth facial phenotyping 

approach and bioinformatic tools to illustrate one way in which researchers without access to 

functional follow-up analyses can delve deeper into the genetic architecture of complex 

morphological traits. These results illustrate the potential to highlight spatial and temporal 

connections between SNPs, representing a major step forward in our ability to characterize the 

polygenic genetic architecture of complex morphological structures. In performing an open-

ended and minimally restrictive study, we are optimistic that our results will be useful for other 

research efforts to better understand the biological forces that shape human and non-human 

morphology. 

 

Methods 

Sample and recruitment  
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The samples used for analysis included a combination of three independently collected 

datasets from the United States (US; nUS = 4,680) and one dataset from the United Kingdom 

(UK; nUK = 3,566), for a total sample size of n = 8,246. The US samples originated from the 3D 

Facial Norms cohort55 (3DFN) and studies at the Pennsylvania State University (PSU) and 

Indiana University-Purdue University Indianapolis (IUPUI). The UK dataset included samples 

from the Avon Longitudinal Study of Parents and their Children (ALSPAC)56,57. Institutional 

review board approval was obtained at each recruitment site, and all participants gave their 

written informed consent prior to participation. For children, written consent was obtained from 

a parent or legal guardian. Some individuals from the 3DFN and PSU samples were previously 

tested for associations with facial morphology in our prior work16. A breakdown of the samples 

used for analysis is shown in Supplementary Table 2 and further details are available in the 

Supplementary Methods. In all datasets, participants with missing information in sex, age, 

height, weight, or with insufficient image quality were removed.  

 

Genotyping and imputation 

Due to the several genotyping platforms used for the US cohort (details in the 

Supplementary Methods), we chose to impute the samples from each platform separately, then 

combine the imputed results58. For each dataset, standard data cleaning and quality assurance 

practices were performed based on the GRCh37 genome assembly. Phasing was performed using 

SHAPEIT2 (v2.r900)59 and imputation to the 1000G Phase 3 reference panel60 performed using 

the positional Burrows-Wheeler Transform61 pipeline (v3.1) of the Sanger Imputation Server 

(v0.0.6)62. After post-imputation quality control and intersection of imputed SNPs, a single 

merged dataset of all US participants was created with 7,417,619 SNPs for analysis.  
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The raw genotype data from ALSPAC were not available and restrictions are in place 

against merging the ALSPAC genotypes with any others. For this reason, ALSPAC genotypes, 

phased using SHAPEIT259 and imputed to the 1000G Phase 1 reference panel (Version 3)63 

using IMPUTE264, were obtained directly from the ALSPAC database and held separately 

during the analysis. After post-imputation quality control, the ALSPAC dataset contained 

8,629,873 SNPs for analysis.  

For both datasets, SNPs on the X chromosome were coded 0/2 for hemizygous males, to 

match with the 0/1/2 coding for females12. 

 

Ancestry axes and selection of European participants 

From the post-imputation merged dataset of US participants, we identified the European 

participants by projecting them into a principal component (PC) space constructed using the 

1000G Phase 3 dataset, first filtered for linkage disequilibrium and SNPs shared between both 

datasets. Further details are available in the Supplementary Methods. In the combined PC space, 

we calculated the ancestry axes for the US participants and the Euclidean distance between all 

US participants and the 1000G samples. Using a k-th nearest neighbor algorithm, we identified 

the five nearest 1000G neighbors for each US participant. The most common 1000G population 

label from these five nearest neighbors was then assigned to the US participant and participants 

assigned the 1000G European population labels of CEU, TSI, FIN, GBR, and IBS were selected 

for analysis.  

Ancestry axes were calculated for the UK participants by projecting them into the 1000G 

Phase 3 dataset in a similar manner as described for the US participants. Since all ALSPAC 
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participants available for this analysis were European, no additional ancestry refinement was 

performed. 

 

3D image acquisition 

For all datasets, 3D images were captured using either a digital facial stereophotogrammetry 

system or a laser scanning system. All participants were asked to have closed mouths and to 

maintain a neutral facial expression during image capture65. For the 3DFN sample, facial 

surfaces were acquired using the 3dMDface (3dMD, Atlanta, GA) camera system. PSU images 

were obtained with either the 3dMDface or Vectra H1 system (Canfield Scientific, Parsippany, 

NJ). The IUPUI sample was fully imaged using Vectra H1. The ALSPAC sample was imaged 

using a Konica Minolta Vivid 900 laser scanner (Konica Minolta Sensing Europe, Milton 

Keynes, UK). For this system, two high-resolution facial scans were taken and then processed, 

merged, and registered using a macro algorithm in RapidformTM 2004 software (INUS 

Technology Inc., Seoul, South Korea). 

 

3D image registration and quality control 

The 3D surface images and their reflections were registered using the MeshMonk 

registration framework (v0.0.6)24 in Matlab 2017b. This process results in a homologous 

configuration of 7,160 spatially dense quasi-landmarks, allowing the image data from different 

individuals and camera systems to be standardized24. Images greatly differing from the norm or 

with large holes were manually investigated and either removed or re-processed, with details 

available in the Supplementary Methods. Although variation in asymmetric facial features is of 

interest, in this work we sought to only study variation in symmetric facial shape.  
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Segmentation of facial shape 

To study global and local effects on facial variation, we performed a data-driven facial 

segmentation on the UK and US datasets combined, as described previously16. Before 

segmentation, images in the two datasets were separately adjusted for sex, age, age-squared, 

height, weight, facial size, the first four genomic ancestry axes, and the camera system, using 

PLSR (function plsregress from Matlab 2017b). As an illustration, the age adjustment is 

visualized in Supplementary Fig. 2. After adjustment, facial segments were defined by grouping 

vertices that are strongly correlated using hierarchical spectral clustering16,25. The strength of 

covariation between quasi-landmarks was defined using Escoufier’s RV coefficient66,67. The RV 

coefficient was then used to build a structural similarity matrix that defined the hierarchical 

construction of 63 facial segments, broken into five levels (Extended Data Fig. 1A). The 

configurations of each segment were then independently subjected to a Generalized Procrustes 

analysis68, after which a PCA was performed in combination with parallel analysis to capture the 

major variance in the facial segments with fewer variables26,27 (Extended Data Fig. 1B). 

 

Multivariate genome-wide-association meta-analyses 

The meta-analysis framework utilized consists of three steps performed separately for each 

of the 63 segments: identification, verification, and meta-analysis (Extended Data Fig. 2). For all 

analyses, the genotypes were coded additively based on the presence of the major allele. In the 

identification step, for each of the 63 facial segments, each SNP was associated with phenotypic 

variation using canonical correlation analysis (CCA, canoncorr in Matlab 2017b). CCA is a 

multivariate analysis which extracts the linear combination of PCs, which represent the direction 
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of phenotypic effect in shape space (which we call a 'trait'), that are maximally correlated with a 

SNP and returns a correlation value between those PCs and the SNP tested. Because CCA does 

not accommodate adjustments for covariates, we removed the effect of relevant covariates (sex, 

age, age-squared, height, weight, facial size, the first four genomic ancestry axes, and the camera 

system), on both the independent (SNP) and the dependent (facial shape) variables using PLSR 

(plsregress from Matlab 2017b), and thus performed the CCA under a reduced model with 

residualized variables. The correlation value between PCs and SNPs is tested for significance 

based on Rao’s F-test approximation69 (right tail, one-sided test). In sum, for each of the 63 

segments, the CCA component of the identification step identifies the phenotypic trait most 

correlated with each SNP (TraitUS and TraitUK in Extended Data Fig. 2) and Rao’s F-test 

provides a P value (PCCA-US and PCCA-UK) representing the strength of the correlation. CCA has 

also been implemented in `mv-PLINK`70. Performance tests of mv-PLINK have shown that it 

outperforms univariate methods and has similar power to other multivariate methods of 

association70–72, which generally have higher statistical power than univariate methods70–76. 

In the verification step, the shape PCs of the non-identification dataset were projected onto 

the trait found in the identification stage, which returns a univariate variable (which we call a 

'phenotype'; UniVarUS and UniVarUK). These univariate variables were then tested for genotype-

phenotype associations in a standard linear regression (regstats in Matlab 2017b) with the SNP 

genotypes of the verification dataset as independent variable and the univariate trait projection 

score as the dependent variable. This function employs a t-statistic and a one-sided (right-tail) P 

value was obtained with the Student’s T cumulative distribution function77 (function tcdf in 

Matlab 2017b).  
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In the meta-analysis step, the identification P value (from Rao’s F-test on the canonical 

correlation) and the verification P value (from the univariate regression) were combined using 

Stouffer’s method28,29, chosen because a meta-analysis of beta values was not possible given that 

the CCA returns a positive correlation value, not beta statistic. The entire process was repeated, 

resulting in two meta-analysis P values (PMeta-US and PMeta-UK) accompanied by two identified 

traits per segment and per SNP: first using US in the identification stage and UK as verification 

(METAUS or US-driven), then using UK in the identification stage and US as verification 

(METAUK or UK-driven). A validation of our analysis pipeline is available in Supplementary 

Note 1. 

 

Sharing of genome-wide signal between facial segments 

To assess the extent to which genome-wide signals of association with facial variation 

were shared between a pair of facial segments, LD score regression30,31 was applied to the meta-

analysis, after converting the meta P values to z-scores and ignoring the sign or direction of 

effect. The former was required because of the multivariate nature of our results and the latter 

was needed since CCA is a one-sided test with canonical correlations always between [0 1]. As a 

result, all resulting genetic correlations reported here are restricted to be positive as well. Further 

details on the calculation of LDSC values is available in the Supplementary Methods. This 

process was done twice, once each for the US- and UK-driven meta-analyses. A high degree of 

congruence (rS = 0.95) between the results based on the US- and UK-driven meta-analyses was 

observed, and the average correlation of both between each pair of facial segments was reported. 

The 63 × 63 matrix of average correlations was visualized on top of the facial segmentation 
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hierarchy to assess correlation both within and between facial quadrants (Extended Data Fig. 3) 

and used to perform average-linkage hierarchical clustering (Extended Data Fig. 4). 

 

GWAS peak selection 

The analysis strategy yielded 126 meta-analysis P values and 126 traits for every SNP, 

representing the 63 segments × two meta-analysis tracks. Per SNP, the lowest P value was 

selected, and we noted in which meta-analysis track (METAUS or METAUK; “Best meta-analysis 

track”) and segment (“Best segment”) this P value occurred. The study-wide Bonferroni 

threshold (P ≤ 6.96 × 10-10) was calculated as 5 × 10-8 / (1.0042 × 1.6631 × 43.0145), with the 

denominator values representing the number of independent tests per SNP, across both meta-

analysis tracks, and across all segments, respectively. These values were calculated using 10,000 

permutations each of 1,000 random SNPs, with more details available in Supplementary Note 2 

and the permutation outcomes available in the FigShare repository for this manuscript34. Though 

a study-wide threshold was calculated, we chose to annotate lead SNPs reaching at least genome-

wide threshold to retain as many potentially biologically meaningful results as possible. The 

FigShare repository also provides information on all SNPs reaching suggestive significance (P = 

5 × 10-7) as well as QQ-plots for each segment in all stages of the analysis34. For the initial peak 

selection, we chose to group SNPs below genome-wide threshold by genomic position and the 

SNP with the lowest P value per genomic region was selected as the lead SNP. Within a ± 500-

kb window of the resulting genome-wide significant lead SNPs, we further refined the selection 

by performing a regression of slopes on the traits defined in the identification stage (in Best 

meta-analysis track and Best segment) to determine if adjacent SNPs showed consistent effects 

with the lead SNP, resulting in 218 genome-wide significant lead SNPs. Of these 218 lead SNPs, 
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203 showed consistent traits in the US and UK datasets in the Best Segment (Supplementary 

Table 3), with more details in the Supplementary Methods. Visual representations of the 

LocusZoom33 and effect plots for each of the 203 genome-wide significant SNPs are available in 

the FigShare repository34. The 203 lead SNPs were mapped to 138 cytogenetic bands (i.e. loci) 

using the Ensembl GRCh37 locations78. This method of peak selection is statistical in nature and 

is thus not perfect. For example, our inspection of the LocusZoom33 plots for the TBX15-WARS2 

locus led to the identification of two clusters of SNPs, based on r2 correlation, sharing the same 

genomic positions and affecting different facial segments, but separating these two clusters was 

not possible in our initial peak selection and they were considered a single signal until manual 

investigation. To comprehensively identify SNPs within a locus contributing to facial 

morphology, and the specific facial segments affected, fine mapping and other detailed 

investigations are needed. 

 

Gene annotation 

Genes ±500 kb of the genome-wide-significant lead SNPs were identified using the Table 

Browser of the UCSC Genome Browser79. The most likely candidate gene per lead SNP was 

identified based on a three-step system using first literature searches, then the results from 

Hooper et al., on the transcriptomics of mouse facial development80, then the FUMA gene 

prioritization algorithm (v1.3.3)37. Further details are available in the Supplementary Methods. 

Using the available literature, we classified the lead SNP into one of five categories: “Region 

previously implicated in normal-range facial morphology,” “Region previously implicated in 

normal-range facial morphology using other analyses of these data,” “Candidate gene implicated 

in craniofacial morphology through animal model”, “Region or candidate gene implicated in 
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craniofacial morphology through human dysmorphology,” and “No previous association.” To the 

best of our knowledge, all links with facial morphology from the literature are provided in 

Supplementary Table 3. 

To investigate the potential roles of the identified genome-wide significant lead SNPs, 

analyses using FUMA (v1.3.3)37, which can test for enrichment of a set of genes in pre-defined 

pathways, and GREAT (v3.0.0)36, which predicts the function of cis-regulatory regions, were 

performed using preset parameters (Extended Data Fig. 5). In this manuscript, we focus on the 

top FUMA and GREAT results, based on P value, and have provided the full export of GREAT 

results in the FigShare repository34.  

 

Cell-type-specific enhancer enrichment 

To assess activity of the 203 genome-wide-significant lead SNPs in various cell types and 

tissues (further details in the Supplementary Methods), we analyzed signals of acetylation of 

histone H3 on lysine 27 (H3K27ac). Across cell types and tissues, we compared 20-kb windows 

containing the 203 genome-wide significant lead SNPs, 203 random SNPs matched for minor 

allele frequency and distance to the nearest gene using SNPsnap81, or 619 Crohn’s disease-

associated SNPs from the NCBI-EBI GWAS catalog82. Regions in the vicinity of SNPs 

associated with Crohn’s disease showed the highest H3K27ac signal in various immune cell 

types, serving as a positive control for both our approach and dataset (Extended Data Fig. 10). A 

two-sided Wilcoxon rank-sum test was used to compare the H3K27ac signal between the 203 

genome-wide-significant lead and random SNPs, within each cell type and tissue analyzed. K-

means clustering was performed on the lead SNP H3K27ac signal across all cell-types and 
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tissues with k = 6, as we found that this value maximized the number of clusters without 

significantly impacting cluster quality, as measured by silhouette width (Fig. 3). 

 

Chromatin state association in CNCCs and embryonic craniofacial tissue 

Lists of human CNCC regulatory elements were annotated based on multiple chromatin 

marks by Prescott et al.41 and embryonic craniofacial chromHMM states were computed in 

combined data from each Carnegie stage by Wilderman et al.40. For each set of regulatory 

regions, all regions within 20 kb of either genome-wide-significant lead SNPs or the above-

described 203 random SNPs were considered. Enrichment/depletion of each class of regulatory 

region for lead SNPs versus random SNPs was computed using a two-sided Fisher’s exact test 

(Fig. 2B, C). 

 

Structural Equation Modeling 

To better define the cause-effect relationships between the significant genotypes and their 

collective traits, both the US and UK participants were used as input for structural equation 

modeling (SEM) using the lavaan package (v0.6-3) in R (≥ 3.5.0)83, which reports a two-sided P 

value. For our analyses, separate SEM models were constructed for each segment using each of 

the 203 genome-wide-significant lead SNPs and the shape PCs for all participants, with 

additional information available in the Supplementary Methods.  

For each of the 50 SEM models where the refinement process was successful (details in 

the Supplementary Methods), final model fit indices and model parameter estimates are provided 

in Supplementary Data 2. Reassuringly, for segments that are closely related in the segmentation 

hierarchy (i.e. segments 5, 11, 23, and 47) there is an average overlap of 46% of the variants 
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meeting the P < 0.05 cutoff for SEM significance, compared to 13.6% average overlap for non-

hierarchically related segments (i.e. segments 5 and 6). The H3K27ac activity across all cell 

types was compared for significant variants both within and between segments using Spearman’s 

rho using two-sided Kruskal-Wallis tests (Extended Data Fig. 7).  

 

Epistasis Analysis 

 We additionally used the univariate latent variable and the variants passing the P < 0.05 

significance cutoff from the final 50 refined SEM models (P < 0.1 for segments 7, 16, and 25) to 

assess whether interactions between genotypes increase or decrease the distribution of the latent 

variable. For each segment, the effect on the latent variable of all diplotype combinations of 

variants were assessed via a linear regression epistasis analysis in Plink 1.984. After Bonferroni 

correction for multiple testing, four SNP pairs were significant at P < 0.05 (Table 1). For these 

four pairs, the nine diplotype combinations and their normalized phenotypic and marginal 

distributions were plotted (Fig. 5; Extended Data Fig. 8) to assess the genotypic contribution to 

epistatic masking (i.e. the combination of two variants reduce the phenotype) and boosting (i.e. 

the combination of two variants increase the phenotype). For each diplotype combination, the 

marginal phenotypic medians of the singular genotypes were averaged to visualize the predicted 

phenotypic distribution that would occur if the two genotypes were acting independently and this 

average median was compared to the medians of the combined diplotypes. Significance testing 

was performed using a two-sided Mood’s Median test42 with one degree of freedom. These steps 

were performed using the R packages agricolae (v1.3-0), cowplot (v1.0.0), ggplot2 (v3.1.1), 

ggpubr (v0.2), gridExtra (v2.3), gtable (v0.3.0), grid (v3.6.2), Hmisc (v4.2-0), psych (v1.8.12), 

and data.table (v1.12.0).  
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Data availability  

All of the genotypic markers for the 3DFN dataset are available to the research 

community through the dbGaP controlled-access repository (http://www.ncbi.nlm.nih.gov/gap) 

at accession #phs000949.v1.p1. The raw source data for the phenotypes - the 3D facial surface 

models in .obj format - are available through the FaceBase Consortium 

(https://www.facebase.org) at accession #FB00000491.01. Access to these 3D facial surface 

models requires proper institutional ethics approval and approval from the FaceBase data access 

committee. Additional details can be requested from S.M.W. 

The participants making up the PSU and IUPUI datasets were not collected with broad 

data sharing consent. Given the highly identifiable nature of both facial and genomic information 

and unresolved issues regarding risk to participants, we opted for a more conservative approach 

to participant recruitment. Broad data sharing of the raw data from these collections would thus 

be in legal and ethical violation of the informed consent obtained from the participants. This 

restriction is not because of any personal or commercial interests. Additional details can be 

requested from M.D.S. and S.W. for the PSU and IUPUI datasets, respectively. 

The ALSPAC (UK) data will be made available to bona fide researchers on application to 

the ALSPAC Executive Committee (http://www.bris.ac.uk/alspac/researchers/data-access). 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and 

the Local Research Ethics Committees.  

Publicly available data used were: the 1000G Phase 3 data 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), the list of HapMap 3 SNPs 

excluding the MHC region 
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(http://ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip), and ChIP-seq files from 

Prescott et al.41 (GSE70751), Najafova et al.85 (GSE82295), Baumgart et al.86 (GSE89179), Nott 

et al.87 (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19), Pattison et al.88 

(GSE119997), Wilderman et al.40 (GSE97752), and the Roadmap Epigenomics Project89 

(https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/). Meta-analysis 

GWAS statistics are available on GWAS Catalog (GCP000044). All relevant data to run future 

replications and meta-analysis efforts are provided in the FigShare repository for this work34, 

along with additional figures (https://doi.org/10.6084/m9.figshare.c.4667261). Items available in 

the FigShare repository are: (1) Anthropometric mask: a Matfile of the anthropometric mask 

used; (2) Association statistics and effects of the 203 lead SNPs: Facial effects, LocusZoom 

plots, and association statistics from each stage of the analysis for the 203 lead SNPs; (3) 

Calculation of study-wide significance threshold: Script and permutation outcomes needed to 

replicate the calculation of the study-wide significance threshold; (4) Facial segment 

assignments: Segment assignments for each quasi landmark in the anthropometric mask; (5) 

Figure 2A labeled: A larger version of Figure 2A, with all cell types and tissues labeled; (6) 

GREAT Export: Raw output of the GREAT analysis; (7) PCA shape constructs: PCA shape 

spaces for all 63 facial segments; (8) QQ plots: QQ plots for each segment in all stages of the 

analysis; (9) Script to explore facial segments and GWAS hits: MatLab script for select data 

exploration functions; (10) SNPs reaching suggestive significance in either meta-analysis track: 

Association statistics of all SNPs with P < 5 × 10-7 in METAUS or METAUK tracks; (11) Source 

data for manuscript figures: Source data in Excel format for all figures, where possible. 

Code availability  
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KU Leuven provides the MeshMonk (v0.0.6) spatially dense facial mapping software, 

free to use for academic purposes (https://github.com/TheWebMonks/meshmonk). Matlab 2017b 

implementations of the hierarchical spectral clustering to obtain facial segmentations are 

available from a previous publication25 (https://doi.org/10.6084/m9.figshare.7649024).  

The statistical analyses in this work were based on functions of the statistical toolbox in Matlab 

2017b, SHAPEIT2 (v2.r900), Sanger Imputation Server (v0.0.6), PBWT pipeline (v3.1), 

MeshMonk (v0.0.6), LDSC (v1.0.1), FUMA (v1.3.3), GREAT (v3.0.0), Plink 1.9, lavaan (v0.6-

3), R (>v3.4), agricolae (v1.3-0), cowplot (v1.0.0), ggplot2 (v3.1.1), ggpubr (v0.2), gridExtra 

(v2.3), gtable (v0.3.0), grid (v3.6.2), Hmisc (v4.2-0), psych (v1.8.12), data.table (v1.12.0), 

Genotype Harmonizer (v1.4.20), KING (v2.1.3), bowtie2 (v2.3.4.2), bedtools (v2.27.1), and 

Bioconductor (v3.7), as mentioned throughout the Methods.  
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Extended Data 

 

Extended Data Figure 1. (A) Global to local facial segmentation of all 3D images (nTotal = 

8,246), obtained using hierarchical spectral clustering. Segments are colored in teal and identical 

to those in Figure 1. Roman numerals represent “quadrants” of facial segments. (B) The number 

of principal components retained after parallel analysis for each facial segment. 
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Extended Data Figure 2. Sample Wrangling: Images and genotypes from each study were 

intersected and unrelated participants of European ancestry, with quality-controlled images, 

covariates, and imputed genetic data were selected to obtain the analyzed data. Identification: 

For each facial segment, canonical correlation analysis (CCA) and Rao’s F test approximation 

was used to identify the multivariate combination of facial principal components most correlated 

with the genotypes, which led to a P value (PCCA-US or PCCA-UK) and multivariate phenotypic trait 

most correlated with each SNP (TraitUS and TraitUK). Verification: The principal components of 

the other dataset were then projected onto this trait to obtain a univariate variable representing 

the distribution of participants from the verification dataset for the trait identified in the 

identification dataset (UniVarUK and UniVarUS). The genotypes of the verification dataset are 

then tested against this variable via linear regression, resulting in an additional P value (PUniVar-UK 

and PUniVar-US). Meta-Analysis: The P values from identification and verification are meta-

analyzed using Stouffer’s method, resulting in the final set of P values from each meta-analysis 

track (PMETA-US and PMETA-UK). 
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Extended Data Figure 3. LDSC correlations between segments. (A) Correlations between 

segments from different quadrants, ranging from 0.8 to 0.88, which seem to reflect both physical 

proximity of segments on the face and shared embryological origins. (B) Correlations ranging 

from 0.88 to 1, which are mostly between segments within the same facial quadrant. 
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Extended Data Figure 4. Correlations between facial segments on the basis of SNP P values 

were calculated using LDSC, as described in Methods, and average linkage hierarchical 

clustering was performed using the matrix of correlation values. Quadrant colors in legend refer 

to the quadrant of the polar dendrogram in which the facial segment lies in, also represented by 

the facial images at the top, and embryonic facial prominences are assigned to each facial 

segment. 
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Extended Data Figure 5. (A) GREAT analysis. For the top ten GO terms in each category, 

plotted is the binomial test Bonferroni-corrected P value (red; negative values) and binomial 

region fold enrichment (blue; positive values). Behind every GO term, in parentheses we indicate 

the number of genes in the test set with the annotation (Observed) and the total number of genes 

in the genome with the annotation (Total), with the format (Observed/Total). Dashed line 

represents significance at P = log10(0.05) = -1.3. (B) FUMA analysis, indicating the KEGG 

pathways that were significantly enriched in our results. Multiple pathways are relevant for 

craniofacial development. The right panel shows the genes that are involved in the pathways. 
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Extended Data Figure 6. For all cell-types and tissues, each represented by a point above, the 

median difference between H3K27ac RPM signal between the 203 lead SNPs vs. 203 random 

SNPs was tested for significance using a two-sided Wilcoxon rank-sum test. The thin dashed line 

represents the 5% false discovery rate P value of 0.0094, using the Benjamini-Hochberg method. 

Relative to the random, MAF-matched SNPs, the lead SNPs are significantly enriched for 

H3K27ac signal in many cell types, with the highest magnitude differences being from CNCCs 

(blue) and embryonic craniofacial tissues (orange). Test statistics used to create this plot are 

available in Supplementary Table 4. 
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Extended Data Figure 7. (A) For all segments (aka “masks”), we compared the H3K27ac 

activity for significant SNPs from the refined SEM model for variation in that facial segment. 

Plotted is the Spearman’s rho correlation between pairs of SNPs significant in the same SEM 

model (“Within Mask”); pairs of SNPs where one is from the SEM model and the other is not 

(“Within To Out”), and where both SNPs in the pair are from a different SEM model (“Out To 

Out”). Segments where the distribution of correlation across all cell types was significantly 

different (Benjamini-Hochberg adjusted P < 0.05) based on a two-sided Kruskal-Wallis test are 

indicated in black. (B) For all cell types, the median correlation across all segments is plotted for 

each of the three SNP groupings. Significance between the means was determined using a two-

sided Kruskal-Wallis test. Boxplots plot the first and third quartiles, with a dark black line 

representing the median. Whiskers extend to the largest and smallest values no further than 1.5 × 

the inter-quartile range from the first and third quartiles, respectively. 
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Extended Data Figure 8. For a random SNP pairing (A) and each significant epistasis pair (B-

D), boxplots are plotted to visualize the epistatic effect on the phenotype. The marginal 

phenotypic medians of the singular genotypes (non-shaded boxplots) were used to calculate and 

visualize the predicted diplotype phenotypic distribution that would occur if the two genotypes 

were acting alone. The median phenotype was also calculated for each diplotype as the average 

of the marginal medians of the singular genotypes (blue dashed lines on the colored plots). This 

median was compared to the observed medians of the diplotypes (solid black lines; colored 

boxplots) via Mood’s Median test with one degree of freedom. Log transformed P values were 

used to color boxplots if there was a significant (P < 0.05; log(P) > 1.30) difference between the 

expected phenotype of the combined genotype and observed diplotype. Boxplots plot the first 

and third quartiles, with a dark black line representing the median. Whiskers extend to the largest 

and smallest values no further than 1.5 × the inter-quartile range from the first and third quartiles, 

respectively. 
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Extended Data Figure 9. LocusZoom plots for the two association signals nearby MSX1 (A), 

which has previously been implicated in orofacial clefting in humans and mice, and DACT1 (F), 

which is a novel result. Points represent one-sided -log10(P) of the METAUK meta-analysis track 

for the facial segment illustrated in the normal displacement figures (B, D, G) and are colored 

based on linkage disequilibrium with the labeled SNP. Asterisks indicate genotyped SNPs and 

circles indicate imputed SNPs. Facial effects for the two association signals nearby MSX1: 

rs3910659 (B) and rs13117653 (D) and the signal nearby DACT1: rs10047930 (G). Effects are 

the normal displacement (displacement in the direction locally normal to the facial surface) in 

each quasi landmark of the lowest facial segment reaching genome-wide significance in 

METAUK, going from the minor to the major allele. Blue indicates inward depression; red 

indicates outward protrusion. Yellow rosette plots depict the -log10(P) of the meta-analysis P 

value (one-sided, right-tailed) per facial segment in METAUK track. Black-encircled facial 

segments have reached genome-wide significance (P = 5 × 10-8). (C) rs3910659; (E) 

rs13117653; (H) rs10047930. 
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Extended Data Figure 10. Each boxplot represents the distribution of H3K27ac signal in 20 kb 

regions around 619 Crohn’s disease-associated SNPs from the NCBI-EBI GWAS catalog in one 

sample. See Methods for details on calculation of H3K27ac signal. Samples corresponding to 

immune cells and tissues are highlighted in red. Thin dashed line at ~2.9 is the median level of 

signal across all cell-types and tissues. Boxplots plot the first and third quartiles, with a dark 

black line representing the median. Whiskers extend to the largest and smallest values no further 

than 1.5 × the inter-quartile range from the first and third quartiles, respectively.  
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Supplementary Note 1 22 

 23 

Canonical correlation analysis to analyze multivariate data. 24 

In CCA, ‘canonical’ is the statistical term for analyzing latent variables (which are not 25 

directly observed), obtained using a singular value decomposition on a correlation matrix, that 26 

represent multiple variables (which are directly observed), and the primary outputs are 27 

canonical correlation values. In our work, we use CCA to evaluate the latent associations 28 

between genotype and principal components of shape variation. The identification of “traits,” or 29 

the linear combination of principal components most associated with genotypes for the SNP 30 

being tested, is a by-product of the test which we have opportunistically used. CCA has also 31 

been implemented in the PLINK genetic analysis software as `mv-PLINK` 32 

(https://genepi.qimr.edu.au/staff/manuelF/multivariate/main.html)1. 33 

  34 

Validity of the meta-analysis 35 

To illustrate the validity of our meta-analysis pipeline, we performed the following simulation: 36 

1. For each of the 203 lead SNPs, randomly rearrange the genotypes in both datasets, 37 
essentially creating genotypes that have no underlying association with multivariate 38 
facial shape in any of the 63 facial segments.  39 

2. Identification step in the meta-analysis: For the US dataset, use canonical correlation 40 
analysis and Rao’s F-test approximation to identify the linear combination of principal 41 
components representing shape variation in segment 1 that is maximally correlated with 42 
the SNP, producing a P value and a latent facial trait. Repeat this for all 63 facial 43 
segments, separately, ultimately generating 63 latent facial traits and 63 associated P 44 
values. 45 

3. Verification step in the meta-analysis: In segment 1, project the principal components of 46 
the UK individuals onto the latent facial trait from Step 2 to obtain univariate projection 47 
scores for the UK individuals on the US-derived latent trait. Subject these scores to a 48 
standard linear regression against SNP variation to verify or replicate the SNP-trait 49 
association. Separately repeat for all 63 latent traits. 50 

4. Meta-analysis step: Combine the independent P values from the US-based identification 51 
step and the UK-based verification step using Stouffer’s method. Do this for each of the 52 
63 segments. 53 

5. Reverse the identification and verification datasets: Reverse the roles of the US and UK 54 
datasets and repeat Steps 2 - 4, this time with the UK as identification and the US as 55 
verification, to obtain a second meta-analysis P value. Note that this meta-analysis 56 
outcome is not to be combined with the first meta-analysis outcome, because the two 57 
are not independent. Do this for each of the 63 facial segments.  58 

6. Repeat steps 1-5 for a total of 10,000 permutation cycles for each of the 203 lead SNPs. 59 
  60 

Under the null hypothesis for random genotypes, we expect to see a uniform distribution 61 

[0,1] of P values for each of the three statistical stages: identification, verification, and meta-62 

analysis combination. If any stage of the analysis were artificially inflating the P values through 63 

non-independence of the results, we would expect severe deviations from this distribution even 64 

with noisy simulated data. In Figure SN1-1 below, we show with QQ plots that we maintain a 65 

uniform distribution at all analysis stages for random genotypes, indicating that the overall 66 

approach of identification > verification > meta-analysis is not causing spurious results. In 67 

performing this simulation for the 203 lead SNPs, illustrated below using two SNPs with extreme 68 
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MAF values, we demonstrate that our approach is well-calibrated per SNP, and it is likely to be 69 

so genome-wide. The true (non-permuted) QQ plots for each segment are available in the 70 

FigShare repository for this manuscript. 71 

  72 

 73 
Figure SN1-1. QQ plots of the permutation P values. For two example lead SNPs tested in 74 

segment 1: (A) rs76244841 (MAF = 0.42) and (B) rs16834081 (MAF = 0.09), this figure contains 75 

the QQ plots from the entire meta-analysis pipeline after randomly permuting the SNPs 10,000 76 

times. Each QQ plot represents the distribution of P values at that stage of the analysis, with the 77 

CCA plots being the identification stage of the analysis (one-sided right-tailed Rao’s F test), the 78 

‘UniVar’ plots being the verification stage (one-sided right-tailed linear regression), and the 79 

‘META US’ and ‘META UK’ columns being the meta-analysis stage, following the pipeline 80 

described in the text and Extended Data Fig. 2. As the purpose of this permutation was to 81 

illustrate the distribution of P values expected for permuted results, significance of these P 82 

values was not assessed.  83 

  84 

  85 

We can also illustrate via simulation that the combination of P values via Stouffer’s meta-86 

analysis is also viable, and that the two P values from the identification step and the verification 87 

step are independent. To do so, we have simulated the following three scenarios, and show the 88 

results in Figure SN1-2:  89 

A. One randomly generated vector of 106 P values, illustrating a uniform distribution of P 90 
values expected under noisy conditions that reflect the null hypothesis of chance 91 
associations. 92 

B. The randomly generated vector of P values in A was used to combine each P value with 93 
itself using Stouffer’s method. This scenario creates false-positives and illustrates 94 
dependent P values and their effect on the Stouffer meta-analysis.  95 

C. The randomly generated vector of 106 P values in A was used to combine each P value 96 
with another randomly chosen (and thus independent) P value using Stouffer’s method. 97 
This scenario illustrates the combination of independent P values in a Stouffer meta-98 
analysis. 99 

  100 

From these results (Figure SN1-2), one can appreciate the difference in QQ plots using 101 

dependent P values (B, the ‘incorrect’ scenario) and independent P values (C, the ‘correct’ 102 

scenario) in a Stouffer P value combination. One can visually compare the QQ plots presented 103 
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in Figure SN1-2 with those presented above in Figure SN1-1 and appreciate that those 104 

presented in Figure SN1-1 are most similar to the QQ plots illustrating independent P values, in 105 

which the blue line follows the dotted red line more closely for a long range of -log10(P) values.  106 

  107 

  108 
Figure SN1-2. Simulated P values under enforced independence and non-independence. 109 

Histogram distribution of P values (top) and QQ plots (bottom) from (A) a random vector of P 110 

values, (B) a completely dependent meta-analysis, and (C) a completely independent meta-111 

analysis. The QQ-plots in scenarios A and C are similar to our permutation QQ plots, shown in 112 

Figure SN1-1, demonstrating that when we combine the one-sided, right-tailed identification 113 

(CCA) P values and verification (UniVar) P values using Stouffer’s method, we are combining 114 

independent P values.  115 

  116 
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Supplementary Note 2 117 

 118 

Empirical calculation of study-wide significance threshold 119 

To calculate the study-wide significance threshold, we performed an empirical 120 

calculation of the number of independent tests performed in our meta-analysis framework, 121 

following the procedure in Kanai et al. (2016)2. Using the permutation framework described in 122 

Supplementary Note 1, we calculated the number of independent tests performed for each of 123 

the 203 lead SNPs as well as 1,000 randomly selected SNPs from throughout the genome. This 124 

resulted in a total of 10,000 permutations × 63 segments × 2 meta-analysis tracks = 1,260,000 125 

P values and latent traits for each SNP. In the FigShare repository for this manuscript3, we have 126 

provided the permutation outcomes for both the 203 lead SNPs 127 

(Permutation203LeadSNPs.mat) and the 1,000 randomly selected SNPs 128 

(Permutation1000RandomSNPs.mat) alongside a MatLab 2017b script (IndependentTests.m) in 129 

which the empirical calculations of the number of independent tests, as discussed below and in 130 

Table SN2-1, can be replicated. Confirming expectations, permutation results based on the 203 131 

lead SNPs or 1,000 randomly selected SNPs are close to the same, with a slightly lower need to 132 

correct for multiple testing for the former (study-wide P value = 7.09 × 10-10) compared to the 133 

latter (study-wide P value = 6.96 × 10-10). Therefore, we opted to incorporate the latter, more 134 

strict, threshold as the study-wide P value threshold.  135 

 136 

 In Calculation A, we determined the number of independent CCA tests per segment, 137 

SNP, and dataset used as identification (Step 2 from Supplementary Note 1). For each 138 

segment, in each dataset, and for each SNP, we divided 0.05 by the 5th percentile of the 10,000 139 

permuted CCA P values. For the 1,000 random SNPs, this was done 126,000 times (1000 140 

SNPs × 63 segments × 2 datasets) and the mean number of tests performed was 1.0094 ± 141 

0.0485 (median = 1.0070). For the 203 lead SNPs, this was done 25,578 times (203 SNPs × 63 142 

segments × 2 datasets) and the mean number of tests performed was 1.0052 ± 0.0445 (median 143 

= 1.0036). Here, we can observe that performing the CCA for one SNP in one segment is 144 

practically equivalent to a single test.  145 

 146 

In Calculation B, we determined the number of tests performed using our meta-analysis 147 

pipeline per SNP and per segment, using one dataset for identification (Step 2), followed by the 148 

other for verification (Step 3), then meta-analyzing the P values (Step 4). For each segment, 149 

using both datasets, and for each SNP, we divided 0.05 by the 5th percentile of the 10,000 150 

permuted meta-analysis P values. For the 1,000 random SNPs, this was done 126,000 times 151 

(1,000 SNPs × 63 segments × 2 meta-analysis tracks). The mean number of tests was 1.0058 ± 152 

0.0448 (median = 1.0042). For the 203 lead SNPs, this was done 25,578 times (203 SNPs × 63 153 

segments × 2 meta-analysis tracks) and the mean number of tests was 1.0043 ± 0.0435 154 

(median = 1.0028). Here, similar to Calculation A, we can again observe that performing the 155 

meta-analysis pipeline for one SNP in one segment is practically equivalent to a single test.  156 

 157 

In Calculation C, we determined the number of independent meta-analysis tracks 158 

performed per segment and SNP, after using each dataset in turn for identification and 159 

verification (Step 5). To do this, we retained for each of the 10,000 permutation cycles the 160 
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minimum (i.e. best) meta-analysis P value from either the US-driven meta-analysis or the UK-161 

driven meta-analysis. Subsequently, we divided 0.05 by the 5th percentile of the 10,000 best P 162 

values. For the 1,000 random SNPs, this was done 63,000 times (1,000 SNPs × 63 segments) 163 

and the mean number of tests was 1.6723 ± 0.1145 (median = 1.6631). For the 203 lead SNPs, 164 

this was done 12,789 times (203 lead SNPs × 63 segments), and the mean was 1.6679 ± 165 

0.1087 (median = 1.6600). According to this empirical estimation, a factor of 1.66 should be 166 

included in the calculation of the study-wide threshold to account for the two meta-analysis 167 

tracks. Given that the two meta-analysis tracks use the same two datasets, just with their roles 168 

reversed, full independence, which would have required a correction factor of 2, was not 169 

expected.  170 

 171 

In Calculation D, we determined the number of tests per SNP in all 63 multivariate facial 172 

segments, using one dataset for identification (Step 2), followed by the other dataset for 173 

verification (Step 3), and a meta-analysis of the P values (Step 4). This time, for each of the 174 

10,000 permutation cycles we retained the minimum (i.e. best) meta-analysis P value across the 175 

63 segments for each SNP from both the US-driven and UK-driven meta-analyses. 176 

Subsequently, we divided 0.05 by the 5th percentile of the 10,000 best P values. For the 1,000 177 

random SNPs, this was done 2,000 times (1,000 SNPs × 2 meta-analysis tracks). The mean 178 

number of tests was 43.0933 ± 2.3187 (median = 43.0145). For the 203 lead SNPs, this was 179 

done 406 times (203 SNPs × 2 meta-analysis tracks), and the mean number of tests was 180 

42.4920 ± 2.0819 (median = 42.3652). This illustrates that the 63 multivariate facial segments 181 

are not independent, as expected, so multiple-testing correction by a factor of 63 would be too 182 

conservative. 183 

  184 

Based upon the empirical tests performed here (summarized in Table SN2-1), the 185 

number of tests per SNP across 63 segments and using our two meta-analysis tracks, and thus 186 

the appropriate study-wide correction factor, was estimated by multiplying the outcomes of 187 

Calculations B, C, and D. Using the median estimators from 1,000 random SNPs, the study-188 

wide correction factor becomes 1.0042 × 1.6631 × 43.0145 = 71.8379. Therefore, the study-189 

wide significance threshold for this work is 
!	#	$%!"

&$.()&*
= 6.96	𝑥	10+$%. 190 

 191 

Table SN2-1. The number of independent tests according to empirical calculations, 192 

estimated from permutations of the 203 lead SNPs and 1,000 randomly selected SNPs. 193 

 203 Lead SNPs 1000 Random SNPs 

 Mean Std Median Mean Std Median 



 

 

7 

Calculation A 1.0052 
0.044

5 
1.0036 1.0094 

0.048

5 
1.0070 

Calculation B 1.0043 
0.043

5 
1.0028 1.0058 

0.044

8 
1.0042 

Calculation C 1.6679 
0.108

7 
1.6600 1.6723 

0.114

5 
1.6631 

Calculation D 42.4920 
2.081

9 
42.3652 43.0933 

2.318

7 
43.0145 

K = Calculation B × 

Calculation C × 

Calculation D 

71.1772  70.5231 72.4829  71.8379 

Study-wide threshold 

= 5 × 10-8 / K 

7.02 × 10-

10  
7.09 × 10-

10 

6.90 × 10-

10  
6.96 × 10-

10 

 194 

  195 
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Supplementary Note 3 196 

 197 

Literature evidence of epistatic interactions (Table 1) 198 

 199 

Follow up data mining on the four epistatic SNP pairs was performed using VarElect4, 200 

StringDB5, and Encode6,7, with the results detailed here and in the Discussion section of the 201 

manuscript. 202 

 203 

The strongest SNP × SNP epistatic interaction was found between rs10838269 and 204 

rs11175967 (stat = 23.9422; P = 9.94 × 10-7) within segment 6, which covers the area of the 205 

face from the zygoma to the mandible. Rs11175967 is an intronic variant mapped to the 206 

HMGA2 transcription factor (12q14.3), which has been associated with Silver-Russell 207 

syndrome, symptoms of which include a triangular face shape and broad foreheads8,9. 208 

Rs10838269, its epistatic partner, is an intergenic variant whose nearest protein coding gene is 209 

the transcription factor ALX4 (11p11.2), which is expressed in the mesenchyme of developing 210 

bones and has been shown to play a vital role in craniofacial development10. Previous 211 

morphology studies identifying both HMGA2 and ALX4 show that the genes respectively 212 

contribute to ear morphology and stature in sheep11. In addition, genomic analyses on finches 213 

have shown that alterations of ALX1, the protein product of which is functionally redundant to 214 

Alx4 in mice12, and HMGA2 have been associated with beak shape13 and size14.  215 

 216 

Rs76244841 (candidate gene PRDM16) and rs62443772 (candidate gene GLI3 217 

associated) were found to have a significant interaction in facial segment 9 (stat = 16.5745; P = 218 

4.68 × 10-6), which covers the premaxillary soft tissue from the base of the columella to the oral 219 

commissure. PRDM16 encodes a zinc finger transcription factor15,16 and has been shown to 220 

affect palatal shelf elevation through repression of TGFβ signaling17,18. GLI3 encodes a 221 

transcriptional activator and a repressor of the sonic hedgehog (Shh) pathway, which has been 222 

shown to play a role in limb development19–21. In addition, there is evidence that mouse null Gli3 223 

mutants have a broad nose phenotype22 and genome-wide scans have previously implicated 224 

GLI3 in nose morphology23. The connection between PRDM16 and GLI3 can be seen by their 225 

interaction through the SUFU intermediary. Multiple studies conducted on Drosophila 226 

melanogaster have identified evidence for a tetrameric Hedgehog signaling complex comprising 227 

Fu, Ci (an ortholog of PRDM16), Cos2, and Su(fu) (an ortholog of SUFU), including evidence 228 

that Su(fu) binds directly to Ci24–26. SUFU has also been shown to mediate the phosphorylation 229 

of GLI3 via GSK327 and has also been shown to interact with the GLI1-3 zinc-finger DNA-230 

binding proteins28,29. 231 

 232 

Rs6740960 (candidate gene PKDCC) and rs6795164 (candidate gene SLCO2A1) (stat 233 

= 16.3707; P = 5.21 × 10-5), and rs7373685 (candidate gene GATA2) and rs7843236 (candidate 234 

gene SNTB1) (stat = 15.7837; P = 7.10 × 10-5) were significant pairs in facial segments 11 and 235 

22, respectively, which are hierarchical segments that include areas surrounding the base of the 236 

nose. Due to the overlapping nature of the segments, these variants were analyzed as a 237 

collective group. The nature of the relationship between these four variants is less clear, 238 

however some trends are evident. The first is that there appears to be a connection between 239 
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GATA2 and SLCO2A1 through AKT1. AKT1 is one of 3 related serine/threonine-protein kinases 240 

first characterized in mouse models30, which regulate multiple processes, such as metabolism, 241 

cell survival, growth, proliferation, and angiogenesis. It has also been implicated in Proteus 242 

Syndrome, whose symptoms include bone development abnormalities31,32. SLCO2A1 is a solute 243 

carrier involved in the release and transport of prostaglandin33,34 and has also been shown to be 244 

involved in hypertrophic osteoarthropathy35–37. SLCO2A1 regulates AKT1 and the Akt pathway 245 

through prostaglandin38,39. Furthermore, the PI3K/Akt signal pathway has been shown to 246 

negatively regulate the transcriptional activator GATA240. There were not any connections found 247 

between PKDCC and SNTB1, however, there was an interesting connection between SNTB1 248 

and GATA2 via Dystrophin (DMD). DMD serves as a key component of the dystrophin-249 

associated glycoprotein complex, which helps stabilize the sarcolemma41. SNTB1 is an adapter 250 

protein that has been suggested to link receptors to the dystrophin glycoprotein complex42,43. 251 

GATA2 has also been shown to be a transcriptional factor of DMD44. Finally, there is evidence 252 

in mouse models that supports a connection between the Akt signaling pathway and DMD45, 253 

which serves as another underlying link between three of the four epistatic hits. While there 254 

were no evident links between PKDCC and the other epistatic hits, it may be worth noting that 255 

this tyrosine-protein kinase has been previously shown to be involved in bone growth46–48.  256 
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Supplementary Methods 257 

 258 

Sample and recruitment 259 

 260 

For the 3DFN sample, 3D images and genotype data were obtained from the 3D Facial 261 

Norms repository49. The repository includes 3D facial surface images and self-reported 262 

demographic descriptors as well as basic anthropometric measurements from individuals 263 

recruited at four US sites: Pittsburgh, PA (PITT IRB PRO09060553 and RB0405013); Seattle, 264 

WA (Seattle Children’s IRB 12107); Houston, TX (UT Health Committee for the Protection of 265 

Human Subjects HSC-DB-09-0508); and Iowa City, IA (University of Iowa Human Subjects 266 

Office IRB (200912764 and 200710721). Recruitment was limited to individuals aged 3 to 40 267 

years old and of self-reported European ancestry. Individuals were excluded if they reported a 268 

personal or family history of any birth defect or syndrome affecting the head or face, a personal 269 

history of any significant facial trauma or facial surgery, or any medical condition that might alter 270 

the structure of the face. The intersection of unrelated participants with quality-controlled 271 

images, covariates, and genotype data from individuals of European descent resulted in 1,906 272 

individuals for analysis. 273 

 274 

The PSU sample included 3D images and genotypes of participants recruited through 275 

several studies at the Pennsylvania State University and sampled at the following locations: 276 

Urbana-Champaign, IL (PSU IRB 13103); New York, NY (PSU IRB 45727); Cincinnati, OH (UC 277 

IRB 2015-3073); Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 278 

4320); Austin, TX (PSU IRB 44929); and San Antonio, TX (PSU IRB 1278). Participants self-279 

reported information on age, ethnicity, ancestry, and body characteristics, and data were 280 

gathered on height and weight. Individuals were excluded from the analysis if they were below 281 

18 years of age and if they reported a personal history of significant trauma or facial surgery, or 282 

any medical condition that might alter the structure of the face. No restriction on ancestry or 283 

ethnicity was imposed during recruitment, but only individuals of European descent were used 284 

in this study. The intersection of unrelated European participants with quality-controlled images, 285 

covariates, and genotype data resulted in 1,990 individuals for analysis. 286 

 287 

The IUPUI sample includes 3D images and genotypic data from individuals recruited in 288 

Indianapolis, IN and Twinsburg, OH (IUPUI IRB 1409306349). Participants self-reported 289 

information on age, height, weight, and ancestry at the time of the collection. Individuals who 290 

were below 18 years of age were included if they had a parent or legal guardian’s signature. 291 

Similar to the PSU sample cohort, no restrictions were placed on the recruitment of participants, 292 

but only unrelated individuals of European descent and those meeting all quality control criteria 293 

were used in this study (n = 784). 294 

 295 

The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which 296 

pregnant women residing in Avon with an expected delivery date between 1 April 1991 and 31 297 

December 1992 were recruited50,51. At the time, 14,541 pregnant women were recruited and 298 

DNA samples were collected for 11,343 children. Genome-wide data was available for 8,952 299 

subjects of the B2261 study, titled “Exploring distinctive facial features and their association with 300 
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known candidate variants.” In addition to this, 4,731 3D images were available along with 301 

information on sex, age, weight, height, ancestry, and other body characteristics. The ALSPAC 302 

study website contains details of all the data that is available through a fully searchable data 303 

dictionary (http://www.bris.ac.uk/alspac/researchers/our-data/). The intersection of unrelated 304 

participants of European ancestry with quality-controlled images, covariates, and genotype data 305 

included 3,566 individuals. Ethical approval for the study was obtained from the ALSPAC Ethics 306 

and Law Committee and the Local Research Ethics Committees. Informed consent for the use 307 

of data collected via questionnaires and clinics was obtained from participants following the 308 

recommendations of the ALSPAC Ethics and Law Committee at the time. Consent for biological 309 

samples has been collected in accordance with the Human Tissue Act (2004). 310 

 311 

Genotyping and imputation 312 

 313 

Genotyping of the 3DFN sample was performed at the Center for Inherited Disease 314 

Research at Johns Hopkins University. Participants and control samples were genotyped on the 315 

Illumina OmniExpress + Exome v1.2 array, plus 4,322 investigator-chosen SNPs included to 316 

capture regions of interest. PSU participants were genotyped by 23andMe on the v3 and v4 317 

arrays (Mountain View, CA). Participants sampled at IUPUI were genotyped using Illumina’s 318 

Infinium Multi-Ethnic Global-8 v1 array, performed by the University of Chicago’s DNA 319 

Sequencing & Genotyping Facility (Chicago, IL). ALSPAC participants were genotyped using 320 

the Illumina Human Hap550 quad array, performed by Sample Logistics and Genotyping 321 

Facilities at the Wellcome Trust Sanger Institute (Cambridge, UK) and the Laboratory 322 

Corporation of America (Burlington, NC), supported by 23andMe. 323 

  324 

 For all datasets, samples were evaluated for concordance of genetic and reported sex (-325 

-check-sex), evidence of chromosomal aberrations, genotype call rate (--mind 0.1), and batch 326 

effects using PLINK 1.952. SNPs were evaluated for call rate (--geno 0.1), Mendelian errors (--327 

set-me-missing), deviation from Hardy-Weinberg genotype proportions (--hwe 0.01), and sex 328 

differences in allele frequency and heterozygosity, also using PLINK 1.9. The genotypes were 329 

“harmonized” with 1000 Genomes Project (1000G) Phase 353 using Genotype Harmonizer 330 

(v1.4.20)54 with a window size of 200 SNPs, a minimum of 10 variants, and alignment based on 331 

minor allele frequency (--mafAlign 0.1). This program was also used to filter out ambiguous 332 

SNPs, update the SNP id, and update the reference allele as needed, all in reference to the 333 

1000G Phase 3 genotypes. After genotype harmonization, the study datasets were merged (n = 334 

44,383 SNPs in common) and explored using principal components analysis (PCA) to assure 335 

that there were no batch effects by genotyping platform. Relatedness across the entire US 336 

sample was also assessed using this intersection and the KING (v2.1.3) software55. Relatives 337 

were noted in the per-platform subsets, and the imputation process proceeded for the full 338 

number of quality-controlled SNPs from each platform. 339 

 340 

Prior to phasing, special quality control steps were performed on each platform. First, the 341 

allele frequency of each SNP was compared to the allele frequency of that SNP in the 1000G 342 

Phase 3 dataset. SNPs were removed if the allele frequency in the study dataset was not within 343 

|0.2| of any one of the 1000G super populations. We also removed SNPs with duplicate 344 
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positions, any remaining insertions/deletions, copy number variants, and haploid genotypes. 345 

Individuals were removed if they had heterozygosity values ±3 standard deviations from the 346 

mean. Haplotypes were estimated using SHAPEIT2 (v2.r900)56. The samples were then 347 

imputed to the 1000G Phase 3 reference panel using the Sanger Imputation Server (v0.0.6)57 348 

with the positional Burrows-Wheeler Transform (PBWT) pipeline (v.3.1)58, resulting in nearly 40 349 

million variants for each dataset. SNP-level (INFO score >0.8) and genotype-per-participant-350 

level (genotype probability >0.9) filters were used to omit poorly imputed variants. The datasets 351 

were then merged and filtered by SNP missingness (--geno 0.5), minor allele frequency (--maf 352 

0.01), and Hardy-Weinberg equilibrium (P < 1 × 10-6) to produce a single merged dataset of all 353 

US participants with 7,417,619 SNPs for analysis. 354 

 355 

The raw genotype data from ALSPAC was not available and restrictions are in place 356 

against merging the ALSPAC genotypes with any other genotypes. For this reason, imputed 357 

ALSPAC genotypes were obtained directly from the ALSPAC database and held separately 358 

during the analysis. Prior to phasing and imputation, the ALSPAC genotypes were subjected to 359 

standard quality control methods. Individuals were excluded on the basis of genetic sex and 360 

reported gender mismatches, minimal or excessive heterozygosity, disproportionate levels of 361 

individual missingness (>3%), and insufficient sample replication (IBD <0.8). Only individuals of 362 

European descent, compared to the HapMap II dataset by way of multidimensional scaling 363 

analysis, were kept for imputation. SNPs were removed if they had a minor allele frequency of 364 

<1%, a call rate of <95%, or evidence for violations of Hardy-Weinberg equilibrium (P < 5 × 10-365 
7). Related individuals were excluded based on pedigree information provided by ALSPAC and 366 

double-checked using the IBD command in PLINK 1.9.  367 

 368 

Ancestry axes and selection of European participants 369 

From the post-imputation merged dataset of the US participants, we identified the 370 

European participants by projecting them into a principal component (PC) space constructed 371 

using the 1000G Phase 3 dataset. To do this, we first excluded all indels, multi-allelic SNPs, and 372 

SNPs with MAF ≤ 0.1 in both the 1000G dataset and the US dataset and identified the SNPs 373 

common to both datasets. On this list (n = 1,940,221 SNPs), we iteratively performed linkage 374 

disequilibrium pruning (50 bp window, 5 bp step size, 0.2 correlation threshold) on the 1000G 375 

dataset until no variants were excluded. We then used this LD-pruned list (n = 461,372 SNPs) in 376 

a principal component analysis to construct a population structure space based upon the 1000G 377 

project and projected the US dataset onto that space to obtain the ancestry axes of our dataset. 378 

 379 

3D image registration and quality control 380 

 381 

After cleaning each image to remove hair, ears, clothing, and other imaging artifacts, five 382 

positioning landmarks are roughly indicated to establish image orientation. The MeshMonk 383 

registration framework (v0.0.6) is then used to map a symmetric (relative to the sagittal plane) 384 

anthropometric mask of 7,160 landmarks onto the images and their reflections, constructed by 385 

changing the sign of the x coordinate59. Outlier images, likely caused by image mapping errors, 386 

were identified using two approaches. First, as described in prior work60,61, outlier faces were 387 
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identified by calculating z-scores from the Mahalanobis distance between the average face and 388 

each individual face. Faces with z-scores higher than two were manually investigated. Second, 389 

a score was calculated that reflects the missing data present in the image due to holes, spikes, 390 

and other mesh artifacts, which can be caused by facial hair or errors during the preprocessing 391 

steps. Images with high scores, indicating large gaps in the mesh, were manually investigated. 392 

During the manual check, the images were either classified as poor quality and removed or 393 

were preprocessed and mapped again. Although variation in asymmetric facial features is of 394 

interest, in this work we sought to only study variation in symmetric facial shape. Therefore, 395 

when discussing facial shape, we always refer to the symmetric quasi-landmark configuration, 396 

which is calculated as the average of the original and reflected quasi-landmark configurations 397 

after aligning the two using Generalized Procrustes analysis to eliminate differences in position, 398 

orientation, and centroid size62. 399 

 400 

Sharing of genome-wide signal between facial segments 401 

 402 

To assess the extent to which genome-wide signals of association with facial variation 403 

were shared between a pair of facial segments, LD score regression63,64 was applied to the 404 

meta-analysis, after converting the meta P values to z-scores (Equation 1), and ignoring the 405 

sign or direction of effect. The former was required because of the multivariate nature of our 406 

results and the latter was needed since, by design, CCA is a one-sided test with canonical 407 

correlations always in the positive range of [0 1]. As a result, any of the resulting genetic 408 

correlations reported here are restricted to be positive as well.  409 

 410 

(Equation 1)  𝑧, = 𝜙+$ +1 − -#

.
- 411 

 412 

Based on LDSC v1.0.1 (https://github.com/bulik/ldsc), we first used the 413 

munge_sumstats.py function to convert P values into z-scores, restricting ourselves to SNPs 414 

that overlap with the HapMap3 project and excluding those within the major histocompatibility 415 

complex region (--merge-alleles w_hm3.noMHC.snplist), with a minimum of n = 4,155 416 

individuals (--n-min 4155). As input to the munging step, an additional column SIGN was added 417 

coding 1 for each SNP, reflecting a positive direction of effect (--signed-sumstats SIGN,1). 418 

Subsequently, using ldsc.py the genetic correlation between pairs of facial segments were 419 

generated based on the precomputed reference LD scores and weights for a European 420 

population (--ref-ld-chr eur_w_ld_chr/ and --w-ld-chr eur_w_ld_chr/, respectively).  421 

 422 

GWAS peak selection 423 

 424 

Within a locus, Adjacent SNPs were considered suggestively similar and belonging to 425 

the same signal as the lead SNP if the slope of the adjacent SNP trait and the lead SNP trait 426 

had a regression P value lower than 0.2. On the other hand, a P value higher than 0.2 was 427 
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considered to indicate different traits by the two SNPs and led to a definition of a new lead SNP 428 

within the 1 Mb window.  429 

 430 

The consistency of effect across datasets was determined with a regression of the CCA 431 

traits found in the identification stage for each dataset, with results considered sufficiently similar 432 

if they were below a Benjamini and Hochberg65 false discovery rate of P ≤ 3.66 × 10-2. 433 

 434 

Gene annotation 435 

 436 

Genes 500 kb up- and downstream of the genome-wide significant lead SNPs were 437 

identified using the Table Browser of the UCSC Genome Browser66. The most likely candidate 438 

gene per lead SNP was identified based on a three-step system. First, we investigated whether 439 

any gene in the window was previously associated with craniofacial development or morphology 440 

through normal-range facial association studies, genetic disorders with facial dysmorphology as 441 

a symptom, or animal models. This search was performed by using the HGNC gene name as 442 

the search term in the PubMed, OMIM67, GWAS Catalog68, and PubTator Central69 repositories. 443 

The resulting literature was scanned for terms like “facial,” “craniofacial,” “craniofacial 444 

(dys)morphology,” and “facial development,” and we subsequently determined whether the 445 

relevant literature was a GWAS of normal-range facial morphology, a study focused on human 446 

craniofacial dysmorphology, or a study focused on animal craniofacial morphology. If we did not 447 

find the gene included in previous literature covering these topics, we checked whether the 448 

gene was a likely contributor to facial development based on the paper of Hooper and 449 

colleagues, who used transcriptome data from critical periods of mouse face formation to 450 

assess gene activity across facial development70. If both methods did not deliver a suitable 451 

candidate gene, the most likely candidate gene was selected based on the FUMA gene 452 

prioritization algorithm (v1.3.3)71. 453 

 454 

Cell-type-specific enhancer enrichment 455 

 456 

Raw read (fastq) ChIP-seq files of signals of acetylation of histone H3 on lysine K27 457 

(H3K27ac) from Prescott et al.72 (GSE70751; CNCCs), Najafova et al.73 (GSE82295; fetal 458 

osteoblast cell line, undifferentiated and differentiated), Baumgart et al.74 (GSE89179; 459 

mesenchymal stem cell-derived osteoblasts), Nott et al.75 (UCSC genome browser; various 460 

brain cell types), and Pattison et al.76 (GSE119997; surface ectoderm) were downloaded and 461 

aligned to the GRCh37 human genome using bowtie2 (v2.3.4.2) with default parameters. 462 

Aligned read (tagAlign) files of H3K27ac ChIP-seq from Wilderman et al.77 (GSE97752; 463 

embryonic craniofacial tissue), and the Roadmap Epigenomics Project78 464 

(https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/; various fetal and 465 

adult tissues and cell-types) were also downloaded. Sample type, ID, and URL for each cell 466 

type/tissue is available in Supplementary Table 4. 467 

 468 

To compare H3K27ac signal in the vicinity of the genome-wide significant lead SNPs 469 

between cell-types in an unbiased manner, we divided the genome into 20 kb windows, and 470 

calculated H3K27ac reads per million (RPM) from each aligned read (bam or tagAlign) file in 471 
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each window using bedtools coverage (v2.27.1). We then performed quantile normalization 472 

(using the normalize.quantiles function from the preprocessCore package, v3.7) on the matrix of 473 

154,613 windows × 133 ChIP-seq datasets. We then selected the windows containing each of 474 

the 203 genome-wide significant lead SNPs, 203 random SNPs matched for minor allele 475 

frequency and distance to the nearest gene using SNPsnap79, or 619 Crohn’s disease-476 

associated SNPs from the NCBI-EBI GWAS catalog68. 477 

 478 

Structural Equation Modeling 479 

 480 

Mathematically, SEM analyses are a combination of a measurement model, which is 481 

constructed via confirmatory factor analysis, and a structural model, which is constructed using 482 

path analysis. In general, Lavaan outputs a best fit model that summarizes all genotype, 483 

phenotype, and covariate interactions, as well as a latent variable (aka “mask”), which is 484 

produced by a built-in dimension reduction that condenses the multidimensional facial 485 

phenotype from many principal components down to a single univariate phenotype. Parameters, 486 

which represent the interactions between the input variables, are generated by comparing the 487 

real covariance matrix between input variables and the estimated matrix created by numerical 488 

maximization, in our case carried out via maximum likelihood estimation. To maximize statistical 489 

power, Schreiber et al. recommend having at least 10 participants per parameter80. 490 

 491 

For our analyses, separate SEM models were constructed for each segment using each 492 

of the 203 genome-wide significant lead SNPs and the shape PCs for all 8,246 participants. 493 

Missing genotypes were substituted with the most common genotype based on frequency. 494 

Covariates of age, sex, height, weight, and face size (i.e. centroid size) were also included as 495 

model input. Prior to analysis, the distributions of these covariates were plotted and 496 

transformed, if necessary, to display near normal distributions. As genotypes are trichotomous, 497 

normality was not assessed. 498 

 499 

Since analyzing all variants and all principal components for each segment via a single 500 

SEM would require the modeling of thousands of interactions and require extensive 501 

computational resources, separate SEM models were initially constructed. First, for each 502 

segment, we separated the 203 genome-wide significant lead SNPs into three groups and ran 503 

three SEM models on each of these groups, plus all covariates. If any of the three subset SEMs 504 

did not converge, we then re-grouped the SNPs into four or more groupings and re-ran the 505 

subset SEM models on these groupings. This process was repeated until all subset SEMs 506 

converged and we had parameter estimates for all 203 SNPs. Next, for each segment, SNPs 507 

with P values lower than 0.2 in the initial subset SEMs were collected and a unified SEM model 508 

for each segment was created and subsequently refined. If the unified SEM model did not 509 

converge, then this segment was discarded and no further analysis was performed. If all of the 510 

SNPs included in the unified model had P values lower than 0.2, a cutoff selected to maintain 511 

model stability, no further changes were made, and we reported the model fit indices and 512 

parameter estimates. For segments where the unified SEM model produced SNP P values 513 

greater than 0.2, the SNPs included in the SEM model were pruned by selecting SNPs with P < 514 

0.05 and the model was re-run with this reduced set of SNPs. This process was repeated until 515 
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all SNPs had P values lower than 0.2. In the case of segments 7, 16, and 25, this iterative 516 

pruning process led to a rapidly declining model, so we elevated the SNP pruning P value from 517 

0.05 to 0.1 to account for instability in these models. Once the model refinement was complete 518 

(i.e. all SNPs had P < 0.2), we designated the SNPs with P < 0.05 as significantly contributing to 519 

variance within the segment. 520 

 521 

In general, the number of model parameters generated by the final refined SEM model 522 

for each segment ranged between 92 and 217, depending on the number of shape PCs and 523 

SNPs included in each model. As 8,246 participants were used, this led to a range of 38-90 524 

participants per parameter, which is well above recommendations80. Additional statistical power 525 

was lent to our models by having a large number of samples and input variables per latent 526 

factor81. Of the 63 segments, the SEM models for 13 segments were discarded because they 527 

did not converge on a solution, which normally occurred when variants were non-informative for 528 

that particular segment or the variance of the segment was low. For each of the 50 SEM models 529 

where the refinement process was successful, we evaluated the fit of each model by instituting 530 

cutoffs on the following indices: Chi-square (P value < 0.05), comparative fit index (CFI > 0.90), 531 

root mean square error of approximation (RMSEA < 0.08), and standardized root mean square 532 

residual (SRMR < 0.08)82,83, which generally indicate the strength of how well the SEM models 533 

the data. Eighteen models passed all recommended model fit parameters and 32 models 534 

passed all but one of the fit indices, leading to the conclusion that the refined SEM models fit 535 

our data well.  536 
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 537 
Supplementary Figure 1. Miami plot of all results. 538 

Miami plot of all 63 facial segments combined, illustrating the chromosomal position of the 539 

associated loci from the meta-analysis track with the US dataset as identification (top) and UK 540 

as identification (bottom). Values plotted are the result of Stouffer’s meta-analysis of one-sided 541 

right-tailed identification and verification P values, detailed in the Methods. The dotted horizontal 542 

line represents the genome-wide significance threshold (P = 5 × 10-8) and the dashed horizontal 543 

line represents the study-wide threshold (P = 6.69 × 10-10), calculated in Supplementary Note 2. 544 
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 545 

 546 
Supplementary Figure 2. Illustration of age correction using PLSR. (A) Average faces of 10 547 

individuals with an age range of 9-10 in the top row, and 70-75 in the bottom row. The right 548 

column shows the same averages after our correction using PLSR. (B) The top plot shows the 549 

first three principal components, calculated from segment 1, before PLSR correction and color-550 

coded according to age. In this plot, the images seem to separate along the axes of PC1 and 551 

PC3 based on age. The bottom plot shows the first three principal components after PLSR 552 

correction, also color-coded according to age. In this plot, the separation along the PCs is no 553 

longer according to age, indicating the success of the correction. 554 

  555 
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Supplementary Data 1 (Separate PDF File). Overview figures of 24 multi-peak loci 556 

For each of the twenty-four multi-peak loci (listed in Supplementary Table 5): (A) -log10(P) of the 557 

meta-analysis one-sided, right-tailed P value per facial segment in METAUS and METAUK tracks. 558 

Black-encircled facial segments have reached genome-wide significance (P = 5 × 10-8). (B) The 559 

normal displacement (displacement in the direction locally normal to the facial surface) in each 560 

quasi landmark of the facial segment reaching the lowest P value in METAUS and METAUK, 561 

going from the minor to the major allele. Blue indicates inward depression; red indicates 562 

outward protrusion. (C) LocusZoom plots in METAUS (top) and METAUK (bottom), for the 563 

segment in which the SNP had its lowest P value (one-sided). Points are colored based on 564 

linkage disequilibrium (r2) in the 1000 Genomes Phase 3 EUR population. Asterisks represent 565 

genotyped SNPs and circles represent imputed SNPs. 566 

  567 
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Supplementary Data 2 (Separate Excel File). Structural Equation Modeling results 568 

For each of the 50 segments with well-fitting SEM models, in this table we provide the number 569 

of principal components included to represent shape variation in that segment, the number of 570 

SNPs that survived the model refinement process (see Methods), the P value cutoff used to 571 

perform the model refinement and determine the SNPs to be used for epistasis, the number of 572 

SNPs used in the epistasis analysis for this segment, and values for the 𝛘2, CFI, RMSE, SRMR 573 

model fit indices, which were used to evaluate the models for our analysis. We also include the 574 

TLI and GFI model fit indices for completeness. This table also contains internal links to 575 

separate tabs where, for each surviving model, we have listed the parameters used and the 576 

estimate, standard error, z-score, two-sided P value, and 95% confidence intervals. SNPs which 577 

were selected for epistasis testing are highlighted in green. 578 

  579 
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