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Abstract

Evidence for a role of ovarian factors in the growth of metastatic breast cancer was first recognized
over 100 years ago. Today, anti-estrogens are central to the treatment of breast cancer of all
stages. We now understand that the action of estrogen is mediated by the estrogen receptors (ER)
which are members of the nuclear receptor family of ligand-regulated transcription factors. In this
article we review the molecular mechanisms through which ER activates transcription of target
genes and through which available anti-estrogens mediate their therapeutic effects. We discuss poss-
ible mechanisms of failure of treatment with current anti-estrogens and how newer anti-estrogens
under development attempt to address these problems. In addition an expanded view of the molecular
mechanisms of estrogen action is leading to the development of novel selective ER modulators or
SERMs.
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Introduction

The estrogen receptor (ER) plays an important role in
the clinical care of breast cancer patients both as a
prognostic factor as well as a therapeutic target. By
immunohistochemistry, ER expression is found in only
6 –10% of normal breast epithelial cells, whereas 60%
of primary breast cancers are ER-positive (1, 2). Of
advanced ER-positive breast cancers, two-thirds will
respond to therapy with anti-estrogens such as
tamoxifen (Nolvadex) (3). In addition, the majority of
ER-positive tumors, even if initially responsive to anti-
estrogenic treatment will eventually develop resistance
to this treatment, in general without altering their ER
profile (4). For the most part, tamoxifen is an effective
adjuvant therapy for early-stage breast cancers only
in ER-positive tumors (5, 6). The extensive use of
tamoxifen as successful breast cancer therapy and the
reduced incidence of contralateral breast cancer
during tamoxifen treatment have encouraged the
testing of tamoxifen as a preventive agent (5). The
breast cancer prevention trial found that a median of
55-months treatment with tamoxifen decreased the
risk of invasive breast cancer by 49% and estrogen
receptor-positive breast cancer by 69% (7). Importantly,
tamoxifen had no effect on the development of ER-
negative cancers. The BCPT thus provides strong
evidence for the ability of tamoxifen to reduce the risk
of ER-positive breast cancers (8).

The endocrine therapy of breast cancer was first
reported in 1896 by Sir George Beatson, a British sur-
geon who described that oophorectomy could lead to
tumor regression (9). A review of the response rate to
oophorectomy showed it to be in the order of 30% in
all breast cancer patients (10). This is approximately
equivalent to endocrine therapy seen today in
unselected patients. Although certain clinical features
predicted a positive response to endocrine therapy the
reason for the heterogeneous response of breast
cancer remained unknown until the 1960 s with the
identification of the estrogen receptor by Toft and
Gorski (11) and Jensen et al. (12). Measurement of
the level of ER expression in the primary breast
tumors has allowed an accurate prediction of response
to endocrine therapy.

Interestingly, estrogens were among the first hormo-
nal agents to be studied for the treatment of metastatic
disease, and partial response rates of 20–40% in postme-
nopausal women treated with diethylstilbestrol (DES)
could be achieved. Due to the greater side effects of
high dose estrogens compared with other hormonal
agents they are currently infrequently used. Neverthe-
less, it has been shown by many clinical trials that
response rates to estrogens are similar to current therapy
with anti-estrogens (13, 14). For the treatment of
advanced breast cancer both nonsteroidal anti-estrogens
such as tamoxifen, and progestins such as megestrol
acetate, are widely used. In addition, anti-estrogens
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with pure antagonistic effects like ICI 182,780 (Faslo-
dex) and new targeted anti-estrogens are being tested.
To date, there is no compelling insight into the apparent
paradox that both estrogens and anti-estrogens exhibit
similar efficiency in breast cancer treatment.

ER is a member of the nuclear receptor
family

The molecular cloning of the first human estrogen
receptor, ERa, revealed it to be a member of a family
of nuclear receptors for small hydrophobic ligands
that regulate growth, differentiation and homeostasis
in eucaryotic cells (15). This family of receptors
includes those for steroid hormones, thyroid hormone,
vitamin D, retinoic acid (vitamin A) and eicosanoids
(16–20). As a class, these receptors are transcription
factors whose activity is regulated allosterically by
ligand binding. The 66 kDa ER protein is encoded by
8 exons of a gene which encompasses ,140 kb in
length. The ERa gene has been localized to human
chromosome 6q24-27 (21).

The estrogen receptor and its ligand estradiol had
been thought to be essential for survival, fertility,
sexual differentiation and development (22). The dis-
ruption of the mouse ERa gene has generated new
and unexpected insights. The lack of ERa does not
lead to embryonic lethality nor does its absence affect
the processes leading to sex determination. Mice lack-
ing ERa survive until adulthood but reproductive func-
tions are severely compromised. Both males and
females are infertile (23, 24). Importantly, mammary
glands of 4-month-old females showed only a very
primitive ductal rudiment as compared with a fully
developed ductal tree in wild-type animals. ER-deficient
mice also lacked terminal end buds seen during normal
mammary ductal morphogenesis (23). In 1994, the
first null-mutation in the ERa gene in a man was
described (25), leading to the conclusion that a disrup-
tive mutation of the ERa in humans is not lethal.

The dissection of the molecular mechanism by which
estrogen activates its receptor and thereby modulates
target gene transcription is central to the understand-
ing of the complex biology governed by estrogen.
After diffusion into the cell, estradiol binds the estrogen
receptor. The binding of estradiol to ER induces an allo-
steric change which subsequently leads to dissociation
of heat shock proteins (Hsp) from the ER followed by
homodimerization or heterodimerization of the recep-
tors which allows the receptor –hormone complex to
bind to its specific DNA target, the estrogen responsive
element (ERE) (Fig. 1) (26). These DNA sequences are
found in the promoter region near the start site of tran-
scription of many but not all genes directly regulated by
estrogens. Upon ERE binding the liganded receptor
activates gene transcription, which ultimately leads to
increased expression of the proteins encoded by these

genes (19, 27). A surprisingly small number of genes
has so far been shown to be direct targets of ER
action. In terms of breast cancer these include the
progesterone receptor (PR) (28) and pS2, a gene of
unknown function (29). In addition, evidence exists
that both growth factors such as transforming
growth factor (TGF)-a and insulin-like growth factor
(IGF)-I and growth factor receptors such as the epider-
mal growth factor (EGF)-receptor and erbB2 can be
upregulated in breast cancer cells following treatment
with estradiol (30). Furthermore, estrogen increases
expression of cathepsin D, Hsp27, c-Myc (31), c-fos,
c-jun (32) and retinoic acid receptor alpha (RARa)
(33). Also expression of cyclin A, B1, D1 and E was
found to be induced by estradiol in human breast
cancer (34). Studies indicate that increased cyclin D1
levels after estradiol (E2) treatment recruit the
p21 cdk inhibitor from its association with cyclin E –
cdk2 complexes, thereby offering a mechanism for
estradiol-regulated G1 cyclin dependent kinases and
cell growth (35, 36). Interestingly, recent studies
suggest that the cell cycle regulatory protein, cyclin
D, may also function as a potentiator of ER signaling.
This potentiation has been demonstrated to be indepen-
dent of cyclin dependent kinase (CDK) (37, 38) activity
and may explain, in part, the selective advantage for
cyclin D amplification and overexpression seen in
some breast cancers. Moreover, estrogen has been
demonstrated to regulate expression of prothymosin
alpha in ER-positive breast cancer cells (39). Interest-
ingly, prothymosin alpha interacts with a repressor of
ERa-mediated transcription, thereby providing a posi-
tive autoregulatory loop for ER-activated transcriptional
regulation (40). More recently, the availabiltiy of micro-
array technologies has further extended the list of
estrogen-target genes. Besides other newly identified

Figure 1 Model for ER-mediated signal transduction pathway.
Estradiol (E) diffuses through the cellular membranes into the
nucleus where it binds to the estrogen receptor (ER). Binding of
estradiol to the estrogen receptor leads to dissociation of heat
shock proteins (HSP) from ER followed by homodimerization and
specific DNA binding to the estrogen response element (ERE) in
target genes.
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ER-target genes, Hewitt et al. could demonstrate that
estrogen stimulation in vivo specifically regulates mem-
bers of the histon H1 family and histon deacetylase
(HDAC) 5, thereby altering chromatin structure and
general transcription (41).

The mechanism of ER-mediated transactivation is
thought to involve the ligand-dependent association
with a large complex of proteins that integrate and
transmit transactivating signals to the basal transcrip-
tion machinery. These proteins are thought to act, at
least in part, as bridging factors between the receptor
and the transcription initiation complex. Moreover,
there is evidence to suggest that this complex can inte-
grate signals initiated by serum growth factor receptors
such as the EGF- and IGF-I-receptor. Each of these fac-
tors involved in ER-mediated transactivation, i.e. ligand
binding, dimerization, DNA binding and the assembly
of ER-associated protein complexes offers potential tar-
gets for the therapeutic modulation of ER action and
may play a role in the development of resistance to
anti-estrogens (27).

Structure of the estrogen receptor

The definition of the functional domains of nuclear
receptors was derived from amino acid sequence com-
parison between different members of this family as
well as mutational analysis of individual receptors
(42 –44). The subdivision of six functional domains is
outlined in Fig. 2.

The N-terminal A/B region is not well conserved
among different nuclear receptors and extends in the
case of ER from amino acid 1–180. The transactivation
domain, AF-1, contained in this region is able to per-
form its transactivating function in the absence of
ligand (43, 45–49). This region was shown to be a
target of the MAP-kinase regulatory pathway, indicat-
ing a cross-talk between signals initiated by growth fac-
tors and steroid hormones (50) at the level of the
receptor.

The C-region, also referred to as the DNA binding
domain reveals a very high degree of conservation
throughout the nuclear receptor family and allows

the receptor to recognize DNA. ER expressed in vitro
or expressed in recombinant systems is able to bind
the ERE even in the absence of hormone, although in
vivo studies suggest that hormone binding plays an
important role in mediating DNA binding. The cause
of this discrepancy is not well understood, but given
the strong preference of ER to bind DNA as a homodi-
mer it seems that the role of ligands in stabilizing dimer-
ization is significant (51).

The hormone-binding domain (HBD; region E),
which in the case of the estrogen receptor encompasses
251 amino acids is complex in function including
ligand binding, heat-shock protein association, ligand-
dependent transactivation and dimerization. From
mutational analysis it is known that ligand binding
involves almost all of this domain, since most of the
mutations within this area compromise the ability of
the mutated receptor to bind its hormone (19, 51).
The ligand-dependent activation domain, AF-2 overlaps
the HBD (52). The AF-2 domain is thought to activate
transcription through the ligand-dependent association
with a large complex of proteins that integrates and
transmits transactivating signals to the basal transcrip-
tion machinery (53, 54). Structural studies of the HBD
of other nuclear receptors have shown that this region
is composed of a series of a-helices and that the critical
AF-2 region forms a terminal a-helix. The position of
this helix relative to the structural ligand binding
pocket is altered as a result of ligand binding (55, 56).
This conformational change is believed to be required
for the interaction between nuclear receptors and
their coactivators. The crystal structures of the ligand
binding domain (LBD) of ER in complex with the
endogenous estrogen, 17b-estradiol, and the selective
antagonist, raloxifene, provide a molecular basis for
the distinctive pharmacophore of the ER and its binding
properties. Agonist and antagonist bind at the same site
within the core of the LBD but demonstrate different
binding modes. In addition, each class of ligand induces
a distinct conformation in the transactivation domain
of the LBD, providing structural evidence of the mech-
anism of antagonism (57). The crystal structure of the
human ligand binding domain bound to a peptide
derived from the coactivator glucocorticoid receptor
interacting protein (GRIP1) in the presence of either
estrogen or tamoxifen revealed the structural require-
ments for anti-estrogen-mediated inhibition of coactiva-
tor binding to this domain (58).

The region responsible for ligand-dependent dimeri-
zation has been localized in the carboxy-terminal half
of the HBD (59, 60). Both estradiol and partial agonists
such as tamoxifen stabilize dimerization and sub-
sequent DNA binding (45). Although pure anti-estro-
gens such as ICI 182,780 have been thought to
prevent dimerization and DNA binding under certain
conditions (61), there is controversy about this assump-
tion, since Metzger et al. could demonstrate that ICI
164,384 does not prevent ER dimerization and DNA

Figure 2 Structure of the estrogen receptor. Numbers represent
amino acid positions; letters represent subdivided regions. AF-1,
constitutive activation domain; DBD, DNA-binding domain; HBD,
hormone-binding domain; AF-2, ligand-dependent activation
domain; S118, serine 118.
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binding (62). Unliganded steroid hormone receptors
including the estrogen receptor are known to be associ-
ated in vivo with a large complex of heat shock proteins
(hsp). This complex contains hsp90, hsp70 and hsp56.
The domain that is required for binding of hsp90 to ER
includes the LBD. This association is thought to be
critical for proper folding to allow high affinity ligand
binding. The binding of both estradiol and tamoxifen
then promotes dissociation of the receptor from the
heat shock protein complex (63 –65).

The region F contains 42 amino acids and is found at
the carboxy terminus of the estrogen receptor. It is not
very conserved among different nuclear receptors and a
specific function has not been identified as yet for this
region. However, deletion of the F domain may alter
tamoxifen’s estrogenic effect in a cell type-dependent
manner (66). More recent experiments demonstrated
that this domain is essential for estradiol-stimulated
transcription of target genes through Sp1-sites,
suggesting that F domain interactions with nuclear
cofactors are required for ERa/Sp1 action (67).

Identification of a novel estrogen
receptor, ERb

More recently, a new member of the nuclear receptor
family with highest homology to the estrogen receptor
has been cloned in rat (68), mouse (69) and human
(70) and was therefore termed ERb. The homology to
the rat estrogen receptor protein was found to be
95% in the DNA-binding domain and 55% in the
C-terminal ligand-binding domain. In situ hybridization
studies in rat showed a prominent expression in the epi-
thelial cells of the secretory alveoli of the prostate and
the ganulosa cells in the primary, secondary and
mature follicles of the ovary. ERb binds 17b-estradiol
with high affinity (Kd ¼ 0.6 nmol/l). In transient trans-
fection experiments the ability of ERb to transactivate
in an estrogen-dependent manner was also demon-
strated. The identification of this new estrogen receptor
may explain the residual estradiol binding which could
be measured in some tissues of the ERa knockout mice
(24). Mice lacking ERb develop normally, but female
knockout mice have fewer and smaller litters than
wild-type mice while older males develop signs of pros-
tate and bladder hyperplasia pointing to a role for this
receptor in ovulation and prostate growth (71). Cell
culture experiments revealed some interesting differ-
ences between ERa and ERb. While both receptors
bind estradiol and activate transcription through an
ERE, they exert differential transcriptional actvities
through AP-1 sites, pointing to differential gene regu-
lation through these closely related receptors. In this
field, recent progress in pharmaco-development has
yielded the identification of selective ERb-agonistic
agents, adding yet further complexity to the modu-
lation of ER-regulated transcription (72). More recently,

it could be demonstrated that ERb is essential for term-
inal differentiation of mammary gland epithelium in
mice and it remains an important open question
whether ERb plays any role in breast cancer develop-
ment or response to endocrine therapy (73).

Mutations and splice variants of ER

The phenomenon that ,35% of ER-positive tumors fail
to respond to hormonal manipulations led to a search
for mutations of ER in these tumors. These efforts
resulted in the identification of numerous mutations
and alternative splice variants of ER in tumors (for
review see 74). A detailed discussion of each of these
mutations exceeds the scope of this article, but
mutations can be classified into three groups according
to their functional significance. First, there are ‘nega-
tive mutants’ which lead to a complete or partial tran-
scriptionally inactive receptor and whose expression
does not influence the function of coexpressed wild-
type receptor. These mutations probably resemble the
majority of those found in tumors, with the only conse-
quence that cells exclusively harboring the mutant
receptor exhibit a reduced response to estrogen. This
category also includes mutations in the C-terminal
domain of the protein that reduce hormone binding.
Secondly, there are those mutations which are tran-
scriptionally inactive, but also render coexpressed
wild-type receptors transcriptionally inactive and are
therefore called ‘dominant-negative’ mutants. An
example of this type is an exon 7 deletion (75). The
third group of mutations include those which render
the receptor transcriptionally active even in the absence
of ligand, and are therefore called ‘dominant-positive’
mutations. These mutations compromise the integrity
of the AF-2 domain of the receptor leaving the constitu-
tive AF-1 activity unaltered. Examples include an exon
5 deleted mutant described by Fuqua et al. (76).
Although mutations in the ER have been used to
explain hormone resistance in ER-positive tumors and
a variety of mutations with different functional conse-
quences have been identified, it is not clear in what pro-
portion of tumors these mutants are clinically
important. However, at least one study (77) showed
that all major estrogen receptor splice variants that
were detected among the RNA population of the ER-
positive breast cancer cell line MCF-7 are also present
in normal tissue.

As ERb has been identified more recently, it is still
subject to ongoing research as to whether mutations
and splice variants of this receptor play any role in
breast cancer development and/or prognosis. At least
ten different exon deletion variants of ERb could be
identified, out of which one (exon 5 deletion) correlated
with the grade of the tumor (78). Interestingly, this
variant exhibited transcriptional activity in the absence
of estradiol and its expression correlated with a higher
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grading of the tumors (78). Independently, Chi et al.
demonstrated by immunohistochemistry that ERb iso-
forms are differentially expressed in breast cancer cells
and in benign epithelial and non-epithelial components
of breast tissue, and suggested that ERb isoform-specific
agonists and antagonists are likely to have different bio-
logical effects on normal and cancerous cells and tis-
sues (79). Following this line of research, Murphy
et al. found evidence for a role of differential expression
of ERb isoforms in primary tumors of breast cancer
patients who proved to have differential sensitivity to
tamoxifen therapy (80).

In vitro mutagenesis of ER revealed interesting ER
molecules which exhibit features explaining some
characteristics of tamoxifen-resistant tumors. Mahfoudi
et al. demonstrated that point mutations in the critical
region for AF-2 activity between amino acids 538 and
552 changed tamoxifen’s properties from antagonists
to agonists (81). Whether mutations like the ones cre-
ated in vitro exist in tamoxifen-resistant tumors remains
to be examined.

Another important question is why not all breast
cancers express ER. It has been shown that expression
of ER is regulated at a trancriptional level in ER-positive
and ER-negative tumors (29, 82, 83). One study ident-
ified a positive enhancer element at position 23778 to
23744 in the ER gene, which is active only in ER-posi-
tive breast cancer cell lines (84). These findings may
allow the development of therapeutic approaches to
induce ER expression in ER-negative tumors rendering
them responsive to endocine treatment. Another poss-
ible mechanism regulating the ER status of breast
cancer is the methylation state of the ER gene itself. It
has been shown that ER-negative breast cancer cells
display extensive methylation of CpG islands in the 50

promoter region of the ER gene (85). Moreover, it has
been demonstrated that treatment of ER-negative cells
with inhibitors of DNA methylation such as 5-azacyti-
dine partially induces ER expression (86). However,
whether methylation of the ER gene is the consequence
or the cause of decreased expression remains to be
elucidated.

Ligand-dependent transcriptional
activation – role of coactivators

Gene transcription by RNA polymerase II requires
assembly of a large initiation complex at the TATA
box. Both the AF-1 and the AF-2 domain of the estro-
gen receptor bind to the TATA-binding protein (TBP)
in vitro (87). However, while TBP is necessary, it is
not sufficient to mediate RNA polymerase II-dependent
transcription in response to transactivators. This and
other observations led to the hypothesis that additional
factors, termed ‘coactivators’, are also required for
efficient transcription (88). TBP-associated factors
(TAFs) are thought to play a role in ER-mediated

activation. For example, TAFII30 (TBP associated
factor) interacts specifically with the AF-1, but not
the AF-2 domain of the ER (89). In addition, it has
been shown that TFIIB can associate with the AF-2
domain of the estrogen receptor (90). Since the binding
of nuclear receptors to components of the basal tran-
scription apparatus is necessary but did not appear to
be sufficient for ligand-dependent transcriptional acti-
vation, further research has focused on the identifi-
cation of other receptor-associated proteins whose
binding to the receptors was both AF-2 and ligand
dependent.

Members of the yeast mating type switching/sucrose
non-fermenting (SWI/SNF) family of proteins were the
first coactivators to be characterized for nuclear
receptors (Table 1). These proteins are part of the pol
II holoenzyme complex and probably act through the
release of repressive effects of chromatin components
(91 –93). It has been reported that transcriptional
activation by ER in yeast is dependent on the function
of SWI1-3 (94). Moreover, their human homologs
hSNF2a (hbrm) and hSNFb (BRG1) enhance ER-
mediated transactivation in cotransfection experiments
(91, 92).

Putative ER coactivators were identified biochemi-
cally as estrogen receptor associated proteins (ERAP)
160 and ERAP 140 (95). These proteins were identified
by their ability to interact with the bacterially expressed
AF-2 domain of the human estrogen receptor in a
ligand-dependent manner (95). This same approach
led to the identification of receptor interacting protein
(RIP) 160, 140 and 80 (96). The molecular cloning
of ER-associated proteins has been pursued both by
yeast two hybrid screening using nuclear receptors as
a bait, and by expression cloning using radiolabeled
nuclear receptor fusion proteins as probes. The
first approach led to the molecular cloning of steroid
receptor coactivator 1 (SRC1), which when cotrans-
fected with nuclear receptors including ER was able

Table 1 Estrogen receptor coregulators.

Coactivator Targeted nuclear receptor Reference

SRC1 family*
SRC1 ER, PR, TR, GR, RXR 97
TIF2 ER, RXR, RAR 100
mGRIP ER, GR, AR 99
p/CIP ER, TR, RAR 161

CBP family
p300 ER, TR, GR, RXR, RAR 107
CBP ER, GR, RXR, RAR 108

98,109
SWI/SNF family 94

hSNF2a (hbrm) ER, GR, RAR 91
hSNF2b (BRG1) ER, GR, RAR 92

Others
RIP140 ER, RAR 96
TIF1 ER, TR, RXR, RARa, VDR
CARM-1 ER, PR, TR, GR, RXR 162

* Biochemically identified as ERAP160 and RIP160 (95, 96).
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to augment ligand-dependent transactivation (97).
Subsequently, other groups cloned different forms of
SRC1. Antisera raised against the cloned SRC1 recog-
nize the biochemically defined ERAP 160 suggesting
that both proteins are related (98). Using the HBD of
the glucocorticoid receptor as a bait, others cloned
GRIP1, which also interacts with the liganded HBD of
ERa (99). In addition, TIF2 was cloned by expression
screening using radiolabeled ER-HBD as a probe
(100). Sequence comparison of TIF2 with GRIP1
revealed GRIP1 to be the mouse homolog of human
TIF2. This protein shares similarity to SRC1 (between
30–40% identity on an amino acid level) (100). There-
fore, the biochemically characterized protein complex
ERAP 160 is composed of at least two structurally
related gene products, SRC1 and TIF2/GRIP1. More
recently, p300/CBP interacting protein (p/CIP) (also
RAC3 and ACTR) was shown to be a new member of
this family (101). Interestingly, this ER coactivator
was also identified as a gene amplified in breast
cancer (AIB1) (102, 103). In these studies the investi-
gators used chromosome microdissection and hybrid
selection to identify expressed sequences which map
to an amplicon on chromosome 20q found in certain
breast cancers. Among three cDNAs identified in this
way, AIB1 was found to map to a chromosome
20q12 amplicon which was found in several cancer
cell lines. A further study then demonstrated that
AIB1 amplification correlated in a large number of
breast and ovarian tumors with estrogen receptor posi-
tivity and tumor size. On the other hand, high levels of
AIB1 correlated with worse disease-free survival, when
patients received tamoxifen as an adjuvant agent, indi-
cating that AIB1 might be involved in a molecular
mechanism leading to tamoxifen resistance (104).
These data are of potential significance but it has still
to be proven whether AIB1 plays a causal role in the
development of ER-dependent breast cancer. Moreover,
recent work demonstrated that expression of SRC1
and ER are segregated in different cell types of the
mammary epithelium and estradiol-stimulated
expression of the progesterone receptor occurs in the
absence of immunologically detectable SRC1 (105).
These data indicate that SRC1 might act in a cell
type-specific manner rather than as a general steroid
receptor coactivator.

More recently, a novel ER-interacting protein could
be identified as proline glutamic acid and leucine-rich
protein (PELP)-1. Interestingly, PELP-1 overexpression
hypersensitized breast cancer cells for estradiol signal-
ing and enhanced progression of these cells to
S-phase, leading to persistent hyperphosphorylation of
the retinoblastoma protein, Rb (106). These findings
offer a unique crosstalk between nuclear receptor coac-
tivators and the regulation of cell cycle control.

The phospho-CREB-binding protein, CBP, and the
related p300 have been implicated as proteins
associated with ER and involved in ligand-dependent

transactivation (98, 107–109). In contrast to the
SRC1 family coactivators mentioned above, these
proteins are targets of signals mediated by a variety of
distinct pathways and are felt to function to integrate
signals from these diverse pathways by interacting
with components of the basal transcription machinery
(Fig. 3).

More recently, it could be shown that protein methyl-
ation plays a central role in the modulation of chroma-
tin structure and coactivators, leading to either gene
silencing or activation. Methylation of arginine residues
of histones by protein arginine methylases (PRMT/PAM)
leads to transcriptional activation (110). PRMT/PAM
methylases recognize RGG/GRG motifs; beside histones,
their substrates include e.g. STAT1 in interferon signal-
ing, CBP/p300, and several spliceosomal assembly fac-
tors and snRNP/hnRNP proteins. As PRMT1 and
CBP/p300 form a chromatin modulatory/coactivator
complex, methylation of histone H4 by PRMTs
(PRMT1 and CARM1/PRMT4) and acetylation of
other subunits of histone core (as well as p300-binding
nuclear receptors) are coordinately regulated (110).
While protein arginine methylases such as PRMT1
and CARM1 act as coactivators of nuclear hormone
receptors including the ER through histone methyl-
ation, they can also act as negative regulators of tran-
scription: methylation of the CREB-binding domain of
CBP results in abrogation of CREB/CBP-interaction
thereby inhibiting CREB-mediated transcription (111).
Therefore, methylation through PRMT/CARM1 rep-
resents a unique positive and negative regulatory mech-
anism for transcription through cofactor-methylation.
Also the identification of template-activating factor
(TAF)Ib as an ER-interacting protein underlines the

Figure 3 Model of the potential role of p300/CBP and ERAP
160/SRC1 in the integration of steroid hormone signals with other
pathways. SRC1 is in a complex with p300 in the absence of
exogenous signals. Binding of estradiol (E) to ER promotes the
recruitment of this complex through a direct interaction with SRC1
and perhaps p300. p300 directly interacts with transcription fac-
tors that are activated by diverse cellular signaling pathways such
as the cAMP signals mediated by phospho-CREB and with com-
ponents of the basal transcription machinery (160). Thus, p300
may play a role as an integrator of signals from multiple pathways
including ER TBP, TATA binding protein.
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importance of methylation and acetylation in the
regulation of gene transcription via nuclear hormone
receptors (112). It could be demonstrated that TAF-Ib
binds to the unliganded ERa and represses p300-
mediated acetylation of histones and decreases acety-
lation of ERa (113). Therefore, elucidating the exact
molecular mechanisms regulating acetylation and
methylation might offer a complete new target for phar-
macological intervention in ER-mediated transcription
and breast cancer therapy.

This emerging picture of a number of proteins assem-
bling with liganded ER to mediate transcriptional acti-
vation, offers potential new candidates to explain
resistance to estrogen action even in the presence of
unaltered ER expression. Therefore, these proteins
deserve careful study as potential targets in tamoxi-
fen-resistant tumors. Studies with several nuclear
receptors have shown the existence of the corepressors
nuclear receptor corepressor (N-CoR) and silencing
mediator for retinoic and thyroid receptor (SMRT),
whose association with these receptors was shown to
be destabilized by ligand (114, 115). Interestingly, it
could be demonstrated that low expression of N-CoR
was associated with significantly shorter relapse-free
survival in ERa-positive tumors (116). These findings
point to N-CoR as a promising independent predictor
of tamoxifen resistance in patients with ERa-positive
breast tumours. Future studies will also aim to clarify
the role of corepressors in ER-mediated regulation,
with the possible perspective of identifying anti-estro-
gens which might lead to corepressor association with
the estrogen receptor.

Ligand-independent transactivation
by ER

The nuclear receptors including the ER are phospho-
proteins (for review see 117). The finding that growth
factors such as EGF and IGF-I as well as stimulators of
the protein kinase A pathway could activate ER-
mediated transcription in the absence of the bona fide
ligand, i.e. estrogen, as well as synergizing with the
effects of estrogens to stimulate ER-mediated transacti-
vation, led to the notion that post translational modifi-
cations of nuclear receptors by phosphorylation offered
an alternative pathway of transactivation. The exact
function of each potential phosphorylation site is not
yet clear. This finding is complicated by the fact that
the effects of ER phosphorylation might depend strongly
on the individual cellular context (118). Serine 118 was
identified as the major growth factor-stimulated phos-
phorylation site in the ER (119), whereas serine 167 is
the major phosphorylation site upon estrogen stimu-
lation (120). Two studies identified serine 118 as a
target of the growth factor-stimulated MAP kinase (50,
121). Furthermore, it was demonstrated that the
growth factor-stimulated AF-1 activity of ER depends

on serine 118. Interestingly, this study demonstrated
that phosphorylation on serine 118 can synergize with
the partial agonist effect of tamoxifen through the AF-
1 domain of ER. This might explain why tumors expres-
sing oncogenes such as HER2/neu can promote tamox-
ifen resistance and negatively affect prognosis.
HER2/neu is a member of the EGF receptor family of
transmembrane tyrosine kinase receptors. Upon
ligand-induced activation these receptors activate the
ras/raf MAP-kinase pathway. This may induce ligand-
independent or augment tamoxifen-induced transcrip-
tion through the ER. Recently, it has been demonstrated
that growth factor-stimulated phosphorylation of ERb
and its AF-1 domain can result in SRC1 recruitment
even in the absence of ligand (122, 123). In summary,
posttranslational modification of ER on serine residues
can influence essential steps in receptor-mediated trans-
activation such as dimerization, DNA binding and tran-
scriptional activation. These steps may become targets of
novel anti-estrogenic agents (Fig. 2).

Rapid, non-genomic actions of estradiol

Besides the classical action of estrogen receptors as
ligand-regulated transcription factors, it could be
demonstrated that estradiol also exerts early signaling
events in target cells within minutes after stimulation,
making it unlikely that these effects are regulated
through the transcriptional rate (124). The existence
of a membrane-associated ER was hypothesized based
on the finding that these early signaling events occur
after stimulation with albumin-conjugated estradiol,
which does not enter the cell (125). Moreover, anti-
bodies against different epitopes for ERa detected mem-
brane-associated ER in different cell lines derived from
various tissues (126), indicating a high degree of simi-
larity between ER detectable in the plasma membrane
and the nucleus. Indeed, expression of the cloned ERs
in CHO cells results in the detection of both nuclear
and plasma membrane ER (127). A very recent study
identified a structural determinant necessary for the
localization and function of ERa at the plasma mem-
brane. Razandi et al. demonstrated that serine 522 in
ERa is required for its localization to the plasma mem-
brane, and that mutation of this residue abrogated the
rapid effects of estradiol without affecting its classical
functions as a nuclear hormone receptor (128).
Taken together, there is growing evidence for the
association of ERs with the plasma membrane, mainly
in caveolae (129, 130), to initiate signals distinct
from their nuclear action.

The rapid non-genomic actions of estradiol include
the activation of the MAP-kinase cascade, the activation
of phosphatidylinositol-3-kinase (PI-3K) signaling and
the rise in intracellular calcium concentrations (131,
132). Based on the assumption that the plasma mem-
brane ER is structurally related to the nuclear receptor,
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it presumably lacks catalytic or kinase domains. There-
fore, the question arises as to how kinase cascades are
initiated through ER action. Some of the molecular
mechanisms leading to PI-3K activation and MAP-
kinase activation could be identified, since it could be
demonstrated that both pathways require Src-activation
and that the latter engages the adaptor-protein Shc
(133). On the other hand, membrane-associated ER
has been demonstrated to activate the EGF-receptor
through release of heparin binding EGF (134). Similarly,
estradiol has been shown to stimulate the release of IGF-
I thus activating the IGF-I-receptor and its downstream
targets (135). More recent data demonstrated that
estradiol can activate the Akt pathway through acti-
vation of ErbB2 signaling, adding yet another mechan-
ism for the interaction of estradiol and protein tyrosine
kinase signaling (136).

Additional complexity to the understanding of estra-
diol action has been added by the finding that these
early signaling events also target the regulation of tran-
scription. In vascular endothelial cells, estradiol acti-
vates several kinase cascades, including PI-3K/Akt.
Short term estradiol stimulation significantly increased
transcription of 250 genes in vascular endothelial cells,
up-regulation that was substantially prevented by the
PI-3K inhibitor, LY294002 (137). Taken together, the
non-genomic actions of ER add yet another degree of
complexity to estradiol-regulated responses (for review
see 138) and even growing evidence for the interaction
of classical and non-classical effects of estradiol might
offer new molecular targets for the treatment of gyne-
cological malignancies.

Anti-estrogen therapy for breast cancer

Attempts to pharmacologically block estrogen’s effects
led to the development of a variety of agents targeting
ER function. Tamoxifen is the most widely used anti-
estrogen for the treatment of breast cancer. It belongs
to the family of triphenylethylenes, and besides its
anti-estrogenic effects it also exhibits partial agonistic
properties (139). This can be explained by the fact
that tamoxifen, like estrogen, allows ER dimerization
and binding of the ER homodimer to the ERE. The
antagonistic effect is then thought to be mediated by
inhibiting ER’s ligand-dependent AF-2 activity. One
potential mechanism by which tamoxifen achieves
this effect is its ability to prevent coactivators such as
SRC1 from interacting with the receptor. A major tox-
icity associated with the estrogenic effects of tamoxifen
is increased risk of endometrial carcinoma (140). In
addition, other side effects of tamoxifen include
increased risk of thrombosis, hot flashes and depression
(140). However, tamoxifen retains some of the ben-
eficial effects of estrogen on bone and lipids (141, 142).

Recent attempts have been directed to the develop-
ment of new anti-estrogens reducing tamoxifen’s

potential side effects while retaining the beneficial
effects. The finding that tamoxifen can form DNA
adducts led to the development of the second gener-
ation anti-estrogen, toremifene (Fareston) (143–145).
In advanced disease, toremifene has been shown to be
comparable to tamoxifen in terms of response rates as
well as toxicities. However, no major benefit for toremi-
fene over tamoxifen has been shown (143).

Another new generation anti-estrogen of the
tamoxifen family is droloxifene (3-OH-tamoxifen).
Compared with tamoxifen, droloxifene has a tenfold
higher binding affinity for the ER, and a shorter
half life. Droloxifene acts anti-estrogenically in a rat
uterine model (146). Phase I and II trials suggest dro-
loxifene may be a useful treatment for breast cancer
(147). Further studies will be required to determine
whether estrogenic effects in the uterus will be clini-
cally relevant.

Raloxifene (Evista), another tamoxifen-like ER ligand,
is approved for the prevention of osteoporosis. In lab-
oratory animals raloxifene greatly enhances bone den-
sity (148), reduces circulating cholesterol levels and
lacks estrogenic activity in the uterus (149). The mul-
tiple outcomes of raloxifene evaluation (MORE) trial
suggested that, like tamoxifen, raloxifene may be able
to prevent breast cancer (150). The study of tamoxifen
and raloxifene for the prevention of breast cancer
(STAR) trial is currently testing which component is
more effective and causes fewer side effects (151).

In contrast, pure anti-estrogens such as ICI 182,780
(Faslodex) may play a role in women in whom tamox-
ifen has failed. In contrast to anti-estrogens like tamox-
ifen, ICI 182,780 does not exhibit estrogenic effects,
since it completely inhibits assembly of an active tran-
scriptional complex at the ERE. Early clinical trials
investigating ICI 182,780 use in patients with primary
breast cancer (152) showed no unanticipated toxicities
and demonstrated antitumor effects in women with
advanced breast cancer that had been proven resistant
to tamoxifen (153–155). Its pure anti-estrogenic prop-
erties make it unlikely to be a candidate for the treat-
ment of women with early stage disease.

The current availabilty of ER crystal structures when
bound to estradiol or different anti-estrogens has added
signficantly to the understanding of the mechanism of
anti-estrogen action. Ligands of ERa can confer two
different conformations to the receptor complex.
Planar estrogens such as estradiol are class I, while
angular estrogens such as tamoxifen and other triphe-
nylethylenes are class II estrogens. The first class inter-
acts with the A2 coactivator site. Class II estrogens, on
the other hand, render the AF-2 function unaccessable
for coactivators, resulting in a so called AF2b-confor-
mation which depends on interaction with AF-1 for
estrogenic effects (156). For a detailed review on the
structure/function relation of anti-estrogens and the
most recent development in the field of estrogen recep-
tor modulators also see (157).
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Another approach to modify hormone resistance
is based upon the finding that the action of SERMs
(selective ER modulators) such as tamoxifen is depen-
dent on the cellular context mainly influenced by
AF-1 and AF-2 dependence of target gene transcrip-
tion. By primarily inhibiting AF-2 activity, as outlined
above, tamoxifen acts as an ER antagonist in an
AF-2-dependent context, while it will act as an agonist
in an AF-1 dominant environment. Recently, it has
been suggested that tamoxifen may exert its agonist
activity through the recruitment of an as yet unidenti-
fied coactivator (158). Hormone resistance of a tumor
might then result from epigenetic changes of tumors
so as to change their phenotype to an AF-1 dominant
one or to alter the levels of this tamoxifen-specific
coactivator. These findings offer a promising approach
to the development of novel therapies to overcome
hormone resistance (159).

While it is clear that estrogen receptor expression will
predict significantly the clinical response to endocrine
therapy in breast cancer, the mechanisms leading to
anti-estrogen resistance in ER-positive tumors are only
now being elucidated. In most tumors which become
tamoxifen resistant, ER expression does not change.
While the identification of ER mutations as the cause
of hormone resistance in ER-positive tumors has yielded
somewhat disappointing results, the identification of
multi-protein complexes involved in ER-mediated trans-
activation offers a wide field of potential molecular
players for the development of hormone resistance,
and as potential targets for new therapies.
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