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Drug resistance in Mycobacterium leprae is assumed to be due to genetic alterations

in the drug targets and reduced cell wall permeability. However, as observed in

Mycobacterium tuberculosis, drug resistance may also result from the overactivity of

efflux systems, which is mostly unexplored. In this perspective, we discuss known

efflux pumps involved in M. tuberculosis drug resistance and virulence and investigate

similar regions in the genome of M. leprae. In silico analysis reveals that the major M.

tuberculosis efflux pumps known to be associated with drug resistance and virulence

have been retained during the reductive evolutionary process that M. leprae underwent,

e.g., RND superfamily, the ABC transporter BacA, and the MFS P55. However, some

are absent (DinF, MATE) while others are derepressed (Mmr, SMR) in M. leprae reflecting

the specific environment where M. leprae may live. The occurrence of several multidrug

resistance efflux transporters shared between M. leprae and M. tuberculosis reveals

potential implications in drug resistance and virulence. The conservation of the described

efflux systems in M. leprae upon genome reduction indicates that these systems are

potentially required for its intracellular survival and lifestyle. They potentially are involved

in M. leprae drug resistance, which could hamper leprosy treatment success. Studying

M. leprae efflux pumps as new drug targets is useful for future leprosy therapeutics,

enhancing the global efforts to eradicate endemic leprosy, and prevent the emergence

of drug resistance in afflicted countries.
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INTRODUCTION

Leprosy and tuberculosis are public health threatening infectious diseases with similar
problems of ongoing human-to-human transmission, inherent drug resistance to several
antimicrobial agents, propensity to develop resistance to antimycobacterial drugs, and virulence
(Singh et al., 2016; Dheda et al., 2017). Whilst there is extensive knowledge about the
mechanisms of M. tuberculosis drug resistance, less is known about the mechanisms
by which M. leprae develops drug resistance. M. leprae is an obligate intracellular
pathogen and one of the few known microorganisms that still cannot be cultured in vitro
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which have been hindering the study of the mechanisms
of drug resistance by biochemical and functional studies.
The overexpression of multidrug (MDR) efflux pump genes
is a common mechanism of antimicrobial resistance in M.
tuberculosis (da Silva et al., 2016; Machado et al., 2017). Likewise,
efflux pumps certainly contribute to drug resistance inM. leprae,
which is mostly unexplored.

Efflux pumps are one of the most widespread resistance
determinants in bacteria. Usually, they are chromosomally
encoded and are greatly conserved at both gene and protein
level across bacterial species. More than 50 putative efflux
pumps have been associated with the transport of several drugs
in M. tuberculosis (De Rossi et al., 2006; Louw et al., 2009;
Kapopoulou et al., 2011; Black et al., 2014; da Silva et al., 2016).
Although they are mostly known due to their role in the efflux of
antimicrobials, efflux pumps are mainly involved in physiological
processes such as cell-to-cell communication, bacterial virulence,
cellular homeostasis, detoxification of intracellular metabolites,
and intracellular signal trafficking (De Rossi et al., 2006; Martinez
et al., 2009; Viveiros et al., 2012; Black et al., 2014; da Silva
et al., 2016; Li et al., 2016; Sandhu and Akhter, 2018). Recently,
it was shown that the loss of the efflux pump AcrAB in
Salmonella enterica serovar Typhymurium reduces virulence
leading to the accumulation of noxious molecules inside the
bacteria reducing the bacterial factors required for infection
(Wang-Kan et al., 2017). From a biological point of view, drug
resistance and virulence are required for pathogen survival. In
normal conditions, the expression of these systems is tightly
downregulated by specific transcriptional regulators (Grkovic
et al., 2001) and their overexpression is achieved only in
the presence of specific stressors capable of binding to the
transcriptional regulators. The induction of efflux systems in the
presence of inducers such as antimicrobials or host factors during
infection promote a low-level resistance phenotype that allows
the bacteria to survive during prolonged periods in the presence
of drugs contributing for the development and stabilization of
resistant phenotypes (Machado et al., 2012; Schmalstieg et al.,
2012).

In this perspective, we compared in silicoM. tuberculosis efflux
pumps involved in drug resistance and virulence with those ofM.
leprae investigating their possible involvement in antimicrobial
resistance and virulence inM. leprae.

REDUCTIVE EVOLUTION

The genome of the non-pathogenic Mycobacterium smegmatis
mc2155 has 7Mb in size; the genomes of the pathogenic M.
tuberculosis andM. leprae are much smaller in length and forM.
leprae this is even more dramatic with almost 2000 genes lost in
comparison with M. tuberculosis. Compared to non-pathogenic
mycobacteria,M. tuberculosis andM. leprae evolved by extensive
reductive evolution suggesting that pathogenic mycobacteria
evolved toward pathogenicity by the loss of genetic material
as the result of niche adaptation. Contrary to M. tuberculosis,
M. leprae is an obligate intracellular pathogen. Adaptation to a
permanent pathogenic lifestyle in constant association with the

host led to gene loss toward a minimal gene set, such as those
coding for metabolism and respiration, needed for a successful
obligate intracellular parasitism (Moran, 2002; Scollard et al.,
2006) and limited capacity to survive extracellularly (Cole et al.,
2001; Eiglmeier et al., 2001). Of interest is the fact that the
G+C content is lower in M. leprae pseudogenes (56.5%) than
in its active ORFs (60.1%) (Cole et al., 2001). Changes in G+C
content during the path of evolution may confer an advantage
in response to environmental changes (Mann and Chen, 2010).
Free-living organisms have an average G+C content higher than
obligatory pathogens and symbionts. The shift toward lower
G+C contents and smaller genomes in obligate pathogenic
mycobacteria seems to occur in response to environmental
adaptation where they encounter low selective pressure (Mann
and Chen, 2010). In this context some genes became inactivated,
as they are not required in these highly specialized niches
meeting the theoretical principles of Morris, Lenski, and Zinser’s
Black Queen Hypothesis for the symbiotic reductive genome
evolution of microorganisms (Morris et al., 2012), now applied to
a bacterium and his long-lasting and almost exclusive host—the
human being. In this case, M. leprae relies on his host functions
to live efficiently, losing burdensome genes for functions it does
not have to perform for itself (Morris et al., 2012). Nevertheless,
it is not clear why M. leprae maintains such high number of
pseudogenes in the genome. It has been hypothesized that the
maintenance of pseudogenes is due to the slow-growth rate
(McLeod et al., 2004) or lack of recombination (Bolotin and
Hershberg, 2015). Additionally, pseudogene maintenance may
allow the bacteria to revert back and forward from a non-
functional protein to a functional one (Bolotin and Hershberg,
2015). If true, this may explain why some genes are loss and
others are maintained as pseudogenes inM. leprae genome.

In this evolutionary context, where an obligate intracellular
pathogen evolved to become dependent on his host, the central
question of this work is the impact of M. leprae genome
downsizing on antimicrobial resistance. This can be viewed as the
time when the host decides that he no longer wants to maintain
this intimate relation and starts antibiotic treatment with the
assistance of his clinician and the health system.

DRUG RESISTANCE AND EFFLUX
SYSTEMS IN M. LEPRAE

Several mycobacterial drug efflux pumps have been described
in M. tuberculosis (Table 1). Comparative analysis of M. leprae
genome shows the presence of approximately half of these
transporters while several others are inactivated or absent,
probably lost as consequence of reductive evolution. In silico,M.
tuberculosis H37Rv genome encodes 267 putative transporters,
of which 129 belong to the ATP-binding cassette (ABC)
superfamily, 31 to the major facilitator superfamily (MFS), 14 to
the resistance nodulation and cell division (RND) superfamily,
1 to the small multidrug resistance (SMR) family, and 1 to
the multidrug and toxic compound extrusion (MATE) family.
M. leprae genome encodes for 114 transporters, of which 62
corresponds to ABC transporters, 6 MFS, 5 RND, and 1 SMR
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TABLE 1 | Putative drug membrane transporters encoded by M. tuberculosis H37Rv and its orthologous in M. leprae TN.

Efflux pump
family

Gene Gene locus tag* Identity (%)** M. tuberculosis

M. tuberculosis M. leprae Antimicrobial substrates Main references

ABC

“One gene” bacA Rv1819c ML2084 75 RIF, INH, BL, CHL, TET, VAN,
MAC, NOV, AGs, AP

Danilchanka et al., 2008; Domenech et al.,
2009; Gupta et al., 2010a; Kapopoulou et al.,
2011; Li et al., 2015

Rv0194 Rv0194 Absent - BL, CHL, STR, TET, VAN, MAC,
NOV, EMB, EtBr

Danilchanka et al., 2008; Kapopoulou et al.,
2011; Garima et al., 2015

pstB Rv0933 ML0741c - FQs, INH, RIF, EMB Banerjee et al., 1996, 2000; Braibant et al.,
1996; Gupta et al., 2006; Srivastava et al., 2010;
Kapopoulou et al., 2011; Brandis and Hughes,
2013; Lu et al., 2014

Rv1473 Rv1473 ML1816c 88 MAC Kapopoulou et al., 2011

Rv2477c Rv2477c ML1248 92 MAC, FQs Gupta et al., 2010a; Kapopoulou et al., 2011

“Two-genes” Rv1218c-

Rv1217c

Rv1218c- Rv1217c ML1073c-
ML1072c

- BL, NOV, BP, PD, PR, BSP, PA,
INH, RIF

Balganesh et al., 2010; Kapopoulou et al., 2011;
Dinesh et al., 2013; Wang et al., 2013

Rv1273c- Rv1273c- ML1114c- 78 Unknown Kapopoulou et al., 2011

Rv1272c Rv1272c ML1113c 75

Rv1668c-

Rv1667c

Rv1668c- Rv1667c ML1240c-
ML1239c

- MAC Kapopoulou et al., 2011

Rv1687c-

Rv1686c

Rv1687c- Rv1686c ML1350c-
ML1349c

- MAC Kapopoulou et al., 2011

“Three-genes” Rv1458c- Rv1458c- ML0590c- 88 RIF, INH, STR, EMB Hao et al., 2011;
Kapopoulou et al., 2011; Caleffi-Ferracioli et al.,
2016

Rv1457c- Rv1457c- ML0589c- 83

Rv1456c Rv1456c ML0587c 83

Rv2688c- Rv2688c- Absent - FQs Pasca et al., 2004; Gupta et al., 2010a;
Kapopoulou et al., 2011Rv2687c- Rv1687c- ML1035 -

Rv2686c Rv1686c ML1034 -

drrA- Rv2936- ML2352c- 85 TET, EMB, MAC, AGs, CHL, RIF,
EtBr, NOR, PUR, BCECF, DAU,
DOX

Choudhuri et al., 2002; Kapopoulou et al., 2011;
Pang et al., 2013; Li et al., 2015drrB- Rv2937- ML2351c- 64

drrC Rv2938 ML2350c 79

MFS

Rv0037c Rv0037c ML0027c - Unknown Kapopoulou et al., 2011

Rv0191 Rv0191 ML2610 - RIF Kapopoulou et al., 2011; Li et al., 2015

emrB Rv0783c ML2224 - Multiple drugs De Rossi et al., 2002; Gupta et al., 2010a;
Kapopoulou et al., 2011; Brandis and Hughes,
2013; Li et al., 2015

Rv0842 Rv0842 Absent - RIF Kapopoulou et al., 2011; Li et al., 2015

Rv0849 Rv0849 Absent - BL, INH, RIF Kapopoulou et al., 2011; Balganesh et al., 2012

Rv0876c Rv0876c ML2143 81 Unknown Kapopoulou et al., 2011

Rv1250 Rv1250 ML1097 - INH Kapopoulou et al., 2011; Garima et al., 2015; Li
et al., 2015

Rv1258c Rv1258c ML1104c - TET, FQs, RIF, CFZ, INH, EMB,
ERY, EtBr, SPE

Ainsa et al., 1998; Siddiqi et al., 2004; Gupta
et al., 2006; Ramón-García et al., 2006, 2012;
Jiang et al., 2008; Kapopoulou et al., 2011;
Balganesh et al., 2012; Machado et al., 2012,
2017

p55 Rv1410c ML0556c 82 TET, AGs, RIF, INH, CFZ da Silva et al., 2001; Jiang et al., 2008;
Ramón-García et al., 2009; Bianco et al.,
2011a,b; Kapopoulou et al., 2011; Machado
et al., 2012, 2017; Li et al., 2015

Rv1634 Rv1634 ML1388 - FQs; SKI De Rossi et al., 2002; Kapopoulou et al., 2011;
Harris et al., 2014

Rv1672c Rv1672c Absent - Unknown Kapopoulou et al., 2011

Rv1877 Rv1877 Absent - RIF, EtBr, ACR, ERY, KAN, TET De Rossi et al., 2002; Li et al., 2004;
Kapopoulou et al., 2011; Louw et al., 2011

Rv2265 Rv2265 Absent - Unknown Kapopoulou et al., 2011

stp Rv2333c Absent - SPE, TET, RIF Ramón-García et al., 2007; Kapopoulou et al.,
2011; Li et al., 2015

(Continued)
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TABLE 1 | Continued

Efflux pump
family

Gene Gene locus tag* Identity (%)** M. tuberculosis

M. tuberculosis M. leprae Antimicrobial substrates Main references

Rv2456c Rv2456c Absent - Unknown Kapopoulou et al., 2011

Rv2459 Rv2459 Absent - INH, EMB, RIF, EtBr De Rossi et al., 2002; Gupta et al., 2010b;
Kapopoulou et al., 2011; Machado et al., 2012;
Li et al., 2015

efpA Rv2846c ML1562c 81 INH, RIF, EtBr, ACR, ERY, FQs Doran et al., 1997; Wilson et al., 1999; Li et al.,
2004, 2015; Gupta et al., 2010a; Kapopoulou
et al., 2011; Machado et al., 2012, 2017

Rv2994 Rv2994 ML1690 - STR, RIF Gupta et al., 2010a; Kapopoulou et al., 2011;
Louw et al., 2011

Rv3239c Rv3239c Absent - Unknown Kapopoulou et al., 2011

Rv3728 Rv3728 ML2340 - RIF Gupta et al., 2010a; Kapopoulou et al., 2011

RND

mmpS1-

mmpL1

Rv0403c-
Rv0402c

Absent - Unknown Kapopoulou et al., 2011

mmpS2-

mmpL2

Rv0506-
Rv0507

Absent - Unknown Kapopoulou et al., 2011

mmpL3 Rv0206c ML2620c 76 SQ109, BM212, AU, IA Kapopoulou et al., 2011; La Rosa et al., 2012;
Tahlan et al., 2012; Li et al., 2014

mmpS4- Rv0451c- ML2377 75 CMB, MB, RIF Kapopoulou et al., 2011; de Knegt et al., 2013;
Wells et al., 2013mmpL4 Rv0450c ML2378 79

mmpS5-

mmpL5

Rv0677c-
Rv0676c

Absent - AZ, BDQ, CFZ, TET Milano et al., 2009; Kapopoulou et al., 2011;
Hartkoorn et al., 2014

mmpL6 Rv1557 Absent - Unknown Kapopoulou et al., 2011

mmpL7 Rv2942 ML0137c 69 INH Choudhuri et al., 1999; Domenech et al., 2005;
Kapopoulou et al., 2011; Machado et al., 2012
Pasca et al., 2005

mmpL8 Rv3823c Absent - SQ109 Domenech et al., 2004; Kapopoulou et al.,
2011; Li et al., 2014

mmpL9 Rv2339 Absent - SQ109 Kapopoulou et al., 2011; Li et al., 2014

mmpL10 Rv1183 ML1231 71 Unknown Kapopoulou et al., 2011

mmpL11 Rv0202c ML2617c 73 Unknown Kapopoulou et al., 2011

mmpL12 Rv1522c Absent - Unknown Kapopoulou et al., 2011

mmpL13a Rv1145 ML0971 - Unknown Kapopoulou et al., 2011

mmpL13b Rv1146 ML0972 - Unknown Kapopoulou et al., 2011

mmpS3 Rv2198c ML0877 68 - Kapopoulou et al., 2011

SMR

mmr Rv3065 ML1756 79 ACR, EtBr, INH, MAC, FQs, TPP,
PY

De Rossi et al., 1998; Kapopoulou et al., 2011;
Balganesh et al., 2012; Machado et al., 2012;
Rodrigues et al., 2013

MATE

dinF Rv2836c Absent - AGs, Phleo, sulpha drugs, CPC Kapopoulou et al., 2011; Mishra and Daniels,
2013

*CDS, coding DNA sequence; **determined at protein level; pseudogenes are underlined. ABC, ATP-binding cassette; ACR, acriflavine; AGs, aminoglycosides; AP, antimicrobial peptides;

AU, adamantyl ureas; AZ, azoles; BCECF, 2’,7’-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein; BDQ, bedaquiline; BL, β-lactams; BP, biarylpiperazines; BSP, bisanilinopyrimidines; CFZ,

clofazimine; CHL, chloramphenicol; CMB, carboxymycobactins; CPC, cetylpyridinium chloride; DAU, daunorubicin; DOX, doxorubicin; EMB, ethambutol; ERY, erythromycin; EtBr,

ethidium bromide; FQs, fluoroquinolones; IA, indoleamides; INH, isoniazid; KAN, kanamycin; MAC, macrolides; MATE, multidrug and toxic compound extrusion; MB, mycobactins; MFS,

major facilitator superfamily; NOR, norfloxacin; NOV, novobiocin; PA, pyrazolones; PD, pyridines; Phleo, phleomycin; PR, pyrroles; PUR, puromycin; PY, pyronin Y; RIF, rifampicin; RND,

resistance nodulation division; SKI, imidazoline SKI-356313; SMR, small multidrug resistance; SPE, spectinomycin; STR, streptomycin; TET, tetracycline; TPP, tetraphenylphosphonium;

VAN, vancomycin.

(Elbourne et al., 2017). Those that have been associated with
drug resistance inM. tuberculosis are discussed below. Alignment
visualization of the M. tuberculosis and the M. leprae whole
genome sequences, with the predicted CDS regions of the efflux
transporters ofM. leprae highlighted is shown in Figure 1.

ABC Transporters
ABC transporters can be divided in those encoded by “one,”
“two,” and “three genes” (Table 1). Among those coded by
“one gene” in M. leprae is ML2084, homologue of BacA that

is involved in virulence of M. tuberculosis (Domenech et al.,
2009) and in the active transport of drugs across the membrane
(Table 1). Absent from M. leprae genome is the transporter
Rv0194, which was the first to be associated with β-lactam
transport inM. tuberculosis -important taking into account since
β-lactams can be useful inM. leprae chemotherapy (Danilchanka
et al., 2008; Garima et al., 2015). The phosphate-specific ABC
transporter (PstB) is known to be operative in M. tuberculosis
during phosphate limiting conditions during infection (Banerjee
et al., 2000). The pst operon encodes pseudogenes in M.
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FIGURE 1 | Alignment of M. leprae TN predicted CDS regions of efflux transporters to those of M. tuberculosis H37Rv. Efflux transporters identified in M. tuberculosis

are highlighted outside the ring in black. The death heads denote pseudogenes. See Table 1 for locus tag. The circular genomic comparison was generated using

BRIG software (Alikhan et al., 2011). CDS, coding DNA sequence.

leprae. As PstB is non-functional in M. leprae and active in M.
tuberculosis this may indicate that M. leprae encounters stable
phosphate content within the host, making the presence of PstB
unnecessary. Besides its role on phosphate uptake, PstB is also
associated to the extrusion of antibiotics (Table 1). Rv1473 and
Rv2477c encode putative macrolide transporters with functional
orthologues in M. leprae genome. To our knowledge, there is no
evidence for M. leprae isolates resistant to clarithromycin so far,
stressing the therapeutic usefulness of this antibiotic against M.
leprae.

ABC transporters encoded by “two genes” are
Rv1218c-Rv1217c, Rv1273c-Rv1272c, Rv1668c-Rv1667c,
and Rv1687c-Rv1686c. Although nothing is known about their

expression inM. tuberculosis, the orthologous genes of Rv1668c-
Rv1667c and Rv1687c-Rv1686c in M. leprae, ML1240c-ML1239c,
and ML1350c-ML1349c, respectively, are non-functional. The
Rv1218c-Rv1217c efflux pump has been associated with M.
tuberculosis resistance to a wide variety of chemical classes of
compounds (Table 1). Orthologues of Rv1273c-Rv1272c can
be found in M. leprae genome but because there are no studies
about their role on M. tuberculosis drug resistance, nothing can
be anticipated forM. leprae.

ABC transporters encoded by “three genes” are the
operons Rv1458c-Rv1457c-Rv1456c, DrrABC and Rv2688c-
Rv2687c-Rv2686c associated with the extrusion of several
drugs in M. tuberculosis (Table 1). M. leprae orthologue of

Frontiers in Microbiology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 3072

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Machado et al. Efflux Pumps in M. leprae

Rv1458c-Rv1457c-Rv1456c is ML0590c-ML0589c-ML0587c,
which encodes a functional efflux transporter. In relation
to Rv2688c-Rv2687c-Rv2686c, M. leprae chromosome has
non-functional orthologues of two components, ML1034-
ML1035 (positive strand), while the orthologue of Rv2688c
is absent. The genes Rv2686c, Rv2687c, and Rv2688c are
co-transcribed. Rv2686c and Rv2687c proteins possess six
transmembrane segments, whereas Rv2688c has a nucleotide-
binding domain and is likely involved in ATP hydrolysis. In
consequence, Rv2688c probably coordinates the functionality
of the whole operon. In this case, it is not surprising
that the absence of the Rv2688c orthologue in M. leprae
renders non-functional the other genes within this operon,
contributing to the increased susceptibility of M. leprae to
fluoroquinolones.

MFS Transporters
M. leprae genome possess 11 MFS drug transporters, whereas
20 can be detected in M. tuberculosis (Table 1). Among the
nine transporters absent from M. leprae genome, nothing is
known about their role in M. tuberculosis for five of them, while
for the remaining four it has been described an association
with resistance to several drugs (Table 1). Concerning the 11
MFS efflux transporters present in M. leprae, eight are non-
functional of which some were found to be upregulated in M.
tuberculosis in response to antibiotics (Table 1). Among these
is noted that Rv1258c, also known as Tap-like efflux pump, is a
pseudogene (ML1104c) in M. leprae presenting 58.4% similarity
at nucleotide level with Rv1258c. Rv1258c is associated with
reduced susceptibility to several drugs, namely to rifampicin and
clofazimine (Table 1) and has an essential role in physiology,
growth, and cell morphology (Ramón-García et al., 2012). These
findings emphasize the important role of the Rv1258c efflux
pump in the oxidative stress response, cell wall assembly and
growth, intrinsic drug resistance (Ramón-García et al., 2012)
and macrophage tolerance (Adams et al., 2011). Since M. leprae
orthologue is non-functional, it is unlikely that Rv1258c play any
role inM. leprae intrinsic drug resistance and virulence. This can
be one more genomic trait of M. leprae that contributes to its
notable susceptibility to rifampicin and clofazimine in vivo.

M. leprae chromosome encodes only three functional MFS
efflux pumps associated with drug transport in M. tuberculosis
(Table 1). Of these, the M. tuberculosis P55 efflux pump
(Rv1410c), orthologue of M. leprae ML0556c, is one of the
most relevant and well-studied efflux pumps of M. tuberculosis
and has been associated with the resistance to several drugs
(Table 1) and virulence. P55 forms an operon with LprG
(Rv1411c), a conserved lipoprotein, which is required for in
vivo growth of M. tuberculosis (Bigi et al., 2004; Farrow and
Rubin, 2008), virulence (Bianco et al., 2011a) and accurate cell-
wall assembly (Bigi et al., 2004; Bianco et al., 2011b). M. leprae
encodes both proteins presenting high similarity with those of
M. tuberculosis. P55 is also associated with cholesterol transport,
carbon metabolism, and oxidative stress, which are of major
importance for mycobacterial optimal survival and pathogenesis
(Ramón-García et al., 2015). Contrary to that observed for
Rv1258c (Tap-like efflux pump), the presence of P55 inM. leprae

genome indicates a vital role of this transporter in M. leprae for
which a significant contribution in providing intrinsic antibiotic
resistance is plausible.

MATE Transporters
DinF (Rv2836c) is the only MATE transporter that M.
tuberculosis genome encodes. The M. tuberculosis homologue in
M. smegmatis (Mmp) is involved in the resistance to multiple
drugs (Table 1). Importantly, DinF is absent from M. leprae
genome which can be related with the Na+-dependent nature of
the MATE transporters that may not exist in the environment
where M. leprae resides. Youm and Saier (2012) also noted the
absence of other NA+ transporters in M. leprae that are present
in M. tuberculosis and suggested that these facilitators probably
contribute to the maintenance of ion homeostasis and adaptation
to several stress conditions.

SMR Transporters
M. tuberculosis genome harbors only one gene belonging to the
SMR family, the mmr gene, orthologue of ML1756 of M. leprae.
Mmr overexpression was showed to decrease susceptibility
of M. smegmatis and M. tuberculosis to intercalating dyes,
quaternary ammonium compounds and antibiotics (Table 1).
Mmr is controlled by the TetR-like transcriptional repressor
Rv3066 (Bolla et al., 2012) whose orthologue in M. leprae is
ML1757. In both species, the transcriptional repressor is located
immediately downstream of mmr or ML1756. However, while
in M. tuberculosis the Rv3066 gene encodes a 202-aminoacidic
protein, its orthologue in M. leprae is a pseudogene. This means
that mmr transcription is no longer repressed in M. leprae.
Nothing is known about M. leprae susceptibility to biocides and
dyes thus the significance ofmmr depression cannot be unveiled.

RND Transporters
M. tuberculosis genome contains 13 genes that encode MmpLs
(Mycobacterial membrane protein, Large), and five auxiliary
proteins, the MmpSs (Mycobacterial membrane protein, Small)
(Table 1). The MmpLs efflux pumps are responsible for
the transport of lipids, mainly mycolic acids, essential for
mycobacterial survival and pathogenesis, and heme transport
(Cox et al., 1999; Camacho et al., 2001; Converse et al., 2003;
Domenech et al., 2005; Tullius et al., 2011; Grzegorzewicz
et al., 2012; Tahlan et al., 2012; Rodríguez et al., 2013). The
expression of M. tuberculosis MmpL proteins is controlled by
a complex regulatory network that includes orthologues of
TetR (Rv1816 and Rv3249c) and MarR (Rv0678) transcriptional
regulators (Radhakrishnan et al., 2014; Delmar et al., 2015).
The transcriptional regulator Rv0678 has no orthologue in M.
leprae and Rv3249c and Rv1816, whose M. leprae counterparts
are ML0770 and ML0933, are non-functional. This indicate that
some of the M. leprae mmpL genes are out of regulation and
are being constitutively expressed or MmpLs regulation in M.
leprae involves a different regulatory network from that found
inM. tuberculosis. Of the 13 MmpLs encoded inM. tuberculosis,
only MmpL3, MmpL4, MmpL7, MmpL10, and MmpL11 are
functional proteins in M. leprae, while the remaining are absent
or non-functional (Table 1). Of these, only MmpL3 is essential
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for M. tuberculosis survival (Domenech et al., 2005). Moreover,
MmpL3 has emerged as a novel therapeutic target in M.
tuberculosis (Li et al., 2014). Due to high degree of similarity
between M. leprae MmpL7, MmpL11, and MmpL3 and their
orthologous in M. tuberculosis (Table 1), we can anticipate a
similar function for both proteins inM. leprae.

MmpS5-MmpL5, one of the most important RND
transporters of M. tuberculosis, is absent in the M. leprae
genome. During the reductive evolutionary process that M.
leprae experienced, the MmpS5-MmpL5 efflux transporter was
eliminated probably to maintain only the pathways required
for a strict intracellular lifestyle, typical of M. leprae. The
overexpression of the MmpS5-MmpL5 efflux transporter was
shown to be associated with resistance of M. tuberculosis to
azoles (Milano et al., 2009) and bedaquiline and cross-resistance
to clofazimine (Andries et al., 2014). The absence of the MmpS5-
MmpL5 explains way clofazimine is so efficient against M.
leprae. So far, very rare M. leprae strains were described with
clofazimine resistance reinforcing the connection between
MmpS5-MmpL5 and clofazimine resistance as well as its unique
hypersusceptibility inM. leprae.

CONCLUSIONS AND FUTURE
PRESPECTIVES

The occurrence of sharedmultidrug resistance efflux transporters
between M. leprae and M. tuberculosis reveals implications for
drug resistance and virulence. Multidrug resistance efflux pumps
are ubiquitous in nature. Some efflux pumps exhibit a dual
role in M. tuberculosis contributing to both drug resistance and
virulence. Here, we have shown that the major M. tuberculosis
efflux pumps that are associated with drug efflux and virulence
have been retained during the reductive evolutionary process that
M. leprae underwent. These efflux pumps are not only important
for substrate transport across the inner membrane but are also
responsible for drug resistance by extruding drugs from the
periplasm to the outside of the cell. They may confer a selective
advantage in hostile environments, therefore contributing to M.
leprae pathogenicity and acquired drug resistance to therapy
as seen in M. tubreculosis. It has been recently shown that
resistance to effective multidrug therapy, especially in the high
burden countries such as Brazil and India, is on rise, with

noteworthy rates of resistance especially against rifampicin and
dapsone (Cambau et al., 2018). Rifampicin resistance was found
in new cases of leprosy that may relate to individual abuse
of this antibiotic usage for treating other bacterial infections
as it was also seen with ofloxacin resistance although an
antibiotic not used for the first-line treatment of leprosy (Cambau
et al., 2018). Future work should focus on efflux pumps, as
those mentioned above, as new drug targets for new leprosy
therapeutics. A comparative transcriptomic profile of these
transporters may provide additional insights, since differences
are expected in the efflux pump expression due to pathogen
specificity as consequence of the obligate intracellular lifecycle
of M. leprae. The modulation of these novel targets will enhance
the eradication efforts of endemic leprosy and prevent emergence

of drug resistance in afflicted countries. This comparative and
perspective study identified these new targets using biological
information gathered from M. tuberculosis and constitutes the
first step for a more detailed computational studies to bring
more mechanistic insights and biological analyses to be applied
to M. leprae, susceptible and drug resistant clinical strains,
similar to what have been done for M. tuberculosis (Sandhu and
Akhter, 2016). The increase in the number of available sequenced
genomes and structural data of these proteins together with
the advances on experimental and computational biology will
improve our knowledge on the relationship between M. leprae
protein sequence, structure, dynamics and function (Li et al.,
2017).
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