

Insights on Fault Interference for Programs with Multiple Bugs

Vidroha Debroy and W. Eric Wong
The University of Texas at Dallas
Department of Computer Science
{vxd024000,ewong}@utdallas.edu

Abstract

Multiple faults in a program may interact with each other in
a variety of ways. A test case that fails due to a fault may not
fail when another fault is added, because the second fault
may mask the failure-causing effect of the first fault. Multiple
faults may also collectively cause failure on a test case that
does not fail due to any single fault alone. Many studies try to
perform fault localization on multi-fault programs and
several of them seek to match a failed test to its causative
fault. It is therefore, important to better understand the
interference between faults in a multi-fault program, as an
improper assumption about test case failure may lead to an
incorrect matching of failed test to fault, which may in turn
result in poor fault localization. This paper investigates such
interference and examines if one form of interference holds
more often than another, and uniformly across all conditions.
Empirical studies on the Siemens suite suggest that no one
form of interference holds unconditionally and that
observation of failure masking is a more frequent event than
observation of a new test case failure.

Keywords: multiple faults, fault interference, software
testing, fault localization.

1. Introduction

Software fault localization is an actively researched topic in
the area of program debugging today. Originally, many fault
localization studies demonstrated the effectiveness of their
approach, under the assumption that a program would contain
only one fault [4,9,14,15,19,22,23]. However, recently the
focus has been on the development of fault localization
techniques that can be applied to programs with multiple
bugs1 as well [10,16,18,25]. A common way to do this has
been to segregate failed test cases into groups or clusters such
that the failed test cases in each cluster can be mapped to the
same causative fault [6,16,18]. While this may sound
deceptively simple, it is in reality, a very difficult thing to do;
and one of the reasons is that when two (or more) seemingly
independent faults are placed in the same program, they may
interact with each other in complex and unpredictable ways.

These interactions may manifest themselves by causing a
test case to fail2 that would normally not have failed due to

1 For the purposes this paper, we use fault(s) and bug(s) inter-
changeably.
2 Throughout this paper, ‘test case failure’ refers to the failure of the
program to produce the correct output on a test case.

the presence of any single fault alone. Alternatively, a test
case that would normally have failed due to a fault, may no
longer fail upon the addition of another fault (to the same
program), that interferes with the failure-causing effect of the
first fault. Multiple faults may of course also exist in the same
program, yet not interfere with each other in a manner that is
observable by examining test case failure. In such a scenario,
the effect of each fault in the program may seem to be
independent of the other.

The objective of this study is to observe such interactions
between faults present in the same program, and to
empirically deduce if a certain type of interaction holds
uniformly or unconditionally. We do this by first asking
certain research questions regarding multi-fault interactions,
and then trying to address them by means of data collected on
multi-fault versions of the seven programs in the Siemens
suite [21].

The remainder of this paper is organized as follows:
Section 2 details some of the preliminary and background
information relevant to understanding this study and Section
3 outlines the experimental design and procedure that is
followed. Then, Section 4 presents the empirical study
undertaken, while Section 5 contains an analysis and
discussion of important issues and considerations regarding
the research objectives. Section 6 subsequently overviews
research work that is related and relevant to this paper; and
finally Section 7 presents the conclusions and future work.

2. Preliminaries

This section first presents a more detailed account of fault
interference in multi-fault programs, and provides illustrative
examples for each form of interference studied. Additionally,
the research questions that are addressed in this paper are
described and enumerated to facilitate subsequent analysis.

2.1. Forms of Interference

In wave physics, ‘interference’ is the phenomenon which
occurs when two waves meet while traveling along the same
medium. If the amplitudes of the two waves have the same
sign, then they add together to form a wave of a larger
amplitude. This is termed as ‘constructive interference’. On
the other hand, if the two amplitudes have opposite signs,
then they combine together to form a wave with a lower
amplitude and this is termed as ‘destructive interference’ [7].
We now abstract this terminology and apply it to our research
context.

20th International Symposium on Software Reliability Engineering

978-0-7695-3878-5/09 $26.00 © 2009 IEEE
DOI 10.1109/ISSRE.2009.14

165

Given two faults f1 and f2, if the presence of both f1 and f2
in the same program results in the failure of a test case t that
does not fail in the presence of either f1 or f2 alone; then this
is termed as constructive fault-interference, or simply
‘constructive interference’. Correspondingly, given a test case
t that fails due to a fault f1, but no longer fails when another
fault f2 is added to the same program; this is termed as
‘destructive interference’. These definitions are however,
incomplete without pointing out some important aspects.

Firstly, it is of course possible to observe both
phenomena together. The presence of two faults in the same
program may cause some test cases to fail - that do not fail
due to a single fault alone; yet also cause a test case that fails
due to a fault - to now result in a successful execution. Thus,
it is possible to observe both constructive and destructive
interference simultaneously. Secondly, it is of course also
possible to observe neither of the two phenomena i.e. the
presence of both the faults may not result in any additional
test case failure or the masking of test case failure due to a
particular fault. Thirdly, we emphasize that while these
definitions are provided with respect to two faults, they are
easily extensible to any number of faults present in the same
program. Finally, we use the terms ‘constructive’ and
‘destructive’ rather loosely in our context. In no way do we
imply that more failures are constructive and fewer failures
are destructive! These terms are employed here to draw the
parallel between fault interference and wave interference and
to highlight the concept of faults working together to cause
test case failure i.e. working constructively; and faults
working against each other to mask test case failure i.e.
working destructively.

Let us now go over some simple examples so that we can
better understand how and when fault interference (be it
constructive or destructive) may occur in a program.

Figure 1 Constructive interference between faults

Figure 1 illustrates constructive interference between faults
using a snippet of code. We observe that neither fault f1, nor
fault f2 alone result in the failure of test case t1. However,
when f1 and f2 are placed together in the same body of code,
they work together, to cause test case failure in t1. In contrast,
in Figure 2 we observe destructive interference because test
case t1 fails when faults f1 and f2 are considered alone; but
when these two faults are placed together, the same failing
test case is now successful. Note that this is an example of
double destructive interference because the failure causing
effect of either fault has been masked by the presence of both

faults. This is not a requirement as by definition, as long as
one fault masks the failure causing effect of the other, we
have destructive interference; and this need not be a mirror
relationship.

Figure 2 Destructive interference between faults

Finally, Figure 3 constructs a scenario where both
constructive and destructive interference can be observed
simultaneously. Neither fault f1 nor fault f2 can cause failure
on test case t1 alone. However, we have constructive
interference when these faults are placed together as now
they collectively cause test case t1 to fail. But on the same set
of programs, when we consider test case t2; the failure
causing effect of fault f1 is masked by fault f2 when both of
them are placed together in the same program. The net effect
is for test case t2 to pass and so we have destructive
interference. Thus, on the same set of programs we may
observe both constructive and destructive interference. As
pointed out before, it may also be possible to neither observe
constructive interference nor destructive interference.

Figure 3 Constructive & Destructive interference

While the examples above may be simple, they are used
primarily for illustrative purposes to help provide a better
picture of fault interference. However, this better
understanding prompts us to ask several important questions
related to fault interference.

2.2. Research Objectives

In this section we present an informal overview of some
important questions that we wish to answer. We then

166

formalize these questions using set theory and also describe
how we address them, in Section 3. Hereafter, we may denote
a research question simply by ‘RQ’.

RQ1: How strong is the independence assumption in a multi-
fault program? In order words, is fault interference a rare
event?

RQ2: How often can we expect to observe only constructive
interference in a multi-fault program?

RQ3: How often can we expect to observe only destructive
interference in a multi-fault program?

We may also use combinations of these research questions,
some of which are meaningful because they are not addressed
by any of the other research questions. We consider RQ2 and
RQ3 together to produce RQ4, RQ1 and RQ2 together to
produce RQ5, and RQ1 and RQ3 together to produce RQ 6:

RQ4: How often can we expect to observe both constructive
and destructive interference in a multi-fault program?

RQ5: How often will the faults in a multi-fault program
either be independent or have constructive interference?

RQ6: How often will the faults in a multi-fault program
either be independent or have destructive interference?

3. Experimental Design

In this section we present a formal representation of the
research questions in the previous section and also present
our approach on how to answer them.

Given n faults for a program P, let us denote each fault by f1,
f2, ..., fn. Let P i denote program P which now contains fault fi.
Thus, each P i (1 i n) represents a single fault version of
each of the n faults. Also let P M denote the program P with
all of the n faults in it together which is the multi-fault
version of P. The underlying assumption is that all of these
faults can be seeded into the same program without conflict.
A similar approach was also used in [11]. Further discussion
on how and why the seeding of one fault may conflict with
the seeding of another is presented in Section 4.1.

Consider a test set T for program P. Executing all the test
cases in T on each of the single fault versions of program P,
would give us the set of failed test cases for each single fault
version - such that each set of failed test cases S i corresponds
to a faulty version P i. All of the test cases in T can also be
executed against the multi-fault version P M to obtain the set
of test cases that fail on the multi-fault version. Let us denote
this set by M. Also let U denote the set of failed test cases
obtained by taking the union of each S i such that:

1 2U S ... nS S

The research questions detailed in Section 2 can be answered
by observing the relationship between, the set of failed test
cases obtained by taking the union of the sets of failed test
cases on each single fault version i.e. U, and the set of failed
test cases on the multi-fault version M. Each studied
relationship between the two sets is listed as follows
alongside the research question that it is related to.

(1) U = M. This means that the two sets are equal which
implies that no new test cases failed on the multi-fault version
and no test case failures due to any single fault were masked
i.e. there was neither constructive, nor destructive
interference observed. This observation is equivalent to
observing independence. (RQ1)

(2) .U M This means that each test case that failed due to
any single fault still failed on the multi-fault version, but at
the same time some new test case failures were observed on
the multi-fault version that are not caused by single faults
alone. This is equivalent to observing only constructive
interference (RQ2).

(3) .M U This means that no new test case failures were
observed on the multi-fault version, but some of the test case
failures due to single fault versions were masked. This is
equivalent to observing only destructive interference (RQ3).

(4) () (U M) (U M).M U This means that, neither
set is a proper subset of the other, yet at the same time they
are not equal. This implies that we have some test case
failures that have been masked and at the same time some
new test case failures that are observed only on the multi-
fault version i.e. both constructive and destructive
interference (RQ4). Note that it is theoretically possible for U
and M to not have any intersection at all. This would happen
if every test case that fails on the multi-fault version does not
fail due to any single fault version; and at the same time any
and every test case failure due to a single fault version, is
masked in some way in the multi-fault version.

(5) .U M This means that the set U is either equal to or a
subset of M i.e. either no new test cases fail on the multi-fault
version, or some do, but either way there is no masking of
failures. This implies we either observe constructive
interference or independence, but no destructive interference
(RQ5).

(6) .M U This means that the set M is either equal to or a
subset of U i.e. either no test case failures are masked in the
multi-fault version, or some are, but either way there are no
new test case failures on the multi-fault version. This implies
we either observe destructive interference or independence,
but no constructive interference (RQ6).

Having identified these important relationships, we can now
observe their frequency of occurrence on a data set, in order
to quantify how often each one holds true.

167

4. Case Study

In order to empirically observe how well each of the relations
detailed in Section 3 holds on actual programs, we performed
a case study on the seven programs of the Siemens suite [21].
This section describes the subject programs, the manner in
which the data was collected and then moves on to discuss
the results obtained.

4.1. Subject Programs

The seven programs in the Siemens suite have been well
studied and used for several fault localization studies
[4,9,10,15,19,22,23,24], and therefore, were an ideal choice
for this study as well. The correct and faulty versions of each
of the programs as well as the respective test sets were
downloaded from [21]. Altogether 132 fault versions were
downloaded, but not all of them were useable for this study.
Recall in Section 3 that when considering a multi-fault
version with n faults, we assume that each of the n faults can
be seeded into the same program without conflict.
Unfortunately, this assumption does not hold for several pairs
of faults for some programs in the Siemens suite. Some
conflicting faults share the same location and thus cannot be
seeded simultaneously into the same program. In such a
scenario, we randomly discarded one of the faults that
conflicted with the position of another. Faults which did not
result in any test case failure, such as version 9 of the
program schedule2, were also discarded. Table 1 presents a
list of the programs, along with the final number of faults and
test cases per program used.

Table 1 Summary of the Siemens suite
Program Number of faults used Number of test cases
print_tokens 5 4130
print_tokens2 8 4115
schedule 8 2650
schedule2 8 2710
replace 16 5542
tcas 19 1608
tot_info 20 1052

4.2. Data Collection

In order to eliminate any bias, the experiment is best
performed using n-bug versions across various sizes of n (i.e.,
using multi-bug versions across a broad spectrum of sizes).
Thus, for each of the programs we generated multi-fault
versions, using different combinations of a varying number of
faults. For the programs containing a relatively smaller
number of faults, it was possible to exhaustively generate all
possible combinations of non-conflicting faults. However,
this was not possible for programs with a relatively large
number of faults as generating all possible combinations is
explosive, and requires massive overhead. To make the
experiment more tractable, where the generation of all
possible multi-fault versions was not possible (as in the case
of programs – replace, tcas and tot_info), we placed a ceiling
on the number of multi-fault versions to be used. Then we
randomly sampled (without replacement) fault combinations

of different sizes until the desired number of multi-fault
versions was generated.

Table 2 Multi-fault versions generated per program
Program Number of multi-fault versions generated
print_tokens 26
print_tokens2 247
schedule 247
schedule2 247
replace 500
tcas 1000
tot_info 1000

Table 2 lists the number of multi-fault versions, i.e. fault
combinations, generated for each program. We note that a
fewer number of multi-fault versions are generated for
replace (500), than for tcas (1000) and tot_info (1000). This
is because from Table 1 we observe that the program replace
also has a lot more test cases than tcas and tot_info. The time
required to perform the experiment is not just determined by
the number of multi-fault versions used, but also by the
number of test cases that need to be executed on the
programs. The experiment requires that for each of the multi-
fault, and each of the single fault versions of each program,
the entire test set be executed against the versions to obtain
the set of failed test cases. Thus, since the test set for the
program replace consists of 5542 test cases; to reduce the
execution overhead involved, we generated 500 multi-fault
versions instead of 1000. Adding up the entries in the second
column of Table 2, we find that a total of 3267 multi-fault
versions (with a varying number of faults per version) were
used in the experiment.

In order to deduce that a test case had failed on a faulty
version, we executed it against the faulty version and
compared the output to the output obtained by running the
same test case against the corresponding correct version of
the program. If the outputs differed, then the execution of the
test case on the faulty version was said to have resulted in
‘failure’; and if the outputs were the same, then the test case
execution was deemed to have been ‘successful’. This is
consistent with the taxonomy in [1] where a failure is defined
as an event that occurs when a delivered service deviates
from correct service. All program executions were on a PC
with a 2.13GHz Intel Core 2 Duo CPU and 8GB physical
memory. The operating system was SunOS 5.10 (Solaris 10)
and the compiler version used was GCC 3.4.3.

4.3. Results

In this section we present the results of the case study that
was conducted on the Siemens suite. Table 3 presents a
summary of the frequencies of occurrence of each of the
relations that were proposed in Section 3. Please note that the
data presented in the table corresponds to the data collected
across all of the multi-fault versions generated i.e. all 3267
data points. The data collected is not strongly indicative that
any of the studied relationships holds uniformly throughout.
About a third of the time (33.12%) we observe that the
independence assumption holds because the multi-fault

168

version does not mask failures, nor does it cause previously
successful test cases to fail. This means that about 66.88% of
the time we expect to see interference of some kind.
However, this percentage is too low to deem that fault
interference will almost always occur, even though it does
indicate that fault interference is a fairly frequent event.

The highest frequency of occurrence for any of the
studied relationships is on the relation M U (47.72%)
which corresponds to RQ5. This means that almost half of the
time, either the two sets are equal i.e. there is neither
destructive nor constructive interference; or the interference
is only destructive i.e. we have masking. In contrast, the
lowest frequency of occurrence is for the relation
U M (5.05%) which corresponds to RQ2. This means that
only a very small percent of the time can we expect to
observe only constructive interference, and this seems to be a
much rarer event than some of the other relationships.
However, this only provides us with a macroscopic idea of
what is really going on because we consider all multi-fault
combinations (even though they may contain a different

number of faults) collectively in the same pool. Perhaps
there is a hidden link between the frequency of each
relationship and the number of faults that may be seeded into
a multi-fault version. With this in mind, we decided to extend
our analysis such that we observe the occurrence of each
relationship across different multi-fault versions with varying
numbers of faults in them.

Table 4 presents the data for each of the relations based

on the number of faults present in each of the multi-fault
versions. Once again we do not observe the occurrence of any
of the relations uniformly; but do however, observe some
interesting trends.

Firstly, we observe, as we did with the collective analysis
(Table 3), that the frequency of U M is relatively lower
than that of some of the other relations. In fact, the
occurrence of U M is always less than or equal to that of
M U and this seems to be independent of the number of
faults in the multi-fault version (RQ2 and RQ3).

Table 3 Frequency of occurrence of each relation across the entire data set
Number of
Multi fault
versions

U = M
(RQ1)

U M
(RQ2)

M U
(RQ3)

U M
(RQ5)

M U
(RQ6)

() () ()U M U MM U

(RQ4)
3267 1082 (33.12%) 165 (5.05%) 477 (14.6%) 1247 (38.17%) 1559 (47.72%) 1543 (47.23%)

Table 4 Frequency of occurrence of each relation based on the number of faults in each multi-fault version

Num. Faults in a
multi fault version

Num. versions
generated

U = M
(RQ1)

U M
(RQ2)

M U
(RQ3)

U M
(RQ5)

M U
(RQ6)

() () ()U M U MM U

(RQ4)
2 96 78.13% 7.29% 12.50% 85.42% 90.63% 2.08%
3 184 52.72% 16.30% 23.37% 69.02% 76.09% 7.61%
4 253 36.36% 18.97% 24.11% 55.34% 60.47% 20.55%
5 247 28.34% 14.17% 18.22% 42.51% 46.56% 39.27%
6 231 25.97% 9.96% 10.39% 35.93% 36.36% 53.68%
7 269 26.77% 3.72% 10.41% 30.48% 37.17% 59.11%
8 353 29.46% 1.98% 8.50% 31.44% 37.96% 60.06%
9 431 30.39% 0.93% 7.66% 31.32% 38.05% 61.02%

10 397 27.20% 0.00% 10.58% 27.20% 37.78% 62.22%
11 370 33.78% 0.00% 14.86% 33.78% 48.65% 51.35%
12 241 34.02% 0.00% 22.41% 34.02% 56.43% 43.57%
13 119 35.29% 0.84% 21.01% 36.13% 56.30% 42.86%
14 47 38.30% 0.00% 25.53% 38.30% 63.83% 36.17%
15 25 20.00% 0.00% 44.00% 20.00% 64.00% 36.00%
16 2 50.00% 0.00% 0.00% 50.00% 50.00% 50.00%
17 2 0.00% 0.00% 100.00% 0.00% 100.00% 0.00%

Secondly, we find that the relation U = M seems to decrease
at first when the number of faults in a faulty version is
increased, but then this decrease tapers gradually and actually
switches to a small increase subsequently. The rapid initial
decrease is at least suggestive that while the independence
assumption may hold for a multi-fault version with a

relatively smaller number of faults; it does not hold as
strongly once the number of faults is increased (RQ1).

The trends between U M and M U are easier
observed visually and therefore, we present these two
relations in a graph in Figure 4. The trend for U = M is also

169

presented. For clarity, the other relationships are not
represented in this graph.

Figure 4 Frequency of relations with varying number of faults

Based on the graph, once again we observe that the frequency
of occurrence of the relation U M is always less than that
of M U and this does not change even as we increase the
number of faults. Additionally, while the two curves seem to
follow the same pattern initially (n=6), they subsequently
move on to follow two completely independent paths.

From Table 4 we can also observe that the frequency at
which both constructive and destructive interference occurs
increases as the number of faults in a multi-fault program
increases; peaks at 62.22%, and then starts to decrease even
though the number of faults is still increased. Based on Table
3 however, we note that almost half of the time (47.23%) we
can expect to see both constructive and destructive
interference. This means that observing both types of
interference together, is definitely not a rare event (RQ4).

We point out that while data has also been provided for
multi-fault versions that can contain as many as up to 17
faults; the number of samples for the versions with 16 and 17
faults, are only 2 each. Therefore, the data for multi-fault
versions of these sizes may not be representative and derived
results maybe subject to bias. Further discussion on this, and
an explanation regarding the small sample-sizes, is provided
in Section 5.

5. Discussion

In this section, we present a discussion on some other
pertinent issues that are relevant to this study and also discuss
the threats to validity.

5.1. Additional Factors to Consider

In addition to the number of faults that are present in a multi-
fault program, there may be other impacting factors that
affect the occurrence of the studied relationships.

Given two programs of different sizes (a different number of
executable statements), but with the same number of faults in
each program, the larger sized program shall consequently
have a lower fault density (with respect to all of the
executable statements in the program). A lower fault density
would in turn imply that there is a higher probability of faults
acting independent of one another than in the case of a
program with a higher density. This is because in the case of
more executable statements, the faults themselves have a
higher chance of being more spread out and perhaps in
completely different blocks3. Thus, the size of a multi-fault
program may affect the interactions between the faults and
consequently may affect the frequency of the relations.

Each branch present in a program represents an alternate flow
of control in that program. Therefore, the more branching that
is present in a multi-fault program, the higher the likelihood
that the faults might be in separate branches, and
consequently the higher the probability of the faults acting
independent of one another. With this in mind we decided to
try and observe if the relative sizes of each of the programs
under study; or the number of branches in each of the
programs, had any specific effect on the relations under
study. Table 5 presents the size of each of the programs in the
Siemens suite in terms of the number of executable
statements in the program; as well as the number of branches
in each program.

Table 5 Size and number of branches for studied programs
Program Size of program

(executable statements)
Number of
branches

print_tokens 175 109
print_tokens2 178 162
schedule 121 66
schedule2 112 88
replace 216 176
tcas 55 50
tot_info 113 68

Size of the program: As described above, intuition suggests
that the higher the number of executable statements in a
program, the higher the likelihood of observing independence
between faults. Thus, we expect to see an increase in the
frequency of occurrence of the relation U = M with an
increase in the size of a program. Figure 5 graphically shows
the observed trends on all of the relations except U M
and .M U These relations have been left out to maximize
clarity and because they can be derived easily from the
relations U = M, U M and .M U

But contrary to our intuition, based on Figure 5, we find
that there is no evidence to support the claim that the
independence assumption is especially stronger in the case of
programs with a relatively smaller size (in terms of the
number of executable statements). The curve is somewhat

3 Such an assumption is strictly probabilistic. In the context of
software, faults may not be distributed uniformly but rather may
cluster together in certain parts of the code.

170

haphazard and does not follow a set pattern. Additionally, the
same observation can be made of the rest of the studied
relations.

Figure 5 Frequency of relations with respect to number of

executable statements

Number of branches in the program: As with program size,
our intuition suggests that with an increase in the number of
branches in the program, we should expect to see and
increase in the frequency of occurrence of the independence
assumption. Figure 6 plots the curves of the relations against
the number of branches in the programs in a manner similar
to Figure 5. Also, for the same reasons as Figure 5, the curves
for the relations U M andM U have not been plotted.

Figure 6 Frequency of relations with respect to number of

branches

Once again, as with Figure 5, we observe that there does not
seem to be a set pattern to how the occurrence of the relations
changes with the number of branches in the program.
Moreover, we are unable to draw the conclusion that the
strength of the independence assumption increases as the

number of branches in a program increases. The graphs
themselves can be a little difficult to make out and indeed,
visualization alone does not seem to be enough here.
Therefore, in Table 6 we also represent the data in terms of
the correlation coefficients with respect to the number of
branches and statements in the programs, for each of the
studied relations.

Table 6 Correlation between relations and number of
branches and executable statements

The first column in the table represents each of the relations
depicted in Figures 5 and 6, and the second and third columns
provide the correlation coefficients between the frequency of
the relations and the number of branches and executable
statements, respectively. None of the relations exhibits a
strong positive correlation either with respect to the number
of branches, or with respect to the number of executable
statements. In fact, negative correlations are observed for
M U and () () ()U M U M .M U The relation
U M does show some positive correlation with respect to
the number of executable statements (r = 0.53). However, it
is not nearly strong enough to be considered significant. A
lack of strong correlation (whether positive or negative)
implies that it is impossible to conjecture a possible
relationship between the variables under analysis.

5.2. Implications of the Results

While the results obtained from the experiment may not
positively conclude that any one of the studied relations is
always observable across the various programs, it does lead
to some important implications:

(1) The fact that the relation U = M does not hold uniformly
implies that fault localization studies should not make the
independence assumption when faults are placed together in
the same multi-fault program. Not just does the independence
assumption not always hold for multi-fault programs with a
small number of programs, but rather it suffers from certain
degradation as the number of faults is increased.

(2) If the independence assumption clearly does not hold,
then it means interference of some kind is occurring.
Furthermore, while interference is not always observed, in
our studies it is observed approximately two-thirds of the
time which implies that it is a fairly frequent event. Fault
localizers must be prepared to specifically handle this

Pearson Correlation
Coefficient (r)

Relation
Branches # Ex. Stmts

U = M 0.20 0.30
U M 0.39 0.53
M U -0.48 -0.35

() (U M) (U M)M U -0.09 -0.27

171

interference without suffering from a significant loss in
effectiveness.

(3) Based on our results we observe that the relation
M U is far more frequent than U M and that this trend
between the two relations is almost constant irrespective of
the number of faults that may be present in the multi-fault
program. This means that we observe constructive
interference alone less than we observe destructive
interference alone, and this in turn means that the number of
test cases that fail on a multi-fault version may not be many.
Fault localizers that work with dynamic information, need to
be able to maintain effectiveness even with less available
information and need to be able to assess the importance of
each test case when localizing faults such as in [22].

(4) Even though constructive interference alone occurs less
than destructive interference alone, there are still several
instances where the presence of multiple faults in the same
program have indeed led to the failures of test cases that
would not normally have failed due to any one fault alone.
From Table 4 we observe that constructive interference alone
does not seem to occur much in programs with a relatively
larger number of faults, but rather occurs in programs with a
smaller number of faults. However, from Table 3 we observe
that it occurs alone at least about 5% of the time. This means
that fault localizers often need to be able to distinguish test
cases that fail due to several faults from test cases that fail
due to just one fault; and consequently, need to link the test
case failure to all of its causative faults, as opposed to just
linking the failure to one of them. As pointed out by the
authors of [25], when performing fault localization, a given
test case run/execution can exhibit more than one bug.

(5) A very important observation is that the relationship
() (U M) (U M)M U seems to hold about half
of the time (47.23%); which means that constructive and
destructive interference are both observed on the same multi-
fault program. This implies that while fault localizers need to
be able to handle constructive and destructive interference;
they cannot just focus on only one kind of interference at a
time. The fault localizer needs to be designed such that its
effectiveness is not adversely affected when both forms of
interference are observed together.

5.3. Threats to Validity

In this section we discuss some of the potential threats to
validity of our approach, and therefore, threats to the
subsequent results and implications that have been derived.

Since this is an initial study, only an analysis on the
seven programs of the Siemens suite has been performed.
These programs are of a relatively smaller size and may not
be representative of much larger programs. Consequently, the
degrees to which the various studied relationships hold may
vary when the analysis is extended to other programs; and we
may not be able to generalize our results across all of them.
However, we did not choose the programs of the Siemens

suite because they are small in size. Rather, our choice is
validated by the fact that these programs have been used
extensively in many different fault localization studies
[4,9,10,15,19,23,24]. Since our study has direct implications
for such fault localization research; we felt it best to analyze
and derive results on the same sets of programs that had been
used in those studies. It is also important to note that test
cases and the nature of the faults used in our study have an
impact on the results and conclusions.

Some of the sample sizes that are used to derive results
in this study may not be sufficiently large. We would have
liked to have had more multi-fault versions that contained a
relatively high number of faults. For example, we only had 2
multi-fault versions each that contained 16 or 17 faults.
However, such considerations are more governed by the
availability of faults, and less by our own choices. Based on
Table 1 we observe that 4 out of the 7 programs studied, did
not have more than 8 simultaneously seed-able faults to begin
with; and therefore, we could not generate multi-fault
versions of these programs that contained a high number of
faults in them. Thus, as mentioned before in Section 4, we
recognize the fact that some of the results obtained may be
subject to certain bias due to small sized samples.

It is also important to recognize the fact that test case
failure is dependent on, and maybe linked to, the environment
in which the execution takes place. It is possible for the same
test set to be executed, against the same program but in
different environments, and result in two different sets of test
case failures. Such phenomenon has been reported in fault
localization studies where one study may make use of a fault
that has not been used by another study. This is sometimes
because no test case failure was observed on that particular
fault by one study (rendering it unsuitable for dynamic based
fault localization research), but test case failure was observed
on that same fault by the other study, which allowed its use.
For example, one of the faults of the program replace in the
Siemens suite is left out in [15], yet the same fault is useable
in studies such as [23,24]. However, the experiments
performed in this study have all been performed under the
same environment and therefore, the results are consistent
with respect to each other.

6. Related Work

In this section we provide an overview of work that is related
and relevant to the research presented in this paper.

Several fault localization studies have discussed
programs with multiple bugs as well, and they have usually
attempted to group failed executions such that the failed test
cases in each group correspond to the same causative fault
[6,16,18]. However, as recognized by the authors of [16], the
‘due-to’ relationship between failed cases and underlying
faults is unknown without manual investigation and an ideal
partitioning is generally unachievable. This paper does not
present any new fault localization technique, but rather
investigates this ‘due-to’ relationship and researches how
often a failed test cannot just be traced back to its causative
fault, but instead must be traced back to its causative faults.

172

But fault localization is not the only research area where
one might consider and explore the assumption of
independence between faults. In [5] the authors explore
specifically the effect of assuming a non-uniform probability
distribution of faults in chips; but also discuss independence
of faults. They observe that the assumption of independence
of faults is unrealistic in practical cases. The fault-
independence assumption is also made in [8] and [12], and in
[12] the assumption is made of component failures, in the
context of model-based hardware diagnosis.

Independence of failures, or simply failure-
independence, is also a heavily researched topic in the area of
software reliability. Several Non-Homogenous Poisson
Process Software Reliability Growth Models (NHPP
SRGMs) assume software failures occur at random, and are
independent of each other [2]. Software reliability often
makes use of Markov models and one of the importance
features of a Markov model is that the transition from state i
to another state depends only on the current state [17]. Thus,
in [20] the authors assume that when a service is called, its
reliability does not depend on methods previously called, and
so failures of services are independent. Multi-version of N-
version programming too assumes that programs that have
been developed independently, shall fail independently [3].
However, experiments by [13] suggest that such an
assumption cannot always be made and that N-version
programming must be used with care and that the analysis of
its reliability must include the effect of dependent errors.

In the context of regression testing, the authors of [11]
investigate the costs and benefits of several regression test
selection (RTS) strategies when the number of changes
between the base and subsequent versions of a program
increases. They model varying amounts of modifications by
seeding multiple mutually independent faults into the same
base program. The authors hypothesize that a test suite that
reveals a fault in a program (when it is the only fault in the
program) might no longer reveal the same fault when it is
mixed with other faults in the same program. The authors
report that their data is consistent with the hypothesis that
fault detection effectiveness decreases as the number of faults
increases.

Thus, the independence assumption is certainly not a
new concept and has been employed several times in several
different contexts. Our results on the Siemens suite are
suggestive that such an assumption is not a sound one to
make, and that approximately two-thirds of the time, such an
assumption would be incorrect. To the best of our knowledge,
we are not aware of any other research work that shares an
identical objective and performs the experiment on the
Siemens suite in a manner identical to the one in this study.

7. Conclusions and Future Work

This paper investigates the interactions that might take place
between multiple faults, present in the same program, and
how these interactions may manifest themselves to cause, or
mask, test case failure.

We do so, by first asking questions about the
relationships between the set of test cases that fail on a multi-
fault version; and the set of failed test cases obtained by
taking the union of the sets of failed test cases from each of
the corresponding single-fault versions of the multi-fault
program in question. Then we observe how strongly these
relations hold (how frequently they occur) by sampling
different fault combinations from the programs of the
Siemens suite, and then observing and analyzing test case
failures.

Results are suggestive of the fact that no one relationship
seems to hold unconditionally across all of the studied
programs; and that the fault-independence assumption seems
to be fairly weak in that it holds only about a third of the time.
Furthermore, destructive interference seems to be more
common than constructive interference because test case
failure seems to be masked more often than it is caused, by
the seeding of different faults together in the same program.
In addition, it is quite common for these forms of interference
to occur simultaneously and this was observed in almost half
of the cases.

Future work includes, but is not limited to, extending our
analysis to analyze fault interference on different programs of
varying sizes. Also, the analysis performed in this study
observes when the presence of multiple faults in a program
results in test case failure or masking, different from what
would have occurred had we only considered the
corresponding single-fault versions. We also wish to observe
when the addition of an nth fault causes different behavior
from an (n-1) fault program. For example, the addition of a
3rd fault into a program may cause considerable difference
from each of the three corresponding single-fault versions;
but also from the different combinations of 2-bug versions.
Additionally, we have analyzed the various trends between
fault interactions in terms of simple factors such as the
number of faults in multi-fault version; the size of the
programs and the number of branches in the programs – and
have concluded that they have little impact on the various
studied interference relations. Further insights may be
revealed by taking into account more complex factors, or
perhaps combinations of these simple factors.

8. Acknowledgment

The authors wish to thank Hyung Jae Chang of the Software
Technology Advanced Research (STAR) Lab at the
University of Texas at Dallas for his help in preparing this
paper.

References

1 A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and
Secure Computing, 1(1):11-33, January 2004

2 W. R. Blischke and D. N. P. Murthy (Editors), “Case
studies in reliability and maintenance”, John Wiley &
Sons, 2003

173

3 L. Chen and A. Avizienis, “N-version Programming: A
fault-tolerance approach to reliability of software
operation,” Digest of Papers FTCS-8: The 8th Annual
International Conference on Fault Tolerant Computing,
Toulouse, France, pp. 3-9, June 1978

4 H. Cleve and A. Zeller, “Locating causes of program
failures,” in Proceedings of the 27th International
Conference on Software Engineering, pp. 342-351, St.
Louis, Missouri, May 2005

5 F. Corsi, C. Marzocca and S. Martino, “Assessing the
Quality Level of Digital CMOS IC's under the
Hypothesis of Non-Uniform Distribution of Fault
Probabilities,” in Proceedings of the European Design
and Test Conference, pp. 72, Paris, France, March 1996

6 W. Dickinson, D. Leon, and A. Podgurski, “Finding
failures by cluster analysis of execution profiles” in
Proceedings of the 23rd International Conference on
Software Engineering, pp. 339–348, Canada, May 2001

7 D. Halliday, R. Resnick and J. Walker, “Fundamentals of
Physics Extended,” 8th Edition”, John Wiley & Sons,
2008

8 V. S. Iyengar and D. T. Tang, “On simulating faults in
parallel”, in Proceedings of the 18th International
Symposium on Fault Tolerant Computing, pp. 110-115,
Tokyo, Japan, June 1988

9 J. A. Jones and M. J. Harrold, “Empirical evaluation of
the Tarantula automatic fault-localization technique,” in
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, pp.
273-283, California, November 2005

10 J. A. Jones, J. Bowring, and M. J. Harrold, “Debugging
in parallel,” in Proceedings of the International
Symposium on Software Testing and Analysis, pp. 16-26,
London, UK, July 2007

11 J. M. Kim, A. Porter, and G. Rothermel, “An empirical
study of regression test application frequency,” in
Proceedings of the 22nd International Conference on
Software Engineering, pp. 126-135, Limerick, Ireland,
June 2000

12 J. Kleer and B. C. Williams, “Diagnosing Multiple
Faults”, Artificial Intelligence, 32(1):97-130, April 1987

13 J. C. Knight and N. G. Leveson, “An experimental
evaluation of the assumption of independence in multi-
version programming”, IEEE Transactions on Software
Engineering, 12(1):96-109, January 1986

14 B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan, “Scalable statistical bug isolation,” in
Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp.
15-26, Chicago, June 2005

15 C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff,
“Statistical debugging: a hypothesis testing-based
approach,” IEEE Transactions on Software Engineering,
32(10):831-848, October 2006

16 C. Liu and J. Han, “Failure proximity: a fault
localization-based approach,” in Proceedings of the 14th
ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 286-295, Oregon, November
2006

17 M. R. Lyu (Editor), “Handbook of Software Reliability
Engineering”, IEEE Computer Society Press, 1996

18 A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang, “Automated support for classifying
software failure reports,” in Proceedings of the 25th
International Conference on Software Engineering, pp.
465-475, Oregon, May 2003

19 M. Renieris and S. P. Reiss, “Fault localization with
nearest neighbor queries,” in Proceedings of the 18th
IEEE International Conference on Automated Software
Engineering, pp. 30-39, Montreal, Canada, October 2003

20 R. H. Reussner, H. W. Scmidt and I. H. Poernomo,
“Reliability prediction for component-based software
architectures” Journal of Systems and Software 66(3):
241-252, June 2003

21 Siemens Suite, http://www-static.cc.gatech.edu/aristotle/
Tools/subjects, January 2007

22 W. E. Wong, Y. Qi, L. Zhao and K. Y. Cai, “Effective
fault localization using code coverage”, in Proceedings
of the 31st Annual International Computer Software and
Applications Conference, pp. 449-456, Beijing, China,
February 2007

23 W. E. Wong and Y. Qi, “BP neural network-based
effective fault localization,” International Journal of
Software Engineering and Knowledge Engineering,
19(4), June 2009. An earlier version appeared in
Proceedings of the 19th International Conference on
Software Engineering and Knowledge Engineering, pp.
374-379, Boston, Massachusetts, USA, July 2007

24 W. E. Wong, T. Wei, Y. Qi and L. Zhao, “A Crosstab-
based statistical method for effective fault localization, in
Proceedings of the 1st International Conference on
Software Testing, Verification and Validation, pp. 42-51,
Lillehammer, Norway, April 2008

25 A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A.
Aiken, “Statistical debugging: simultaneous
identification of multiple bugs,” in Proceedings of the
23rd International Conference on Machine Learning, pp.
1105-1112, Pittsburgh, Pennsylvania, June 2006

174

