
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)Nanyang Technological University, Singapore.

Insights on transfer optimization : because
experience is the best teacher
Gupta, Abhishek; Ong, Yew‑Soon; Feng, Liang
2017
Gupta, A., Ong, Y. & Feng, L. (2017). Insights on transfer optimization : because experience
is the best teacher. IEEE Transactions On Emerging Topics in Computational Intelligence,
2(1), 51‑64. https://dx.doi.org/10.1109/TETCI.2017.2769104
https://hdl.handle.net/10356/147980
https://doi.org/10.1109/TETCI.2017.2769104

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/TETCI.2017.2769104.

Downloaded on 27 Aug 2022 02:50:55 SGT

Abstract – Traditional optimization solvers tend to start the

search from scratch by assuming zero prior knowledge about the

task at hand. Generally speaking, the capabilities of solvers do

not automatically grow with experience. In contrast however,

humans routinely make use of a pool of knowledge drawn from

past experiences whenever faced with a new task. This is often an

effective approach in practice as real-world problems seldom

exist in isolation. Similarly, practically useful artificial systems

are expected to face a large number of problems in their lifetime,

many of which will either be repetitive or share domain-specific

similarities. This view naturally motivates advanced optimizers

that mimic human cognitive capabilities; leveraging on what has

been seen before to accelerate the search towards optimal

solutions of never before seen tasks. With this in mind, the

present paper sheds light on recent research advances in the field

of global black-box optimization that champion the theme of

automatic knowledge transfer across problems. We introduce a

general formalization of transfer optimization, based on which the

conceptual realizations of the paradigm are classified into three

distinct categories, namely, sequential transfer, multitasking, and

multiform optimization. In addition, we carry out a survey of

different methodological perspectives spanning Bayesian

optimization and nature-inspired computational intelligence

procedures for efficient encoding and transfer of knowledge

building-blocks. Finally, real-world applications of the

techniques are identified, demonstrating the future impact of

optimization engines that evolve as better problem-solvers over

time by learning from the past and from one another.

Index Terms – Transfer, Multitasking, Multiform Optimization,

Evolutionary Algorithms, Bayesian Optimization.

I. INTRODUCTION

EAL-world problems seldom exist in isolation. As a
result, humans routinely resort to various information

sources, including a pool of knowledge extracted from past
problem-solving experiences, when faced with a never before
seen challenge or task. However, virtually all traditional
optimization solvers, ranging from classical techniques to
nature-inspired procedures, neglect this key aspect of human
cognitive ability. In particular, a general shortcoming of many
existing search strategies is that the optimization run typically
begins from scratch, assuming a zero prior knowledge state. In
many practical applications involving time sensitive actions

Abhishek Gupta and Yew-Soon Ong are with the Data Science and

Artificial Intelligence Research Centre (DSAIR), School of Computer Science
and Engineering, Nanyang Technological University, Singapore. E-mail:
{abhishekg, asysong}@ntu.edu.sg.

Liang Feng is with the College of Computer Science, Chongqing
University, China. Email: liangf@cqu.edu.cn.

and/or high cost of evaluations, ignoring the knowledge
gained from previous optimization exercises can lead to
deleterious computational overheads in the re-exploration of
similar search spaces. Therefore, the ability to automatically
transfer knowledge across problems is likely to have
significant impact in dealing with the rapidly growing volume,
variety, and complexity of the real-world problems of today.

Any practically useful system in an industrial setting is
expected to tackle a large number of problems over a lifetime,
many of which will either be repetitive or share domain-
specific similarities. Thus, it is the ability to leverage on innate
domain knowledge that often sets apart an expert from a
novice. Notably, in machine learning, the idea of taking
advantage of available data from related sources to improve
the accuracy of the predictive function in a target task has
received much interest under the label of transfer learning [1]-
[3]. Nevertheless, associated research progress has largely
been restricted to the domain of predictive analytics, where the
availability of data makes it possible to ascertain the feasibility
of knowledge transfer. For the case of black-box optimization,
where little problem-specific data is available beforehand,
efforts in automatic knowledge transfer have been relatively
rare; thereby establishing the need to devise new online
approaches that can harness recurrent patterns between
problem-solving exercises. While preliminary efforts in this
regard can be found in the evolutionary computation literature
[4], most approaches have either relied on manual intervention
to incorporate a priori heuristic knowledge into the search [5],
or on the creation of an artificial memory providing a case-
base (i.e., database) of past experiences [6]-[11]. However, in
the latter, the elaborate case by case assessment required to
yield relevant information was found to rapidly become
prohibitive with the growing size of the database [12], [13].

In contrast to the above, humans can usually leverage
enormous amounts of information gathered from experience,
and effortlessly generalize the knowledge whenever faced
with new tasks. The practical motivation for incorporating
such cognitive capabilities into optimization solvers is derived
from the growing presence of modern technologies such as
cloud computing and the Internet of Things (IoT), which
enable large-scale storage and seamless information
communication facilities. In these settings, effectively
capturing higher-order building-blocks of generalizable
knowledge can play a significant role in enhancing the
efficacy of problem-solving. To highlight this point further,
consider the matter of representing the knowledge embedded
in a large number (say N) of elite solutions, each comprising
of B binary bits. If we naively store the raw data in memory,

 Insights on Transfer Optimization:
Because Experience is the Best Teacher

Abhishek Gupta, Yew-Soon Ong, and Liang Feng

R

not only is the extracted knowledge too coarse (as the
information required for a new problem may not be contained
in the data), and possibly overfitting to the original problem(s)
[13], [14], but also consumes N·B bits of memory. On the
other hand, a computational model of the underlying
probability distribution of the same solutions can represent
potentially more generalizable higher-order knowledge while
consuming only O(𝐵 ∙ log2 𝑁) bits of memory [15].

With the IoT giving rise to widespread inter-connectivity
of physical devices and relatively easy access to diverse
information streams, the present paper sheds light on the
emerging scope of black-box optimization solvers to
incorporate the general theme of transfer optimization. We
present a formal motivation and definition of transfer
optimization (in Section II) for it to serve as the common
foundation for specific methodological offshoots. Based on
our proposed definition, three distinct conceptual realizations
of the paradigm are identified – namely, sequential transfer
[16], multitasking [17], and multiform optimization [18] – that
cumulatively encompass a range of ways in which transfer
optimization can be put to use in practical settings.

Beyond formalizations, we draw attention to the most
prominent algorithmic advances that have lately been
achieved. Our survey spans Bayesian (in Section III) and
nature-inspired computational intelligence techniques (in
Section IV), which have emerged as independent tracks
driving transfer optimization in practice [19]-[24]. The two
methods originate from different philosophical perspectives,
and have both attracted much interest in largely distinct
domains. On one hand, Bayesian optimization is extremely
data efficient, but is exclusively a model-based approach [19].
In contrast, nature-inspired techniques, albeit less data
efficient, provide considerable flexibility with the interplay of
evolutionary mechanisms and model-based transfer [16], [24].
With this in mind, the present paper attempts to provide a
summary of the current state-of-the-art with a clear exposition
of the complementary nature of different research strands, so
as to facilitate a unification of ideas leading to the design of
powerful transfer optimization engines in the future.

 In order to emphasize the potential impact of successful
transfer optimization, a diverse array of noteworthy real-world
examples are identified, covering topics such as machine
learning, robotics, engineering design, etc. (Section V).
Thereafter, we outline promising future directions that are
expected to play a pivotal role in establishing automatic
knowledge encoding and transfer mechanisms as intrinsic
features of optimization search (Section VI). Finally, Section
VII encapsulates the paper and presents concluding remarks.

II. PRELIMINARIES OF TRANSFER OPTIMIZATION

Consider a series of K optimization problems (or tasks) that

are labeled as T1, T 2, …, T K, belonging to domains D1, D2,

…, DK, respectively. The kth domain, denoted as Dk, consists

of a search space Xk, and an auxiliary space Yk. To elaborate,

Yk contains the set Yk of all possible operating conditions for
which the optimization exercise may be carried out. For a

particular instantiation of an optimization task Tk in Dk, an
element yk of Yk provides the specific operating conditions.

Furthermore, Tk is described by an objective function fk and a

set of inequality and equality constraints gk and hk,
respectively. With this, the optimization problem formulation

for Tk is stated as,
 max𝒙 𝑓𝑘(𝒙, 𝒚𝑘),

subject to, 𝑔𝑘𝑖(𝒙, 𝒚𝑘) ≤ 0, for 𝑖 = 1, … , |𝒈𝑘|, (1)

and, ℎ𝑘𝑖(𝒙, 𝒚𝑘) = 0, for 𝑖 = 1, … , |𝒉𝑘|.

Here, fk can either be a scalar, for a single-objective
optimization problem (SOP), or a vector constituting a multi-
objective optimization problem (MOP) – in which case it is
written in boldface as fk. Further, |gk| and |hk| are the number
of inequality and equality constraints, respectively. In Eq. (1),
note that yk ∈ Yk is not directly part of the search, as we only

optimize with respect to candidate solutions x ∈ Xk.
From a different point of view, when describing Eq. (1) in

the context of search distributions instead of raw candidate
solutions, its statement can be rewritten as,

 max𝑝(𝒙) ∫ 𝑓𝑘(𝒙, 𝒚𝑘) ∙ 𝑝(𝒙) ∙ d𝒙.

Here, p(x) represents the probability density function of

candidate solutions in Xk. Adhering to this probabilistic
viewpoint, the operating conditions and the set of constraints

of Tk induce a prior distribution p0(x | yk, gk, hk) over Xk at the
onset of the search, such that,
 𝑝0(𝒙) = 0 if 𝒙 ∉ 𝑋𝑘, (2)

where Xk ⊆ Xk is the set of all seemingly admissible solutions

of Tk. Assuming little prior knowledge about the task, as is
often the case for traditional black-box optimization
algorithms, the prior distribution generally satisfies,

 𝑝0(𝒙) > 0 ∀𝒙 ∈ 𝑋𝑘, (3)

which implies that the search assigns a positive sampling
probability to all elements of the admissible set. A uniform
prior is commonly used in this regard.

Next, consider Vk to be the set of all features spanned by

the feature space Vk = Xk × Yk of domain Dk. The

dimensionality of Vk is the cardinality of the set Vk, which is
denoted as |Vk|. Each constitutive feature of Vk imparts
domain-specific contextual meaning that characterizes all
optimization tasks within the domain. At a high-level,
comparing the overlap in the domains (or feature spaces) of
distinct tasks can provide qualitative hints on the suitability of
knowledge transfer between them. Indeed, precise quantitative
analysis of inter-task relationship must take into account {f,
p0(x | y, g, h)}. However, in many real-world applications,
analytical forms of the objective function and constraints may
either be unavailable or inaccessible to rigorous mathematical
treatment. Thus, in what follows, we categorize task pairs
purely based on the extent of domain overlap, as a means of
providing practical and intuitive guidelines to practitioners on
the suitability of transfer optimization [21].

1) Complete domain overlap

For any two optimization tasks T1 and T2, their respective

domains D1 and D2 are said to be completely overlapping if
the features spanned by their corresponding features spaces

are semantically the same, i.e., the relation V1 = V2 holds.
Equivalently, denoting the intersection of feature sets as
Voverlap = V1 ∩ V2, we have,

V1 \ Voverlap = ∅ ∧ V2 \ Voverlap = ∅. (4)

2) Partial domain overlap

Domains D1 and D2 are said to be partially overlapping if
there exists a subset of features that is unique to at least one
task. This condition is expressed as follows,

Voverlap ≠ ∅ ∧ (V1 \ Voverlap ≠ ∅ ∨ V2 \ Voverlap ≠ ∅). (5)

3) No domain overlap
Finally, we label a pair of domains as being completely non-
overlapping if,

Voverlap = ∅. (6)

Note that in all three aforementioned cases |V1|, |V2| > 0.

Ideally, with increasing values of |𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝| |𝑉1 ∪ 𝑉2|⁄ , the

efficacy of transfer optimization can be expected to grow in
conjunction. However, even in cases of no domain overlap,
the potential benefits of knowledge transfer cannot be
immediately rejected. Indeed, some recent studies have
empirically demonstrated that hidden correlations between
tasks may be revealed through appropriate search space
transformation schemes, such as domain adaptation [22] or
cross-domain solution unification [23], [24].

Accordingly, in the formal setup that follows, we make the
explicit assumption that a unification procedure exists that
facilitates the alignment of features in a transformed space.
Thus, a candidate solution x shall hereafter represent a point in

such a unified space X, from which it can be decoded to a

task-specific solution in X1, or X2, …, or XK.

A. The Formalization

The key motivation of this work is to achieve human-level
intelligence, particularly with regard to automatically learning
from experience and generalizing the learned knowledge to
solve related tasks more efficiently. To this end, we note that,
the increase in efficiency of a machine is traditionally defined
as the increase in output of the machine per unit of input.
Even for the case of numerical algorithms, the same definition
can be applied. In the context of optimization, the output can
be interpreted as a scalar measure quantifying the quality Q of
solution(s) obtained. On the other hand, the input is specified
by available computational resources, such as the computing
machinery and the time (or cost) budget. Accordingly, in
subsequent formalizations, we denote the efficiency of a

search algorithm on task Tk as Qt(Tk), which represents the
quality of solution(s) achieved with regard to fk in ‘t’ time-
steps on a designated computer. In particular, if we denote the

set of candidate solutions evaluated over ‘t’ time-steps as 𝑋𝑘𝑡 ,
then the algorithmic efficiency for an SOP can be stated as,

Qt(Tk) = 𝑓𝑘(𝒙∗) : 𝒙∗ ∈ 𝑋𝑘𝑡 ∧ (∄𝒙 ∈ 𝑋𝑘𝑡 : 𝑓𝑘(𝒙) > 𝑓𝑘(𝒙∗)). (7)

Even for the case of MOPs, where a Pareto optimal set of
trade-off solutions are searched for [25], scalar efficiency
measures can be specified based on commonly used quality
indicators such as the hypervolume metric [26]. For the sake
of brevity, we do not present details of the hypervolume or
other related measures in this paper. However, it is important
to highlight that given such a scalar measure, it is generally
possible to analyze MOPs analogously to SOPs.

For a computational intelligence to learn with experience –
i.e., for it to specifically demonstrate transfer optimization
capabilities – it must be endowed with a knowledge base,

which we denote as M, for gathering information from
different problem-solving exercises. Assuming the knowledge

building-block extracted from Tk to be mk, the knowledge base
is considered to grow as,

M = ∪∀𝑘 𝑚𝑘. (8)

Herein, we make an instinctive assumption that the knowledge
extracted a posteriori from an unknown optimization task is
identical to the prior knowledge required to spontaneously
address the same task. With this, we interpret the effect of a
knowledge building-block mk as inducing a biased probability

distribution pt(x | fk, yk, gk, hk) that favors elite solutions of Tk.
We denote this relation as mk → pt(x | fk, yk, gk, hk).
Mathematically, the notion of a biased distribution is deemed
to satisfy the following,

 ∫ 𝑓𝑘(𝒙, 𝒚𝑘) ∙ 𝑝𝑡(𝒙 | 𝑓𝑘, 𝒚𝒌, 𝒈𝒌, 𝒉𝒌) ∙ d𝒙 ≥ 𝑓𝑘∗ − 𝜀, (9)

where (*) represents the global optimum, and ε (> 0) is a small
convergence tolerance threshold. Based on the above, observe

that if the prior in Eq. (3) is set as p0(x) ← mk, then Tk will be
spontaneously addressed, which aligns with our initial
assumption about knowledge building-blocks. This implies
that in scenarios where similar problems recur, solutions can
be obtained faster by directly reusing one of {m1, m2, …, mk-1}

for Tk. However, following Eq. (8), it can also be seen that,

if m1 ≈ m2 ≈ … ≈ mK, then ∪𝑘∈{1,2,..,𝐾} 𝑚𝑘 ≈ 𝑚1.

Clearly, M does not grow if only very similar problems are
solved repeatedly. Thus, in order to continuously expand the
knowledge base, it is crucial to tackle diverse optimization

tasks. To elaborate, in a series of K tasks, TK is said to be
diverse relative to all other tasks if,
 𝑚𝐾\∪∀𝑘≠𝐾 𝑚𝑘 ≠ ∅. (10)

Importantly, based on abstract probabilistic interpretations

of knowledge, i.e., mk → pt(x | fk, yk, gk, hk), the diversity of TK
may alternatively be stated as follows.

pt(x | fK, yK, gK, hK) – ∑ 𝛼𝑘∀𝑘≠𝐾 ∙ pt(x | fk, yk, gk, hk) ≠ 0, ∀𝜶 = [𝛼1; 𝛼2; …] s.t. αk ≥ 0 ∧ ∑ 𝛼𝑘∀𝑘≠𝐾 = 1.

At this stage, note that even if distribution pt(x | fK, yK, gK, hK)

cannot be precisely reconstructed using M, the acquired

knowledge base can still be useful for optimizing TK. Indeed,
there may exist a latent vector α* of mixture coefficients for
which the gap between ∑ 𝛼𝑘∗ ∙∀𝑘≠𝐾 pt(x | fk, yk, gk, hk) and the a
priori unknown distribution pt(x | fK, yK, gK, hK) is small (albeit
non-zero). Therefore, assuming that an appropriate α ≈ α* can

be gleaned online while optimizing TK, relevant information

can still be retrieved from M to accelerate the search.
In order to begin learning optimal mixture coefficients,

the gap between distributions must first be quantified. In this
regard, a commonly used measure with convexity properties is
the Kullback-Leibler divergence (DKL) [27]. In particular, DKL
specifies the amount of information lost when a distribution q
is used to approximate distribution p;

 𝐷𝐾𝐿(𝑝||𝑞) = ∫ 𝑝(𝒙) ∙ [log 𝑝(𝒙) − log 𝑞(𝒙)] ∙ d𝒙. (11)

With this, the coefficient vector α* that minimizes the gap
between pt(x | fK, yK, gK, hK) and ∑ 𝛼𝑘∀𝑘≠𝐾 ∙ pt(x | fk, yk, gk, hk)
is the optimal solution of the following mathematical program,
 min𝜶 𝐷𝐾𝐿(𝑝||𝑞(𝜶)),

where, p = pt(x | fK, yK, gK, hK), (12)

and q(α) = ∑ 𝛼𝑘∀𝑘≠𝐾 ∙ pt(x | fk, yk, gk, hk).

Eq. (12) sets out a blueprint for an adaptive transfer
optimization algorithm in which the transfer of knowledge
occurs by sampling solutions from the optimized mixture
distribution. In particular, the coefficient 𝛼𝑘 can be interpreted
as a learned similarity measure between the kth knowledge
building-block and the current target task of interest, such that 𝛼𝑘 determines the extent to which transfer occurs by setting
the weight of the kth probability distribution in the mixture.

Extending Eq. (12), if we consider 𝜶̅ = [𝜶; 𝛼𝑎𝑑𝑑], where
αadd is the mixture coefficient corresponding to an additional
knowledge building-block madd → pt(x | fadd, yadd, gadd, hadd)

extracted from task Tadd, then it follows that,
 𝐷𝐾𝐿(𝑝||𝑞(𝜶∗)) = min𝜶 𝐷𝐾𝐿(𝑝||𝑞([𝜶; 𝛼𝑎𝑑𝑑 = 0])) ≥ min𝜶̅ 𝐷𝐾𝐿(𝑝||𝑞(𝜶̅)). (13)

Simply put, Eq. (13) indicates that additional problem-solving
experiences should, in principle, monotonically enhance the
ability to approach any desired target distribution arbitrarily
closely. Although such a target distribution is not known
beforehand, it can be gradually approximated during the
course of the search via known density estimation schemes.
Nevertheless, the key message of Eq. (13) is that, with a

growing knowledge base M, it is increasingly more plausible
that the knowledge needed to solve a new task is in fact
already contained in the knowledge base. With an idealized
transfer optimization algorithm, it may be possible to glean the

Fig. 1. The connectivity offered by IoT and cyber-physical systems,
driven by a cloud infrastructure backbone, gives rise to the scope of
seamlessly information communication across distinct problem-
solving exercises at geographically distributed locations (L).

relevant knowledge online while automatically circumventing
the deleterious effects of transferring useless (or possibly
harmful) information (negative transfer [3]). Keeping this in
mind, the principal goal of the transfer optimization paradigm
is summarized by the following definition.

Definition (Transfer Optimization) Given a diverse

experiential knowledge base M = ∪∀𝑘 𝑚𝑘, and a newly

presented optimization task of interest (T), transfer
optimization facilitates performance speedup measured as 𝑄𝑡(T |M) – 𝑄𝑡(T) ≥ 0, where 𝑄𝑡(T |M) is the algorithmic

efficiency conditioned on the knowledge embedded in M.

Notably, with the widespread inter-connectivity of
physical devices offered by the IoT, the scope to build and
leverage a rich knowledge base is greater than ever. This
aspect is highlighted in Fig. 1, where the cyber space brings
together geographically distributed physical systems, thereby
making it possible for embedded solvers to harness large
amounts of information shared by related tasks elsewhere.
Similar ideas of automatic knowledge sharing apply to diverse
applications such as multitasking robotics as well, with data
streaming in through multiple sensory inputs at once.

As an aside, the definition above also sheds light on the
impact of transfer optimization on the inverse efficiency of
computational systems, suggesting that lesser compute power
may be needed to achieve desired outputs. This view aligns
with the recent impetus on moving computations closer to the
edge of the IoT, such that devices with low computational
capabilities can be directly utilized [28].

B. Categorizing Transfer Optimization

Our proposed definition for transfer optimization is quite
broad, and gives rise to various conceptual realizations of the
paradigm. In what follows, we classify these realizations into
three distinct categories that are deemed to shed light upon the
range of ways in which transfer optimization can be put to use
in practical settings.
1) Sequential Transfer
For sequential transfer optimization, we make the strict

assumption that while tackling task TK, the tasks T1, T2, …,
TK-1 have already been addressed previously with the extracted

Fig. 2. In sequential transfer, the assumption is that while solving a
new (target) optimization task, external information is made available
from a knowledge base encompassing all tasks that have been tackled
previously (labeled as source). Thus, the transfer is viewed as being
largely unidirectional from the past to the present. For now, the fact
that knowledge from the present can be used to refine what has been
learned in the past is ignored for simplicity of exposition.

information available in the knowledge base M. Herein, TK is

said to act as the target optimization task, while T1, T2, …,
TK-1 are said to be source tasks – the situation is illustrated in

Fig. 2. Thus, 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
(TK |M) represents the efficiency

achievable on TK conditioned on the knowledge captured in

M. Following the definition of transfer optimization, the aim
for performance speedup as a consequence of sequential
transfer is portrayed as,
 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(TK |M) – 𝑄𝑡(TK) ≥ 0. (14)

Here, Qt(TK) is the efficiency of a traditional optimization
algorithm with no transfer, as given by Eq. (7).

The problem-solving efficacy of a computational system
that successfully mimics human intelligence must ideally grow

monotonically with experience (indicated by the size of M).
The viability of such an outcome – given an ideal transfer
optimization algorithm – is reinforced by Eq. (13). With this,
Eq. (14) may be further generalized;
 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(TK |M) – 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
(TK |M’) ≥ 0 if M’ ⊆ M. (15)

2) Multitasking
Different from sequential transfer, where we are concerned
with optimizing a single target task at a time, multitasking
caters to distinct tasks of equal priority occurring concurrently
[24], [29]. Thus, in certain situations, it may not be possible to
wait for one optimization task to be completed for knowledge
to be made available for subsequent tasks. As an alternative,

the optimization exercises T1, T2, …, TK can progress in
tandem, with the information generated being continuously
updated and shared in the common knowledge base, which is
immediately accessible to all tasks in the multitasking
environment. A high-level schematic of multitasking is
depicted in Fig. 3. Notice that as the knowledge base
continuously evolves during the course of multitasking, it is

denoted as a function of time M(t).

Fig. 3. During multitasking, multiple optimization tasks are tackled

concurrently in a unified search space. The knowledge base M(t) is
continuously updated and spontaneously shared among all tasks in
the multitasking environment.

To emphasize, one of the major distinctions between
sequential transfer and multitasking is that while the former is
characterized by largely unidirectional transfer of knowledge
from the past to the present, multitasking promotes
omnidirectional transfer for more synergistic search.

Due to the simultaneous problem-solving, analyses of
multitasking efficiency (𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘) place requirements on the
quality of solutions obtained across tasks, over a cumulative
time budget of ‘t’ time-steps, to be appropriately aggregated.
Assuming this aggregation function to be Φ, we have,

 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (T1, …, TK | M(t)) = Φ(Q(T1 |M(t)), …, Q(TK |M(t)). (16)

where the efficiency achievable on each task is conditioned on

M(t). The aggregation function is monotonic, which implies

that for distinct algorithms A and A’, if measures Q and Q’
follow Q(Tk) ≥ Q’(Tk) ∀k, with at least one strict inequality,

then Φ(Q(T1), …, Q(TK)) > Φ(Q’(T1), …, Q’(TK)). A sample
aggregation technique has recently been reported in [30].

Given the same batch of K tasks, the efficiency of a
traditional single-task optimization algorithm without the
scope of knowledge transfer is simply,

 𝑄𝑡(T1, T2, …, TK) = Φ(Q(T1), Q(T2), …, Q(TK)). (17)

Hence, the envisioned speedup due to multitasking suggests,
 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (T1, …, TK | M(t)) – 𝑄𝑡(T1, T2, …, TK) ≥ 0. (18)

3) Multiform Optimization

While sequential transfer and multitasking deal with distinct
(self-contained) optimization tasks, multiform optimization is
a novel concept for exploiting alternate formulations of a
single target task of interest [18]. It is noted that in practical
settings, several ways of formulating a particular optimization
problem can be conceived, such as changing the structure of
the objective function [31], [32], choosing the fidelity of an
approximate objective function (in the spirit of multi-fidelity
optimization [33]), deciding the number of control parameters
needed [34], constrained/unconstrained formulations [35], etc.

Fig. 4. Multiform optimization combines distinct formulations of a
particular optimization task of interest into one all encompassing
(multitasking) algorithm.

The challenge lies in the fact that it can often be difficult to
ascertain which formulation is most suited for a particular
problem at hand, given the known limits on computational
resources. Indeed, different formulations induce different
search behaviors, which may not be suitable in all scenarios.
Thus, in such cases, the basic idea of multiform optimization
is to combine different formulations into a single all-
encompassing (multitasking) algorithm, such that the hurdle of
selecting a single formulation is bypassed. Most importantly,
each formulation can serve as a helper (or catalyst) task [36],
[37] in the multitasking environment, thereby allowing us to
leverage the unique advantages offered by each of them
through the process of continuous knowledge transfer.

As a simple illustration of an instantiation of multiform
optimization, consider the notion of multiobjectivization [31].
To elaborate, in multiobjectivization, additional objectives are
introduced in a manner such that, if x* is an optimal solution

of the original task T, and 𝑋𝑅∗ is the set of all Pareto optimal

solutions of the reformulation TR, then,
 ∃𝒙𝑅∗ ∈ 𝑋𝑅∗ ∶ 𝒙𝑅∗ = 𝒙∗. (19)

It has been shown theoretically that multiobjectivization has
the effect of introducing plateaus in the function landscape
[38]. On one hand, this can have the positive effect of
reducing local optima in the original formulation of the
objective function. On the other hand, excessive plateaus may
also make a problem more difficult to solve as an optimization
algorithm is reduced to random walk behavior. This gives rise
to a situation where multiform optimization can thrive, as
shown in [18], as little can be said beforehand about which
formulation is better suited for a particular problem instance.

With this, the conceived performance speedup through
multiform optimization can be stated as,

 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑓𝑜𝑟𝑚
 (T | T1, …, TK, M(t)) – 𝑄𝑡(T) ≥ 0, (20)

Where T is the original problem, T1, T2, …, TK are alternate

formulations, and 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑓𝑜𝑟𝑚
 is the multiform efficiency.

III. TRANSFER BAYESIAN OPTIMIZATION

Heretofore, we have laid down a basic structure for transfer
optimization. In this section, we focus on a specific
methodological perspective for knowledge transmission in
practice – namely, transfer Bayesian optimization.

Bayesian optimization is a fundamentally model-based
approach for tackling black-box problems characterized by
high cost of function evaluations. Due to the considerable
expense, there is strong emphasis on sample-efficiency. In
other words, the knowledge embedded in solutions evaluated
so far during an optimization exercise must be fully tapped
while determining the most promising candidate solution to

evaluate next. For any task T, the technique iterates through
the following steps: (a) learn a probabilistic model p(f) –
typically a Gaussian process – describing the objective
function f, (b) use p(f) to define a low cost acquisition function
that provides a trade-off between exploration and exploitation
while quantifying how promising it is to evaluate a particular
point in the search space, and (c) optimize the acquisition
function to determine the next point to evaluate using the
expensive objective function [39], [40].

Although Bayesian optimization is highly sample-efficient
compared to most other global optimization algorithms, it still
requires tens to hundreds of evaluated solutions to build a
sufficiently good model p(f) that makes effective
recommendations on the next solution to evaluate (also see
Section IV-A). This is commonly referred to as the cold start
problem, and has served as the main impetus to incorporate
the notion of knowledge transfer in Bayesian optimization.

Recently, the majority of examples of practical Bayesian
optimization with knowledge transfer across problems have
been in the domain of automatic hyperparameter tuning of
machine learning models [41]-[42], with certain methods
reporting as much as 40% savings in optimization time
(reduced from 10 days to 6 days) as opposed to the no transfer
case [19]. Therefore, in the next subsection, we use this
domain as the starting point for our subsequent discussions.

A. The Automatic Hyperparameter Tuning Problem

Considering x to denote hyperparameters, A to be the
machine learning algorithm, and d to represent the dataset –
which is split into a training set dtrain, and a validation set dvalid

on which the generalization error f (x, A, dtrain, dvalid) of A is
measured – the goal of hyperparameter optimization can be
stated as follows,
 min𝒙 f (x, A, dtrain, dvalid). (21)

As the evaluation of each candidate solution includes the
training and validation of the machine learning algorithm, the
tuning of hyperparameters can be extremely computationally
expensive. The matter is further exacerbated in the case of big
data, i.e., when the dataset d is very large.

To overcome the aforementioned challenge, it is contended

that if d1, d2, …, dK-1 are different datasets on which A has
been applied in the past, then the solutions/models generated
during the previous hyperparameter optimization exercises

may be useful when A is applied to a new dataset dK. Indeed,
it is this ability to harness experiential knowledge that

separates an expert (human) machine learning practitioner
from a beginner. Importantly, the proposition fits perfectly
within our conceived scope of transfer optimization, with a

task Tk being associated to dataset dk.
On comparing Eq. (21) with Eq. (1), dk can be seen as

resembling the operating conditions yk for which optimization
is to be carried out. Therefore, it is claimed that recently
developed transfer Bayesian optimization algorithms for
automatic hyperparameter tuning have immediate implications
for general optimization problems as well. To emphasize the
generality of our discussion, in the next subsection we replace
dataset d with operating condition y throughout.

B. Methods of Transfer

In [19], the exchange of knowledge among tasks T1, T2, …,
TK was accomplished by using a multitask Gaussian process
to learn a joint probabilistic model p(f1, f2, …, fK). In particular,
similarities across tasks were exploited by using the following
product covariance function for solution and task pairs,

c((x, yj),(x’, yk)) = cX(x, x’) · cT(yj, yk), (22)

where, cT is the covariance between tasks and cX is a
correlation function between inputs [43]. The salient feature of
the approach is that inter-task correlations are explicitly

accounted for through cT. To elaborate, if two tasks Tj and Tk

are indeed mutually informative, cT(yj, yk) will assume a high

magnitude while learning p(f1, f2, …, fK). In contrast, if Tj and

Tk are unrelated, then cT(yj, yk) ≈ 0, so that the optimization
exercise is not hampered due to harmful transfer.

Incidentally, accurately learning the parameters of the
product covariance function becomes challenging when many
tasks exist simultaneously. As an alternative, in [41], transfer
was facilitated by constructing a common response surface for
all tasks. A scenario was presented where optimization
exercises for different operating conditions appear one after
the other in a sequential manner. The authors assume that for

similar tasks T1, T2, …, TK the underlying functions f1, f2, …,
fK look qualitatively similar, although their location and the
scale parameters can differ. Based on this assumption, when

faced with TK, the common response surface is constructed by
normalizing the objective function values as,

 𝑓𝐾 = 𝑓𝐾−𝜇𝜎 , (23)

where μ and σ are the mean and standard deviation,
respectively, calculated from the solutions evaluated so far for

TK. The effect of the normalization procedure is to transform
similar-looking functions in a manner such that they have
comparable means and scale parameters as well, which allows
a common Gaussian process model with shared covariance
function to be transferred across tasks.

Along the same lines as the above, in [42] the common
response surface was constructed by considering, for a given

task Tk, the ordinal (or ranking) information ‘r’ of the
objective function fk instead of its absolute value. To
elaborate, fk(x, yk) < fk(x’, yk) ⇔ r(x, yk) < r(x’, yk). Since
rankings have a consistent scale, a single Gaussian process

regression model p(r) is built by combining the ranking
information accumulated across all tasks. Thereafter, for a

newly faced task TK, an acquisition function defined on p(r) is
optimized to determine the next candidate solution to evaluate.

While [19], [41], [42] put forward elaborate procedures
for transfer to be carried out effectively, in [16] a simple meta-
learning initialization scheme was proposed that can be
incorporated within any traditional Bayesian optimization
algorithm to combat the cold start problem. To this end, the
initial solutions to be evaluated for building the probabilistic

model p(fK) for a newly faced task TK are biased towards the

set of optimized solutions of tasks T1, T2, …, TK-1 solved in
the past. Specifically, optimized solutions of those tasks that

are most similar to TK are considered. The similarity is
determined by a learned regression model that captures the

correlation c(yj, yk) between any Tj and Tk, where,
 𝑐(𝒚𝑗 , 𝒚𝑘) = 𝑟𝑠(𝑓𝑗(𝒙, 𝒚𝑗), 𝑓𝑘(𝒙, 𝒚𝑘)). (24)

In the above, rs represents the Spearman rank correlation
coefficient between the two functions.

IV. TRANSFER EVOLUTIONARY OPTIMIZATION

In this section, we first compare and contrast Bayesian
optimization with evolutionary algorithms (EAs). Thereafter,
we discuss three different methodological perspectives that
have been proposed in the literature for achieving knowledge
transfer in evolutionary optimization.

A. Bayesian vs. Evolutionary Optimization

Despite many success stories, there are several challenges that
limit the general applicability of Bayesian optimization. For
instance, the methods described in Section III do not directly
extend to combinatorial optimization problems as the
covariance matrix of the probabilistic Gaussian process model
becomes indefinite under combinatorial representations [44].
Further, handling high-dimensional search spaces in Bayesian
optimization leads to considerable difficulties as the number
of solution evaluations needed to get a good coverage of the
search space increases exponentially. As a result, a
probabilistic model built with a small number of evaluated
solutions may no longer be sufficient for making effective
prescriptions about the next point to evaluate.

It is worth mentioning that many of the difficulties
associated with Bayesian optimization are commonplace in
real-world applications. Therefore, a clear need arises for the
development of alternate black-box optimization algorithms.
EAs effectively fill this void. The key distinguishing feature of
evolutionary methods is their fundamental reliance on
evolutionary selection pressure (i.e., the principle of survival
of the fittest) which generally acts on a population of search
agents (or individuals). Typically, an individual solution in an
EA is encoded as a chromosome (i.e., a string of genes) and
endowed with a fitness that corresponds to its objective
function value. If the fitness of the individual is relatively high
(compared to the other individuals generated), its probability
of survival and subsequent offspring creation is also high. On
the other hand, if its fitness is low, it is bound to get gradually
eliminated from the evolutionary search. The simplicity of the

idea provides much flexibility for the design of highly
parallelizable EAs that can tackle various practically relevant
scenarios, including high dimensional searches [45], and
combinatorial representations [46]. Another feature of EAs is
the seamless interplay possible between evolutionary
mechanisms and model-based search. This has given rise to
surrogate-assisted EAs, which form a class of methods tailored
for computationally expensive problems; similar to Bayesian
optimization. However, while Bayesian approaches require
probabilistic function approximations, EAs can be combined
with different surrogate models, including deterministic neural
networks, polynomial response surfaces, etc. [47].

B. Genetic Transfer

The salient feature of EAs lends itself well to the transfer
optimization paradigm. Specifically, if the knowledge
transferred from a different optimization exercise is useful, the
EA automatically preserves it and allows it to be further
refined during the evolutionary search. However, if the
transferred knowledge does not contribute to the solution of
the current problem being solved, the selection pressure takes
care of sieving out the useless (or harmful) genetic material.

In recent times, several attempts have been made to
exploit the inherently adaptive nature of EAs for efficient
transfer optimization. Given some form of cross-task solution
unification (as alluded to in Section II), the general strategy is
to bias the initial population distribution of a target task
towards elite solutions obtained for source tasks through direct
seeding of optimized genetic material [6], [48], [49]. The
rationale behind such a strategy is that if the objective

functions of tasks Tj and Tk are highly correlated in the
ordinal sense, which implies,

 fj(x) < fj(x’) ⇔ fk(x) < fk(x’), (25)

then optimizing one task immediately solves the other – by

simply sharing the optimized genetic material. Contrarily, if Tj

and Tk are uncorrelated, then the transferred genetic material
is automatically ejected during the selection stage of the
evolutionary search.

C. Evolutionary Multitasking

The motivation for evolutionary multitasking emerges from
two observations that act over and above the ones discussed in
the previous subsection. To begin, the implicit parallelism of a
population offers an ideal platform for multiple concurrently
occurring optimization tasks to be addressed without delay,
such that the unified treatment enables latent correlations to be
automatically harnessed during the search [21]. Further, for
tasks that are not strongly correlated in the ordinal sense, it has
been found that the (genetic) transfer of non-elite solutions
often proves to be more useful [6]. However, this feature is not
appropriately exploited by sequential transfer strategies where
the initial population of the target task is simply biased
towards elite source solutions. In contrast, algorithms for
evolutionary multitasking facilitate the continuous exchange
of genetic material throughout the course of the evolutionary
search [24], thereby making it possible for all tasks in the
multitasking environment to synergistically gain maximum
benefits from one another.

Fig. 5. A simple task can be exploited by a complex task in the
same multitasking environment for faster convergence.

To further demonstrate this aspect of evolutionary

multitasking, we refer to the illustrative minimization example

in Fig. 5. Therein, task T1 is shown to have a relatively
smooth objective function that is typically easier to optimize,

while T2 possesses a rugged landscape such that any
optimization algorithm has a tendency of getting trapped at a

local optimum. The global optimum of T2 is located at 0 and

that of T1 is located at 0.6. Interestingly, the point 0.6 is also a

local optimum of T2 (as can be seen in Fig. 5). Assuming that

T1 and T2 are solved in a sequential manner, if we bias the

initial population distribution of T2 as p0(x) ← pt(x | f1), then
the search is likely to stagnate at the local optimum. However,

if T1 and T2 are solved together via multitasking, then, in the
range [-0.8, 0], the continuous exchange of genetic material

enables T2 to exploit the smooth landscape of f1 as an alternate
gradient descent direction, thereby avoiding several local
optima to converge faster to its global optimum.

Nevertheless, as for transfer optimization in general,
determining the suitability of evolutionary multitasking in
arbitrary scenarios is not trivial. This is due to the lack of prior
data in black-box optimization, which makes the viability of
knowledge transfer difficult to ascertain beforehand. Thus,
there arises the need for fast online measures of the similarity
across problems – possibly based on the blueprint set out in
Section II-A – such that adaptive multitasking can be carried
out (as is currently possible in Bayesian optimization). We
note that while offline methods to measure the synergy
between optimization landscapes have been proposed for
benchmark problems [50], these may rarely apply in practice
where little is known beforehand about the objective function.
Alternatively, the guidelines specified in Section II, based on
the extent of overlap between the feature spaces of distinct
tasks, provide useful intuition as to when multitasking may be
successful. Further, examples in multiform optimization are
deemed to be well suited for multitasking, as a fundamental
relationship is already known to exist between the tasks.

D. Evolutionary Algorithms with Model-based Transfer

The techniques discussed heretofore were all essentially based
on the direct transfer of genetic material across optimization
tasks. However, as mentioned earlier, the flexibility offered by

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

X

f

f
2
 of Task 2

f
1
 of Task 1

The smooth landscape of
f
1
 can be leveraged by f

2

during multitasking.

EAs allows the interplay of evolutionary mechanisms with
model-based transfer. To elaborate, the learned models serve
to capture hidden patterns in optimized solutions, which may
then be useful for future problem-solving exercises. In the
memetic computing literature [51], such computational
representations of knowledge are often referred to as memes,
which can either be passed from one individual to another (via
imitation) [52], or even be propagated across problems [16].

In contrast to genetic transfer, the hallmark of model-
based transfer schemes is that the knowledge is represented in
a more succinct manner (instead of storing the raw data), and
shows lesser tendency of overfitting. Thus, while the success
of genetic transfer is largely restricted to very similar
problems with the same search space dimensionality, higher-
order computational models can encapsulate generalizable
knowledge with increased potential for transfer.

Lately, notable success stories have surfaced to
substantiate the efficacy of EAs with model-based transfer.
For instance, in [53] the model (m) takes the form of a matrix
that induces a modified distance metric for graph-based
clustering cum sequencing problems – such as classical
vehicle and arc routing [54]. In particular, given a pair of
nodes na (with Cartesian coordinates sa) and nb (with Cartesian
coordinates sb) of a graph embedded in Euclidean space, the
model scales the distance between them as,

dist(na, nb) = √(𝒔𝑎 − 𝒔𝑏)𝑇𝑚(𝒔𝑎 − 𝒔𝑏), (26)

so as to bring nodes that belong to the same cluster closer to
one another, while moving nodes belonging to different

clusters further apart. When faced with a new task, say TK, a
combination of the previously learned models m1, m2, …, mK-1

is applied on the nodes of TK to map to solutions that are
(hopefully) close to the optimum clustering. Note that since
the m’s map to a small subset of all possible clusterings, they
can be seen as inducing a biased distribution conditioned on
the knowledge acquired from the past (which aligns with our
abstract interpretation of m in Section II). It is worth
mentioning that in [16], [55], the distance metric learning
technique was extended to account for sequencing information
as well. What is more, in [56], an artificial neural network-
based binary classification model was proposed as a substitute
to distance metric learning for identifying pairs of nodes that
belonged to the same cluster.

Conceptually similar to the examples above, in [57]-[59]
it was shown that in estimation of distribution algorithms
(which are a class of probabilistic model-based EAs [60]),
recurrent patterns in the linkages between genes (variables) of
discrete optimization problems could be gleaned from
previous probabilistic models to guide the model learning
process for related problems in the future. By doing so, not
only was the complexity of model building reduced, but the
search was also made more effective on future tasks. An
alternate strategy within the same class of algorithms was
proposed in [61], where, when a new problem arises, the
probabilistic models of previously solved problems that are
deemed similar are retrieved from a case base, combined [62],
and then sampled to generate the initial population. The
method is technically a lot like genetic transfer-based seeding.

 Even in the domain of continuous optimization, promising
results have been achieved by incorporating model-based
transfer mechanisms. For example, in [63], a decision tree was
learned on data generated during the optimization exercise to
decipher the feasibility structure of an underlying highly
constrained problem. Using the trained model to bias the
initial population to lie entirely in the predicted feasible region
resulted in substantial speedups of the evolutionary search on
related problems in the future. More recently, in [64], a
denoising autoencoder was used to learn a mapping between
corresponding populations of distinct optimization tasks. To
elaborate, at generation G, if the population of solutions (in

matrix form) of the target task TK is 𝑋𝐾𝐺, and the
corresponding population of a previously solved source task

Tk is 𝑋𝑘𝐺, then the denoising autoencoder (mk) is learned as,
 min𝑚𝑘 ||𝑚𝑘 ∙ 𝑋𝑘𝐺 − 𝑋𝐾𝐺||𝐹, (27)

where 𝑋𝑘𝐺 is treated as a corrupted version of 𝑋𝐾𝐺. In Eq. (27),
||· ||F indicates the Frobenius norm. The trained autoencoder
was then used to transform and transfer the optimum solutions
of the source task to the current target task of interest.
Numerical experiments based on this approach demonstrated
accelerated convergence characteristics for a variety of
benchmark and real-world MOPs.

Finally, much like the recent advances seen in Bayesian
optimization, there exists significant scope for augmenting
surrogate-assisted EAs with concepts of adaptive transfer
learning, such that data/models from related problems can be
used to build accurate and low cost approximations of costly
functions in the target task of interest. Preliminary work in this
direction has been done for multi-fidelity problems [33], [65],
where information from low fidelity models is used to
accelerate high fidelity optimizations.

V. PRACTICAL TRANSFER OPTIMIZATION EXEMPLARS

Any practically useful system will generally face a large
number of problems in its lifetime, most of which will either
be repetitive or have domain-specific similarities. Mechanisms
for automatically exploiting these latent similarities are the
distinguishing feature of transfer optimization algorithms. In
this section, we present latest research activities that offer a
glimpse of the considerable utility of the paradigm across a
wide array of real-world applications, ranging from machine
learning to engineering design.

A. Transfer Optimization in Machine Learning

In addition to the automatic hyperperameter tuning problem
discussed in Section III (which has largely been the arena of
transfer Bayesian optimization), there exist a plethora of
opportunities for the different conceptual realizations of
transfer optimization to come to the fore in machine learning.
Particularly noteworthy advancements have been made in
transfer optimization enabled genetic programming (GP). As
an example, [66]-[68] showed that by transferring optimized
genetic material (in the form of trees or sub-trees of computer
programs evolved by a GP solver) from a source to a target
symbolic regression task helped achieve better training error
as well as improved generalization performance. The authors

of [69], [70] applied a similar strategy to learning classifier
systems, demonstrating that building-blocks of knowledge in
the form of code fragments (GP-like sub-trees), that were
extracted from small-scale problems, could be reused while
learning more complex (large-scale) problems in the same or
related domains akin to the behavior of human beings. In [71],
it was revealed that this general approach can solve very
difficult variants of the n-bit multiplexer problem that were
previously insolvable by any other method.

The GP-based transfer scheme was further extended in
[23] to the case of image classification. In particular,
potentially useful code fragments extracted from simpler
image classification problems were incorporated into the
initial population and genetic mutation steps of a transfer
learning GP algorithm, thereby leading to improved
performance in complex, e.g., rotated and noisy, problems
from similar as well as different domains.

While the examples presented above follow a procedure
aligned to sequential transfer, there have also been recent
applications of evolutionary multitasking in the field of
machine learning. For instance, an evolutionary multitasking
variant of Cartesian GP has been shown to solve a set of
elementary logic functions twice as easily as with a direct
single-task approach [72]. In [73], a multifactorial EA
(MFEA) based multitasking engine [18], in conjunction with
GP, was used for learning an ensemble of decision trees. The
results showed that the multitasking algorithm was able to
achieve classification accuracy comparable to an ensemble
generated through multiple runs of traditional GP, and yet at
the computational cost of only a single run. Likewise, in [74],
a real-coded MFEA was used for modular training of feed-
forward neural networks (where each task was described by a
network of distinct width), showing superior convergence
characteristics and classification performance in comparison
to classical single-tasking for the n-bit parity problem. In [75],
the basic idea of modular topologies through evolutionary
multitasking was extended to extreme learning machines.
Further, a co-evolutionary multitask learning approach has
only recently been proposed for multi-step-ahead time series
predictions [76], where different prediction horizons are seen
as different but related tasks enabling transfer optimization.

B. Transfer Optimization in Robotics

A commonly encountered challenge in robot control tasks is
the bootstrap problem [77], which concerns the lack of a
sufficient fitness gradient during the initial stages of the search
process. While evolving the controllers, the problem is further
magnified when a randomly generated initial population is
used. To overcome this hurdle, a genetic transfer-based family
bootstrapping approach was proposed in [78], where the
optimized solutions of a common source task were used to
bias the initial population for associated target tasks. In other
words, the optimized solutions from the source task formed
the family ancestry for the subsequent stage of target tasks.
The most interesting conclusion drawn from the experimental
results was that creating the ancestry from a source MOP
proved more helpful than a source SOP. This leads to the
insight that the Pareto optimal solutions of an MOP can lead to
a more diverse knowledge base, which, as has been argued in
Section II-A, is beneficial for transfer optimization.

In addition to sequential knowledge transfer, the potential
impact of evolutionary multitasking in robotics has been
investigated in [21]. Therein, preliminary work was presented
on improving the path planning of unmanned aerial vehicles
by tackling multiple related missions simultaneously.

C. Transfer Optimization in Games

The computer gaming industry is rapidly growing, and has
much benefitted from the use of artificial intelligence in
enhancing game-play experience [79]. As a result, games are
also commonly used by researchers as test beds for
showcasing the efficacy of state-of-the-art algorithms [80]. It
therefore comes as little surprise that the potential of transfer
optimization has been established in computer games as well.
In [81], EAs were used to develop player strategies that could
lead to challenging opponents in tactical and strategic games.
Specifically, the concept of genetic transfer was invoked to
respond quickly to changing game dynamics – where a change
was simply viewed as a new problem that is likely to share
some similarities with previous settings. In addition to the
above, knowledge was automatically acquired from human
players by recording their game-play, so as to learn how to
avoid potential traps.

The efficacy of an evolutionary transfer reinforcement
learning framework for multi-agent systems, based on the
concepts of memetic automaton [82], has lately been
demonstrated on a first person shooter computer game [83].
The success of the approach is attributed to the scope of
transfer across agents, which enables them to learn faster from
better performing agents and thereby solve complex tasks
more efficiently and effectively.

Besides computer games, the capability of solving
complex puzzles can provide insights about the prowess of
machine intelligence. In [84], Sudoku puzzles (which can be
cast as highly constrained combinatorial optimization
problems) were considered because of the interesting feature
that outwardly unlike puzzles can often end up having final
solutions that are alike; which provides an analogy to the
prevalence of latent synergies between seemingly disparate
problem-solving tasks. The numerical experiments showed
that when latent synergies in the form of complementary
constraints existed, the multitasking MFEA resulted in rapid
streamlining of the search towards feasible solutions.
However, it was also found that for the case of task clones
(i.e., puzzles that were identical in every sense), multitasking
performed the same as standard single-tasking; possibly
because no new information was available from the other task.
This led to the realization that in evolutionary multitasking,
inter-task complementarity emerges from myriad interactions
between tasks that may not be apparent to the eye. For the
sake of brevity, we refrain from discussing this matter in depth
in this paper. For preliminary thoughts on what it might mean
for one task to complement another in a general multitask
setting, the reader is referred to [50].

D. Transfer Optimization in Dynamic Environments

The ubiquitous need for prompt decision making in dynamic
environments provides a perfect setting for transfer
optimization. This is because any change in the environment
can be seen to constitute a new problem, to which knowledge

can be transferred from previously tackled environments.
When the changes are cyclic in time, the transfer of
knowledge can work particularly well. These observations
have been exploited for designing various approaches for
optimization in dynamic environments, a review of which is
available in [85]. For instance, an associative memory scheme
was proposed in [86], where probabilistic models together
with optimized solutions of past environments were stored for
reuse whenever a change in the environment occurred. While
[86] is memory-based, prediction-based approaches for
dynamic environments have also been proposed in the past
[87], where changes in the solutions are estimated based on
changes that have occurred previously. More recently, the
distance metric learning-based transfer procedure (described
in Section IV-D) has also been adapted for handling
dynamism in the logistics industry [88]. In particular,
whenever new customer requests are received during the
execution of a delivery plan, the knowledge captured from the
previous time slot is applied for maximally aligning the
customer distribution to the customer-vehicle assignments –
thereby reducing the effort needed for re-optimization.

E. Transfer Optimization in Engineering Design

Engineering designs are usually gradually improved over time.
Further, it is found that modern day design cycles are typically
distributed in nature, consisting of multiple teams working on
associated ideas in tandem [89]. Various conceptual designs
are analyzed, before selecting the one that best suits a set of
requirements [90]. Thus, manual knowledge adaptation and
reuse is routine practice to speed up the process. By extension,
the utility of transfer optimization emerges naturally, as the
paradigm facilitates automatic exploitation of the overlaps
between related designs.

A number of optimization strategies have been proposed
lately for accelerating engineering design. In [64], the
denoising autoencoder was used to map optimized solutions of
previous process design exercises to the current target task of
interest. Alternatively, a decision tree trained to decipher the
feasibility structure of a problem was used in [63] as a
transferrable nugget of knowledge within a family of
processes for composite materials manufacturing.

Even the benefits of evolutionary multitasking have been
demonstrated in the context of engineering design [91], [92].
To elaborate, by tackling designs of more-or-less similar type
concurrently, the cost of exploring common parameter spaces
was shown to be substantially reduced. This feature is strongly
highlighted in [91] where multitasking was shown to push the
envelope of EAs, facilitating simultaneous convergence to
Pareto optimal solutions of multiple MOP design formulations
at the same time. The efficacy of multitasking further extends
to highly constrained search spaces common in engineering
design, such that the distribution of feasible solutions is
gleaned and automatically transferred from simpler to more
difficult problems through continuous genetic exchange [93].

VI. FUTURE DIRECTIONS

So far in the paper, we have discussed two distinct research
strands in the field of global black-box optimization that have
addressed the notion of automatic knowledge transfer. To
summarize, model-based approaches of Bayesian optimization

algorithms is found to enable explicit learning of the similarity
between optimization problems as the search progresses and
data is gradually accumulated. As a result, the extent to which
transfer should occur between tasks can be automatically
modulated online during the course of the search. In other
words, transfer Bayesian optimization provides an appealing
option for truly adaptive transfer. However, there are certain
shortcomings. To begin, the Gaussian process models that are
typically used for probabilistic approximations of the objective
function in Bayesian optimization do not directly extend to the
case of combinatorial representations. Further, as the
dimensionality of the problem grows, Bayesian optimization is
severely hampered by the cold start problem, as an
exponentially increasing number of data points are needed to
start learning sufficiently informative models. Thus, despite its
notable features, there exists a wide range of real-world
scenarios in which Bayesian optimization may fail.

To deal with the aforementioned challenges, evolutionary
computation has emerged as an attractive alternative. The
flexibility offered by the simple mechanisms of EAs allows
combinatorial representations, as well as problems with
significantly larger search space dimensions, to be tackled
with relative ease. Notably, EAs also allow for automatic
knowledge incorporation through direct genetic transfer, or
through different forms of model-based transfer. However, a
drawback of existing methods in this regard is that they are
generally found to be over reliant on the sieving effect of the
evolutionary selection pressure. Sufficiently in-depth analysis
is seldom done to infer the similarity across problems.
Therefore, given many diverse information streams, it is
highly likely that the selection pressure will be overburdened
in the process of culling an abundance of useless information.
In the worst case, this may severely hamper the overall
efficacy of the evolutionary search process [94].

Taking note of the strengths and weaknesses of these two
prominent strategies for black-box optimization, it is deemed
that the future of transfer optimization as an industrial norm
depends on a conceptual unification of the research strands.
On one side, research efforts are needed towards the
development of novel representation schemes and genetic
operators that are better suited for seamless knowledge
transfer and multitasking, such that the burden on the
evolutionary selection module can be reduced. On the other
side, lessons must be learned from the advances in transfer
Bayesian optimization, such that some theoretical guarantees
can be achieved with regard to minimizing the deleterious
effects of harmful negative transfer through the explicit
capture of the similarities across problems.

Given the path ahead of us, it is our view that the future
lies in a new generation of memetic computing, where, with
the widespread connectivity of devices supported by the IoT,
the notion of memes in computational intelligence will take a
form analogous to their social connotation. We elaborate in
the next subsection.

A. The Emerging Problem-Solving Web

As has been alluded to throughout this paper, real-world
problems seldom exist in isolation. The implications of this
fact are further magnified with the dawn of the IoT. While
optimization problems have largely been dealt with as self-

contained silos, the future shall give rise to complex networks
of related problems, with each node in the network being
either a self-contained task, or a single component of a much
larger multicomponent problem. Memetic computing is
expected to thrive in such settings. In particular, the
interconnected web of problems will make it possible for
knowledge memes generated at any node to propagate
throughout the network (mimicking the viral effect [95]), such
that other problem-solving exercises can immediately benefit
from related experiences elsewhere.

Finally, we note that a conceptual simplification in the
theoretical formalizations in this paper has been that a
knowledge building-block (or meme) extracted from a
particular task (or node) does not evolve despite what is
learned from subsequent tasks. However, it is understood that
as a meme propagates through a network of problems, it may
be progressively augmented at each node, such that it houses
increasingly complex knowledge that is suited for tasks of
growing complexity. The utility of such progressive
knowledge transfer for problem-solving has been shown in the
context of neuroevolution of challenging controller design
tasks [96]. Notably, the idea of continuously evolving memes
is somewhat analogous to that of continual learning [97].

VII. CONCLUSIONS

This paper is dedicated to establishing the notion of transfer
optimization as a novel paradigm facilitating the automatic
transfer of knowledge across problems as a way to mimic an
essential feature of human intelligence. A formalization of the
paradigm was presented, showing, in particular, that with a
growing knowledge base the problem-solving capability of an
ideal transfer optimization algorithm will in principle grow in
tandem. A rough blueprint for such an adaptive algorithm was
also proposed based on the learning of an optimal mixture of
knowledge represented in the form of probability density
estimations. Following from the formalizations, three distinct
conceptual realizations of transfer optimization were
identified, namely, sequential transfer – where problems
appear one after the other, multitasking – where multiple
optimization tasks occur simultaneously, and multiform
optimization – where multiple distinct formulations of a single
target task of interest are tackled in conjunction.

In addition to introducing the general problem statement,
various methodological perspectives spanning Bayesian as
well as evolutionary techniques were surveyed, with the idea
that the future of transfer optimization depends on a
conceptual unification of the complementary aspects of the
two research strands. Further, a variety of noteworthy real-
world exemplars, ranging from machine learning to
engineering design, were discussed, highlighting the practical
implications of associated research activities.

To conclude, it is observed that the widespread
connectivity offered by present-day technologies, such as IoT
and cyber-physical systems, provides immense scope for
harnessing the knowledge embedded in vast information
streams from related tasks in geographically distributed
locations. Such settings point towards a new generation of
memetic computing, where knowledge memes extracted from
a specific task can be spontaneously propagated through an
inter-connected web of related problem-solving exercises,

thereby lending memes in computational intelligence a form
analogous to their social connotation.

ACKNOWLEDGEMENT

This work is partially supported by the Data Science and
Artificial Intelligence Research Centre (DSAIR) and the
School of Computer Science and Engineering at Nanyang
Technological University.

REFERENCES

[1] Thrun, S. (1996, January). Is learning the n-th thing any easier than
learning the first?. In Advances in neural information processing systems
(pp. 640-646). MORGAN KAUFMANN PUBLISHERS.

[2] Caruana, R. (1998). Multitask learning. In Learning to learn (pp. 95-
133). Springer US.

[3] Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10), 1345-1359.

[4] Jin, Y. (Ed.). (2013). Knowledge incorporation in evolutionary
computation (Vol. 167). Springer.

[5] Becerra, R. L., & Coello, C. A. C. (2005). A cultural algorithm for
solving the job shop scheduling problem. In Knowledge Incorporation in
Evolutionary Computation (pp. 37-55). Springer Berlin Heidelberg.

[6] Louis, S. J., & McDonnell, J. (2004). Learning with case-injected
genetic algorithms. IEEE Transactions on Evolutionary Computation,
8(4), 316-328.

[7] Leake, D. B. (1996). Case-Based Reasoning: Experiences, lessons and
future directions. MIT press.

[8] Kraay, D. R., & Harker, P. T. (1996). Case-based reasoning for
repetitive combinatorial optimization problems, part I: Framework.
Journal of Heuristics, 2(1), 55-85.

[9] Bearpark, K., & Keane, A. J. (2005). The use of collective memory in
genetic programming. In Knowledge Incorporation in Evolutionary
Computation (pp. 15-36). Springer Berlin Heidelberg.

[10] Johnson, J., & Louis, S. J. (2005). Case-initialized genetic algorithms for
knowledge extraction and incorporation. In Knowledge incorporation in
evolutionary computation (pp. 57-79). Springer Berlin Heidelberg.

[11] Chang, P. C., Hsieh, J. C., & Wang, Y. W. (2005). Genetic algorithm
and case-based reasoning applied in production scheduling. In
Knowledge Incorporation in Evolutionary Computation (pp. 215-236).
Springer Berlin Heidelberg.

[12] Meuth, R., Lim, M. H., Ong, Y. S., & Wunsch, D. C. (2009). A
proposition on memes and meta-memes in computing for higher-order
learning. Memetic Computing, 1(2), 85-100.

[13] Salamó, M., & López-Sánchez, M. (2011). Adaptive case-based
reasoning using retention and forgetting strategies. Knowledge-Based
Systems, 24(2), 230-247.

[14] Wills, L. M., & Kolodner, J. L. (1994, August). Towards more creative
case-based design systems. In AAAI (Vol. 94, pp. 50-55).

[15] Sastry, K., Goldberg, D. E., & Llora, X. (2007, July). Towards billion-
bit optimization via a parallel estimation of distribution algorithm. In
Proceedings of the 9th annual conference on Genetic and evolutionary
computation (pp. 577-584). ACM.

[16] Feng, L., Ong, Y. S., Tan, A. H., & Tsang, I. W. (2015). Memes as
building blocks: a case study on evolutionary optimization+ transfer
learning for routing problems. Memetic Computing, 7(3), 159-180.

[17] Gupta, A., Da, B., Yuan, Y., & Ong, Y. S. (2017). On the Emerging
Notion of Evolutionary Multitasking: A Computational Analog of
Cognitive Multitasking. In Recent Advances in Evolutionary Multi-
objective Optimization (pp. 139-157). Springer International Publishing.

[18] Da, B., Gupta, A., Ong, Y. S., & Feng, L. (2016, July). Evolutionary
multitasking across single and multi-objective formulations for
improved problem solving. In Evolutionary Computation (CEC), 2016
IEEE Congress on (pp. 1695-1701). IEEE.

[19] Swersky, K., Snoek, J., & Adams, R. P. (2013). Multi-task Bayesian
optimization. In Advances in neural information processing systems (pp.
2004-2012).

[20] Feurer, M., Springenberg, J. T., & Hutter, F. (2015, January). Initializing
Bayesian Hyperparameter Optimization via Meta-Learning. In AAAI (pp.
1128-1135).

[21] Ong, Y. S., & Gupta, A. (2016). Evolutionary multitasking: a computer
science view of cognitive multitasking. Cognitive Computation, 8(2),
125-142.

[22] Bali, K. K., Gupta, A., Feng, L., Ong, Y. S., & Siew, T. P. (2017, June).
Linearized domain adaptation in evolutionary multitasking. In
Evolutionary Computation (CEC), 2017 IEEE Congress on (pp. 1295-
1302). IEEE.

[23] Iqbal, M., Xue, B., Al-Sahaf, H., & Zhang, M. (2017). Cross-Domain
Reuse of Extracted Knowledge in Genetic Programming for Image
Classification. IEEE Transactions on Evolutionary Computation, 21(4),
569-587.

[24] Gupta, A., Ong, Y. S., & Feng, L. (2016). Multifactorial evolution:
toward evolutionary multitasking. IEEE Transactions on Evolutionary
Computation, 20(3), 343-357.

[25] Ehrgott, M. (2006). Multicriteria optimization. Springer Science &
Business Media.

[26] Jiang, S., Ong, Y. S., Zhang, J., & Feng, L. (2014). Consistencies and
contradictions of performance metrics in multiobjective optimization.
IEEE Transactions on Cybernetics, 44(12), 2391-2404.

[27] Joyce, J. M. (2011). Kullback-leibler divergence. In International
Encyclopedia of Statistical Science (pp. 720-722). Springer Berlin
Heidelberg.

[28] Yi, S., Li, C., & Li, Q. (2015, June). A survey of fog computing:
concepts, applications and issues. In Proceedings of the 2015 Workshop
on Mobile Big Data (pp. 37-42). ACM.

[29] Wen, Y. W., & Ting, C. K. (2017, June). Parting ways and reallocating
resources in evolutionary multitasking. In Evolutionary Computation
(CEC), 2017 IEEE Congress on (pp. 2404-2411). IEEE.

[30] Da, B., Ong, Y. S., Feng, L., Qin, A. K., Gupta, A., Zhu, Z., ... & Yao,
X. (2016). Evolutionary Multitasking for Single-objective Continuous
Optimization: Benchmark Problems, Performance Metric, and Baseline
Results. Nanyang Technological University, Singapore, Tech. Rep
University. http://www.cil.ntu.edu.sg/mfo/download.html.

[31] Handl, J., Lovell, S. C., & Knowles, J. (2008, September).
Multiobjectivization by decomposition of scalar cost functions. In
International Conference on Parallel Problem Solving from Nature (pp.
31-40). Springer Berlin Heidelberg.

[32] Yuan, Y., Ong, Y. S., Gupta, A., & Xu, H. (2017). Objective Reduction
in Many-Objective Optimization: Evolutionary Multiobjective
Approaches and Comprehensive Analysis. IEEE Transactions on
Evolutionary Computation.

[33] Lim, D., Ong, Y. S., Jin, Y., & Sendhoff, B. (2008, September).
Evolutionary optimization with dynamic fidelity computational models.
In International Conference on Intelligent Computing (pp. 235-242).
Springer, Berlin, Heidelberg.

[34] Kok, K. Y., & Rajendran, P. (2016). Differential-Evolution Control
Parameter Optimization for Unmanned Aerial Vehicle Path Planning.
PloS one, 11(3), e0150558.

[35] Coello, C. A. C. (2002). Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state of
the art. Computer methods in applied mechanics and engineering,
191(11), 1245-1287.

[36] Caruana, R. (1995). Learning many related tasks at the same time with
backpropagation. In Advances in neural information processing systems
(pp. 657-664).

[37] Jin, Y., & Sendhoff, B. (1999). Knowledge incorporation into neural
networks from fuzzy rules. Neural Processing Letters, 10(3), 231-242.

[38] Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F.,
& Zitzler, E. (2007, July). Do additional objectives make a problem
harder?. In Proceedings of the 9th annual conference on Genetic and
evolutionary computation (pp. 765-772). ACM.

[39] Klein, A., Bartels, S., Falkner, S., Hennig, P., & Hutter, F. (2015,
December). Towards efficient Bayesian optimization for big data. In
NIPS 2015 Bayesian Optimization Workshop.

[40] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de Freitas, N.
(2016). Taking the human out of the loop: A review of Bayesian
optimization. Proceedings of the IEEE, 104(1), 148-175.

[41] Yogatama, D., & Mann, G. (2014). Efficient transfer learning method
for automatic hyperparameter tuning. In AISTATS (pp. 1077-1085).

[42] Bardenet, R., Brendel, M., Kégl, B., & Sebag, M. (2013, June).
Collaborative hyperparameter tuning. In ICML (2) (pp. 199-207).

[43] Bonilla, E. V., Chai, K. M., & Williams, C. (2008). Multi-task Gaussian
process prediction. In Advances in neural information processing
systems (pp. 153-160).

[44] Zaefferer, M., & Bartz-Beielstein, T. (2016, September). Efficient global
optimization with indefinite kernels. In International Conference on
Parallel Problem Solving from Nature (pp. 69-79). Springer
International Publishing.

[45] Omidvar, M. N., Yang, M., Mei, Y., Li, X., & Yao, X. (2017). DG2: A
Faster and More Accurate Differential Grouping for Large-Scale Black-
Box Optimization. IEEE Transactions on Evolutionary Computation.

[46] Mühlenbein, H., Gorges-Schleuter, M., & Krämer, O. (1988). Evolution
algorithms in combinatorial optimization. Parallel Computing, 7(1), 65-
85.

[47] Lim, D., Jin, Y., Ong, Y. S., & Sendhoff, B. (2010). Generalizing
surrogate-assisted evolutionary computation. IEEE Transactions on
Evolutionary Computation, 14(3), 329-355.

[48] Koçer, B., & Arslan, A. (2010). Genetic transfer learning. Expert
Systems with Applications, 37(10), 6997-7002.

[49] Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., & Zhang, G. (2015).
Transfer learning using computational intelligence: a survey.
Knowledge-Based Systems, 80, 14-23.

[50] Gupta, A., Ong, Y. S., Da, B., Feng, L., & Handoko, S. D. (2016, July).
Landscape synergy in evolutionary multitasking. In Evolutionary
Computation (CEC), 2016 IEEE Congress on (pp. 3076-3083). IEEE.

[51] Chen, X., Ong, Y. S., Lim, M. H., & Tan, K. C. (2011). A multi-facet
survey on memetic computation. IEEE Transactions on Evolutionary
Computation, 15(5), 591-607.

[52] Ong, Y. S., Lim, M. H., & Chen, X. (2010). Memetic computation—
past, present & future [research frontier]. IEEE Computational
Intelligence Magazine, 5(2), 24-31.

[53] Feng, L., Ong, Y. S., Tsang, I. W. H., & Tan, A. H. (2012, June). An
evolutionary search paradigm that learns with past experiences. In
Evolutionary Computation (CEC), 2012 IEEE Congress on (pp. 1-8).
IEEE.

[54] Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods,
and applications. Society for Industrial and Applied Mathematics.

[55] Feng, L., Ong, Y. S., Lim, M. H., & Tsang, I. W. (2015). Memetic
search with interdomain learning: A realization between CVRP and
CARP. IEEE Transactions on Evolutionary Computation, 19(5), 644-
658.

[56] Feng, L., Ong, Y. S., & Lim, M. H. (2013). Extreme Learning Machine
Guided Memetic Computation for Vehicle Routing. IEEE Intelligent
Systems, 28(6), 38-41.

[57] Pelikan, M., Hauschild, M., & Lanzi, P. (2012). Transfer learning, soft
distance-based bias, and the hierarchical boa. Parallel Problem Solving
from Nature-PPSN XII, 173-183.

[58] Hauschild, M. W., Pelikan, M., Sastry, K., & Goldberg, D. E. (2012).
Using previous models to bias structural learning in the hierarchical
BOA. Evolutionary Computation, 20(1), 135-160.

[59] Hauschild, M. W., & Pelikan, M. (2009, July). Intelligent bias of
network structures in the hierarchical BOA. In Proceedings of the 11th
Annual conference on Genetic and evolutionary computation (pp. 413-
420). ACM.

[60] Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm.
Hierarchical Bayesian Optimization Algorithm, 105-129.

[61] Kaedi, M., & Ghasem-Aghaee, N. (2011). Biasing Bayesian
optimization algorithm using case based reasoning. Knowledge-Based
Systems, 24(8), 1245-1253.

[62] Jiang, C. A., Leong, T. Y., & Kim-Leng, P. O. H. (2005). PGMC: a
framework for probabilistic graphical model combination. In AMIA
Annual Symposium Proceedings (Vol. 2005, p. 370). American Medical
Informatics Association.

[63] Lim, D., Ong, Y. S., Gupta, A., Goh, C. K., & Dutta, P. S. (2016).
Towards a new Praxis in optinformatics targeting knowledge re-use in
evolutionary computation: simultaneous problem learning and
optimization. Evolutionary Intelligence, 9(4), 203-220.

[64] Feng, L., Ong, Y. S., Jiang, S., & Gupta, A. (2017). Autoencoding
Evolutionary Search with Learning across Heterogeneous Problems.
IEEE Transactions on Evolutionary Computation, 21(5), 760-772.

[65] Forrester, A. I., Sóbester, A., & Keane, A. J. (2007, December). Multi-
fidelity optimization via surrogate modelling. In Proceedings of the
royal society of london a: mathematical, physical and engineering
sciences (Vol. 463, No. 2088, pp. 3251-3269). The Royal Society.

[66] Dinh, T. T. H., Chu, T. H., & Nguyen, Q. U. (2015, May). Transfer
learning in genetic programming. In Evolutionary Computation (CEC),
2015 IEEE Congress on (pp. 1145-1151). IEEE.

[67] Haslam, E., Xue, B., & Zhang, M. (2016, July). Further investigation on
genetic programming with transfer learning for symbolic regression. In
Evolutionary Computation (CEC), 2016 IEEE Congress on (pp. 3598-
3605). IEEE.

[68] O'Neill, D., Al-Sahaf, H., Xue, B., & Zhang, M. (2017, June). Common
subtrees in related problems: A novel transfer learning approach for

genetic programming. In Evolutionary Computation (CEC), 2017 IEEE
Congress on (pp. 1287-1294). IEEE.

[69] Iqbal, M., Browne, W. N., & Zhang, M. (2014). Reusing building blocks
of extracted knowledge to solve complex, large-scale boolean problems.
IEEE Transactions on Evolutionary Computation, 18(4), 465-480.

[70] Iqbal, M., Browne, W. N., & Zhang, M. (2012, July). Extracting and
using building blocks of knowledge in learning classifier systems. In
Proceedings of the 14th annual conference on Genetic and evolutionary
computation (pp. 863-870). ACM.

[71] Alvarez, I. M., Browne, W. N., & Zhang, M. (2016, July). Human-
inspired Scaling in Learning Classifier Systems: Case Study on the n-bit
Multiplexer Problem Set. In Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference (pp. 429-436). ACM.

[72] Scott, E. O., & De Jong, K. A. (2017). Multitask Evolution with
Cartesian Genetic Programming. arXiv preprint arXiv:1702.02217.

[73] Wen, Y. W., & Ting, C. K. (2016, July). Learning ensemble of decision
trees through multifactorial genetic programming. In Evolutionary
Computation (CEC), 2016 IEEE Congress on (pp. 5293-5300). IEEE.

[74] Chandra, R., Gupta, A., Ong, Y. S., & Goh, C. K. (2017). Evolutionary
Multi-task Learning for Modular Knowledge Representation in Neural
Networks. Neural Processing Letters, 1-17.

[75] Tang, Z., Gong, M., & Zhang, M. (2017, June). Evolutionary multi-task
learning for modular extremal learning machine. In Evolutionary
Computation (CEC), 2017 IEEE Congress on (pp. 474-479). IEEE.

[76] Chandra, R., Ong, Y. S., & Goh, C. K. (2017). Co-evolutionary multi-
task learning with predictive recurrence for multi-step chaotic time
series prediction. Neurocomputing, 243, 21-34.

[77] Israel, S., & Moshaiov, A. (2012). Bootstrapping aggregate fitness
selection with evolutionary multi-objective optimization. Parallel
Problem Solving from Nature-PPSN XII, 52-61.

[78] Moshaiov, A., & Tal, A. (2014, July). Family bootstrapping: A genetic
transfer learning approach for onsetting the evolution for a set of related
robotic tasks. In Evolutionary Computation (CEC), 2014 IEEE Congress
on (pp. 2801-2808). IEEE.

[79] Millington, I., & Funge, J. (2016). Artificial intelligence for games. CRC
Press.

[80] Salimans, T., Ho, J., Chen, X., & Sutskever, I. (2017). Evolution
Strategies as a Scalable Alternative to Reinforcement Learning. arXiv
preprint arXiv:1703.03864.

[81] Louis, S. J., & Miles, C. (2005). Playing to learn: Case-injected genetic
algorithms for learning to play computer games. IEEE Transactions on
Evolutionary Computation, 9(6), 669-681.

[82] Zeng, Y., Chen, X., Ong, Y. S., Tang, J., & Xiang, Y. (2017). Structured
Memetic Automation for Online Human-Like Social Behavior Learning.
IEEE Transactions on Evolutionary Computation, 21(1), 102-115.

[83] Hou, Y., Ong, Y. S., Feng, L., & Zurada, J. M. (2017). An Evolutionary
Transfer Reinforcement Learning Framework for Multi-Agent System.
IEEE Transactions on Evolutionary Computation, 21(4), 601-615.

[84] Gupta, A., & Ong, Y. S. (2016, December). Genetic transfer or
population diversification? deciphering the secret ingredients of
evolutionary multitask optimization. In Computational Intelligence
(SSCI), 2016 IEEE Symposium Series on (pp. 1-7). IEEE.

[85] Yang, S. (2008). Genetic algorithms with memory-and elitism-based
immigrants in dynamic environments. Evolutionary Computation, 16(3),
385-416.

[86] Yang, S., & Yao, X. (2008). Population-based incremental learning with
associative memory for dynamic environments. IEEE Transactions on
Evolutionary Computation, 12(5), 542-561.

[87] Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., & Tsang, E. (2007, March).
Prediction-based population re-initialization for evolutionary dynamic
multi-objective optimization. In International Conference on
Evolutionary Multi-Criterion Optimization (pp. 832-846). Springer,
Berlin, Heidelberg.

[88] Zhou, L., Feng, L., Gupta, A., Ong, Y. S., Liu, K., Chen, C., ... & Yan,
B. W. (2017, June). Solving dynamic vehicle routing problem via
evolutionary search with learning capability. In Evolutionary
Computation (CEC), 2017 IEEE Congress on (pp. 890-896). IEEE.

[89] Min, A. T. W., Sagarna, R., Gupta, A., Ong, Y. S., & Goh, C. K. (2017).
Knowledge Transfer Through Machine Learning in Aircraft
Design. IEEE Computational Intelligence Magazine, 12(4), 48-60.

[90] Avigad, G., & Moshaiov, A. (2009). Set-based concept selection in
multi-objective problems: optimality versus variability approach.
Journal of Engineering Design, 20(3), 217-242.

[91] Gupta, A., Ong, Y. S., Feng, L., & Tan, K. C. (2016). Multiobjective
multifactorial optimization in evolutionary multitasking. IEEE
transactions on cybernetics, 47(7), 1652-1665.

[92] Gupta, A., Mańdziuk, J., & Ong, Y. S. (2015). Evolutionary
multitasking in bi-level optimization. Complex & Intelligent Systems,
1(1-4), 83-95.

[93] Cheng, M. Y., Gupta, A., Ong, Y. S., & Ni, Z. W. (2017).
Coevolutionary multitasking for concurrent global optimization: With
case studies in complex engineering design. Engineering Applications of
Artificial Intelligence, 64, 13-24.

[94] Liaw, R. T., & Ting, C. K. (2017, June). Evolutionary many-tasking
based on biocoenosis through symbiosis: A framework and benchmark
problems. In Evolutionary Computation (CEC), 2017 IEEE Congress on
(pp. 2266-2273). IEEE.

[95] Weng, L., Menczer, F., & Ahn, Y. Y. (2013). Virality prediction and
community structure in social networks. Scientific reports, 3, 2522.

[96] Gomez, F. J., & Miikkulainen, R. (1999, July). Solving non-Markovian
control tasks with neuroevolution. In IJCAI (Vol. 99, pp. 1356-1361).

[97] Ring, M. B. (1997). CHILD: A first step towards continual learning.
Machine Learning, 28(1), 77-104.

Abhishek GUPTA received the PhD degree in
Engineering Science from the University of
Auckland, New Zealand, in 2014. He is
currently a Research Scientist at the School of
Computer Science and Engineering, Nanyang
Technological University (NTU), Singapore.
Abhishek has diverse research experiences in
computational science, ranging from the
numerical modelling of solids and fluids, to
topics in computational intelligence. Currently,
his main research interests lie in the

development of memetic computing as an approach for automatic
learning and transfer of knowledge across optimization problems,
with applications in design.

Yew-Soon ONG received a PhD degree on
Artificial Intelligence in complex design from
the Computational Engineering and Design
Center, University of Southampton, UK in
2003. He is a Professor and the Chair of the
School of Computer Science and Engineering,
Nanyang Technological University (NTU),
Singapore, where he is also the Director of the
Data Science and Artificial Intelligence
Research Center and Principal Investigator of

the Data Analytics and Complex Systems Programme at the Rolls-
Royce@NTU Corporate Lab. His research interest in computational
intelligence spans across memetic computing, complex design
optimization, and big data analytics. He is the founding Editor-in-
Chief of the IEEE Transactions on Emerging Topics in
Computational Intelligence, Associate Editor of the IEEE
Transactions on Evolutionary Computation, the IEEE Transactions
on Neural Networks & Learning Systems, the IEEE Transactions on
Cybernetics, and others.

Liang FENG received the PhD degree from the
School of Computer Engineering, Nanyang
Technological University (NTU), Singapore, in
2014. He was a Postdoctoral Research Fellow at
the Computational Intelligence Graduate Lab at
NTU Singapore. He is currently an Assistant
Professor with the College of Computer
Science, Chongqing University, China. His
research interests include Computational and
Artificial Intelligence, Memetic Computing, Big

Data Optimization and Learning, as well as Transfer Learning.

