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Cancer represents a complex disease originated from alterations in several genes

leading to disturbances in important signaling pathways in tumor biology, favoring

heterogeneity that promotes adaptability and pharmacological resistance of tumor

cells. Metabolic reprogramming has emerged as an important hallmark of cancer

characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty

acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic

switches that support energetic requirements of cancer cells are closely related to

either activation of oncogenes or down-modulation of tumor-suppressor genes, finally

leading to dysregulation of cell proliferation, metastasis and drug resistance signals.

Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can

regulate altered genes contributing, to the establishment of metabolic reprogramming.

Moreover, diverse metabolic signals can regulate ncRNA expression and activity at

genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs

may provide a new approach for understanding and treatment of different types of

malignancies. In this review we discuss the regulatory role exerted by ncRNAs on

metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism.

We also review howmetabolic stress conditions and tumoral microenvironment influence

ncRNA expression and activity. Furthermore, we comment on the therapeutic potential

of metabolism-related ncRNAs in cancer.

Keywords: metabolic reprogramming, cancer metabolism, ncRNA regulation, miRNAs

METABOLIC REPROGRAMMING: CANCER METABOLISM
CHANGING THE ENERGETIC STATE TO FULFILL CELLULAR
REQUIREMENTS

Deregulation of cellular energetics has been pointed out as one of the emerging hallmarks of
cancer, both during early cellular transformation and as a driving phenotype of several tumorigenic
programs (Kroemer and Pouyssegur, 2008; Munoz-Pinedo et al., 2012). Under physiological
conditions, cells maintain regulated and complex metabolic homeostasis by diverse signaling
pathways that function as energetic sensors. Metabolic sensors act under a network of cooperative
signaling cascades, not only to fulfill the energetic requirements of the cells, but also to influence
cellular pathways like cell growth, proliferation, and death (Dumortier et al., 2013). In contrast,
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cancer cells loose this regulated homeostasis in several ways,
including alterations in intrinsic and extrinsic molecular
mechanisms that govern cellular metabolism, in order to
provide the basic metabolic requirements of tumoral cells,
such as quick biosynthesis of ATP, accelerated biosynthesis
of macromolecules, and maintenance of optimal redox status
(Cairns et al., 2011). To satisfy their metabolic needs, cancer
cells also present changes in energetic pathways such as elevated
glucose uptake, aerobic glycolysis and altered lipid and fatty-
acid metabolism (Newsholme et al., 1985; Vander Heiden
et al., 2009). This advantageous bioenergetic state is not only
related to the metabolic requirements imposed by the higher
biological activity of the tumoral cells, it can also promote a
proliferative phenotype and facilitate cell survival and movement
under adverse conditions like hypoxia or glucose and nutrient
deprivation, becoming a major player in the development and
evolution of a tumor (Jones and Thompson, 2009).

This metabolic shift, known as metabolic reprogramming,
has been correlated with the activity of oncogenes and loss
of tumor suppressor molecules (Esquela-Kerscher and Slack,
2006). Furthermore, once a tumor has developed and reached a
certain volume, it becomes difficult to maintain optimal oxygen
levels in its cells, creating a hypoxic environment. This also
promotes a metabolic reprograming which includes an elevated
glycolytic rate, preferentially through oxidative phosphorylation
and suppression of gluconeogenesis, creating complex glucose-
lactate fluxes, as well as a pro-tumorigenic environment (Reyes
et al., 2014).

Non-coding RNAs (ncRNAs), mainly, microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs), have been defined as
important regulators of several metabolic pathways. miRNAs
are small ncRNAs (between 19 and 22 nt), with an important
role as post-transcriptional regulators (Bartel, 2009). LncRNAs
are transcripts from 200 nt to 100 kilobases (kb) lacking
an open reading frame and without evident protein-coding
function (Rinn and Chang, 2012). Both of them participate
in many physiological processes through the modulation of
gene expression at the epigenetic, transcriptional, and post-
transcriptional levels (Figure 1).

ncRNAs can actively regulate energetic signaling by targeting
key metabolic transporters and enzymes, or by directly or
indirectly controlling the expression of tumor suppressors or
oncogenes (Iorio and Croce, 2012). Analysis of the correlation
between oncogenic programs, metabolic reprograming and
aberrant ncRNA expression has highlighted the crucial role of
these metabolic aspects in initiation, promotion, and progression
of cancer (Arora et al., 2015).

Several lines of evidence suggest that ncRNA plays an

important role in the establishment of metabolic reprogramming

in cancer cells, as well as the feedback regulation between
alterations in energetic signaling and ncRNA expression or
activity. In this review, we will discuss the evidence that describes
the roles of ncRNAs as modulators of cancer metabolism and as
molecules which contribute to the establishment of a diversity of
mechanisms that govern the heterogeneity and plasticity of the
energetic metabolism of cancer cells.

ncRNAs REGULATE GLYCOLYTIC FLUXES:
A SWEET STORY

One of the most significant changes induced by cancer metabolic
reprogramming involves the bypass of oxidative phosphorylation
(Tricarboxylic Acid cycle) to a non-oxidative pathway lead by
aerobic glycolysis and lactate production, in order to satisfy the
energetic demands of the tumor cells (Vander Heiden et al.,
2009). One of the better characterized metabolic phenotypes
present in tumor cells is the Warburg effect, which gives
preference to ATP generation through glycolysis, even under
normal oxygen concentrations, over ATP synthesis through the
electron transport chain in the mitochondria (Warburg, 1956;
Gatenby and Gillies, 2004; Kim and Dang, 2006). Consequently,
most of the glucose in the cell is converted to lactate, rather
than being metabolized through the Krebs cycle (Warburg, 1956;
Semenza et al., 2001; Gatenby and Gillies, 2004). Although
the energetic balance established by glycolysis is less efficient
(lower quantity of ATP generated per unit of glucose) than
oxidative phosphorylation, it is quicker. However, oxidative
phosphorylation is not completely abolished and still functions at
a low level (Figure 2A). Therefore, this abnormal and accelerated
metabolism meets the energetic needs for cellular functions and
construction of biological blocks (fatty acids, lipids, nucleotides,
and proteins) for cancer cells (Zheng, 2012).

The first step in energy metabolism is the entry of glucose into
the cells through glucose transporters (GLUTs). Until now, 14
isoforms of GLUTs have been identified, of which GLUT1, 2, 3,
and 4 are well-characterized and expressed in different tissues,
some of them in a specific manner (Thorens and Mueckler,
2010). ncRNAs actively regulate the intracellular glucose levels by
modulating gene expression of glucose transporters. For instance,
GLUT1 is targeted by miR-340, which is up-regulated in oral
squamous cell carcinoma (Xu et al., 2016). In renal cell tumors,
miR-199a, miR-138, miR-150, and miR-532-5p down-regulate
GLUT1 expression, whereas miR-130b, miR-19a/b, and miR-
301a increase GLUT-1 (Chow et al., 2010). Additionally, loss of
miR-1291 enhances the development of renal tumors through
targeting GLUT1 (Yamasaki et al., 2013). In prostate tumors, the
PCGEM1 lncRNA promotes the expression of GLUT1. Similarly,
lncRNA-p21 expression is related to HIF-1α and its responsive
genes, such as GLUT1, promoting its expression in diverse
cancer cell lines (Yang et al., 2014). In bladder cancer, down-
modulation of miR-195-5p allows the expression of GLUT3 (Fei
et al., 2012; Peschiaroli et al., 2013). Additionally, reduced levels
of miR-150 negatively regulate GLUT4 expression in pancreatic
cancer cells (Srivastava et al., 2011). Such alterations in the
expression of ncRNAs and their effect over GLUT expression,
represent possible mechanisms through which tumors may
bypass regulatory energetic checkpoints by promoting glycolysis,
as well as other oncogenic pathways like proliferation, migration,
and invasion (Figure 2B).

ncRNAs can also affect the patterns and mechanisms of
glucose uptake and glucose/lactate fluxes in cancer cells,
promoting aggressive behavior through the establishment of
a glycolytic phenotype. The CRNDE (Colorectal Neoplasia
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FIGURE 1 | Biological and mechanical overview of non-coding RNAs. (1, 2) Biogenesis of microRNAs and their main mechanisms of action. The pri-miRNA is

transcribed by pol II polymerase and digested by the RNase DROSHA originating a pre-miRNA (70 nt), which is exported to the cytoplasm by exportin 5. Then,

another RNase, Dicer, digests the pre-miRNA to generate a mature duplex miRNA (∼22 nt). One strand of this duplex is then incorporated in the miRISC complex

(Ago2-microRNA) to target mRNA by perfect complementarity producing transcript degradation (1) or an imperfect one promoting translation repression (2).

Conversely, (right side), general functions of lncRNAs are described. (3) Recruitment of transcription factors to promote transcription of target genes or (4) recruitment

of chromatin modifiers and thus (6) promoting remodeling of the chromatin architecture. Other functions of lncRNAs are (5) control of alternative splicing of mRNA, and

(7) control of translation rates favoring or inhibiting polysome loading to mRNAs, (8) acting as a decoy to preclude access of regulatory proteins to DNA. (9) The

interaction between microRNAs and endogenous competent RNAs (ceRNAs) is a redundant system to regulate mRNA expression by lncRNAs-microRNAs; this

mechanism is known as sponge function by lncRNAs. Thus, microRNA sequestration by lncRNA prevents microRNA functions on its target.

Differentially Expressed) lncRNA responds to insulin-like growth
factors (IGF) promoting glucose uptake in colorectal cancer
(Ellis et al., 2014). Furthermore, the over-expression of the
ceruloplasmin lncRNA (NRCP) in ovarian and breast cancer
cells, along with the LINK-A lncRNA in triple negative breast
cancer, promotes glucose uptake, favoring lactate production
and consequently, enhancing tumor progression (Rupaimoole
et al., 2015; Lin et al., 2016). In breast tumors, ncRNAs can also
function as modifiers of the tumor microenvironment. Under
metastatic conditions, tumor cells secret vesicles that carry high
levels of miR-122 to non-tumor cells, repressing glucose uptake
in the normal cells and facilitating metastasis by increasing

nutrient availability for the cancer cells (Fong et al., 2015;
Figure 2B).

After glucose uptake, numerous enzymes take part in the
catabolism of trioses, pyruvate, and finally lactate. Regulation of
glycolytic enzymes by ncRNAs further increases this biological
complexity. Hexokinases (HK) catalyze ATP-dependent
phosphorylation of glucose to glucose-6-phosphate (Robey
and Hay, 2006). Interestingly, HK2 is overexpressed in various
tumors and contributes to the establishment of aerobic glycolysis
(Mathupala et al., 2009; Vander Heiden et al., 2011). In lung,
colon, prostate and head, and neck squamous cell cancers,
loss of miR-143 allows HK2 expression (Fang et al., 2012;
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FIGURE 2 | Overview of glycolysis, OXPHO, and lipid metabolism. (A) This figure describes the connections between metabolic sub-products that take

part in different metabolic process, as well as enzymes and substrates that maintain the normal metabolic environment. Glycolysis occurs in the cytosol when D-glucose is

(Continued)
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FIGURE 2 | Continued

internalized into the cell through the membrane transporters GLUT1, 2, 3, and 4. Through a system of coupled enzymatic reactions, D-glucose is converted into

pyruvate, which enters into the TCA cycle, and OXPHO. When the amount of oxygen is limited, pyruvate is converted into lactate. Conversely, in the mitochondria, the

TCA cycle is coupled to OXPHO which represents the largest source of metabolic energy. Pyruvate is oxidized and converted into acetyl coenzyme A, which enters

the TCA cycle that generates reducing molecules (NADH and FADH2) to produce ATP by oxidative phosphorylation. Finally, fatty acids can be converted into acetyl

coenzyme A by ß-oxidation to then generate energy through the TCA cycle and OXPHO (B). Glycolysis regulation by miRNAs and lncRNAs under oncogenic

conditions. Expression of the GLUT transporter family is regulated by ncRNAs, thus altering the internalization rate of glucose. Other molecules are under ncRNAs

regulation pathways, such as hexokinase-2 enzyme, which mediates the transformation of glucose to glucose 6-phosphate, PKM2 enzyme involved in pyruvate

synthesis, LDHB and LDHA enzymes that convert pyruvate into lactate, and PDHK, responsible for the synthesis of Acetyl coenzyme A from pyruvate.

Peschiaroli et al., 2013). Similarly, miR-143 locus is deleted in
other malignancies (Volinia et al., 2010), and has also been found
down-regulated in cervical tumors (Michael et al., 2003; Lui
et al., 2007). In bladder cancer cells, miR-155 repress miR-143,
allowing up-regulation of HK2 (Jiang et al., 2012). Moreover,
the up-regulation of hipoxia factors suppresses the expression
of miR-199a-5p and promotes glycolysis in liver cancer, since
the miRNA normally interferes with the expression of HK2
(Guo et al., 2015). The Urothelial Cancer-Associated 1 lncRNA
(UCA1) modulates HK2 by activation of STAT3 through the
repression of miR-143 (Li Z. et al., 2014). Another member of
the hexokinases, HK1 is also regulated by miR-138 (Peschiaroli
et al., 2013). Additionally, in colorectal cancer rosmarinic acid
suppress miR-155 repressing the Warburg effect through the
mechanism of inactivating the IL-6/STAT3 pathway (Xu et al.,
2015).

Another important intermediate step in glycolysis is the
conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-
phosphate by the aldose enzyme, which is a direct target of
miR-122 in liver cells (Fabani and Gait, 2008).

Pyruvate kinase (PKM) regulates the final rate-limiting step
of glycolysis, which catalyzes the generation of two molecules
of pyruvate and two molecules of adenosine triphosphate
(ATP; Mazurek, 2011). MiR-124, miR-137, and miR-340 regulate
alternative splicing of the PKM gene in colorectal cancer. The
switch from isoform PKM2 to PKM1 inhibits the glycolysis
rate and promotes oxidative phosphorylation (Sun et al., 2012).
PKM2 is also regulated by miR-326 which is down-modulated
in glioblastoma cells (Kefas et al., 2010). Furthermore, pyruvate
dehydrogenase kinase (PDHX) catalyzes the conversion of
pyruvate to acetyl coenzyme A and is down-modulated by
miR-26a in colorectal cancer, thus impairing mitochondrial
metabolism (Chen et al., 2014). Let-7 is a microRNA that
is commonly down-regulated in several cancer types. Since
PDK1 is a physiological target of let-7, its down-regulation
in tumors facilitates aerobic glycolysis. Furthermore, PDK1 is
critical for Lin28A/B-mediated cancer proliferation, establishing
a precise mechanism by which Lin28/let-7 facilitates the
Warburg effect to promote cancer progression (Ma et al., 2014;
Figure 2B).

Under aerobic glycolysis conditions, oncogenic lesions
convert pyruvate to lactate through lactate dehydrogenase (LDH)
to fulfill their energetic needs (Hatziapostolou et al., 2013).
LDHB is a target of miR-375, which is down-regulated in
esophageal squamous cell and maxillary sinus squamous cell
carcinomas (Isozaki et al., 2012; Kinoshita et al., 2012). Another
important enzyme is the LDHA, frequently overexpressed in

tumor cells, and targeted by miR-34a, miR-34c, miR-369-
3p, miR-374a, and miR-4524a/b, that are down-modulated in
colorectal cancer tissues (Wang J. et al., 2015). Moreover,
lncRNA-p21 positively modulates LDHA, Enolase 1, PDHX,
Isozyme 4 (PDK4), Phosphoglyceratemutase (PGAM2), Glucose-
6-Phosphate Isomerase (GPI), and Pyruvate Kinase (PKM2) in
diverse tumors (Hung et al., 2014). The ability of cells to maintain
optimal lactate fluxes depends on monocarboxylate transporters
(MCTs). Specifically,MCT1 is targeted by miR-29a, miR-29b, and
miR-124 in pancreatic cancer (Pullen et al., 2011). Additionally,
let-7b, usually inhibited in tumors, has been shown to target
basigin (BSG) which interacts with MCT1 (Fu et al., 2011;
Figure 2B).

Cancer cells reprogram their metabolism, based on complex
regulatory networks involving diverse oncogenic and tumor
suppressor genes, including PI3K/Akt, Myc, hypoxia inducible
factor (HIF), Ras, Src, p53, and PTEN that promote an increase
glucose uptake and glycolysis (Dang et al., 2009; Luo and
Semenza, 2011). Those genes are targets of ncRNAs regulation
networks in cancer (Table 1).

Not only can the human genome-encoded ncRNAs modulate
glucose metabolism in cancer cells. Kaposi’s sarcoma-associated
herpesvirus (KSHV), the etiological agent of Kaposi’s sarcoma,
has been shown to express microRNAs in its genome that
collaborate to induce aerobic glycolysis in infected cells, mainly
through the down-regulation of EGLN2 and HSPA9, which
cooperate to form the glycolytic phenotype (Yogev et al., 2014).

LIPID METABOLISM: A FAT STORY

Lipids constitute a mayor building block for organelles and
cells to maintain cellular function and structure provide energy
and orchestrate different cellular pathways. As part of lipid
metabolism (anabolism and catabolism) a variety of biological
intermediators are generated as second messengers (Huang and
Freter, 2015), which manage multiple signaling pathways like
cell growth, proliferation, differentiation, survival, apoptosis,
inflammation, motility, and membrane homeostasis (Mattes,
2005; Krycer et al., 2010; Zechner et al., 2012). Alterations
in lipid metabolism can affect cell function, promoting the
establishment, and development of cancer (Santos and Schulze,
2012). In fact, lipid biosynthesis is limited to a subgroup
of tissues and organs, including adipose, liver, and breast,
but its reactivation or reprogramming is commonly observed
in tumor cells (Menendez and Lupu, 2007; Abramson, 2011;
Beloribi-Djefaflia et al., 2016). The activation or inhibition of
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TABLE 1 | ncRNAs and their participation in cancer metabolic processes through oncogenic or tumor suppressor pathways.

Pathway ncRNA Biological activity Cancer References

PI3K/AKT signaling: leads to an

increase in HIF-1α and thus,

enhances the expression of

glycolytic enzymes (LDH-B,

PKM2, GLUT1; Zha et al., 2011).

miR-126 Targets the p85b subunit of PI3K. CC, gastric,

BRCA.

Guo et al., 2008; Feng et al.,

2010; Zhou et al., 2014

miR-199 Repress mTOR1 and c-met. HCC Guo et al., 2008; Fornari

et al., 2010

miR-21 Activates PI3K/AKT/mTOR pathway. BLACA Yang et al., 2015

miR-181a Induces a metabolic shift by inhibiting the expression of

PTEN, leading to an increase in phosphorylated Akt.

CC Wei et al., 2014

Akt: stimulates glycolysis by

increasing expression of glucose

transporters and glycolytic

enzymes

miR-451 Regulates AMPK signaling in response to glucose levels

by targeting the binding partner of LKB1, CAB39

(MO25a).

GC Elstrom et al., 2004;

Godlewski et al., 2010

IGF-I/insulin signaling: increased

expression of genes involved in

the regulation of glucose

metabolism and mitochondrial

function

miR-7 Inhibits cellular growth and glucose metabolism by

regulating the IGF-1R/Akt signaling pathway.

GC Wang B. et al., 2014

miR-126 Negatively regulates IRS1, an adaptor protein mediating

IGF-I/insulin signaling, leading to activation of the PI3K,

Akt and Ras-MAPK pathways.

Mesothelioma,

HCC

Ryu et al., 2011; Tomasetti

et al., 2014

miR-33a/b Controls the expression of Irs2 affecting Akt

phosphorylation. Also, represses AMP-activated kinase

1 (Ampkα1) and sirtuin 6 (Sirt6), involved in the regulation

of lipid and glucose metabolism.

BRCA Davalos et al., 2011

c-Myc: The oncogene

deregulates glycolysis through

the activation of several

components of the glucose

metabolic pathway.

miR-23 c-Myc transcriptionally represses miR-23a/b, which

targets glutaminase (GLS) inducing mitochondrial

dysfunction.

Lymphoma and

PCA

Gao et al., 2009

lncRNA

PCGEM1

Stimulates the uptake of glucose by aerobic glycolysis

and interacts directly with c-Myc, and enhances its

transactivation activity by its recruitment to chromatin.

PCA Dang et al., 2009; Hung

et al., 2014

HIF signaling: key transcription

factor mediating responses to

hypoxia, and HIF-target genes,

implicated in deregulated tumor

metabolism.

miR-199a

and

miR-125b

Directly targets HIF-1α and other miRNAs, enhancing

tumor angiogenesis.

OC He et al., 2013

miR-424 Hypoxia-inducible miRNA, that targets cullin (CUL2),

which stabilizes HIF-1α.

OC (endothelial

cells)

Ghosh et al., 2010

miR-17-92 Down-regulates HIF-1α, leading to evasion of apoptosis. LC Taguchi et al., 2008

miR-451 Reduces activation of the LKB1/AMPK pathway,

facilitating unrestrained mTOR activity.

GB Godlewski et al., 2010

P53: Its down-modulation

provides a selective advantage

for cancer cells by increasing

glycolysis.

miR-34 Loss of its expression interrupts p53/miR34 feedback

resulting in lower activity of both molecular actors,

leading to the over-expression of glycolytic enzymes

(HK1/2, GPI, and PDH1).

Most tumors Voorhoeve et al., 2007;

Kumar et al., 2011; Kim

et al., 2013

miR-25, 30d,

504, and

125b

Directly target p53 and impairs p53 response. Gastric, brain and

LC

miR-372 and

373.

Neutralizes p53-mediated CDK inhibition, by silencing

LATS2.

Testicular germ

cell tumors

lncRNA

MEG3

Down-modulation of MEG3 disturbs the activation of

MDM2 and p53.

Non-small cell LC Lu et al., 2013

LC, lung cancer; HCC, hepatocellular carcinoma; BlaCa, Bladder cancer; CC, colon cancer; BRCA, breast cancer; PCA, prostate cancer; GC, glioblastoma cancer.

lipid signaling pathways is aimed at fulfilling the cell energy
requirements and responds to environmental changes. There are
numerous enzymes regulating lipid metabolism in the cells and
recently, diverse data show that expression of many of these
enzymes are regulated by ncRNAs (Huang and Freter, 2015;
Figure 3).

In prostate cancer cells, miR-185 and miR-342 control
lipogenesis and cholesterol synthesis by down-modulating the
expression of sterol regulatory element binding protein 1 and 2
(SREBP-1, SREBP-2), repressing their responsive genes, including
fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl CoA
reductase (HMGCR; Li X. et al., 2013). In lymphocytic leukemias,
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FIGURE 3 | Landscape of lipid and amino acid metabolism regulated by ncRNAs in tumors. Micro and lncRNAs can regulate the metabolism of amino acids

through the regulation of enzymes related with these metabolic pathways, favoring the disposition of amino acids as important sources of energy. There is also a fine

regulatory loop between microRNAs and lncRNAs than can actively impact metabolic networks.

metabolic enzymes related with lipid biosynthesis, such as
lipase A (LIPA) and pyruvate dehydrogenase lipoamide kinase
isozyme 1 (PDK1), are targets of miR-125b (Tili et al., 2012).
Recently, miR-205 has been associated with lipid metabolism
de-regulation in hepatocellular carcinoma, acting on acyl-
CoA synthetase long-chain family member 1 (ACSL1), a lipid
metabolism enzyme in liver (Liu et al., 2012; Cui M. et al.,
2014). Additionally, the loss of miR-122, an abundant liver-
specific miRNA, alters fat and cholesterol metabolism through
modulation of genes involved in lipid synthesis, including
Agpat1, Mogat1, Agpat3, Agpat9, Ppap2a, Ppap2c (Hsu et al.,
2012; Tsai et al., 2012).

Over-expression of miR-27a in hepatitis C virus-infected
liver cells vs. hepatitis B virus-infected cells has been recently
described. MiR-27a targets the lipid synthetic transcription factor
RXR and the lipid transporter ATP-binding cassette subfamily

A member 1 in hepatocarcinoma. Moreover, miR-27a down-
modulates the expression of several lipid metabolism-related
genes (FASN, SREBP1, SREBP2, PPAR, PPAR, ApoA1, ApoB100,
and ApoE3), some of which also participate in the production of
infectious viral particles (Shirasaki et al., 2013).

The over-expression of HULC contributes to the malignant
development of hepatocellular carcinoma by supporting
abnormal lipid metabolism via activation of the acyl-CoA
synthetase subunit ACSL1. This results in promotion of
lipogenesis and the accumulation of intracellular triglycerides
and cholesterol in experimental models. HULC induces
methylation of the miR-9 promoter, regulating its expression
and favoring alterations in lipid metabolism (Cui et al., 2015).
LncRNA SPRY4-IT1 was first identified in adipose tissue
(Ota et al., 2004) and was recently found up-regulated
in melanoma (Khaitan et al., 2011). Expression of this
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lncRNA shows a strong correlation with lipid metabolism
alterations, including the increase of acyl carnitine, fatty acyl
chains, and triacylglycerol, as well as the down-modulation of
phosphatidic acid, phosphatidylcholine, phosphatidylinositol,
and phosphatidylserine. It is probable that the significant changes
in lipid profiles are correlated with the oncogenic modulation of
SPRY4-IT1 over the lipid phosphatase lipin 2, an enzyme that
converts phosphatidate to diacylglycerol (Mazar et al., 2014).

The oncogene ANRIL is up-regulated in gastric, lung,
hepatocellular, cervical, melanoma, ovarian, bladder cancer,
among other tumors (Li Z. et al., 2016). Interestingly, ANRIL
regulates genes involved in glucose and fatty acid metabolism
(Bochenek et al., 2013), such as ADIPOR1. Furthermore,
ANRIL can epigenetically regulate the expression of miRNAs
in gastric cancer cells, particularly miR-99a/miR-449a, which
target CDK6/E2F1 andmTOR pathways (Zhang et al., 2014), that
regulate lipid metabolism and adipose tissue function (Cai et al.,
2015).

The steroid receptor RNA activator gene is an unusual gene
that expresses two different transcripts by alternative splicing
of the first intron: (1) the lncRNA SRA and (2) the SRAP
protein gene (Hube et al., 2006). SRA co-activates PPAR-gamma,
inducing adipogenesis (Xu et al., 2010; Liu et al., 2014) and it
may also regulate lipid metabolism (Marion-Letellier et al., 2015).
Interestingly, the over-expression of SRA has been associated
with poor prognosis in endometrial cancer (Smolle et al.,
2015). The lncRNA-DYNLRB2-2 responds to oxidized-LDL to
promote ABCA1-mediated cholesterol efflux (Hu et al., 2014). In
prostate cancer, the ox-LDL/lncRNA-DYNLRB2-2 circuit might
be involved in the promotion of proliferation, migration and
invasion rates (Wan et al., 2015). Experiments in animal models
showed that the lncLSTR (lncRNA-liver-specific triglyceride
regulator), a liver-enriched lncRNA, physiologically contributes
to triglyceride metabolism by enhancing Cyp8b1 expression, a
molecule involved in bile acid synthesis. Furthermore, Cyp8b1
is down-modulated in primary hepatocytes in which lncLSTR is
depleted, suggesting a regulatory activity over Cy8b1 as one of its
downstream responsive genes (Li et al., 2015a).

AMINO ACID METABOLISM

Apart from other energetic sources, amino acids are important
substrates that sustain mitochondrial metabolism and support
the biosynthesis of proteins, lipids, and other macromolecules.
Alterations in amino acid metabolism are also common in cancer
cells (Figure 3).

Glutamine metabolism seems to have a critical role in cancer
programs, and has been implicated in tumor formation and
metastasis (DeBerardinis and Cheng, 2010), as well as being an
important source of tumor energy (Li and Zhang, 2016). miRNAs
have also been reported to regulate amino acid catabolism, for
example, in kidney cancer miR-23b∗ regulates proline oxidase,
which is the first enzyme involved in the conversion of proline to
glutamic acid (Liu et al., 2012). Interestingly, the lncRNA CCAT2
participates in the alternative splicing of glutaminase (GLS), an
enzyme that catalyzes the hydrolysis of glutamine to glutamate

(Redis et al., 2016), where glutamate can be further deaminated
to a-Ketoglutarate by glutamate dehydrogenase (GDH) and
incorporated into the tricarboxylic acid cycle (Li and Zhang,
2016). Another lncRNA involved in glutamine metabolism is
PCGEM1 an androgen-induced prostate specific lncRNA, which
regulates expression of enzymes such as GLS, Glutathione
Reductase (GSR), and type I gamma-glutamyltransferase (GGT1)
in prostate tumors (Hung et al., 2014).

Redundant regulation by ncRNAs reveals that metabolic
pathways in cancer are finely regulated, acting at different cellular
levels. Consequently, understanding these processes will enable
future development of anti-metabolite therapies to target specific
energetic signals altered in oncogenic lesions.

MITOCHONDRIAL METABOLISM IN
CANCER AND ITS RELATION WITH ncRNA

The partial maintenance of mitochondrial function in glycolytic
cells appears essential for cancer cell development. Thus,
the tumor must balance the bioenergetic requirements to
grow, proliferate, and survive within the energetic restrictions
and metabolic pathways. Mitochondria are in fact, the main
intracellular producers of reactive oxygen species (ROS) as part
of adenosine triphosphate (ATP) production through oxidative
phosphorylation (OXPHOS). This organelle is responsible for
converting available nutrients into the fundamental blocks
required for cell maintenance (Ahn and Metallo, 2015), such as
fatty acids, cholesterol and proteins (Kamphorst et al., 2013).
Therefore, mitochondrial alterations have been implicated in
the etiology of many diseases including cancer. The metabolic
reprogramming of the mitochondrial network in tumoral
programs is achieved through several mechanisms, including
ncRNAs transcribed both in the nuclear and in the mitochondrial
genome (mtDNA). ncRNAs can actively regulate mitochondrial
metabolism by controlling structural and functional mechanisms
that respond to changes in energy requirements or environmental
conditions (Benard et al., 2010; Figure 4).

For example, miR-210 is up-regulated by hypoxia (Dang
and Myers, 2015), and can block mitochondrial respiration
through down-modulation of the electron transport chain
(ETC) complexes (Huang and Zuo, 2014). Particularly, miR-
210 targets ISCU1 and ISCU2, suppressing mitochondrial
function and disrupting iron homeostasis in colon, breast,
and esophageal cancer (Chen et al., 2010; Favaro et al.,
2010). In breast cancer cells, miR-378∗ promotes a metabolic
shift by inhibiting the expression of important regulators
of energy metabolism such as estrogen-related receptor-γ
and GA-binding protein transcription factor. This reduces
the tricarboxylic acid cycle (TCA) rates, decreasing the
dependency on OXPHOS, and increasing lactate production
(Eichner et al., 2010). Similarly, in hepatocellular carcinomas
miR-23a modulates a metabolic switch from OXPHOS to
anaerobic glycolysis by targeting the glucose-6-phosphatase
catalytic subunit (G6PC), which plays an important role in
mitochondrial respiration (Wu et al., 1999; Wang et al.,
2012). Likewise, overexpression of miR-125b in lymphocytic
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FIGURE 4 | Overview of ncRNA regulatory network over OXPHO in cancer. In this picture we show how ncRNAs are involved in the regulation of OXPHOS,

generation of ROS, or mediating alternative splicing of mitochondrial enzymes.

leukemia models represses many transcripts implicated in
energetic and lipid metabolism including phosphatidylcholine
transfer protein, lipase A, lysosomal acid, cholesterol esterase,
glutathione synthetase, acyl-CoA synthetase short-chain family
member 1, HK2, stearoyl-CoA desaturase 1, AKT2, and pyruvate
dehydrogenase kinase 1 (PDK1; Tili et al., 2012).

Some of the most important by-products of the electron
transport chain in the mitochondria are reactive oxygen species
(mROS). Increased production of ROS can lead to activation
of tumorigenic signaling and metabolic reprogramming.
This tumorigenic signaling includes mechanisms to prevent
imbalances in the production of mROS maintaining redox
homeostasis (Sullivan and Chandel, 2014). Emerging evidence
shows that control of ROS levels is mediated in part by
ncRNAs. One of the first evidence was the cluster miR-17–92,
overexpressed in small-cell lung cancer, which reduce DNA
damage to a tolerable level and consequently lead to the
accumulation of genetic instability (Ebi et al., 2009). miR-141
and miR-200a, contribute to ovarian tumorigenesis by targeting

p38α and modulating oxidative stress response in mouse
models (Mateescu et al., 2011). In addition, miR-21 and miR-34a
promote tumor malignancy by the formation of ROS through the
mediation of SOD3 and TNFα expression in cancer cells (Zhang
et al., 2012). In medulloblastoma, miR-128a regulates ROS by
specific inhibition of the Bmi-1 oncogene, which participates
in maintaining mitochondrial function and redox homeostasis
(Venkataraman et al., 2010). Let-7a promotes OXPHOS in breast
cancer (Serguienko et al., 2015) and hepatocellular carcinoma
by directly modulating PDK1, which as mentioned previously,
is a negative regulator of OXPHOS activity (Ma et al., 2014).
In bladder cancer, the lncRNA UCA1 participates in ROS
formation and promotes mitochondrial glutaminolysis by its
sponge effect on miR-16 (Li H. J. et al., 2015). SOD2, which has
response elements for NF-κB, wipes out the superoxide anion
radicals generated by OXPHOS and coverts them into hydrogen
peroxide in cancer cells. Although it is know that the lncRNA
Lethe prevents binding of NFκB to NFκB response elements
resulting in the suppression of SOD2 (Rapicavoli et al., 2013), the
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impact of Lethe on energetic metabolism of cancer cells is poorly
understood.

Apart from glucose, cancer cells exhibit increased glutamine
intake and glutamine metabolism (glutaminolysis). The
accelerated glutamine metabolism provides enough substrate
to increase lipogenesis and nucleic acid biosynthesis, necessary
for the proliferative phenotype of the cancer cells (Gao et al.,
2009). Of particular importance, mitochondrial enzymes
participate in the metabolism of glutamine and other metabolites
(glutamate, proline, aspartate, and alanine) as part of the
tumor programs (Dang, 2010). One of the major regulators of
glutaminolysis is MYC. Along the same line the suppression
of miR-23A/B by MYC enhances mitochondrial glutaminase
expression and glutamine metabolism in prostate cancer
(Gao et al., 2009). Additionally, the deregulation of the
HOTTIP lncRNA by miR-192 and miR-204 can produce an
abnormal glutaminolysis through positive regulation of GLS1
in hepatocellular tumors (Ge et al., 2015). Furthermore, the
CCAT2 lncRNA modulates GSL alternative splicing through
an allele-specific regulatory mechanism (Redis et al., 2016).
Moreover, in bladder cancer cells the UCA1 lncRNA promotes
glutamine metabolism through its sponge function over miR-16,
allowing the expression of GLS2, enzyme that participates
in the hydrolysis of glutamine to glutamate (Li H. J. et al.,
2015).

The involvement of mitochondrial miRNAs (mitomiRs) and
mitochondrial lncRNAs in regulating the OXPHOS system is of
particular interest. These regulatory molecules have either a pro-
oxidant or antioxidant effect (Bai et al., 2011; Aschrafi et al.,
2012; Li P. et al., 2012). Therefore, mitochondrial ncRNAs may
participate in the fine-tuning of the mitochondrial energy supply.
A recent study identified 13 miRNAs significantly enriched in
mitochondria of HeLa cells, which actively participate in cell
cycle and apoptosis through regulation of mitochondrial activity
(Bandiera et al., 2011; Demongeot et al., 2013). The lncRNAs
encoded by mtDNA, ASncmtRNA-1/2, are down-regulated in
cancer cells and take part in the mitochondrial reprograming
of oncogenic pathways (Burzio et al., 2009). Biological activity
of ASncmtRNAs results in survivin inhibition at the RNA
level, probably mediated by microRNAs (Vidaurre et al., 2014).
Survivin enhances the stability of oxidative phosphorylation
complex II, which promotes cellular respiration (Rivadeneira
et al., 2015).

Another type of non-coding RNA, the Plement-induced

wimpy testis (PIWI)-interacting RNAs (piRNAs), have

been recently recognized to be relevant in cancer metabolic

reprogramming. piRNAs are small non-coding RNAs (26–31
nt) that form the piRNA-induced silencing complex (piRISC).
The main function of piRNAs is to silence transposable elements

(TEs) in the germ line, but also in cancer cells (Siomi et al., 2011),
mainly through epigenetic regulation, genome re-arrangement,
and stem cell self-renewal (Ross et al., 2014). piRNA expression

has been detected in mitochondrial RNAs of HeLa cells, and
are possibly implicated in diverse functions related to energetic
homeostasis, bioenergetics and cell growth (Kwon et al.,
2014).

INTERPLAY BETWEEN ncRNAs, TUMOR
MICROENVIRONMENT, AND METABOLIC
CONDITIONS

Novel data suggest that the regulatory role of ncRNAs during
carcinogenesis is not limited to cancer cells they are also
implicated in the activation of the tumor stroma and in
its transition into a cancer-associated microenvironment. In
fact, tumor development involves a fine interplay between
malignant and stromal cells. Secreted ncRNAs can serve as
regulatory signals promoting cancer cell proliferation, migration,
communication, and stromal modification, thereby enhancing
an optimal microenvironment for oncogenesis (Soon and
Kiaris, 2013). The tumor microenvironment presents a complex
architecture, comprising fibroblasts, vascular endothelial cells,
immune cells, adipocytes, and extracellular matrix, conforming
the stromal tissue that surrounds and interacts tumor cells
(Hanahan and Weinberg, 2011).

Importantly, cancer-associated fibroblasts (CAFs) can modify
the metabolism of the adjacent cancer cells, as a consequence, its
activity can promote tumor growth, invasion and angiogenesis
(Franco et al., 2010). CAFs are originated from normal fibroblasts
(NFs) that are in contact with tumor cells, receiving and sending
signals to co-evolve with the tumor cells and support their
biological requirements. Communication pathways between
CAFs and neoplastic cells include ncRNA mediated signaling
(Table 2; Erez et al., 2010).

Additionally, the metabolic status in cancer lesions is also
balanced by different micro-environmental components. For
instance, surrounding immune cells present active alternative
pathways to overcome tumor energetic limitations. In particular,
the metabolic switch in tumor cells promotes the presence
of tumor-infiltrating lymphocytes (T cells) which is a crucial
tumoral adaptation to dampen antitumor immunity (Molon
et al., 2016; Zhao et al., 2016). Maintaining tumor metabolic
homeostasis requires a balanced immune response, which is
achieved by extracellular signals that can be induced or repressed
by ncRNA activity (Table 2; Dumortier et al., 2013).

Another important component of the tumor
microenvironment are the adipocytes, that are considered as
an energy storage depot, as well as endocrine cells that produce
hormones, growth factors, cytokines, and adipokines (Rajala and
Scherer, 2003). Therefore, mature adipocytes influence tumor
behavior through heterotypic signaling processes, providing
fatty acids for rapid tumor growth, and also promoting homing,
migration, and invasion of tumor cells (Nieman et al., 2011).
ncRNAs can actively participate as important modulators of
the lipid metabolism in tumors where adipocytes represent the
major component of the tumoral microenvironment (Table 2).

Emerging data suggest a fine regulatory loop between the
HIF system, microenvironment and tumor cells, governed by
diverse regulatorymolecules like ncRNAs. Given the fact that HIF
target genes include many metabolism-induced genes, such as
ncRNAS (Semenza, 2010; Masson and Ratcliffe, 2014), and both
tumor and stromal hypoxia, along with deregulated metabolism,
characterize aggressive cancer phenotypes, it is tempting to
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TABLE 2 | ncRNAs and tumor microenvironment.

ncRNA Microenvironment component and its activity References

CANCER-ASSOCIATED FIBROBLASTS (CAFs)

miR-149 Inhibits fibroblast activation by targeting IL-6. It is suppressed in gastric cancer. Li et al., 2015b

miR-424 Regulates IDH3α expression in melanoma and colon cancer cell line models triggering the metabolic switch

from oxidative phosphorylation to glycolysis in CAFs.

Zhang et al., 2015

miR-133b In prostate cancer (PCA), its overexpression modulates IL6-activation, and other miRNAs, including miR-210,

miR-143, and miR-590-5p, that coherently up-modulate CAF activation. miR-133b is also released into the

media and its incorporation into PCa cells, may contribute to the establishment of mesenchymal phenotype.

Doldi et al., 2015

ZEB2NAT In bladder cancer, CAFs induces EMT and invasion through the TGFβ1-ZEB2NAT-ZEB2 axis. Zhuang et al., 2015

IMMUNOLOGICAL ENVIRONMENT

miR-21 It suppresses antitumor T-cell-mediated immunity and density in colorectal carcinoma. Mima et al., 2016

miR-142 Regulates proliferative responses and maturation of T cell cycling by mediating E2F transcription factors (Sun

Y. et al., 2015). In hepatic and colon cancer, miR-142 is down modulated, while in breast cancer it is

over-expressed.

Shen et al., 2013; Chai et al., 2014;

Isobe et al., 2014

miR-101 and

26a

In ovarian tumors, the overexpression of the miRNAs imposed glucose restriction on T cells, limiting the

expression of the methyltransferase EZH2.

Zhao et al., 2016

lnc-DILC IL-6 autocrine signal in hepatome depends on lnc-DILC and consequently, its expression enhances the

activation of IL-6/STAT3 pathway.

Wang et al., 2016

ADIPOCYTES

miR-27a Its excretion from adipose tissue leads liver cancer cells to proliferate through the down-regulation of the

transcription factor FOXO1. FOXO1 in particular, plays a significant role in regulating energy metabolism and

gluconeogenic enzymes (Gross et al., 2008).

Sun B. et al., 2015

miR-143 Its down-modulation promotes adipocyte differentiation in cancer cell lines. Its expression level may be a

cause or a consequence of the undifferentiated state of the tumor cells.

Esau et al., 2004

lncRNA SRA It responds to insulin, and its altered expression in tumor cells may allow both glucose uptake and

phosphorylation of Akt and FOXO1 in adipocytes.

Xu et al., 2010

conclude that activation and regulation of HIF pathways by
complex signaling processes is one of the most important causes
for deregulated tumor metabolism (Höckel and Vaupel, 2001;
Table 3). A more detailed overview about hypoxia and lncRNA
is discussed in Chang et al. (2016).

Endogenous and exogenous hormone-signaling pathways
serve as metabolic regulatory networks that control fuel and
energy metabolism on both tumor and stromal cells, and
connects nutrient availability with cell growth and proliferation.
Currently, ncRNA modulation by hormones can reenforce
hormone-signaling activity. For example, insulin, a major
hormone in the homeostasis of energy and metabolism, has
been implicated in the regulation of miRNA expression (Granjon
et al., 2009). Additionally, the estrogen receptor activates
autophagic fluxes as a response to metabolic damage, in
part by regulating ncRNA expression (Bernales et al., 2007;
Table 3).

nC-RNAs MEDIATING METABOLIC
STRESS RESPONSES: AUTOPHAGY, EMT,
ANGIOGENESIS, AND INFLAMMATION

When metabolic stress triggers energetic and nutritional changes
in tumor cells, the metabolic stress responses collaborate
to maintain homeostasis. Metabolic changes take place in
reaction to stress in the tumor and stromal cells through
the activation of several mechanisms, including autophagy,

epithelial-mesenchymal transition (EMT), angiogenesis, and
inflammation.

Autophagy is a catabolic process indispensable for the
maintenance of cellular homeostasis. Alterations of autophagy
are described in cancer and are due to alterations in the
expression of various genes that promote or suppress it (Lozy and
Karantza, 2012). Autophagic programs consist of the degradation
of cellular organelles, cytoplasmic proteins and lipids, allowing
recycling of the resulting catabolites for biosynthesis and
energy metabolism, in order to satisfy nutrient, energy and
hormonal demands of the tumor cells (Jing et al., 2015). The
metabolic requirements of cancer cells are maintained, in part, by
autophagy pathways present in tumor or stroma cells (Martinez-
Outschoorn et al., 2011; Mathew and White, 2011). Considering
the vast implications if ncRNAs in stress responses, their activity
might contribute to the dynamics of autophagy during cancer
progression (Leung and Sharp, 2010; Table 4).

Metabolism, mainly hypoxic conditions, can drive EMT
through NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and
Hedgehog signaling pathways (Fan et al., 2013). EMT refers
to a complex molecular and cellular program by which
epithelial cells lose their epithelial attributes such as cell–cell
adhesion, planar-basal polarity, and limited motility, but acquire
mesenchymal features, including increased motility, invasiveness
and development of escape routes for apoptosis (Polyak and
Weinberg, 2009). Modulation of EMT pathways by ncRNAs has
been described in several tumors (Table 4). Another important
feature that characterizes the most advanced and aggressive
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TABLE 3 | ncRNA regulation by hypoxia and hormone environment.

ncRNA Activity References

HYPOXIA: HYPOXIA FACTORS REGULATED BY ncRNAs

miR-17-92 cluster, 107,

20b and 22

They modulate tumor growth by inhibiting HIF-1α expression in cancer models. Yamakuchi et al., 2011

miR-519c Its overexpression reduced HIF-1α levels, followed by tumor angiogenesis, growth, and metastasis

suppression.

Cha et al., 2010

miR-138 Directly targets HIF-1α, reversing HIF-1α-mediated induction of ovarian cancer cell invasion. Ye et al., 2014

miR-33a HIF-1α is a direct target in melanoma, where miR-33a has a lower expression and could promote cell

proliferation, invasion, and metastasis.

Zhou et al., 2015

ENST00000480739 Its down-modulation abolished pancreatic ductal adenocarcinoma cell invasion and metastasis by

indirectly targeting HIF-1α.

Sun et al., 2014

HYPOXIA: ncRNAs REGULATED BY HYPOXIA

miR-210, 193b, 145,

125-3p, 708, and 517a

Induced by hypoxic conditions in bladder cancer. Particularly, miR-145 is a direct target of HIF-1α (it

presents 2 hypoxia response elements in its promoter) and its up-regulation contributes to increased

apoptosis.

Blick et al., 2015

miR-124 and miR-144 Hypoxia induced miRNAs, their expression may contribute to a pro-survival mechanism of prostate

cancer cells to hypoxia and irradiation.

Gu et al., 2016

Circulating exosomal

miR-21

Its expression level is associated with HIF-1α/HIF-2α expression, T stage, and lymph node metastasis in

oral squamous cell carcinoma. The hypoxic microenvironment may stimulate tumor cells to generate

miR-21-rich exosomes that are delivered to normoxic cells to promote prometastatic behaviors.

Li L. et al., 2016

miR-338-3p Targeted by HIF-1α in nasopharyngeal cancer, acting in the initiation and progression of the tumor. Shan et al., 2015

UCA1 Up-regulated by HIF-1 facilitating proliferation, migration, invasion, and apoptosis resistance in bladder

cancer cells.

Xue et al., 2014

lnRNA-LET Its down-regulated expression was associated with metastasis in hepatocellular carcinoma (HCC). Yang et al., 2013

lincRNA-p21 Takes part in a positive feedback loop to stabilize hypoxia-induced HIF-1α expression. lncRNA-p21

excludes the binding of HIF-1α to VHL (an ubiquitin E3 ligase) in prostate cancer.

Yang et al., 2014

AK058003 Frequently up-regulated in gastric cancer as a hypoxia-induced gene, which promotes migration and

invasion in vivo and in vitro.

Wang Y. et al., 2014

lncRNA-NUTF2P3-001 Over-expressed in pancreatic cancer cells under hypoxia. NUTF2P3-001 regulates KRAS expression

through competing endogenous RNA (ceRNA) function with miR-3923 contributing to oncogenesis.

Li X. et al., 2016

NEAT1 In breast cancer cells, hypoxia induces its expression by enhancing the establishment of active histone

marks.

Choudhry et al., 2015

HORMONES

H19, HOTAIR, and

MALAT-1

Inducible lncRNAs of estrogens or estradiol in breast cancer. Zhao et al., 2014; Sun H. et al.,

2015; Bhan and Mandal, 2016

NEAT1 In estrogen receptor-positive breast cancer showed greater expression compared to the non-positive

tumors.

Choudhry et al., 2015

miR-378* Regulated by Erb-B2 receptor tyrosine kinase 2 and insulin, induce a metabolic shift in breast cancer

cells.

Eichner et al., 2010

miR-135b Direct regulator of androgen receptor levels in prostate cancer. Its expression is lower in ERα-positive

breast tumors vs. ERα-negative samples, since ERα is a direct target of the miRNA. miR-135b also

inhibits the HIF1α.

Aakula et al., 2015

miR-32, 148a, 99a, 21,

and 221

Showed an enrichment in ChIP-seq data of AR-binding sites in androgen-responsive prostate cancer

LNCaP cells.

Jalava et al., 2012

tumors is angiogenesis; meaning the development of tumor
neovasculature. This mechanism is crucial to satisfy nutrient and
oxygen demands, as well as to provide routes for metabolic waste
excretion (Carmeliet and Jain, 2000). To achieve this oncogenic
hallmark, tumor cells induce pro-angiogenic factors or block
anti-angiogenic signals, in part by modulating ncRNA expression
profiles (Table 4). For a more detailed overview about ncRNAs
implicated in EMT and angiogenesis refer to Wang W. et al.
(2015) and Choudhry et al. (2016).

Finally, inflammation is considered as an oncogenic
feature that allows the acquisition of carcinogenic capacities
by the provision of biomolecules to the tumor and to
the cells of the microenvironment, such as transcription
factors which can enhance proliferative signaling, pro-
angiogenic factors, invasion and metastasis (Hanahan
and Weinberg, 2011; Table 4). A more detailed overview
of ncRNAs implicated in inflammation is discussed in
(O’connell et al., 2012).
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TABLE 4 | ncRNAs and their contribution to events in the metabolic changes in cancer.

ncRNA Activity/Target Cancer type References

AUTOPHAGY

miR-30a Autophagy induction/BECN1 CML Yu et al., 2012

miR-17 Vesicle nucleation and elongation/BECN1 and ATG7 Lung, GBM Comincini et al., 2013; Chatterjee

et al., 2014

miR-101 Vesicle elongation/ATG4 BRCA Frankel et al., 2011

miR-204 Vesicle elongation/LC3 RCC Mikhaylova et al., 2012

miR-375 Vesicle elongation/ATG7 Hepatic Chang et al., 2012

miR-23b Vesicle elongation/ATG12 Pancreatic Wang et al., 2013

miR-130a Retrieval fusion/ATG2B CLL Kovaleva et al., 2012

miR-34a Retrieval fusion/ATG9 BRCA Li L. et al., 2013

miR-182 BCL-2 Melanoma Yan et al., 2012

miR-210 BCL-2 Neuroblastoma Chio et al., 2013

miR-100 mTOR pathway genes Hepatic Ge et al., 2014

miR-224b The miRNA is removed by the autophagosome-lysosome pathway Hepatic Lan et al., 2014

lncRNA MEG3 Suppressed autophagy activation Bladder Ying et al., 2013

ANGIOGENESIS

miR-382↑, 21↑,

17–92↓, 467↑

Pro-angiogenic: PTEN, RhoB, TSP-1 GC, PCA,

OvCa, BRCA

Fish et al., 2008; Ramøn et al., 2011;

Bhattacharyya et al., 2012; Seok

et al., 2014

miR-218↓, 18a↑,

145↓, 22↓, 107

Anti-angiogenic: PLCγ1/ARAF, mTOR, p70S6K1, HIF-1α, HIF-1β GBM, GC,

CCC

Yamakuchi et al., 2010, 2011; Zheng

et al., 2013; Mathew et al., 2014

MVIH Inhibited activation of angiogenesis phosphoglycerate kinase 1 (PKK1) Yuan et al., 2012

EMT

miR-9 It’s regulated by c-myc and targets E-cadherin BRCA Martello et al., 2010

miR-135b It’s regulated by hypoxia and regulates cell proliferation by modulating the hippo

signaling pathway

CCC, HNSCC Nagel et al., 2008; Lin et al., 2013

miR-210 Both miRNAs are being regulated by hypoxia and modulate TGF-β Signaling

Pathway

BRCA, CRC Huang et al., 2009; Volinia et al., 2012

miR-21

miR-138 Modulates cell migration and invasion through targeting RhoC (Rho-related

GTP-binding protein C) and ROCK2 (Rho-associated, coiled-coil-containing

protein kinase 2)

HNSCC Liu et al., 2011

MALAT1 Promotes activation of LTBP3, which at the same time regulates the

bioavailability of TGF-β, a transduction signaling pathway for the transition. Also

serves as sponge of miR-205.

Myeloma Li B. et al., 2014

lncRNA H19 Modulates the expression of multiple genes involved in EMT by competing with

miRNAs such as miR-138 and miR-200a, antagonizing their functions and

stimulating the over-expression of Vimentin, ZEB1, and ZEB2.

CCC Liang et al., 2015

INFLAMMATION

miR-146b Physiologically, is a target of STAT3, but in cancer its promoter is methylated,

and consequently its down-modulation alters microRNA-mediated

anti-inflammatory circuit.

BRCA Xiang et al., 2014

lncRNA Lethe Induced by pro-inflammatory cytokines via NF-κB or glucocorticoid receptor

agonists, and functions in a negative feedback signaling with NF-κB.

Rapicavoli et al., 2013

lnc-IL7R Diminishes the LPS-induced inflammatory response (E-selectin, VCAM-1, IL-6,

and IL-8)

Cui H. et al., 2014

CCC, Colorectal cancer; GBM, glioblastoma; HNSCC, Head and neck squamous cell carcinoma; PCA, Prostate Cancer; CML, Chronic myeloid leukemia; OvCa, Ovary cancer; BRCA,

Breast cancer; GC, Gastric Cancer; ↑, up-expression; ↓, down-expression.
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FIGURE 5 | ncRNAs as novel therapeutic strategies in cancer metabolism. Targeting cancer metabolism represents a novel resource to develop anti-cancer

therapies. Now a days, there are different techniques developed to specifically modulate metabolic pathways, some of them are dedicated to silencing (LNA) or

re-expressing (miRNA mimic) ncRNA transcripts (Phan et al., 2014). These systems can be delivered by intratumoral, intraperitoneal, and intravenous injections,

through systemic adenovirus-associated virus (AAV), or in complexes with neutral lipid emulsions (Drakaki et al., 2013). In addition to these technologies,

cholesterol-modified miRNAs (chol-anti-miRs) exhibit improved pharmacokinetics and antitumor efficacy. Human (1) The development of hepatocellular carcinoma

(HCC) in persons who are persistently infected with hepatitis C virus (HCV) is a growing problem. A phase II trial of the LNA anti-miR-122 is being carried out for

treatment of HCV infection (Lindow and Kauppinen, 2012). Xenograft mouse models (2) chol-anti-miR-221 effectively suppresses liver tumor growth (Park et al.,

2011). (3) Systemic administration of miR-124 suppresses liver cancer growth through suppression of the IL6/STAT3 inflammatory pathway (Hatziapostolou et al.,

2011). (4) AAV delivery of miR-26a or miR-122 suppresses MYC-driven liver carcinogenesis without affecting normal hepatocytes (Kota et al., 2009; Hsu et al., 2012).

(5) Neutral lipid emulsions (NLE) to deliver let-7 which targets RAS and MYC oncogenes, as well as miR-34, reduces tumor size in lung cancer (Trang et al., 2011). (6)

miR-101 and miR-376b are miRNAs, which negatively regulate the autophagy pathway (Frankel et al., 2011; Korkmaz et al., 2012). Furthermore, overexpression of

miR-101 suppressed tumor development and efficiently reduced tumor size in liver cancer (Su et al., 2009). (7) Over-expression of miR-101 can effectively reduce

tamoxifen-induced autophagy and enhance the sensitivity of breast cancer cells to tamoxifen treatment (Frankel et al., 2011). (8) Recombinant lentivirus administration

of miR-30a (inhibitor of autophagy by down-modulating BECN1), can enhance sensitivity to imatinib cytotoxicity in chronic myeloid leukemia, increasing tumor cell

apoptosis (Yu et al., 2012). In vitro (cell line models). (9) Up-regulation of miR-125a in cervical cancer (CC) models sensitized to paclitaxel by down-regulating STAT3

(Fan et al., 2016). (10) Re-expression of miR-30a can sensitize tumor cells to cisplatin via mediating autophagy in HeLa, MCF-7 and HepG2 (Zou et al., 2012). (11)

Over-expression of miR-101 sensitized human lung carcinoma cells to radiation treatment (Yan et al., 2010).

NOVEL INSIGHTS: nCRNAs AS
THERAPEUTIC TOOLS IN CANCER
METABOLISM

The advent of novel knowledge and high throughput
technologies, such as RNA-seq, Chip-seq, and metabolomic
analysis, has allowed us to gain insight into the versatility of the
mechanism that regulate metabolism and how the disturbance
of specific factors, in particular ncRNAs, might impact the
altered phenotypes of cancer cells. During the past years, we
have gained important understanding about the biological
activity of ncRNAs, although more research is needed to
better understand the complex mechanisms that orchestrate
tumor metabolism. Furthermore, pharmacological intervention
of cell metabolism is emerging as a potential therapeutic
strategy in some cancers (Ahn and Metallo, 2015) giving us the

opportunity to explore new sources for biomarker discovery
and development of new targeted drugs. The crucial role of
ncRNAs in metabolism and associated mechanisms raises the
possibility of developing ncRNA-targeted therapies. miRNA and
lncRNAs mimics or inhibitors can be used to elevate or block
the activity of metabolic-related genes to drive cancer initiation
and/or progression programs. Figure 5 summarizes some of the
actual and future therapeutic applications of metabolism-related
ncRNAS in cancer treatment.
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