
  

  

Insights on Fault Interference for Programs with Multiple Bugs 
 

Vidroha Debroy and W. Eric Wong 
The University of Texas at Dallas 
Department of Computer Science 
{vxd024000,ewong}@utdallas.edu 

 
Abstract 

 
Multiple faults in a program may interact with each other in 
a variety of ways. A test case that fails due to a fault may not 
fail when another fault is added, because the second fault 
may mask the failure-causing effect of the first fault. Multiple 
faults may also collectively cause failure on a test case that 
does not fail due to any single fault alone. Many studies try to 
perform fault localization on multi-fault programs and 
several of them seek to match a failed test to its causative 
fault. It is therefore, important to better understand the 
interference between faults in a multi-fault program, as an 
improper assumption about test case failure may lead to an 
incorrect matching of failed test to fault, which may in turn 
result in poor fault localization. This paper investigates such 
interference and examines if one form of interference holds 
more often than another, and uniformly across all conditions. 
Empirical studies on the Siemens suite suggest that no one 
form of interference holds unconditionally and that 
observation of failure masking is a more frequent event than 
observation of a new test case failure. 
 
Keywords: multiple faults, fault interference, software 
testing, fault localization. 
 
1. Introduction 
 
Software fault localization is an actively researched topic in 
the area of program debugging today. Originally, many fault 
localization studies demonstrated the effectiveness of their 
approach, under the assumption that a program would contain 
only one fault [4,9,14,15,19,22,23]. However, recently the 
focus has been on the development of fault localization 
techniques that can be applied to programs with multiple 
bugs1 as well [10,16,18,25]. A common way to do this has 
been to segregate failed test cases into groups or clusters such 
that the failed test cases in each cluster can be mapped to the 
same causative fault [6,16,18]. While this may sound 
deceptively simple, it is in reality, a very difficult thing to do; 
and one of the reasons is that when two (or more) seemingly 
independent faults are placed in the same program, they may 
interact with each other in complex and unpredictable ways.  

These interactions may manifest themselves by causing a 
test case to fail2 that would normally not have failed due to 

                                                 
1  For the purposes this paper, we use fault(s) and bug(s) inter-
changeably. 
2 Throughout this paper, ‘test case failure’ refers to the failure of the 
program to produce the correct output on a test case. 

the presence of any single fault alone. Alternatively, a test 
case that would normally have failed due to a fault, may no 
longer fail upon the addition of another fault (to the same 
program), that interferes with the failure-causing effect of the 
first fault. Multiple faults may of course also exist in the same 
program, yet not interfere with each other in a manner that is 
observable by examining test case failure. In such a scenario, 
the effect of each fault in the program may seem to be 
independent of the other. 

The objective of this study is to observe such interactions 
between faults present in the same program, and to 
empirically deduce if a certain type of interaction holds 
uniformly or unconditionally. We do this by first asking 
certain research questions regarding multi-fault interactions, 
and then trying to address them by means of data collected on 
multi-fault versions of the seven programs in the Siemens 
suite [21]. 

The remainder of this paper is organized as follows: 
Section 2 details some of the preliminary and background 
information relevant to understanding this study and Section 
3 outlines the experimental design and procedure that is 
followed. Then, Section 4 presents the empirical study 
undertaken, while Section 5 contains an analysis and 
discussion of important issues and considerations regarding 
the research objectives. Section 6 subsequently overviews 
research work that is related and relevant to this paper; and 
finally Section 7 presents the conclusions and future work. 
 
2. Preliminaries 
 
This section first presents a more detailed account of fault 
interference in multi-fault programs, and provides illustrative 
examples for each form of interference studied. Additionally, 
the research questions that are addressed in this paper are 
described and enumerated to facilitate subsequent analysis.  
 
2.1. Forms of Interference 
 
In wave physics, ‘interference’ is the phenomenon which 
occurs when two waves meet while traveling along the same 
medium. If the amplitudes of the two waves have the same 
sign, then they add together to form a wave of a larger 
amplitude. This is termed as ‘constructive interference’. On 
the other hand, if the two amplitudes have opposite signs, 
then they combine together to form a wave with a lower 
amplitude and this is termed as ‘destructive interference’ [7]. 
We now abstract this terminology and apply it to our research 
context. 
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Given two faults f1 and f2, if the presence of both f1 and f2 
in the same program results in the failure of a test case t that 
does not fail in the presence of either f1 or f2 alone; then this 
is termed as constructive fault-interference, or simply 
‘constructive interference’. Correspondingly, given a test case 
t that fails due to a fault f1, but no longer fails when another 
fault f2 is added to the same program; this is termed as 
‘destructive interference’. These definitions are however, 
incomplete without pointing out some important aspects.  

Firstly, it is of course possible to observe both 
phenomena together. The presence of two faults in the same 
program may cause some test cases to fail - that do not fail 
due to a single fault alone; yet also cause a test case that fails 
due to a fault - to now result in a successful execution. Thus, 
it is possible to observe both constructive and destructive 
interference simultaneously. Secondly, it is of course also 
possible to observe neither of the two phenomena i.e. the 
presence of both the faults may not result in any additional 
test case failure or the masking of test case failure due to a 
particular fault. Thirdly, we emphasize that while these 
definitions are provided with respect to two faults, they are 
easily extensible to any number of faults present in the same 
program. Finally, we use the terms ‘constructive’ and 
‘destructive’ rather loosely in our context. In no way do we 
imply that more failures are constructive and fewer failures 
are destructive! These terms are employed here to draw the 
parallel between fault interference and wave interference and 
to highlight the concept of faults working together to cause 
test case failure i.e. working constructively; and faults 
working against each other to mask test case failure i.e. 
working destructively.  

Let us now go over some simple examples so that we can 
better understand how and when fault interference (be it 
constructive or destructive) may occur in a program. 

 

 
Figure 1 Constructive interference between faults 

 

Figure 1 illustrates constructive interference between faults 
using a snippet of code. We observe that neither fault f1, nor 
fault f2 alone result in the failure of test case t1. However, 
when f1 and f2 are placed together in the same body of code, 
they work together, to cause test case failure in t1. In contrast, 
in Figure 2 we observe destructive interference because test 
case t1 fails when faults f1 and f2 are considered alone; but 
when these two faults are placed together, the same failing 
test case is now successful. Note that this is an example of 
double destructive interference because the failure causing 
effect of either fault has been masked by the presence of both 

faults. This is not a requirement as by definition, as long as 
one fault masks the failure causing effect of the other, we 
have destructive interference; and this need not be a mirror 
relationship. 
 

 
Figure 2 Destructive interference between faults 

 

Finally, Figure 3 constructs a scenario where both 
constructive and destructive interference can be observed 
simultaneously. Neither fault f1 nor fault f2 can cause failure 
on test case t1 alone. However, we have constructive 
interference when these faults are placed together as now 
they collectively cause test case t1 to fail. But on the same set 
of programs, when we consider test case t2; the failure 
causing effect of fault f1 is masked by fault f2 when both of 
them are placed together in the same program. The net effect 
is for test case t2 to pass and so we have destructive 
interference. Thus, on the same set of programs we may 
observe both constructive and destructive interference. As 
pointed out before, it may also be possible to neither observe 
constructive interference nor destructive interference. 
 

 
Figure 3 Constructive & Destructive interference 

 

While the examples above may be simple, they are used 
primarily for illustrative purposes to help provide a better 
picture of fault interference. However, this better 
understanding prompts us to ask several important questions 
related to fault interference. 
 
2.2. Research Objectives 
 
In this section we present an informal overview of some 
important questions that we wish to answer. We then 
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formalize these questions using set theory and also describe 
how we address them, in Section 3. Hereafter, we may denote 
a research question simply by ‘RQ’. 
 
RQ1: How strong is the independence assumption in a multi-
fault program? In order words, is fault interference a rare 
event? 
 
RQ2: How often can we expect to observe only constructive 
interference in a multi-fault program? 
 
RQ3: How often can we expect to observe only destructive 
interference in a multi-fault program?  
 
We may also use combinations of these research questions, 
some of which are meaningful because they are not addressed 
by any of the other research questions. We consider RQ2 and 
RQ3 together to produce RQ4, RQ1 and RQ2 together to 
produce RQ5, and RQ1 and RQ3 together to produce RQ 6: 
 
RQ4: How often can we expect to observe both constructive 
and destructive interference in a multi-fault program? 
 
RQ5: How often will the faults in a multi-fault program 
either be independent or have constructive interference? 
 
RQ6: How often will the faults in a multi-fault program 
either be independent or have destructive interference? 
 
3. Experimental Design 
 
In this section we present a formal representation of the 
research questions in the previous section and also present 
our approach on how to answer them. 
 
Given n faults for a program P, let us denote each fault by f1, 
f2, ..., fn. Let P i denote program P which now contains fault fi. 
Thus, each P i (1  i  n) represents a single fault version of 
each of the n faults. Also let P M denote the program P with 
all of the n faults in it together which is the multi-fault 
version of P. The underlying assumption is that all of these 
faults can be seeded into the same program without conflict. 
A similar approach was also used in [11]. Further discussion 
on how and why the seeding of one fault may conflict with 
the seeding of another is presented in Section 4.1. 
 
Consider a test set T for program P. Executing all the test 
cases in T on each of the single fault versions of program P, 
would give us the set of failed test cases for each single fault 
version - such that each set of failed test cases S i corresponds 
to a faulty version P i. All of the test cases in T can also be 
executed against the multi-fault version P M to obtain the set 
of test cases that fail on the multi-fault version. Let us denote 
this set by M. Also let U denote the set of failed test cases 
obtained by taking the union of each S i such that: 

 

1 2U S ... nS S  
 

The research questions detailed in Section 2 can be answered 
by observing the relationship between, the set of failed test 
cases obtained by taking the union of the sets of failed test 
cases on each single fault version i.e. U, and the set of failed 
test cases on the multi-fault version M. Each studied 
relationship between the two sets is listed as follows 
alongside the research question that it is related to. 
 

(1) U = M. This means that the two sets are equal which 
implies that no new test cases failed on the multi-fault version 
and no test case failures due to any single fault were masked 
i.e. there was neither constructive, nor destructive 
interference observed. This observation is equivalent to 
observing independence. (RQ1)  
 

(2) .U M This means that each test case that failed due to 
any single fault still failed on the multi-fault version, but at 
the same time some new test case failures were observed on 
the multi-fault version that are not caused by single faults 
alone. This is equivalent to observing only constructive 
interference (RQ2). 
 

(3) .M U This means that no new test case failures were 
observed on the multi-fault version, but some of the test case 
failures due to single fault versions were masked. This is 
equivalent to observing only destructive interference (RQ3). 
 

(4) ( ) (U M) (U M).M U This means that, neither 
set is a proper subset of the other, yet at the same time they 
are not equal. This implies that we have some test case 
failures that have been masked and at the same time some 
new test case failures that are observed only on the multi-
fault version i.e. both constructive and destructive 
interference (RQ4). Note that it is theoretically possible for U 
and M to not have any intersection at all. This would happen 
if every test case that fails on the multi-fault version does not 
fail due to any single fault version; and at the same time any 
and every test case failure due to a single fault version, is 
masked in some way in the multi-fault version. 
 

(5) .U M This means that the set U is either equal to or a 
subset of M i.e. either no new test cases fail on the multi-fault 
version, or some do, but either way there is no masking of 
failures. This implies we either observe constructive 
interference or independence, but no destructive interference 
(RQ5). 
 

(6) .M U This means that the set M is either equal to or a 
subset of U i.e. either no test case failures are masked in the 
multi-fault version, or some are, but either way there are no 
new test case failures on the multi-fault version. This implies 
we either observe destructive interference or independence, 
but no constructive interference (RQ6). 
 

Having identified these important relationships, we can now 
observe their frequency of occurrence on a data set, in order 
to quantify how often each one holds true. 
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4. Case Study 
 
In order to empirically observe how well each of the relations 
detailed in Section 3 holds on actual programs, we performed 
a case study on the seven programs of the Siemens suite [21]. 
This section describes the subject programs, the manner in 
which the data was collected and then moves on to discuss 
the results obtained. 
 
4.1. Subject Programs 
 
The seven programs in the Siemens suite have been well 
studied and used for several fault localization studies 
[4,9,10,15,19,22,23,24], and therefore, were an ideal choice 
for this study as well. The correct and faulty versions of each 
of the programs as well as the respective test sets were 
downloaded from [21]. Altogether 132 fault versions were 
downloaded, but not all of them were useable for this study. 
Recall in Section 3 that when considering a multi-fault 
version with n faults, we assume that each of the n faults can 
be seeded into the same program without conflict. 
Unfortunately, this assumption does not hold for several pairs 
of faults for some programs in the Siemens suite. Some 
conflicting faults share the same location and thus cannot be 
seeded simultaneously into the same program. In such a 
scenario, we randomly discarded one of the faults that 
conflicted with the position of another. Faults which did not 
result in any test case failure, such as version 9 of the 
program schedule2, were also discarded. Table 1 presents a 
list of the programs, along with the final number of faults and 
test cases per program used. 
 

Table 1 Summary of the Siemens suite 
Program Number of  faults used Number of test cases 
print_tokens 5 4130 
print_tokens2 8 4115 
schedule 8 2650 
schedule2 8 2710 
replace 16 5542 
tcas 19 1608 
tot_info 20 1052 

 

4.2. Data Collection 
 
In order to eliminate any bias, the experiment is best 
performed using n-bug versions across various sizes of n (i.e., 
using multi-bug versions across a broad spectrum of sizes). 
Thus, for each of the programs we generated multi-fault 
versions, using different combinations of a varying number of 
faults. For the programs containing a relatively smaller 
number of faults, it was possible to exhaustively generate all 
possible combinations of non-conflicting faults. However, 
this was not possible for programs with a relatively large 
number of faults as generating all possible combinations is 
explosive, and requires massive overhead. To make the 
experiment more tractable, where the generation of all 
possible multi-fault versions was not possible (as in the case 
of programs – replace, tcas and tot_info), we placed a ceiling 
on the number of multi-fault versions to be used. Then we 
randomly sampled (without replacement) fault combinations 

of different sizes until the desired number of multi-fault 
versions was generated.  
 

Table 2 Multi-fault versions generated per program 
Program Number of  multi-fault versions generated 
print_tokens 26 
print_tokens2 247 
schedule 247 
schedule2 247 
replace 500 
tcas 1000 
tot_info 1000 

 
Table 2 lists the number of multi-fault versions, i.e. fault 
combinations, generated for each program. We note that a 
fewer number of multi-fault versions are generated for 
replace (500), than for tcas (1000) and tot_info (1000). This 
is because from Table 1 we observe that the program replace 
also has a lot more test cases than tcas and tot_info. The time 
required to perform the experiment is not just determined by 
the number of multi-fault versions used, but also by the 
number of test cases that need to be executed on the 
programs. The experiment requires that for each of the multi-
fault, and each of the single fault versions of each program, 
the entire test set be executed against the versions to obtain 
the set of failed test cases. Thus, since the test set for the 
program replace consists of 5542 test cases; to reduce the 
execution overhead involved, we generated 500 multi-fault 
versions instead of 1000. Adding up the entries in the second 
column of Table 2, we find that a total of 3267 multi-fault 
versions (with a varying number of faults per version) were 
used in the experiment. 

In order to deduce that a test case had failed on a faulty 
version, we executed it against the faulty version and 
compared the output to the output obtained by running the 
same test case against the corresponding correct version of 
the program. If the outputs differed, then the execution of the 
test case on the faulty version was said to have resulted in 
‘failure’; and if the outputs were the same, then the test case 
execution was deemed to have been ‘successful’. This is 
consistent with the taxonomy in [1] where a failure is defined 
as an event that occurs when a delivered service deviates 
from correct service. All program executions were on a PC 
with a 2.13GHz Intel Core 2 Duo CPU and 8GB physical 
memory. The operating system was SunOS 5.10 (Solaris 10) 
and the compiler version used was GCC 3.4.3. 
 
4.3. Results 
 
In this section we present the results of the case study that 
was conducted on the Siemens suite. Table 3 presents a 
summary of the frequencies of occurrence of each of the 
relations that were proposed in Section 3. Please note that the 
data presented in the table corresponds to the data collected 
across all of the multi-fault versions generated i.e. all 3267 
data points. The data collected is not strongly indicative that 
any of the studied relationships holds uniformly throughout. 
About a third of the time (33.12%) we observe that the 
independence assumption holds because the multi-fault 
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version does not mask failures, nor does it cause previously 
successful test cases to fail. This means that about 66.88% of 
the time we expect to see interference of some kind. 
However, this percentage is too low to deem that fault 
interference will almost always occur, even though it does 
indicate that fault interference is a fairly frequent event. 

The highest frequency of occurrence for any of the 
studied relationships is on the relation M U (47.72%) 
which corresponds to RQ5. This means that almost half of the 
time, either the two sets are equal i.e. there is neither 
destructive nor constructive interference; or the interference 
is only destructive i.e. we have masking. In contrast, the 
lowest frequency of occurrence is for the relation 
U M (5.05%) which corresponds to RQ2. This means that 
only a very small percent of the time can we expect to 
observe only constructive interference, and this seems to be a 
much rarer event than some of the other relationships. 
However, this only provides us with a macroscopic idea of 
what is really going on because we consider all multi-fault 
combinations (even though they may contain a different 

number of faults) collectively in the same pool.  Perhaps 
there is a hidden link between the frequency of each 
relationship and the number of faults that may be seeded into 
a multi-fault version. With this in mind, we decided to extend 
our analysis such that we observe the occurrence of each 
relationship across different multi-fault versions with varying 
numbers of faults in them. 

 
Table 4 presents the data for each of the relations based 

on the number of faults present in each of the multi-fault 
versions. Once again we do not observe the occurrence of any 
of the relations uniformly; but do however, observe some 
interesting trends.  

Firstly, we observe, as we did with the collective analysis 
(Table 3), that the frequency of U M is relatively lower 
than that of some of the other relations. In fact, the 
occurrence of U M is always less than or equal to that of 
M U and this seems to be independent of the number of 
faults in the multi-fault version (RQ2 and RQ3). 

Table 3 Frequency of occurrence of each relation across the entire data set 
Number of
Multi fault
versions

U = M 
(RQ1) 

U M  
(RQ2)

M U  
(RQ3)

U M  
(RQ5)

M U  
(RQ6)

( ) ( ) ( )U M U MM U

(RQ4)
3267 1082 (33.12%) 165 (5.05%) 477 (14.6%) 1247 (38.17%) 1559 (47.72%) 1543 (47.23%) 

 
Table 4 Frequency of occurrence of each relation based on the number of faults in each multi-fault version 

Num. Faults in a
multi fault version

Num. versions
generated

U = M 
(RQ1) 

U M  
(RQ2)

M U  
(RQ3)

U M  
(RQ5)

M U  
(RQ6)

( ) ( ) ( )U M U MM U

(RQ4)
2 96 78.13% 7.29% 12.50% 85.42% 90.63% 2.08% 
3 184 52.72% 16.30% 23.37% 69.02% 76.09% 7.61% 
4 253 36.36% 18.97% 24.11% 55.34% 60.47% 20.55% 
5 247 28.34% 14.17% 18.22% 42.51% 46.56% 39.27% 
6 231 25.97% 9.96% 10.39% 35.93% 36.36% 53.68% 
7 269 26.77% 3.72% 10.41% 30.48% 37.17% 59.11% 
8 353 29.46% 1.98% 8.50% 31.44% 37.96% 60.06% 
9 431 30.39% 0.93% 7.66% 31.32% 38.05% 61.02% 

10 397 27.20% 0.00% 10.58% 27.20% 37.78% 62.22% 
11 370 33.78% 0.00% 14.86% 33.78% 48.65% 51.35% 
12 241 34.02% 0.00% 22.41% 34.02% 56.43% 43.57% 
13 119 35.29% 0.84% 21.01% 36.13% 56.30% 42.86% 
14 47 38.30% 0.00% 25.53% 38.30% 63.83% 36.17% 
15 25 20.00% 0.00% 44.00% 20.00% 64.00% 36.00% 
16 2 50.00% 0.00% 0.00% 50.00% 50.00% 50.00% 
17 2 0.00% 0.00% 100.00% 0.00% 100.00% 0.00% 

 
Secondly, we find that the relation U = M seems to decrease 
at first when the number of faults in a faulty version is 
increased, but then this decrease tapers gradually and actually 
switches to a small increase subsequently. The rapid initial 
decrease is at least suggestive that while the independence 
assumption may hold for a multi-fault version with a 

relatively smaller number of faults; it does not hold as 
strongly once the number of faults is increased (RQ1).  

The trends between U M and M U are easier 
observed visually and therefore, we present these two 
relations in a graph in Figure 4. The trend for U = M is also 
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presented. For clarity, the other relationships are not 
represented in this graph. 
 

 
Figure 4 Frequency of relations with varying number of faults 
 
Based on the graph, once again we observe that the frequency 
of occurrence of the relation U M is always less than that 
of M U and this does not change even as we increase the 
number of faults.  Additionally, while the two curves seem to 
follow the same pattern initially (n=6), they subsequently 
move on to follow two completely independent paths.  
 
From Table 4 we can also observe that the frequency at 
which both constructive and destructive interference occurs 
increases as the number of faults in a multi-fault program 
increases; peaks at 62.22%, and then starts to decrease even 
though the number of faults is still increased. Based on Table 
3 however, we note that almost half of the time (47.23%) we 
can expect to see both constructive and destructive 
interference. This means that observing both types of 
interference together, is definitely not a rare event (RQ4).  

We point out that while data has also been provided for 
multi-fault versions that can contain as many as up to 17 
faults; the number of samples for the versions with 16 and 17 
faults, are only 2 each. Therefore, the data for multi-fault 
versions of these sizes may not be representative and derived 
results maybe subject to bias. Further discussion on this, and 
an explanation regarding the small sample-sizes, is provided 
in Section 5. 
 
5. Discussion 
 
In this section, we present a discussion on some other 
pertinent issues that are relevant to this study and also discuss 
the threats to validity. 
 
5.1. Additional Factors to Consider 
 
In addition to the number of faults that are present in a multi-
fault program, there may be other impacting factors that 
affect the occurrence of the studied relationships.  

Given two programs of different sizes (a different number of 
executable statements), but with the same number of faults in 
each program, the larger sized program shall consequently 
have a lower fault density (with respect to all of the 
executable statements in the program). A lower fault density 
would in turn imply that there is a higher probability of faults 
acting independent of one another than in the case of a 
program with a higher density. This is because in the case of 
more executable statements, the faults themselves have a 
higher chance of being more spread out and perhaps in 
completely different blocks3. Thus, the size of a multi-fault 
program may affect the interactions between the faults and 
consequently may affect the frequency of the relations. 
 
Each branch present in a program represents an alternate flow 
of control in that program. Therefore, the more branching that 
is present in a multi-fault program, the higher the likelihood 
that the faults might be in separate branches, and 
consequently the higher the probability of the faults acting 
independent of one another. With this in mind we decided to 
try and observe if the relative sizes of each of the programs 
under study; or the number of branches in each of the 
programs, had any specific effect on the relations under 
study. Table 5 presents the size of each of the programs in the 
Siemens suite in terms of the number of executable 
statements in the program; as well as the number of branches 
in each program. 

 

Table 5 Size and number of branches for studied programs 
Program Size of program 

(executable statements) 
Number of 
branches 

print_tokens 175 109 
print_tokens2 178 162 
schedule 121 66 
schedule2 112 88 
replace 216 176 
tcas 55 50 
tot_info 113 68 

 
Size of the program: As described above, intuition suggests 
that the higher the number of executable statements in a 
program, the higher the likelihood of observing independence 
between faults. Thus, we expect to see an increase in the 
frequency of occurrence of the relation U = M with an 
increase in the size of a program. Figure 5 graphically shows 
the observed trends on all of the relations except U M  
and .M U  These relations have been left out to maximize 
clarity and because they can be derived easily from the 
relations U = M, U M and .M U  

But contrary to our intuition, based on Figure 5, we find 
that there is no evidence to support the claim that the 
independence assumption is especially stronger in the case of 
programs with a relatively smaller size (in terms of the 
number of executable statements). The curve is somewhat 

                                                 
3  Such an assumption is strictly probabilistic. In the context of 
software, faults may not be distributed uniformly but rather may 
cluster together in certain parts of the code. 
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haphazard and does not follow a set pattern. Additionally, the 
same observation can be made of the rest of the studied 
relations. 

 

 
Figure 5 Frequency of relations with respect to number of 

executable statements 
 
Number of branches in the program: As with program size, 
our intuition suggests that with an increase in the number of 
branches in the program, we should expect to see and 
increase in the frequency of occurrence of the independence 
assumption. Figure 6 plots the curves of the relations against 
the number of branches in the programs in a manner similar 
to Figure 5. Also, for the same reasons as Figure 5, the curves 
for the relations U M andM U  have not been plotted. 
 

 
Figure 6 Frequency of relations with respect to number of 

branches 
 
Once again, as with Figure 5, we observe that there does not 
seem to be a set pattern to how the occurrence of the relations 
changes with the number of branches in the program. 
Moreover, we are unable to draw the conclusion that the 
strength of the independence assumption increases as the 

number of branches in a program increases. The graphs 
themselves can be a little difficult to make out and indeed, 
visualization alone does not seem to be enough here. 
Therefore, in Table 6 we also represent the data in terms of 
the correlation coefficients with respect to the number of 
branches and statements in the programs, for each of the 
studied relations. 
 

Table 6 Correlation between relations and number of 
branches and executable statements 

 
The first column in the table represents each of the relations 
depicted in Figures 5 and 6, and the second and third columns 
provide the correlation coefficients between the frequency of 
the relations and the number of branches and executable 
statements, respectively. None of the relations exhibits a 
strong positive correlation either with respect to the number 
of branches, or with respect to the number of executable 
statements. In fact, negative correlations are observed for 
M U and ( ) ( ) ( )U M U M .M U The relation 
U M does show some positive correlation with respect to 
the number of executable statements (r = 0.53). However, it 
is not nearly strong enough to be considered significant. A 
lack of strong correlation (whether positive or negative) 
implies that it is impossible to conjecture a possible 
relationship between the variables under analysis. 
 
5.2. Implications of the Results 
 
While the results obtained from the experiment may not 
positively conclude that any one of the studied relations is 
always observable across the various programs, it does lead 
to some important implications: 
 
(1) The fact that the relation U = M does not hold uniformly 
implies that fault localization studies should not make the 
independence assumption when faults are placed together in 
the same multi-fault program. Not just does the independence 
assumption not always hold for multi-fault programs with a 
small number of programs, but rather it suffers from certain 
degradation as the number of faults is increased.  
 
(2) If the independence assumption clearly does not hold, 
then it means interference of some kind is occurring. 
Furthermore, while interference is not always observed, in 
our studies it is observed approximately two-thirds of the 
time which implies that it is a fairly frequent event. Fault 
localizers must be prepared to specifically handle this 

Pearson Correlation 
Coefficient ( r ) 

Relation 
# Branches # Ex. Stmts 

U = M 0.20 0.30 
U M  0.39 0.53 
M U  -0.48 -0.35 

( ) (U M) (U M)M U  -0.09 -0.27 
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interference without suffering from a significant loss in 
effectiveness. 
 
(3) Based on our results we observe that the relation 
M U is far more frequent than U M and that this trend 
between the two relations is almost constant irrespective of 
the number of faults that may be present in the multi-fault 
program. This means that we observe constructive 
interference alone less than we observe destructive 
interference alone, and this in turn means that the number of 
test cases that fail on a multi-fault version may not be many. 
Fault localizers that work with dynamic information, need to 
be able to maintain effectiveness even with less available 
information and need to be able to assess the importance of 
each test case when localizing faults such as in [22].  
 
(4) Even though constructive interference alone occurs less 
than destructive interference alone, there are still several 
instances where the presence of multiple faults in the same 
program have indeed led to the failures of test cases that 
would not normally have failed due to any one fault alone. 
From Table 4 we observe that constructive interference alone 
does not seem to occur much in programs with a relatively 
larger number of faults, but rather occurs in programs with a 
smaller number of faults. However, from Table 3 we observe 
that it occurs alone at least about 5% of the time. This means 
that fault localizers often need to be able to distinguish test 
cases that fail due to several faults from test cases that fail 
due to just one fault; and consequently, need to link the test 
case failure to all of its causative faults, as opposed to just 
linking the failure to one of them. As pointed out by the 
authors of [25], when performing fault localization, a given 
test case run/execution can exhibit more than one bug. 
 
(5) A very important observation is that the relationship 
( ) (U M) (U M)M U  seems to hold about half 
of the time (47.23%); which means that constructive and 
destructive interference are both observed on the same multi-
fault program. This implies that while fault localizers need to 
be able to handle constructive and destructive interference; 
they cannot just focus on only one kind of interference at a 
time. The fault localizer needs to be designed such that its 
effectiveness is not adversely affected when both forms of 
interference are observed together. 
 
5.3. Threats to Validity 
 
In this section we discuss some of the potential threats to 
validity of our approach, and therefore, threats to the 
subsequent results and implications that have been derived. 

Since this is an initial study, only an analysis on the 
seven programs of the Siemens suite has been performed. 
These programs are of a relatively smaller size and may not 
be representative of much larger programs. Consequently, the 
degrees to which the various studied relationships hold may 
vary when the analysis is extended to other programs; and we 
may not be able to generalize our results across all of them. 
However, we did not choose the programs of the Siemens 

suite because they are small in size. Rather, our choice is 
validated by the fact that these programs have been used 
extensively in many different fault localization studies 
[4,9,10,15,19,23,24]. Since our study has direct implications 
for such fault localization research; we felt it best to analyze 
and derive results on the same sets of programs that had been 
used in those studies. It is also important to note that test 
cases and the nature of the faults used in our study have an 
impact on the results and conclusions. 

Some of the sample sizes that are used to derive results 
in this study may not be sufficiently large. We would have 
liked to have had more multi-fault versions that contained a 
relatively high number of faults. For example, we only had 2 
multi-fault versions each that contained 16 or 17 faults. 
However, such considerations are more governed by the 
availability of faults, and less by our own choices. Based on 
Table 1 we observe that 4 out of the 7 programs studied, did 
not have more than 8 simultaneously seed-able faults to begin 
with; and therefore, we could not generate multi-fault 
versions of these programs that contained a high number of 
faults in them. Thus, as mentioned before in Section 4, we 
recognize the fact that some of the results obtained may be 
subject to certain bias due to small sized samples.  

It is also important to recognize the fact that test case 
failure is dependent on, and maybe linked to, the environment 
in which the execution takes place. It is possible for the same 
test set to be executed, against the same program but in 
different environments, and result in two different sets of test 
case failures. Such phenomenon has been reported in fault 
localization studies where one study may make use of a fault 
that has not been used by another study. This is sometimes 
because no test case failure was observed on that particular 
fault by one study (rendering it unsuitable for dynamic based 
fault localization research), but test case failure was observed 
on that same fault by the other study, which allowed its use. 
For example, one of the faults of the program replace in the 
Siemens suite is left out in [15], yet the same fault is useable 
in studies such as [23,24].  However, the experiments 
performed in this study have all been performed under the 
same environment and therefore, the results are consistent 
with respect to each other.  
 
6. Related Work 
 
In this section we provide an overview of work that is related 
and relevant to the research presented in this paper. 

Several fault localization studies have discussed 
programs with multiple bugs as well, and they have usually 
attempted to group failed executions such that the failed test 
cases in each group correspond to the same causative fault 
[6,16,18]. However, as recognized by the authors of [16], the 
‘due-to’ relationship between failed cases and underlying 
faults is unknown without manual investigation and an ideal 
partitioning is generally unachievable. This paper does not 
present any new fault localization technique, but rather 
investigates this ‘due-to’ relationship and researches how 
often a failed test cannot just be traced back to its causative 
fault, but instead must be traced back to its causative faults.   
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But fault localization is not the only research area where 
one might consider and explore the assumption of 
independence between faults. In [5] the authors explore 
specifically the effect of assuming a non-uniform probability 
distribution of faults in chips; but also discuss independence 
of faults. They observe that the assumption of independence 
of faults is unrealistic in practical cases. The fault-
independence assumption is also made in [8] and [12], and in 
[12] the assumption is made of component failures, in the 
context of model-based hardware diagnosis. 

Independence of failures, or simply failure-
independence, is also a heavily researched topic in the area of 
software reliability. Several Non-Homogenous Poisson 
Process Software Reliability Growth Models (NHPP 
SRGMs) assume software failures occur at random, and are 
independent of each other [2]. Software reliability often 
makes use of Markov models and one of the importance 
features of a Markov model is that the transition from state i 
to another state depends only on the current state [17]. Thus, 
in [20] the authors assume that when a service is called, its 
reliability does not depend on methods previously called, and 
so failures of services are independent. Multi-version of N-
version programming too assumes that programs that have 
been developed independently, shall fail independently [3]. 
However, experiments by [13] suggest that such an 
assumption cannot always be made and that N-version 
programming must be used with care and that the analysis of 
its reliability must include the effect of dependent errors.  

In the context of regression testing, the authors of [11] 
investigate the costs and benefits of several regression test 
selection (RTS) strategies when the number of changes 
between the base and subsequent versions of a program 
increases. They model varying amounts of modifications by 
seeding multiple mutually independent faults into the same 
base program. The authors hypothesize that a test suite that 
reveals a fault in a program (when it is the only fault in the 
program) might no longer reveal the same fault when it is 
mixed with other faults in the same program. The authors 
report that their data is consistent with the hypothesis that 
fault detection effectiveness decreases as the number of faults 
increases. 

Thus, the independence assumption is certainly not a 
new concept and has been employed several times in several 
different contexts. Our results on the Siemens suite are 
suggestive that such an assumption is not a sound one to 
make, and that approximately two-thirds of the time, such an 
assumption would be incorrect. To the best of our knowledge, 
we are not aware of any other research work that shares an 
identical objective and performs the experiment on the 
Siemens suite in a manner identical to the one in this study. 

  
7. Conclusions and Future Work 
 
This paper investigates the interactions that might take place 
between multiple faults, present in the same program, and 
how these interactions may manifest themselves to cause, or 
mask, test case failure.  

We do so, by first asking questions about the 
relationships between the set of test cases that fail on a multi-
fault version; and the set of failed test cases obtained by 
taking the union of the sets of failed test cases from each of 
the corresponding single-fault versions of the multi-fault 
program in question. Then we observe how strongly these 
relations hold (how frequently they occur) by sampling 
different fault combinations from the programs of the 
Siemens suite, and then observing and analyzing test case 
failures. 

Results are suggestive of the fact that no one relationship 
seems to hold unconditionally across all of the studied 
programs; and that the fault-independence assumption seems 
to be fairly weak in that it holds only about a third of the time. 
Furthermore, destructive interference seems to be more 
common than constructive interference because test case 
failure seems to be masked more often than it is caused, by 
the seeding of different faults together in the same program. 
In addition, it is quite common for these forms of interference 
to occur simultaneously and this was observed in almost half 
of the cases. 

Future work includes, but is not limited to, extending our 
analysis to analyze fault interference on different programs of 
varying sizes. Also, the analysis performed in this study 
observes when the presence of multiple faults in a program 
results in test case failure or masking, different from what 
would have occurred had we only considered the 
corresponding single-fault versions. We also wish to observe 
when the addition of an nth fault causes different behavior 
from an (n-1) fault program. For example, the addition of a 
3rd fault into a program may cause considerable difference 
from each of the three corresponding single-fault versions; 
but also from the different combinations of 2-bug versions. 
Additionally, we have analyzed the various trends between 
fault interactions in terms of simple factors such as the 
number of faults in multi-fault version; the size of the 
programs and the number of branches in the programs – and 
have concluded that they have little impact on the various 
studied interference relations. Further insights may be 
revealed by taking into account more complex factors, or 
perhaps combinations of these simple factors. 
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