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Abstract

Background: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are
collectively the fourth most important crop in developing countries. Knowledge concerning Musa
genome structure and the origin of distinct cultivars has greatly increased over the last few years.
Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This
study compares genomic sequence in two Musa species with orthologous regions in the rice
genome.
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Results: We produced 1.4 Mb of Musa sequence from |3 BAC clones, annotated and analyzed
them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales
genes share GC content and distribution characteristics with eudicot and Poaceae genomes.
Comparison with rice revealed microsynteny regions that have persisted since the divergence of
the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized
large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae
was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales)
orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa
lineage after its divergence from the Zingiberaceae approximately 6 Mya. Comparisons of genomic
regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and
indicated that these genomes diverged circa 4.6 Mya.

Conclusion: These results point to the utility of comparative analyses between distantly-related
monocot species such as rice and Musa for improving our understanding of monocot genome
evolution. Sequencing the genome of M. acuminata would provide a strong foundation for
comparative genomics in the monocots. In addition a genome sequence would aid genomic and
genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning

http://www.biomedcentral.com/1471-2164/9/58

genes controlling important agronomic traits for breeding purposes.

Background

Taken together, Musa species (bananas and plantains)
comprise the fourth most important crop in developing
countries [1]. The fruit is a staple food in sub-Saharan
Africa, South and Central America and much of Asia,
while the leaves are used for sheltering and wrapping food
and the male bud can be eaten as a vegetable. Musa is a
member of the monocot order Zingiberales, a Commeli-
nid lineage that diverged from the line leading to rice
(Poales) in the mid-cretaceous period over 100 million
years ago (Figure 1) [2,3]. The Musa species Musa acumi-
nata (AA genome) and Musa balbisiana (BB genome), both
with 2n = 22 chromosomes, represent the two main pro-
genitors of cultivated banana varieties. Table bananas are
sterile, parthenocarpic and diploids AA or triploid with
the AAA genome constitution, and represent only a frac-
tion of world production, although they are an important
cash crop. Cooking bananas and plantain cultivars,
mostly consumed in the countries of production, gener-
ally have an AAB or ABB genome constitutions [4]; these
are boiled, fried, dried, or sometimes ground into flour.

Knowledge concerning the genetic diversity, the origin of
cultivars [5-12] and Musa genome structure [13-15] has
greatly increased over the last few years. The haploid
genome of Musa species was estimated as varying between
560 to 600 Mb in size [16,17], just four times larger than
that of the model plant Arabidopsis (125 Mb) [18] and
30% larger than that of rice (390 Mb) [19]. Genetic maps
have been developed [20-23] and recently, BAC resources
were generated for both M. acuminata [24,25] and M. bal-
bisiana [26]. A cytogenetic map based on BAC-FISH is
being anchored to genetic maps in order to better charac-
terize structural variation among M. acuminata genomes
[22]. These resources will pave the way for studies of Musa

genome structure and evolution through comparisons
with other monocot and eudicot genomes.

The utility of genomic comparisons of monocot and eud-
icot plants (e.g. [27-30]) is growing with the availability of
the complete genome sequences of rice [19], Arabidopsis
[18] and poplar [31], and active genome sequencing
projects for a growing number of other angiosperms [32].
Most genome-scale comparative investigations within the
monocots have focused on analyses of closely-related spe-
cies of monocots belonging to the family of Poaceae
[27,33-36]. Numerous papers have described extensive
microsynteny between rice, barley, wheat, maize, Sorghum
and sugarcane [27,35,37-42], although the degree of con-
servation varies between different chromosomal loca-
tions. Fewer attempts have been made to investigate the
synteny between distantly-related plants. In addition,
whereas extensive genomic resources have been devel-
oped for rice and other cereal species in the grass family
(Poaceae), there is relatively little data on gene content or
genome structure for non-grass monocots (Figure 1).
Recently, the first two BAC clones genomic sequences
[43], and a BAC end sequencing study of the M. acuminata
genome [44] have been published. Here we present data
on the genomic structure and organization of 1.8 Mb of
Musa genomic nuclear DNA (including the two BAC
sequenced previously [43]), show for the first time the
existence of microsynteny between Musa, rice and Arabi-
dopsis, characterize the extent of microsynteny between
the two Musa species representing the progenitors of most
cultivated genotypes, analyze monocot EST sequences
and discuss the evolutionary implication of these results.
The BAC clones sequenced in this study were identified by
hybridization with gene sequences previously selected to
correspond to one or a few loci in Musa, rice and Arabi-
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Poales (10,053,979)
POACEAE: Agrostis, Aegilops, Avena (oats), Bambusa (bamboo),
Brachypodium, Cenchrus, Cynodon, Eragrostis (tef),
Dendrocalamopsis, Eleusine (finger millet), Fescuta, Hordium,
Leymus, Lolium, Oryza (rice), Panicum (switchgrass), Pennisetum,
Phyllostachys, Pseudosasa, Saccharum (sugarcane), Secale,
Seteria, Sorghum, Spartina, Triticum (wheat), Zea (maize);
BROMELIACEAE: Ananas (pineapple)
- Dasypogonales (56)
Zingiberales (71,125)
MUSICACEAE: Musa; ZINGIBERACEAE:
Zingiber (ginger), Curcuma (turmeric)
Commelinales (448)
Arecales (10,027)
ARECACEAE: Cocos (coconut), Elaeis (oil palm)
e Asparagales (80,549)
ALLIACEAE: Allium; ASPARAGACEAE: Asparagus;
AGAVACEAE: Agave, Yucca; RUSCACEAE: Polygonatum

AMARYLLIDACEAE: Lycoris; HYACINTHACEAE: Hyacinthus;
IRIDACEAE: Crocus, Iris;
ORCHIDACEAE: Phalaenopsis (moth orchid)

Liliales (6,063)

B ALSTROEMERIACEAE: Alstroemeria;

LILIACEAE: Lilium

—— Pandanales (714)

- VELLOZIACEAE: Xerophyta (resurrection plant)
— Dioscoreales (792)

™ DIOSCOREACEAE: Dioscorea (wild yams)

Petrosaviales (26)

Alismatales (15,147)
AREACEAE: Zantedeschia (arum lily),
Lemna (duckweed); ZOSTERACEAE: Zostera
Acorales (9,963)
ACORACEAE: Acorus

Figure |

Current understanding of relationships among monocot orders [ 18]. Families are shown in bold caps and genera
with EST sequences in dbEST [ 19]. The number of sequences in GenBank (as of 10/08/07) are shown in parentheses for each
order and the shaded box highlights Commelinid orders. The nodes with < 75% bootstrap support are grey.
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dopsis, thus possibly contain orthologous sequences with
these distantly related plant species.

Results

Selection of Musa BAC clones using broad-spectrum
Sorghum cDNA and Musa RFLP probes

As part of a program aiming at selecting conserved probes
from monocotyledons and Arabidopsis thaliana towards
comparative genetic mapping studies, genomic and cDNA
probes from various species were tested by Southern
hybridization on DNA of various monocotyledons
including Musa and rice. Among the probes found con-
served between rice, M. acuminata cv. Madang, M. balbisi-
ana cv. Pisang Klutuk Wulung (PKW) and Arabidopsis
that revealed a single or low copy locus hybridization pat-
tern, nine were selected. These nine probes that corre-
spond to Sorghum bicolor cDNAs (SbRPG) were used to
screen a M. acuminata cv. Calcutta-4 bacterial artificial
chromosome (BAC) library (Table 1 and Additional file
1). Of these nine SbRPG genes, four encoded nuclear
genes targeted to the chloroplast and/or implicated in
photosynthetic-related functions, supporting the notion
that this class of genes is under strong pressure for func-
tional conservation. All Musa BACs identified were sub-
jected to Hindlll fingerprinting. This enabled us to
separate the Musa BACs into groups likely to be derived
from different regions of the Musa genome. Overall, a
good correlation was observed between the number of
loci identified in rice, Sorghum and Musa by Southern blot,
BAC fingerprint (for Musa) and analysis of whole genome
sequence (for rice) for these nine SbRPG genes (Table 1),
all of which were found to be in single or low-copy in
both Musa and rice.

One BAC clone was selected for sequencing for probe
SbRPG132. For probes SbRPG373, SbRPG661 and
SbRPG851, which were found to be present in one or two
copies in rice, two Musa BACs with distinct HindIII finger-
prints that might be derived from homeologous regions
were selected for sequencing with the aim of studying the
evolution of lineage-specific duplications in both Musa
and rice (Table 1). Two BAC clones from M. acuminata cv.
Calcutta-4 (Musa A) and two BACs from M. balbisiana cv.
PKW (Musa B) isolated using the genetically-mapped
RFLP single-copy probes CIR560 and CIR257 [23] were
also fully sequenced with the objective of studying the
extent of synteny between Musa A and B species as well as
against the rice genome. These RFLP probes were selected
because they corresponded to genomic clones encoding
genes of known function, CIR257 for a GA-20 oxidase and
CIR560 for a beta 1-3 glucanase, previously shown to be
associated to traits of agronomic importance in control-
ling plant height [45,46] and stress response [47-50],
respectively.

http://www.biomedcentral.com/1471-2164/9/58

Analysis of 1.8 Mb of Musa genomic sequences reveals
particular features for the Musa genes

Musa genome statistics

A total of 13 BACs (Table 1) were sequenced, generating
over 1.4 Mb of unique Musa sequence. In order to provide
a uniform set, data four additional BAC sequences (see
Additional file 2 and [43]) were included in our annota-
tion pipeline. These analyses revealed 443 predicted genes
(on a total of 1.8 Mb of Musa genomic sequence from 17
BAC inserts), after elimination of all putative protein cod-
ing genes smaller than 100 amino acid residues. Approxi-
mately half of the gene models had matches in GenBank.
Their classification based on similarities to genes found in
the public sequence databases is presented in Additional
file 3 and an annotation overview of the Musa genes in
Additional file 4. Gene models were also compared
against the Musa EST database donated to the Global
Musa Genomics Consortium by Syngenta and maintained
at the MIPS (Munich Information Center for Protein
Sequences, Munich Germany), revealing that at least 10%
of the predicted genes had a perfect match with EST
sequences, thus probably being expressed in Musa tissues.
Analysis of gene size, exon-intron structure and base com-
position for these 443 predicted genes is summarized in
Table 2. The annotation revealed that, with the exception
of MA4_78112, the BACs analyzed were gene-rich (an
average density of one gene per 4.1 kb). Our annotation
of MuH9 revealed a total of 23 gene models for an average
gene density of one gene per 3.6 kb compared with one
gene per 6.9 kb based upon the earlier annotation [43]. In
the case of MuG9, our pipeline predicted a total of 14 gene
models in the first 52 kb of this BAC followed by a region
of ~21 kb containing only transposons (5). Thus the gene
density in the non-transposon containing region is one
gene per 3.7 kb, very similar to MuH9. Previous annota-
tion of this BAC [43] predicted 7 genes in the same 52 kb
region for a density of one gene per 7 kb, with the remain-
der being transposon-related. The difference between the
two annotations is due mainly to the larger number of
hypothetical genes identified by the TIGR pipeline as well
as some gene splits (e.g. MuH9-5 is split into three genes).
Like the last ~21 kb of MuG9, BAC MA4_78112 found to
be mainly composed of class II transposable elements and
also contains 7 interspersed predicted genes of which only
the homolog of the SbDRPG661 probe had a match in pub-
lic databases. BAC-FISH experiments showed that BAC
MA4_78112 hybridized to all M. acuminata chromosomes
except their extremities (Figure 2A). This pattern of
hybridization is similar to what we observed by genomic
in situ hybridization (GISH) using total genomic DNA as
a probe and suggested that the extremities of the chromo-
somes are poor in repeated sequences [14]. Two gene-rich
BACs (MA4_54N07 and MA4_82111) were also analyzed
by BAC-FISH and each hybridized at the extremity of one
chromosome (see Figure 2B for MA4_54N07).
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Table I: List of probes used to identify the Musa BAC clones sequenced as part of the present study. Estimated copy numbers of these sequences in rice, Sorghum and Musa are
indicated for SbDRPG (Sorghum bicolor) sequences. MA4 are BAC clones from M. acuminata cv. Calcutta-4 and MBP are BAC clones from M. balbisiana cv. Pisang Klutuk Wulung.

Probe name and
AC number*

Putative function

Estimated copy number in
rice by Blast analysis (Rice
genes locus identifier)

Estimated copy
number in Sorghum by
Southern blot analysis

Estimated copy number
in Musa by Southern
blot analysis

Number of identified
Musa BAC clones

Number of Musa BAC  Musa BAC clones sequenced
fingerprint groups

(size) and AC number*

SbRPG132
DQI185891

SbRPG373
DQ185892

SbRPG661
DQ185893

SbRPG748
DQ185894

SbRPG851
DQ185895

SbRPG854
DQ185896

CIR257
DQ334868

CIR560
DQ334869

chlorophyll A-B binding
protein type |

hypothetical protein

thioredoxin

porphobilinogen
deaminase

phosphoglycerate

kinase

mitochondrial rieske
protein

GA-20 oxidase

beta |-3 glucanase

6
Os01g41710.1
0s09g17740. |
0s01g52240. |
0503g39610.1
0s07g37550. |
Os| 1138902

I
0Os07g02340.1

2
Os10g34520.1
Os07g10250.1

I
Os07g10250.1

2
Os05g41640.1
Os01g58610.1

2
Os04g32660.1
0Os02g32120.1

4 more than 4
|

2 2-3
|

2 2-3

2 2

23

29

20

21

MA4_25]1 |
(105019 bp)
ACI86746

MA4_64C22
(80932 bp)
ACI86752

MA4_8L2I (115790 bp)
ACI86748
MA4_54B05
(54106 bp)
ACI86753

MA4_78112 (150982 bp)
ACI86750

MA4_42MI3
(29567 bp)
ACI86749

MA4_112110
(102441 bp)
ACI86756

MA4_106017

(143796 bp) AC186747

MA4_111BI4
(146821 bp)
ACI186954
MA4_8211 |
(102232 bp)
ACI186955

MBP_81CI2 (142973 bp)

ACI86754
MA4_54N07
(96443 bp)
ACI8675]
MBP_91N22
(154246 bp)
ACI86755

*AC number : accession number.
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Table 2: Features of Musa genes in comparison with those of
Arabidopsis and rice.

Musa'  Arabidopsis?2  Rice3
GC content: overall (%) 39.0 36.0 43.5
Exons (%) 48.4 44.2 53.1
Introns (%) 384 32.3 387
Intergenic (%) 385 31.2 414
Exon length (bp) 252 276 312
Intron length (bp) 366 169 364
Number of exons/gene 4.8 5.4 4.2
Gene length (bp) 2,504 2,232 2,519
Protein length (aa) 411 417 437
Gene density (kb/gene) 4.1 4.5 6.2

IBased on 1.8 Mb of genomic sequences
18]
3[120]

Base Composition and GC Distribution along the Musa genes

The GC content of Musa coding sequences was compared
with those of other monocots (rice, onion, asparagus) and
dicots (Arabidopsis) using two data sets -unigene clusters
and -singleton ESTs found in the TIGR plant transcript
assembly database (TC/ESTs; [51]) and the 443 annotated
genes (CDS) from the 17 Musa spp. sequenced BAC clones
(Figure 3). The GC distributions of TC/EST (Figure 3A)
and CDS regions of the Musa BACs (Figure 3B) were
found to be asymmetrical and bimodal as compared to
Arabidopsis and onion which are clearly symmetrical and
unimodal (this report, [52,53]). The Musa GC content dis-
tribution resembles that of rice and other Poales with
higher average GC content than eudicots (see also Table
2) and a long tail towards high GC values. We next exam-
ined GC content along the direction of transcription from
the ATG start codon for each predicted Musa CDS using a
sliding window of 129 bases (Figure 4). By manual
inspection of the data, we were able to identify two cate-
gories of GC profiles from the Musa CDS: the first set
shows a marked "rice-like" gradient of GC composition
from 5' to 3' end and a higher GC content than Arabidop-
sis all along the CDS (Figure 4A), and the second set is
"Arabidopsis-like" lacking a significant GC gradient from
5'to 3' (Figure 4B).

Analysis of Musa repetitive elements

Several approaches were used to characterize the genomic
sequence with respect to repeats. Database searches of the
predicted genes against a non-redundant protein database
(see Methods section) revealed a total of 78 transposable
element (TE)-related sequences. Excluding TE-rich BAC
MA4_78112, there are on average ~2.6 retrotransposons
(TE of class I) per 100 kb. Only one TE of class Il encoded
protein was detected. BAC sequences were also screened
for previously characterized Musa RADKA repeats [15]; an
average of 1.8 RADKA-related repeats (GenBank Acces-

http://www.biomedcentral.com/1471-2164/9/58

Figure 2

Chromosome preparations of M. acuminata cv. Cal-
cutta-4 (2n = 22) stained with DAPI after FISH of
BAC. (A) MA4_78I12 (detected with Texas red). (B)
MA4_54N07 (detected FITC). Scale bar = 10 microns.

sions AF399938-AF399941, AF399943-AF399946 and
AF399948) per 100 kb were identified. In an attempt to
identify as yet uncharacterized repeats, the BAC sequences
were also analyzed by RepeatScout [54]. After removing
repeats having similarity to Arabidopsis or rice proteins,
Musa CDS, RADKA sequences and transposable elements,
six repeats with at least three copies were identified (data
not shown). Five of these sequences have no significant
hits to genes in GenBank while the sixth matches Gen-
Bank accession X99496 with a strong similarity to a part
of the Musa ycf2 chloroplast gene. Analysis of individual
BACs with PrintRepeats [55] shows that each BAC con-
tains only a small number of regions that are repeated
within the BAC, an observation that is supported by the
relative ease with which the BAC sequences could be
closed and finished.

Microsynteny analysis between Musa and either rice or
Arabidopsis

The 443 Musa predicted proteins were aligned against the
rice and Arabidopsis proteomes. The results showed that
268 and 224 Musa proteins have hits with an E-value
threshold of 1e-10 against the rice and Arabidopsis pro-
teomes, respectively. The relative positions of the homol-
ogous genes identified in the rice and Arabidopsis
genomes were compared to the order of the correspond-
ing Musa genes with i-ADHoRe software [56]. Using this
stringent approach, we were able to identify nine Musa
BAC sequences showing microsynteny among the 17
Musa BACs analyzed: eight cases with rice and one case
with Arabidopsis (Additional file 5).

The i-ADHoRe analyses identified syntenic blocks of three
to ten genes (Additional file 5). We then refined the anal-
yses by conducting reciprocal BLASTP searches between
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Figure 3

Distribution of GC content in Musa and its comparison with other plant species. (A) All TCs/ESTs from the named
species. (B) All annotated CDS from |7 Musa BACs (this data set) and the complete genomes of Arabidopsis and rice.

the genes in the orthologous regions. This analysis
extended the number of genes included in these syntenic
blocks. The most interesting cases of synteny conservation
were found between BAC MBP_91N22 and rice chromo-
some 1 (Figure 5A), BAC MA4_25]J11 and rice chromo-
somes 1 and 5 (Figure 5B), BAC MA4_8121 and rice
chromosome 3 (Figure 5C), BAC MuH9 and rice chromo-
some 4 (Additional file 6), and BAC MA4_42M13 and rice
chromosome 2 (Additional file 7). Between five and
eleven genes were found in common between the syntenic
Musa and rice orthologous regions. In most cases the com-
mon genes were found in the same order and orientation
in rice and Musa. However, several additional genes were
typically found between the shared orthologs. Interest-
ingly, the number of genes without orthologs within oth-
erwise syntenic regions is much higher in rice as compared
to Musa. This could be explained by differences between
the rice and Musa lineages in the rate of translocation,
duplication and gene death. Note also that Musa BAC

MBP_91N22 displays conservation of synteny with two
very distant segments on rice chromosome 1.

In the case of BAC MA4_25]11, two rice orthologous
regions were found with i-ADHoRe analyses and recipro-
cal BLASTP searches (rice chromosomes 1 and 5), reveal-
ing a duplication of this region in the rice genome. It is
interesting to note that the two rice orthologous regions
on chromosomes 1 and 5 have lost different sets of genes
compared to Musa, as has been observed previously in
other duplicated regions in angiosperms [37,57,58]. Phy-
logenetic analyses on the 10 Musa genes from BAC
MA4_25]J11 and co-orthologs [59] found on rice chromo-
somes 1 and 5 revealed that these regions were the prod-
uct of the genome-wide duplication that has been
hypothesized to have occurred early in the history of the
Poaceae [56,60-62]. Duplicate maize, sugarcane, Sor-
ghum, wheat, and barley genes occur in two separate
clades in trees for loci 4, 6 and 7 (Figure 6 and Additional
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file 8) indicating that the duplication occurred before the
divergence of the major grain lineages including rice,
maize and wheat.

The only significant case of microcolinearity found
between Musa and Arabidopsis involved three consecutive
genes (Additional file 9). Interestingly, this Musa-Arabi-
dopsis syntenic block was not found to be conserved in
rice.

Syntenic relationships between two regions of M.
acuminata and M. balbisiana

We also investigated conservation of synteny between two
regions of the genomes of M. acuminata and M. balbisiana
species. Hybrids between these two species represent the
majority of cultivated Musa genotypes worldwide. To
carry out this pilot study, we selected BACs from ortholo-
gous regions of two single-copy, genetically-mapped RFLP

http://www.biomedcentral.com/1471-2164/9/58

probes (CIR560 and CIR257) encoding genes of agro-
nomic interest. In both cases a high level of sequence con-
servation was found (see Figure 7 and Additional file 10)
over the entire length of the sequenced regions in com-
mon between the two pairs of BACs analyzed (82.9% of
nucleotide sequence identity for the MA4_82I11-
MBP_81C12 pair and 87.6 % for the MA4_54N7-
MBP_91N22 pair). The overall levels of sequence identity
in genic regions were similar between the two pairs of
orthologous BACs: 96.0 % for the MA4_82I11-
MBP_81C12 pair and 96.3 % for the MA4_54N7-
MBP_91N22 pair (based on the aligned orthologous gene
pairs defined in Table 3; see the following paragraph for
further details). A high degree of synteny was found
between the orthologous sequences in both gene content
and gene orientation. However, we observed some incon-
gruence between the gene predictions of the orthologous
BACs whose protein products have no match in public
databases (i.e. hypothetical protein genes). In contrast,
the predicted structures of genes that are homologous to
known sequences were largely congruent between the
orthologous BACs. Given the high levels of sequence con-
servation between the two Musa species, such variation of
gene structure and exon/intron boundaries is unlikely for
most functional genes. Hence, this analysis supports that
further validation of gene models through additional EST
sequencing or targeted RT-PCR is required.

Divergence between M. acuminata and M. balbisiana

In order to evaluate the degree of divergence between the
two Musa genomes, we obtained maximum likelihood
estimates for K values comparing pairs of orthologous
genes identified in the M. acuminata and M. balbisiana
BACs. We restricted our analysis to those genes (detailed
in Table 3) that were intact and matched known gene
sequences. For example the gene model for the 14t locus
in the M. acuminata genome (Figure 7; L14) is similar to a
pectinesterase related protein, but the gene model was
excluded from the analysis because the predicted coding
sequence contained several in-frame stop codons indicat-
ing that this sequence is a pseudogene. The estimated K
values ranged from 0.0231 (Additional file 10; L19) to
0.0960 (L17), far below saturation levels (i.e. K << 1),
with an average of 0.0410 (Table 3). Applying an average
synonymous substitution rate of 4.5 per 10° years for
nuclear genes in the Zingiberales (see below), this sug-
gests that M. acuminata and M. balbisiana diverged approx-
imately 4.6 Mya ago.

Evidence for a large-scale duplication event in the Musa
ancestor

We also estimated the K, values between 1,446 pairs of
duplicated Musa genes identified among 15,661 EST-
derived unigenes found to be part of the paralog sets [63].
The distribution of K, values was estimated in order to
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Musa-rice syntenic regions. Predicted genes and their orientation are shown as boxed areas. Genes annotated such as
hypothetical genes are represented in white. The probes used to identify the Musa BAC clones are indicated in brackets. Con-
served genes between Musa and rice regions are connected by shaded areas. (A) Syntenic relationship between Musa
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chromosome | and 5. The numbers above the genes correspond to the locus numbers used for phylogenetic analyses. (C) Syn-
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Table 3: Level of synonymous substitution (K;) between homologous sequences in M. acuminata and M. balbisiana.

Locus Length K, Predicted function

L4 1065 0.0496 GDSL-motif lipase/hydrolase family protein
L5 1401 0.0311 protein kinase family protein

L7 1341 0.0318 hypothetical protein

L9 1647 0.0252 protein kinase family protein

LIl 825 0.0323 protein kinase-related

LI3 2901 0.0420 leucine-rich repeat-containing protein kinase family protein
LIS 1140 0.0435 gibberellin 20-oxidase family protein

LIé 1899 0.0342 glucose-inhibited division A family protein
LIg* 1371 0.0960 leucine rich repeat family protein

L20 4119 0.0231 transcriptional repressor protein-related
L23 1941 0.0369 protein kinase family protein

L24 1737 0.0413 exostosin family protein

L26 2145 0.0461 kinesin light chain-related

K, mean 23532 0.0410

Concatenation K 23532 0.0349

* Alignments between the M. acuminata gene and the orthologous sequence on the M. balbisiana sequence were identified by BLAST

assess spikes in the accumulation of duplicated genes
[64]. If we assume that gene duplications and gene dele-
tions are random and have relatively steady rates during
the course of evolution, such a distribution is expected to
show an L shape [64-68]. The distribution of K, values for
duplicated Musa genes exhibits a large peak centered
around K, = 0.55 (Figure 8) indicating an increase in the
number of gene duplications that occurred in the Musa
ancestor circa 61 Mya (assuming a synonymous substitu-
tion rate of 4.5 per 10° years; see below). This ancient
burst of duplications is likely the result of one or more
large-scale duplication events. Alternatively, the observed
duplications could be associated with a burst of transpo-
son activity as has been hypothesized for some duplicate
gene pairs in Arabidopsis [69]. However, analyses of K
plots for duplicated rice genes were unable to detect the
60 Mya duplication event in the Poacae that is evident in
analyses of gene trees and duplicated blocks in the rice
genome (e.g. [70,61]; this study). This may be due in part
to the slower substitution rate we estimate for the Zingib-
erales relative to the Poaceae (see below).

We also analyzed the 18,612 ginger (Zingiber officinale;
Zingiberaceae, Zingiberales) EST-derived unigenes availa-
ble on the TIGR Plant Transcript Assemblies web site [71]
(sequences generated by David Gang, University of Ari-
zona) and found no evidence of large-scale duplication in
the K| distribution for paralogous pairs (Figure 8). Moreo-
ver, the modal K for reciprocal best matches between the
Musa and Zingiber unigene sets is 0.78 (Figure 8), larger
than the mode for Musa paralogous pairs. The age of the
most recent common ancestor for the Musacaceae and
Zingiberaceae is estimated at 87 Mya [3,72,73]. This
implies an average synonymous substitution rate of 4.5
per 10° years (0.78 synonymous substitutions per site/

(2*87,000,000 years)), intermediate between rates esti-
mated for the Poaceae (6.1-6.5 per 10? years) and palms
in the order Arecales (2.61 per 10? years; [74]. We must
emphasize that all of these rate estimates are approximate,
based on rough estimates of minimum divergence times.
However, regardless of ambiguities in substitution rate
calibrations, our results indicate that the predicted large-
scale duplication that occurred in the Musa lineage (K, =
0.55) post-dates the divergence of lineages leading to Zin-
giber and Musa (K = 0.78), but occurred well before the
separation of Musa A and Musa B (K= 0.0410).

K, values were also computed on 1,034 pairs of homolo-
gous genes identified between the Musa ESTs and the rice
genome sequences. As expected, the distribution of K, val-
ues between rice-Musa homologs form a single peak cen-
tred around K, = 1.7 (Figure 8). Using this K, value to
estimate the age of the Poales-Zingiberales split is less
straightforward than described above for the Musa-Zin-
giber split, because synonymous substitution rates clearly
vary between these Commelinid monocot lineages.

BAC fingerprint analyses revealed that whereas SPRPG854
hybridized to a single locus in the Musa genome, SbRPG
probes SbRPG132 hybridized to 6 regions, SbRPG663
hybridized to 5 loci, and two loci were identified for
SbRPG373, SbRPG661 and SbRPG851 (Table 1 and Addi-
tional file 1). BACs representing both distinct loci hybrid-
izing to probes SbRPG661, SbRPG373 and SbRPG851
were sequenced with the aim of dating the time of dupli-
cation relative to the divergence of the Musa and rice line-
ages. Pair-wise estimations of K, the number of
synonymous substitutions per synonymous site, were
0.93 (+ 0.25), 1.39 (+ 0.19) and 1.43 (x+ 0.60) for Musa
homologs of the coding regions of SbRPG661 (thiore-
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divergences.

doxin), SbRPG851 (phosphoglycerate kinase) and
SbRPG373 (hypothetical protein), respectively. Phyloge-
netic analyses suggested that the SbRPG851 Musa
homologs duplicated prior to the divergence of the Poales
and the Zingiberales, (probably independent from the
large-scale duplication described above), and the
SbRPG661 and SbRPG373 Musa homologs are sister to
each other in the gene tree, suggesting the duplications
arose after the divergence of the Poales and the Zingibe-
rales (data not shown).

We also analyzed the degree of conservation between
genomic regions surrounding SbRPG661, SbRPG851 and
SbRPG373 duplicated genes in Musa and rice and found
no synteny in regions anchored by these homologs. This
absence of synteny could be explained by duplication
events and subsequent gene losses or by the translocation
of the focal genes.

Discussion

Analysis of Musa genes reveals some particular features
Sequencing and annotation of ~1.8 Mb of Musa genomic
sequence indicated that most of the BACs analyzed were
gene rich with a low content of transposable element. Our
analyses of 443 Musa genes predicted revealed that Musa
genes generally have a "rice-like" bimodal GC distribution
with a very asymmetrical and long tail towards high GC
content as in previous studies [43,44]. However, a second
class of "Arabidopsis-like" genes was found with an over-
all low GC content and no significant gradient along the
coding sequence. In contrast to a previous comparison of
grass and non-grass monocots [52,53], our analyses sug-
gest that Zingeberales genes share some characteristics
with the genomes of both eudicots and members of the
Poaceae. This result suggests that the Musa genome is
more similar to cereal genomes relative to onion, aspara-
gus and the basal-most monocot lineage, Acorus.
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Syntenic relationships between distantly-related monocots
Whereas widespread conservation of synteny has been
well established for members of the grass family
(Poaceae), gene order has not been generally conserved
between rice and Arabidopsis (e.g. reviewed by [75]. Few
studies have compared genome structure between the
members of the Poaceae and other monocot families, but
recent comparisons between onion, garden asparagus and
rice have failed to find evidence of conservation of macro-
or micro-synteny [76,77]. However the genomic tag
approach developed by [78] has allowed detecting anchor
points between grasses and monocots. In this study we
were able to identify microsyntenic regions in the Musa
and rice genomes that have persisted over some 117 mil-
lion years of evolution since these two lineages diverged
[2]. However, in all syntenic regions detected, the shared
genes were separated by intervening genes reflecting the
occurrence of numerous insertions and deletion of genes
in both rice and Musa. Insertions and deletions have been
observed between rice and Arabidopsis regions showing
micro-colinearity [58] and to a much lower extent
between colinear regions among Poacea genomes [37,79].
Further sequencing of the Musa and other monocot
genomes will provide more insight on the extent of line-
age-specific gene gain and loss in otherwise syntenic
regions.

A first insight into syntenic relationships between Musa A
and B

We focused our pilot study on two genomic regions con-
taining genes of agronomic importance for Musa and rice
to gain insight into the extent of conservation between the
two cultivated species, M. acuminata (A genome) and M.
balbisiana (B genome). Our data revealed an extremely
high level of colinearity between the two Musa genomes
in both regions. However several insertions and deletions
occurred during the period of divergence (~4.6 Mya) of
the two Musa species. The high level of microsynteny
between the two genomes is likely to accelerate gene iso-
lation in M. balbisiana once the construction of the whole
genome physical map of M. acuminata has been com-
pleted by the Global Musa Genomics Consortium.

Unveiling the paleopolyploid nature of Musa species

There is accumulating data supporting that polyploidy is
one of the most important evolutionary mechanisms
influencing the structure and content of angiosperm
genomes [80]. Our work indicates ancient polyploidiza-
tion in the lineage leading to Musa approximately 60 Mya.
Similar lineage-specific events were described in the
Poaceae [81,82], Brassicaceae [56,83,84], Populus [31],
Solanaceae, Leguminoceae [64], Papaveraceae, Acorus, the
Magnoliids and the Nymphaceae [65]. Polyploidy has
clearly been an important source of genetic variation
across the angiosperms as retained duplicate genes typi-
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cally show divergent patterns of gene expression [85,86].
In Musa, as in other plant species, novel phenotypes can
emerge from this genomic amalgam, including some with
high visibility to natural selection, such as organ size and
disease resistance.

Of particular interest is the "composite" nature of the
duplicated rice regions relative to the syntenic Musa BAC
MA4_25]11; different sets of genes were lost in rice chro-
mosome 1 and 5, respectively as compared to Musa. This
type of evolution is likely to reflect a dynamic of duplica-
tion [62] and independent evolution in both monocot
lineages including recurrent cycles of genome duplication
followed by diploidization. This phenomenon was also
identified by [58] in their analysis of differential gene loss
following duplication events in rice and Arabidopsis. Fur-
thermore, our phylogenetic analyses of gene sets includ-
ing the genes on Musa BAC MA4_25]11, rice orthologs
and related genes found in the Arabidopsis genome and
TIGR gene indices corroborate previous results suggesting
that a genome-wide duplication in the common ancestor
of all major cereal lineages is responsible for the large
duplicated segments observed in the rice genome
[61,62,87]. This finding illustrates how comparative anal-
yses of distantly-related monocot species can complement
studies on cereal genomes.

Is rice a good model to study the structure and evolution of
Musa genomes?

The use of rice as a reference species to accelerate map-
based cloning projects by extrapolating marker position
data and increasing marker density in targeted regions has
a proven efficiency among cereal crops (e.g. barley, wheat,
Sorghum), with a perceivable trend towards decreased effi-
ciency when phylogenetic distance increases. Our analy-
ses of the amount of microsynteny between rice and Musa
suggest that there are cases in which predictions based
upon microsynteny are useful but also this may not be
general. In addition although our data showed that Musa
genome is more similar to grain genomes relative to
onion, asparagus and the basal monocot, Acorus, the dif-
ferences observed confirmed that cereal genomes are not
representative of all monocots [52,53,76,77]. This work
also highlight that comparative analyses between dis-
tantly-related species such as rice and Musa are very
important to improve our understanding of monocot
genomes and more generally of angiosperms genome evo-
lution.

Conclusion

In conclusion, this study represents the first effort to
investigate the existence and extent of microsynteny
between rice and Musa, two-distantly related monocot
species. Our analyses revealed a higher degree of synteny
than has been reported for other comparisons between
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the rice and species outside of the grass family. In addi-
tion, we identified evidence for an extensive microsyn-
teny between the two Musa species representing the
progenitors of most cultivated genotypes. In addition, we
identified evidences for an ancient genome-scale duplica-
tion event in the lineage leading to Musa and highlighted
the complexity of analyzing the structure and evolution of
plant genomes following independent cycles of genome
duplication and diploidization.

Methods

Selection of Musa BAC clones

Nine probes known from previous data to be conserved
between rice, Musa acuminata cv. Madang, Musa balbisiana
cv. PKW and Arabidopsis and revealing single or very low
copy number locus were selected. These nine probes
(SbRPG) correspond to Sorghum cDNA developed by Rus-
tica Prograin Génétique and CIRAD [88]. These cDNAs
and two Musa genomic probes CIR257 and CIR560 [20]
were used to screen high density filters of the M. acuminata
Calcutta-4 BAC library [25] according to standard proto-
cols [89](see Table 1). The probes CIR257 and CIR560
were also used to screen M. balbisiana cv. PKW BAC library
[26]. BAC DNA of positive clones was isolated using a
Qiagen Robot 9600 and Qiagen 96-well BAC DNA isola-
tion kit and digested with the restriction enzyme HindIII.
The Hindlll fingerprints were then hybridized with the
corresponding probe to determine the number of loci.

BAC-FISH analysis

Chromosome preparations were made as described in
D'Hont et al [14] from root tips of M. acuminata cv. Cal-
cutta-4 cultivated in glasshouse. Fluorescent in situ hybrid-
izations (FISH) were performed as described in D'Hont et
al [14], with 30 ng of BAC DNA labeled with digoxigenin
or biotin as probes and 50 ng/ul of sheared salmon sperm
DNA. The chromosomes were counterstained with DAPI
(4'.6-diamidino-2-phenylindole).

BAC sequencing

Selected BAC clones were sequenced by similar shotgun
approaches at The Institute for Genomic Research (TIGR),
Empresa Brasileira de Pesquisa Agropecudria (EMBRAPA-
CENARGEN), Universidade Catolica de Brasilia (UCB)
and National Institute of Agrobiological Sciences (NIAS).
At TIGR, purified BAC DNA was sheared by nebulization,
size-selected (2-3 kb) and ligated into a pUC-derived vec-
tor, pHOS1, using BstXI linkers. BAC DNA sent for
sequencing to EMBRAPA and UCB was fragmented at
Genoscope Centre (Evry, Paris, France) using a hydros-
hearer, size-selected (5 kb) and ligated into pcDNA2.1
vector using BstXI linkers. Clones were sequenced from
both ends using ABI Big Dye terminator chemistry on ABI
3730 sequencing machines at TIGR and using a
DYEnamicTM ET Terminator Sequencing Kit (Amersham
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Pharmacia Biotech) on Applied Biosystems 377 sequenc-
ers at EMBRAPA and UCB. Sequences were assembled
using TIGR assembler and additional directed sequencing
reactions performed as necessary to complete the
sequence to high quality. BAC shotgun sequencing from
NIAS were performed using shotgun (2 kb and 5-7 kb)
clones of 10x coverage and Big Dye Terminator Kit (ABI)
on ABI 3700 sequencers, assembled with Phred/phrap
software [90,91], and contig gaps were filled if necessary.

Sequence annotation

Annotation of the BAC assemblies was carried out using
the TIGR annotation pipeline, a collection of software
known as Eukaryotic Genome Control (EGC) that serves
as the central data management system. Each BAC
sequence was processed through a series of algorithms for
predicting genes (Genscan+, Genemark.hmm, Glimmer)
[92-94], splice sites [95,96] and tRNAs [97]. The AAT
package [98] was used for homology search against nucle-
otide and protein databases, that include plant-specific
c¢DNA and EST sequences, TIGR plant gene indices [99], a
non-redundant amino acid database filtered from public
sources, and SwissProt [100]. Protein models generated
by the searches and predictions are further searched
against Markov model (HMM) databases, including
PFAM [101], and automatically assigned a putative name
based on domain hits or homology to previously identi-
fied proteins. Gene structures and names were manually
inspected and refined as necessary. Annotated gene mod-
els were scanned for Musa transposable element nucle-
otide sequences downloaded from GenBank and then
compared to a curated database of transposable element-
encoded proteins [102]. The top match from each hit was
used to classify the transposable element.

Comparison of BACs with one another

In order to determine whether the BACs selected by
hybridization actually arose from duplicated regions of
the M. acuminata (A) genome or homeologous regions of
the M. balbisiana (B) genome, or to identify duplicated
regions in the M. acuminata (A) genome (pairs of BACs
hybridizing with the same probes), each BAC was com-
pared against all other BACs using MUMmer [103]; Dotter
[104]; [105] and an all-by-all BLASTP search [106]. The
sequence identity of the overlapping sequences between
BACs: MA4_82I11 and MBP_81C12 or MA4_54N7 and
MBP_91N22, was computed with Stretcher from the
EMBOSS package [107].

Synteny search

The 443 Musa predicted proteins were aligned against the
rice and Arabidopsis proteomes using the BLASTP pro-
gram (e-value < le-10) [108]. The i-ADHoRe software
[56] which looks for regions where the gene order is sim-
ilar between two genomic sequences was used with the
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following parameters: a gap size and a cluster gap of 40-
40, a q value of 0.9, three anchor points and a probability
cutoff of 0.001. For four BACs (MA4_25J11, MA4_81.21,
MBP_91N22 and MuH9), we tried to extend the regions
of synteny between Musa and rice found by i-ADHoRe by
conducting reciprocal BLASTP searches between the genes
corresponding on the homologous regions.

Phylogenetic analyses

Musa genes were used in BLASTX searches to query a data-
base of rice and Arabidopsis gene family clusters [109].
Translated blast searches (tBLASTX) against the TIGR
plant gene indices [110] were also performed and inferred
protein sequences with e-values < 1e-30 were compiled
with homologous Musa, rice and Arabidopsis sequences.
Amino acid alignments of the compiled sequences were
constructed using MUSCLE [111] and manually adjusted.
Parsimony analyses were performed on the amino acid
alignments using PAUP* v4.0b10 [112].

Contruction of unigenes

Musa EST sequences were provided by the Global Musa
Genomics Consortium [113]. These sequences were first
assembled into unigenes using the TGICL package [114]
to eliminate sequence redundancy. Because unigenes are
derived from EST sequences and so have no annotated
open reading frames and may contain frameshift sequenc-
ing errors, the following approach was taken. Each uni-
gene was aligned against the rice proteome (downloaded
from GenBank) using BLASTX. The best match was con-
sidered significant if the alignment length was >100
amino acids and the Expect value (E) was <le-15. The
open reading frame was then extracted from the unigene
sequence using the Genewise program (which can infer
frameshift sites; [115] with the corresponding best match
protein as a guide.

Estimation of the level of synonymous substitution
between two sequences

For each pair of coding sequence, the two translation
products were aligned using the MUSCLE program [111]
and the resulting alignment was used as a guide to align
the nucleotide sequences. After removing gaps and N-con-
taining codons, the level of synonymous substitution (K;)
was estimated using the maximum likelihood method
implemented in CODEML [116] under the F3x4 model
[117].

Distribution of the age of duplication of Musa genes

All-against-all nucleotide sequence similarity searches
were done among the open reading frame extracted from
the unigene sequences using BLASTN [106]. Sequences
aligned over >300 bp and showing at least 40% identity
were defined as pairs of paralogs. Then we estimated K, for
each pair of paralogs. We systematically discarded one

http://www.biomedcentral.com/1471-2164/9/58

sequence from a pair of paralogs showing no synonymous
substitutions (K = 0) as well as all K, values involving this
sequence to avoid the inclusion of redundant entries of
the same gene in the analysis (see [64] for further details).
A gene family of n members results from n-1 gene dupli-
cation events. However, the number of possible pairwise
comparisons within a gene family (n x (n-1)/2) can be
substantially larger than the number of gene duplications,
which results in multiple estimates of the ages of some
duplications. To eliminate the redundant K, values, pairs
of duplicated sequences were grouped into gene families
using a single linkage clustering method. Then we used
the hierarchical clustering method described in [64] to
reconstruct the approximated phylogeny of each gene
family: (1) Initially, all sequences in the family were
treated as a separate clusters. (2) Then, the K values for all
possible pairs of clusters were compared. (3) The pair of
clusters having the smallest K, value was replaced by a sin-
gle new cluster containing all their sequences. (4) The
median K value was chosen to represent the duplication
event that gave rise to the two merged clusters. (5) Steps 2
to 4 were repeated until all sequences were contained in a
single cluster. When two clusters A and B contained more
than one sequence, their associated K value in step 2 cor-
responded to the median K, obtained for all possible pairs
of any sequence from A and any sequence from B.

Abbreviations
aa - amino acid

AC number - accession number

CDS - coding DNA sequence

EST - expressed sequence tag

FISH - fluorescent in situ hybridization
GISH - genomic in situ hybridization
Ks - synonymous substitution rate
Mya - million years ago

PKW - Pisang Klutuk Wulung

RFLP - restriction fragment length polymorphism
TE - transposable element

TC - tentative consensi.

Authors' contributions

PP, AD, GJP, TS, MTSJ, RNGM and JCG conceived of the
study and participated in its design. PP, AYC, CMRS, OG,

Page 16 of 20

(page number not for citation purposes)



BMC Genomics 2008, 9:58

ADV, HK, TM, RA, TA, EH, GJP, RNGM and CDT per-
formed the experiments. ML, MR, GB, JLM, FRDS, CMR,
FC, BJH and CDT analysed and interpreted the data.
RNGM contributed reagents. ML, GB, JLM, AD and CDT
wrote the manuscript. All authors read and approved the
final manuscript.

Additional material

Additional file 1

Supplementary Table 1. Additional list of probes used to identify the
Musa BAC clones. Estimated copy numbers of these sequences in rice,
Sorghum and Musa are indicated for S)RPG (Sorghum bicolor)
sequences.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S1.doc]

Additional file 2

Supplementary Table 2. Additional BAC clones analyzed to define Musa
gene features and syntenic relationships with rice.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S2.doc]

Additional file 3

Supplementary Table 3. Statistics of the 17 Musa BAC clones analyzed in
the present study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S3.doc]

Additional file 4

Supplementary Table 4. Annotation overview of the Musa genes. The
column «Pseudogene» indicates by [1] if the gene is a pseudogene and [0]
if not. Closest sequence homolog is the first similar protein sequence found
by BLASTP after the sequence itself.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S4.doc]

Additional file 5

Supplementary Table 5. List of genes involved in synteny relationship
between Musa and rice based on i-ADHORE results. Multiplicon is a
BAC genomic sequence on which the baseclusters are isolated and repre-
sents a cluster of 3 genes minima.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S5.doc]

Additional file 6

Supplementary Figure 1. Musa-rice syntenic region between MuH9
BAC clone and rice chromosome 4. Homologous genes between Musa
and rice are indicated by shaded areas. Genes annotated such as hypothet-
ical genes are white.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S6.ppt]

http://www.biomedcentral.com/1471-2164/9/58

Additional file 7

Supplementary Figure 2. The Musa-rice syntenic region around the
highly conserved porphobilinogen deaminase gene. Shaded areas con-
nect homologous genes conserved between chromosome 2 of rice and
Musa MA4_42M13 BAC clone (isolated by SORPG748 probe). Genes
annotated such as hypothetical genes are white. In Musa, a recent local
duplication of the porphobilinogen deaminase gene occurred (genes
MA4_42M13.6 and MA4_42M13.8).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S7.ppt]

Additional file 8

Supplementary Figure 3. Phylogenetic analyses on the seven of the ten
M. acuminata genes from MA4_25]11 BAC clone. These seven Musa
genes have homologous genes in rice chromosomes 1 and 5 and the locus
numbers are available on Figure 5B. MA4_25]11 BAC clone was isolated
by SbRPG132 probe.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S8.ppt]

Additional file 9

Supplementary Figure 4. Musa-Arabidopsis syntenic region between
Musa MA4_54B05 BAC clone and Arabidopsis chromosome 5. Homol-
ogous genes between Musa and Arabidopsis are indicated by shaded areas.
Genes annotated such as hypothetical genes are white. MA4_54B05 BAC
clone was isolated by SORPGG61 probe.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-59.ppt]

Additional file 10

Supplementary Figure 5. Collinearity between M. acuminata
(MA4_54N07) and M. balbisiana (MBP_91N22) around the
CIR560 marker. The shaded areas connecting the two genomic regions
represent conserved genes. Predicted genes and their orientation in each
Musa BAC clone are shown as boxed areas. The genes for which the name
is in bold hybridize with the marker. Genes annotated such as hypothetical
genes are white. (A) Dot plot analysis of the two pairs of homeologous
BACs from M. acuminata and M. balbisiana. (B) Diagram of the syn-
tenic regions between the two BAC clones.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-9-58-S10.ppt]

Acknowledgements

We thank the Montpellier Languedoc-Roussillon Genopole®for hosting the
BAC library production and screening. We thank the Genoscope Centre in
Evry, Paris, France for assisting AYC to carry out the subcloning of the five
BAC clones sequenced at EMBRAPA and UCB.

Access to the Syngenta Musa EST database, donated by Syngenta to the
International Network for the Improvement of Banana and Plantain (INI-
BAP) for use within the framework of the Global Musa Genomics Consor-
tium is acknowledged.

This work was supported by CIRAD, INIBAP, NIAS, EMBRAPA, UCB, the
National Council for Scientific and Technological Development (CNPq) in
Brazil, TIGR and Generation Challenge program.

Page 17 of 20

(page number not for citation purposes)



http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S5.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S6.ppt
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S7.ppt
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S8.ppt
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S9.ppt
http://www.biomedcentral.com/content/supplementary/1471-2164-9-58-S10.ppt

BMC Genomics 2008, 9:58

References

20.

21.

22.

Arias P, Dankers C, Liu P, Pilkauskas P: The world banana econ-
omy 1985-2002. FAO 2003 [http://www.fao.org/documents/
show_cdr.asplurl_file=/docrep/007/y5102e/y5102e00.htm].

Janssen T, Bremer K: The age of major monocot groups
inferred from 800 + rbcL sequences. Botanical Journal of the Lin-
nean Society 2004, 146:385-398.

Sanderson MJ, Thorne JL, Wikstrém N, Bremer K: Molecular evi-
dence on plant divergence times. American Journal of Botany
2004, 91(1656-1665):.

Simmonds N, Shepherd K: The taxonomy and origins of the cul-
tivated bananas. Bot | Linn Soc 1955, 55:302-312.

Bartos ], Alkhimova O, Dolezelova M, De Langhe E, Dolezel J:
Nuclear genome size and genomic distribution of ribosomal
DNA in Musa and Ensete (Musaceae): taxonomic implica-
tions. Cytogenet Genome Res 2005, 109(1-3):50-57.

Carreel F, Fauré S, Gonzalez de Leon D, Lagoda PJL, Perrier X, Bakry
F, Tezenas du Montcel H, Lanaud C, Horry JP: Evaluation of the
genetic diversity in diploid bananas (Musa sp.). Genetics, Selec-
tion, Evolution 1994, 26:125s-136s.

Carreel F, Gonzalez de Leon D, Lagoda P, Lanaud C, Jenny C, Horry
JP, Tezenas du Montcel H: Ascertaining maternal and paternal
lineage within Musa by chloroplast and mitochondrial DNA
RFLP analyses. Genome 2002, 45(4):679-692.

Grapin A, Noyer JL, Dambier D, Carreel F, Lanaud C, Baurens F-C,
Lagoda PJL: Diploid Musa acuminata genetic diversity with
Sequence Tagged Microsatellite Sites. Electrophoresis 1998,
19:1374-1380.

Noyer JL, Causse S, Tomekpe K, Bouet A, Baurens FC: A new
image of plantain diversity assessed by SSR, AFLP and MSAP
markers. Genetica 2005, 124(1):61-69.

Raboin LM, Carreel F, Noyer J-L, Baurens F-C, Horry J-P, Bakry F,
Tezenas Du Montcel H, Ganry ], Lanaud C, Lagoda PJL: Diploid
Ancestors of Triploid Export Banana Cultivars: Molecular
Identification of 2n Restitution Gamete Donors and n Gam-
ete Donors. Molecular breeding 2005, 16(4):333-341.

Ude G, Pillay M, Nwakanma D, Tenkouano A: Genetic Diversity in
Musa acuminata Colla and Musa balbisiana Colla and some
of their natural hybrids using AFLP Markers. Theor Appl Genet
2002, 104(8):1246-1252.

Ge XJ, Liu MH, Wang K, Schaal BA, Chiang TY: Population struc-
ture of wild bananas, Musa balbisiana, in China determined
by SSR fingerprinting and cpDNA PCR-RFLP. Molecular ecol-
ogy 2005, 14:933-944.

Baurens FC, Noyer JL, Lanaud C, Lagoda PJ: Use of competitive
PCR to assay copy number of repetitive elements in banana.
Mol Gen Genet 1996, 253(1-2):57-64.

D'Hont A, Paget-Goy A, Escoute ], Carreel F: The interspecific
genome structure of cultivated banana, Musa spp. revealed
by genomic DNA in situ hybridization. Theor Appl Genet 2000,
100:177-183.

Valarik M, Simkova H, Hribova E, Safar ], Dolezelova M, Dolezel J: Iso-
lation, characterization and chromosome localization of
repetitive DNA sequences in bananas (Musa spp.). Chromo-
some Res 2002, 10(2):89-100.

Kamate K, Brown S, Durand P, Bureau JM, De Nay D, Trinh TH:
Nuclear DNA content and base composition in 28 taxa of
Musa. Genome 2001, 44(4):622-627.

Lysak M, Dolezelova M, Horry J, Swennen R, Dolezel J: Flow cyto-
metric analysis of nuclear DNA content in Musa. Theor Appl
Genet 1999, 98:1344-1350.

Arabidopsis Genome Initiative: Analysis of the genome sequence
of the flowering plant Arabidopsis thaliana. Nature 2000,
408(6814):796-815.

International Rice Genome Sequencing Project: The map-based
sequence of the rice genome. Nature 2005, 436(7052):793-800.
Fauré S, Noyer ), Horry ], Bakry F, Lanaud C, Gonzalez D, Leon D: A
molecular marker-based linkage map of diploid bananas
(Musa acuminata). Theor Appl Genet 1993, 87:517-526.

Noyer |, Dambier D, Lanaud C, Lagoda P: The saturated map of
diploid banana (Musa acuminata). Abstract Plant & Animal
Genome V Conference 1997.

Vilarinhos A, Carreel F, Rodier M, Hippolyte |, Benabdelmouna A,
Triaire D, Bakry F, Courtois B, D'Hont A: Characterization Of
Translocations In Banana By FISH Of BAC Clones Anchored

23.
24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

http://www.biomedcentral.com/1471-2164/9/58

To A Genetic Map. In Plant & Animal Genomes XIV Conference San
Diego, CA; 2006. January 14-18, 2006

Tropgenedb [http:/tropgenedb.cirad.fr/en/banana.html]
Ortiz-Vazquez E, Kaemmer D, Zhang HB, Muth ], Rodriguez-Mendi-
ola M, Arias-Castro C, James A: Construction and characteriza-
tion of a plant transformation-competent BIBAC library of
the black Sigatoka-resistant banana Musa acuminata cv. Tuu
Gia (AA). Theor Appl Genet 2005, 110(4):706-713.

Vilarinhos AD, Piffanelli P, Lagoda P, Thibivilliers S, Sabau X, Carreel
F, D'Hont A: Construction and characterization of a bacterial
artificial chromosome library of banana (Musa acuminata
Colla). Theor Appl Genet 2003, 106(6):1102-1106.

Safar ], Noa-Carrazana JC, Vrana J, Bartos ], Alkhimova O, Sabau X,
Simkova H, Lheureux F, Caruana ML, Dolezel J, et al.: Creation of a
BAC resource to study the structure and evolution of the

banana (Musa balbisiana) genome. Genome 2004,
47(6):1182-1191.

Devos KM: Updating the 'crop circle'. Curr Opin Plant Biol 2005,
8(2):155-162.

Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young
ND: Highly syntenic regions in the genomes of soybean, Med-
icago truncatula, and Arabidopsis thaliana. BMC Plant Biol
2005, 5(1):15.

Town CD, Cheung F, Maiti R, Crabtree ], Haas BJ, Wortman JR, Hine
EE, Althoff R, Arbogast TS, Tallon L, et al.: Comparative Genom-
ics of Brassica oleracea and Arabidopsis thaliana Reveal
Gene Loss, Fragmentation, and Dispersal after Polyploidy.
Plant Cell 2006, 18(6):1348-1359.

Zhu H, Choi HK, Cook DR, Shoemaker RC: Bridging model and
crop legumes through comparative genomics. Plant Physiol
2005, 137(4):1189-1196.

Tuskan GA, Difazio S, Jansson S, Bohlmann |, Grigoriev |, Hellsten U,
Putnam N, Ralph S, Rombauts S, Salamov A, et al.: The genome of
black cottonwood, Populus trichocarpa (Torr. & Gray). Sci-
ence 2006, 313(5793):1596-1604.

Jackson S, Rounsley S, Purugganan M: Comparative sequencing of
plant genomes: choices to make. Plant Cell 2006,
18(5):1100-1104.

Bowers JE, Arias MA, Asher R, Avise JA, Ball RT, Brewer GA, Buss
RW, Chen AH, Edwards TM, Estill JC, et al.: Comparative physical
mapping links conservation of microsynteny to chromosome
structure and recombination in grasses. Proc Natl Acad Sci USA
2005, 102(37):13206-1321 1.

Buell CR, Yuan Q, Ouyang S, Liu ], Zhu W, Wang A, Maiti R, Haas B,
Wortman |, Pertea M, et al: Sequence, annotation, and analysis
of synteny between rice chromosome 3 and diverged grass
species. Genome Res 2005, 15(9):1284-1291. Epub 2005 Aug 1218
La Rota M, Sorrells ME: Comparative DNA sequence analysis of
mapped wheat ESTs reveals the complexity of genome rela-
tionships between rice and wheat. Funct Integr Genomics 2004,
4(1):34-46.

Singh NK, Raghuvanshi S, Srivastava SK, Gaur A, Pal AK, Dalal V, Singh
A, Ghazi IA, Bhargav A, Yadav M, et al.: Sequence analysis of the
long arm of rice chromosome |1 for rice-wheat synteny.
Funct Integr Genomics 2004, 4(2):102-117. Epub 2004 Apr 2014

llic K, SanMiguel PJ, Bennetzen JL: A complex history of rear-
rangement in an orthologous region of the maize, sorghum,
and rice genomes. Proc Natl Acad Sci USA 2003,
100(21):12265-12270. Epub 12003 Oct 12266

Gu Y, Coleman-Derr D, Kong X, Anderson O: Rapid genome evo-
lution revealed by comparative sequence analysis of orthol-
ogous regions from four triticeae genomes. Plant Physiol 2004,
135(1):459-470.

Jaillon O, Aury ], Brunet F, Petit |, Stange-Thomann N, Mauceli E,
Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, et al.: Genome
duplication in the teleost fish Tetraodon nigroviridis reveals
the early vertebrate proto-karyotype. Nature 2004,
431(7011):946-957.

Jannoo N, Grivet L, Chantret N, Garsmeur O, Glaszmann JC, Arruda
P, D'Hont A: Orthologous comparison in a gene-rich region
among grasses reveals stability in the sugarcane polyploid
genome. Plant Journal 2007 in press.

Salse J, Piegu B, Cooke R, Delseny M: Synteny between Arabidop-
sis thaliana and rice at the genome level: a tool to identify
conservation in the ongoing rice genome sequencing
project. Nucleic Acids Res 2002, 30(11):2316-2328.

Page 18 of 20

(page number not for citation purposes)


http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5102e/y5102e00.htm
http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5102e/y5102e00.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753558
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12175071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12175071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12175071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9694284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9694284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16011003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16011003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16011003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12582577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15773926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15773926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15773926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9003287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9003287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11993938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11993938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11993938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11550896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11550896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11550896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11130711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16100779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16100779
http://tropgenedb.cirad.fr/en/banana.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15650812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15650812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15650812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12671759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12671759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12671759
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15644977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15644977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15644977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15752995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16102170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16102170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16632643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16632643
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15824281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15824281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16670439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16670439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16141333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16109971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16109971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16109971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14740255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14740255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14740255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14530400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15122014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15122014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15122014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15496914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15496914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15496914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17425713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034818

BMC Genomics 2008, 9:58

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

53.

54.

55.
56.

57.

58.

59.

60.

6l.

62.

63.
64.

Salse J, Piegu B, Cooke R, Delseny M: New in silico insight into the
synteny between rice (Oryza sativa L.) and maize (Zea mays
L.) highlights reshuffling and identifies new duplications in
the rice genome. Plant | 2004, 38(3):396-409. Erratum in: Plant J.
2004 Jun;2038(2005):2873

Aert R, Sagi L, Volckaert G: Gene content and density in banana
(Musa acuminata) as revealed by genomic sequencing of
BAC clones. Theor Appl Genet 2004, 109(1):129-139.

Cheung F, Town CD: A BAC end view of the Musa acuminata
genome. BMC Plant Biol 2007, 7(29):29.

Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M: A role of
OsGA20oxI, encoding an isoform of gibberellin 20-oxidase,
for regulation of plant stature in rice. Plant Mol Biol 2004,
55(5):687-700.

Spielmeyer W, Ellis MH, Chandler PM: Semidwarf (sd-1), "green
revolution" rice, contains a defective gibberellin 20-oxidase
gene. Proc Natl Acad Sci USA 2002, 99(13):9043-9048.

Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T,
Nakajima E, Hibi T: Characterization of transgenic rice plants
over-expressing the stress-inducible beta-glucanase gene
Gnsl. Plant Mol Biol 2003, 51(1):143-152.

Thomas BR, Romero GO, Nevins DJ, Rodriguez RL: New perspec-
tives on the endo-beta-glucanases of glycosyl hydrolase Fam-
ily 17. Int J Biol Macromol 2000, 27(2):139-144.

Romero GO, Simmons C, Yaneshita M, Doan M, Thomas BR, Rod-
riguez RL: Characterization of rice endo-beta-glucanase genes
(Gns2-Gnsl4) defines a new subgroup within the gene fam-
ily. Gene 1998, 223(1-2):311-320.

Simmons CR, Litts JC, Huang N, Rodriguez RL: Structure of a rice
beta-glucanase gene regulated by ethylene, cytokinin,
wounding, salicylic acid and fungal elicitors. Plant Mol Biol 1992,
18(1):33-45.

Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz
PD, Town CD, Buell CR, Chan AP: The TIGR Plant Transcript
Assemblies database. Nucleic Acids Res 2007:D846-851.

Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Cata-
nach A, Rutherford P, Sink KC, Jenderek M, et al: A unique set of
11,008 onion expressed sequence tags reveals expressed
sequence and genomic differences between the monocot
orders Asparagales and Poales. Plant Cell 2004, 16(1):114-125.
Epub 2003 Dec 201 |

Kuhl JC, Havey M, Martin W), Cheung F, Yuan Q, Landherr L, Hu Y,
Leebens-Mack J, Town CD, Sink KC: Comparative genomic anal-
yses in Asparagus. Genome 2005, 48:1052-1060.

Price AL, Jones NC, Pevzner PA: De novo identification of repeat
families in large genomes. Bioinformatics 2005, 21(Suppl
1):i351-358.

Parsons |D: Miropeats: graphical DNA sequence comparisons.
Comput Appl Biosci 1995, 11(6):615-619.

Simillion C, Vandepoele K, Saeys Y, Van de Peer Y: Building
genomic profiles for uncovering segmental homology in the
twilight zone. Genome Res 2004, 14(6):1095-1106.

Sampedro J, Lee Y, Carey RE, dePamphilis C, Cosgrove DJ: Use of
genomic history to improve phylogeny and understanding of
births and deaths in a gene family. Plant | 2005, 44(3):409-419.
Vandepoele K, Simillion C, Van de Peer Y: Detecting the undetec-
table: uncovering duplicated segments in Arabidopsis by
comparison with rice. Trends Genet 2002, 18(12):606-608.
Sonnhammer EL, Koonin EV: Orthology, paralogy and proposed
classification for paralog subtypes. Trends Genet 2002,
18(12):619-620.

Blanc G, Barakat A, Guyot R, Cooke R, Delseny M: Extensive dupli-
cation and reshuffling in the Arabidopsis genome. Plant Cell
2000, 12(7):1093-1101.

Paterson AH, Bowers JE, Chapman BA: Ancient polyploidization
predating divergence of the cereals, and its consequences for
comparative genomics.  Proc Natl Acad Sci USA 2004,
101(26):9903-9908.

Yu J, Wang |, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C,
et al: The Genomes of Oryza sativa: a history of duplications.
PLoS Biol 2005, 3(2):e38.

A Global Programme for Musa Improvement
www.promusa.org/]

Blanc G, Wolfe KH: Widespread paleopolyploidy in model
plant species inferred from age distributions of duplicate
genes. Plant Cell 2004, 16(7):1667-1678. Epub 2004 Jun 1618

[htep://

65.

66.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

8l.

82.

83.
84.

85.

86.

http://www.biomedcentral.com/1471-2164/9/58

Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle ]J,
Soltis PS, Carlson JE, Arumuganathan K, Barakat A, et al.: Wide-
spread genome duplications throughout the history of flow-
ering plants. Genome Res 2006, 16(6):738-749.

Lynch M, Conery JS: The evolutionary fate and consequences of
duplicate genes. Science 2000, 290(5494):1151-1155.

Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van
de Peer Y: Modeling gene and genome duplications in eukary-
otes. Proc Natl Acad Sci USA 2005, 102(15):5454-5459.

Schlueter SD, Wilkerson MD, Huala E, Rhee SY, Brendel V: Commu-
nity-based gene structure annotation. Trends Plant Sci 2005,
10(1):9-14.

Hughes AL, Friedman R, Ekollu V, Rose JR: Non-random associa-
tion of transposable elements with duplicated genomic
blocks in Arabidopsis thaliana. Mol Phylogenet Evol 2003,
29(3):410-416.

Vandepoele K, Simillion C, Van de Peer Y: Evidence that rice and
other cereals are ancient aneuploids. Plant Cell 2003,
15(9):2192-2202.

The TIGR Plant Transcript Assemblies database
plantta.tigr.org/]

Kress W], Prince LM, Hahn W], Zimmer EA: Unraveling the evo-
lutionary radiation of the families of the Zingiberales using
morphological and molecular evidence. Syst Biol 2001,
50(6):926-944.

Bremer K: Early Cretaceous lineages of monocot flowering
plants. Proc Natl Acad Sci USA 2000, 97(9):4707-4711.

Gaut BS, Morton BR, McCaig BC, Clegg MT: Substitution rate
comparisons between grasses and palms: synonymous rate
differences at the nuclear gene Adh parallel rate differences
at the plastid gene rbcL. Proc Natl Acad Sci USA 1996,
93(19):10274-10279.

Bennetzen JL, Ma ], Devos KM: Mechanisms of recent genome
size variation in flowering plants. Ann Bot (Lond) 2005,
95(1):127-132.

Martin W], McCallum J, Shigyo M, Jakse J, Kuhl JC, Yamane N, Pither-
Joyce M, Gokcee AF, Sink KC, Town CD, et al.: Genetic mapping of
expressed sequences in onion and in silico comparisons with
rice show scant colinearity. Mol Genet Genomics 2005:1-8.

Jakse ], Telgmann A, Jung C, Khar A, Melgar S, Cheung F, Town CD,
Havey M): Comparative sequence and genetic analyses of
asparagus BACs reveal no microsynteny with onion or rice.
Theor Appl Genet 2006, 1 14(1):31-39.

Lohithaswa HC, Feltus FA, Singh HP, Bacon CD, Bailey CD, Paterson
AH: Leveraging the rice genome sequence for monocot com-
parative and translational genomics. Theor Appl Genet 2007,
115(2):237-243.

Dubcovsky ], Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff
BA, Bennetzen JL: Comparative sequence analysis of colinear
barley and rice bacterial artificial chromosomes. Plant Physiol
2001, 125(3):1342-1353.

Adams KL, Wendel JF: Polyploidy and genome evolution in
plants. Curr Opin Plant Biol 2005, 8(2):135-141.

Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA:
Structure and evolution of cereal genomes. Curr Opin Genet
Dev 2003, 13(6):644-650.

Wang X, Shi X, Hao B, Ge S, Luo J: Duplication and DNA seg-
mental loss in the rice genome: implications for diploidiza-
tion. New Phytol 2005, 165(3):937-946.

Vision TJ, Brown DG, Tanksley SD: The origins of genomic dupli-
cations in Arabidopsis. Science 2000, 290(5499):2114-2117.
Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jes-
sup R, Lemke C, Lennington J, Li Z, et al: A high-density genetic
recombination map of sequence-tagged sites for sorghum,
as a framework for comparative structural and evolutionary
genomics of tropical grains and grasses. Genetics 2003,
165(1):367-386.

Blanc G, Wolfe KH: Functional divergence of duplicated genes
formed by polyploidy during Arabidopsis evolution. Plant Cell
2004, 16(7):1679-1691.

Duarte JM, Cui L, Wall PK, Zhang Q, Zhang X, Leebens-Mack J, Ma
H, Altman N, dePamphilis CW: Expression pattern shifts follow-
ing duplication indicative of subfunctionalization and neo-
functionalization in regulatory genes of Arabidopsis. Mol Biol
Evol 2006, 23(2):469-478.

[http://

Page 19 of 20

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15086801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15086801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15086801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17562019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604710
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12077303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12602898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12602898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12602898
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10771063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10771063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10771063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9858757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9858757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9858757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1731976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1731976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1731976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17088284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14671025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14671025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14671025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16391674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8808577
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15173115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16236151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16236151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16236151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12446146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15161969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15161969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15161969
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15685292
http://www.promusa.org/
http://www.promusa.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16702410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16702410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16702410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11073452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11073452
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15800040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15642518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14615183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14615183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14615183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12953120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12953120
http://plantta.tigr.org/
http://plantta.tigr.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12116641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12116641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12116641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10759567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10759567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8816790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8816790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8816790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15596462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17016688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17016688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17522835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15752992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15752992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14638328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14638328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15720704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15720704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15720704
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11118139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14504243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14504243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14504243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16280546

BMC Genomics 2008, 9:58

87.

88.

89.

90.

9lI.

92.
93.

94.

95.

96.

97.

98.

99.

100.

101.

102.
103.

104.

105.
106.

107.

108.
109.
110.
1.

112.

Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW, Del-
monte TA, Ding X, Garza J), Marler BS, et al.: A 3347-locus genetic
recombination map of sequence-tagged sites reveals fea-
tures of genome organization, transmission and evolution of
cotton (Gossypium). Genetics 2004, 166(1):389-417.

Boivin K, Deu M, Rami J-F, Trouche G, Hamon P: Towards a satu-
rated sorghum map using RFLP and AFLP markers. Theor
Appl Genet 1999, 98:320.

Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean RA: Melon
bacterial artificial chromosome (BAC) library construction
using improved methods and identification of clones linked
to the locus conferring resistance to melon Fusarium wilt
(Fom-2). Genome 2001, 44:154-116.

Ewing B, Green P: Base-calling of automated sequencer traces
using phred. Il. Error probabilities. = Genome Res 1998,
8(3):186-194.

Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated
sequencer traces using phred. I. Accuracy assessment.
Genome Res 1998, 8(3):175-185.

Burge C, Karlin S: Prediction of complete gene structures in
human genomic DNA. | Mol Biol 1997, 268(1):78-94.

Lukashin AV, Borodovsky M: GeneMark.hmm: new solutions for
gene finding. Nucleic Acids Res 1998, 26(4):1107-1115.

Salzberg SL, Pertea M, Delcher AL, Gardner M], Tettelin H: Interpo-
lated Markov models for eukaryotic gene finding. Genomics
1999, 59(1):24-31.

Pertea M, Lin X, Salzberg SL: GeneSplicer: a new computational
method for splice site prediction. Nucleic Acids Res 2001,
29(5):1185-1190.

Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht ], Rouze P, Bru-
nak S: Splice site prediction in Arabidopsis thaliana pre-
mRNA by combining local and global sequence information.
Nucleic Acids Res 1996, 24(17):3439-3452.

Lowe TM, Eddy SR: tRNAscan-SE: a program for improved
detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res 1997, 25(5):955-964.

Huang X, Adams MD, Zhou H, Kerlavage AR: A tool for analyzing
and annotating genomic sequences. Genomics 1997,
46(1):37-45.

Quackenbush J, Liang F, Holt |, Pertea G, Upton J: The TIGR gene
indices: reconstruction and representation of expressed
gene sequences. Nucleic Acids Res 2000, 28(1):141-145.

Bairoch A, Apweiler R: The SWISS-PROT protein sequence
database and its supplement TrEMBL in 2000. Nucleic Acids Res
2000, 28(1):45-48.

Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Grif-
fiths-Jones S, Howe KL, Marshall M, Sonnhammer EL: The Pfam
protein families database. Nucleic Acids Res 2002, 30(1):276-280.
Transposable elements database on TIGR FTP site [ftp://
ftp.tigr.org/pub/data/TransposableElements/transposon_db.pep]
Delcher AL, Phillippy A, Carlton J, Salzberg SL: Fast algorithms for
large-scale genome alignment and comparison. Nucleic Acids
Res 2002, 30(11):2478-2483.

Sonnhammer EL, Durbin R: A dot-matrix program with dynamic
threshold control suited for genomic DNA and protein
sequence analysis. Gene 1995, 167(1-2):GCI-10.

Dotter web site [http:/bioinfo.hku.hk/doc/dotter.html]

Altschul SF, Madden TL, Schaffer AA, Zhang ], Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

Rice P, Longden |, Bleasby A: EMBOSS: the European Molecular
Biology Open Software Suite. Trends Genet 2000,
16(6):276-277.

Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local align-
ment search tool. | Mol Biol 1990, 215(3):403-410.
The Floral Genome Project - PlantTribes
dev.huck.psu.edu/tribe.pl]

The TIGR plant gene indices web site [http://www.tigr.org/tdb/
tgi/plant.shtml]

Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res 2004,
32(5):1792-1797. Print 2004

Swofford DL: PAUP¥*. Phylogenetic Analysis Using Parsimony
(*and Other Methods). Version 4. Sinauer Associates, Sunderland,
Massachusetts 2003.

[http://fgp

http://www.biomedcentral.com/1471-2164/9/58

113. The Global Musa Genomics Consortium [http://www.musage

nomics.org]

114. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S,
Lee Y, White ], Cheung F, Parvizi B, et al: TIGR Gene Indices clus-
tering tools (TGICL): a software system for fast clustering of

large EST datasets. Bioinformatics 2003, 19(5):651-652.

I15. Birney E, Thompson |D, Gibson TJ: PairWise and SearchWise:
finding the optimal alignment in a simultaneous comparison
of a protein profile against all DNA translation frames.

Nucleic Acids Res 1996, 24(14):2730-2739.
116. Yang Z: Phylogenetic analysis by maximum
(PAML), version 2. University College London, England 1999.

117. Goldman NaZY: A codon-based model of nucleotide substitu-
tion for protein-coding DNA sequences. Mol Biol Evol 1994,

11(5):725-736.

118. Chase MW: Monocot relationships: an overview. American Jour-

nal of Botany 2004, 91:1645-1655.
119. The Expressed Sequence Tags
www.ncbi.nlm.nih.gov/dbEST/]

Database

120. Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas
B, Sultana R, Cheung F, et al.: The institute for genomic research
Plant Physiol 2005,

Osal rice genome annotation database.
138(1):18-26.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral

http://www.biomedcentral.com/info/publishing_adv.asp

Page 20 of 20

(page number not for citation purposes)

likelihood

[http://



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15020432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11341724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11341724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11341724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521922
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9461475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10395796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10395796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11222768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8811101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9023104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9403056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9403056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314
ftp://ftp.tigr.org/pub/data/TransposableElements/transposon_db.pep
ftp://ftp.tigr.org/pub/data/TransposableElements/transposon_db.pep
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566757
http://bioinfo.hku.hk/doc/dotter.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://fgpdev.huck.psu.edu/tribe.pl
http://fgpdev.huck.psu.edu/tribe.pl
http://www.tigr.org/tdb/tgi/plant.shtml
http://www.tigr.org/tdb/tgi/plant.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.musagenomics.org
http://www.musagenomics.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8759004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8759004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7968486
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/dbEST/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888674
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Selection of Musa BAC clones using broad-spectrum Sorghum cDNA and Musa RFLP probes
	Analysis of 1.8 Mb of Musa genomic sequences reveals particular features for the Musa genes
	Musa genome statistics
	Base Composition and GC Distribution along the Musa genes

	Analysis of Musa repetitive elements
	Microsynteny analysis between Musa and either rice or Arabidopsis
	Syntenic relationships between two regions of M. acuminata and M. balbisiana
	Divergence between M. acuminata and M. balbisiana
	Evidence for a large-scale duplication event in the Musa  ancestor

	Discussion
	Analysis of Musa genes reveals some particular features
	Syntenic relationships between distantly-related monocots
	A first insight into syntenic relationships between Musa A and B
	Unveiling the paleopolyploid nature of Musa species
	Is rice a good model to study the structure and evolution of Musa genomes?

	Conclusion
	Methods
	Selection of Musa BAC clones
	BAC-FISH analysis
	BAC sequencing
	Sequence annotation
	Comparison of BACs with one another
	Synteny search
	Phylogenetic analyses
	Contruction of unigenes
	Estimation of the level of synonymous substitution between two sequences
	Distribution of the age of duplication of Musa genes

	Abbreviations
	Authors' contributions
	Additional material
	Acknowledgements
	References

