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Abstract – Traditional optimization solvers tend to start the 

search from scratch by assuming zero prior knowledge about the 

task at hand. Generally speaking, the capabilities of solvers do 

not automatically grow with experience. In contrast however, 

humans routinely make use of a pool of knowledge drawn from 

past experiences whenever faced with a new task. This is often an 

effective approach in practice as real-world problems seldom 

exist in isolation. Similarly, practically useful artificial systems 

are expected to face a large number of problems in their lifetime, 

many of which will either be repetitive or share domain-specific 

similarities. This view naturally motivates advanced optimizers 

that mimic human cognitive capabilities; leveraging on what has 

been seen before to accelerate the search towards optimal 

solutions of never before seen tasks. With this in mind, the 

present paper sheds light on recent research advances in the field 

of global black-box optimization that champion the theme of 

automatic knowledge transfer across problems. We introduce a 

general formalization of transfer optimization, based on which the 

conceptual realizations of the paradigm are classified into three 

distinct categories, namely, sequential transfer, multitasking, and 

multiform optimization. In addition, we carry out a survey of 

different methodological perspectives spanning Bayesian 

optimization and nature-inspired computational intelligence 

procedures for efficient encoding and transfer of knowledge 

building-blocks. Finally, real-world applications of the 

techniques are identified, demonstrating the future impact of 

optimization engines that evolve as better problem-solvers over 

time by learning from the past and from one another.  

 
Index Terms – Transfer, Multitasking, Multiform Optimization, 

Evolutionary Algorithms, Bayesian Optimization. 

I. INTRODUCTION 

EAL-world problems seldom exist in isolation. As a 
result, humans routinely resort to various information 

sources, including a pool of knowledge extracted from past 
problem-solving experiences, when faced with a never before 
seen challenge or task. However, virtually all traditional 
optimization solvers, ranging from classical techniques to 
nature-inspired procedures, neglect this key aspect of human 
cognitive ability. In particular, a general shortcoming of many 
existing search strategies is that the optimization run typically 
begins from scratch, assuming a zero prior knowledge state. In 
many practical applications involving time sensitive actions 
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and/or high cost of evaluations, ignoring the knowledge 
gained from previous optimization exercises can lead to 
deleterious computational overheads in the re-exploration of 
similar search spaces. Therefore, the ability to automatically 
transfer knowledge across problems is likely to have 
significant impact in dealing with the rapidly growing volume, 
variety, and complexity of the real-world problems of today. 

Any practically useful system in an industrial setting is 
expected to tackle a large number of problems over a lifetime, 
many of which will either be repetitive or share domain-
specific similarities. Thus, it is the ability to leverage on innate 
domain knowledge that often sets apart an expert from a 
novice. Notably, in machine learning, the idea of taking 
advantage of available data from  related sources to improve 
the accuracy of the predictive function in a target task has 
received much interest under the label of transfer learning [1]-
[3]. Nevertheless, associated research progress has largely 
been restricted to the domain of predictive analytics, where the 
availability of data makes it possible to ascertain the feasibility 
of knowledge transfer. For the case of black-box optimization, 
where little problem-specific data is available beforehand, 
efforts in automatic knowledge transfer have been relatively 
rare; thereby establishing the need to devise new online 
approaches that can harness recurrent patterns between 
problem-solving exercises. While preliminary efforts in this 
regard can be found in the evolutionary computation literature 
[4], most approaches have either relied on manual intervention 
to incorporate a priori heuristic knowledge into the search [5], 
or on the creation of an artificial memory providing a case-
base (i.e., database) of past experiences [6]-[11]. However, in 
the latter, the elaborate case by case assessment required to 
yield relevant information was found to rapidly become 
prohibitive with the growing size of the database [12], [13].  

In contrast to the above, humans can usually leverage 
enormous amounts of information gathered from experience, 
and effortlessly generalize the knowledge whenever faced 
with new tasks. The practical motivation for incorporating 
such cognitive capabilities into optimization solvers is derived 
from the growing presence of modern technologies such as 
cloud computing and the Internet of Things (IoT), which 
enable large-scale storage and seamless information 
communication facilities. In these settings, effectively 
capturing higher-order building-blocks of generalizable 
knowledge can play a significant role in enhancing the 
efficacy of problem-solving. To highlight this point further, 
consider the matter of representing the knowledge embedded 
in a large number (say N) of elite solutions, each comprising 
of B binary bits. If we naively store the raw data in memory, 
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not only is the extracted knowledge too coarse (as the 
information required for a new problem may not be contained 
in the data), and possibly overfitting to the original problem(s) 
[13], [14], but also consumes N·B bits of memory. On the 
other hand, a computational model of the underlying 
probability distribution of the same solutions can represent 
potentially more generalizable higher-order knowledge while 
consuming only O(𝐵 ∙ log2 𝑁) bits of memory [15].  

With the IoT giving rise to widespread inter-connectivity 
of physical devices and relatively easy access to diverse 
information streams, the present paper sheds light on the 
emerging scope of black-box optimization solvers to 
incorporate the general theme of transfer optimization. We 
present a formal motivation and definition of transfer 
optimization (in Section II) for it to serve as the common 
foundation for specific methodological offshoots. Based on 
our proposed definition, three distinct conceptual realizations 
of the paradigm are identified – namely, sequential transfer 
[16], multitasking [17], and multiform optimization [18] – that 
cumulatively encompass a range of ways in which transfer 
optimization can be put to use in practical settings. 

Beyond formalizations, we draw attention to the most 
prominent algorithmic advances that have lately been 
achieved. Our survey spans Bayesian (in Section III) and 
nature-inspired computational intelligence techniques (in 
Section IV), which have emerged as independent tracks 
driving transfer optimization in practice [19]-[24]. The two 
methods originate from different philosophical perspectives, 
and have both attracted much interest in largely distinct 
domains. On one hand, Bayesian optimization is extremely 
data efficient, but is exclusively a model-based approach [19]. 
In contrast, nature-inspired techniques, albeit less data 
efficient, provide considerable flexibility with the interplay of 
evolutionary mechanisms and model-based transfer [16], [24]. 
With this in mind, the present paper attempts to provide a 
summary of the current state-of-the-art with a clear exposition 
of the complementary nature of different research strands, so 
as to facilitate a unification of ideas leading to the design of 
powerful transfer optimization engines in the future.  

 In order to emphasize the potential impact of successful 
transfer optimization, a diverse array of noteworthy real-world 
examples are identified, covering topics such as machine 
learning, robotics, engineering design, etc. (Section V). 
Thereafter, we outline promising future directions that are 
expected to play a pivotal role in establishing automatic 
knowledge encoding and transfer mechanisms as intrinsic 
features of optimization search (Section VI). Finally, Section 
VII encapsulates the paper and presents concluding remarks. 

II. PRELIMINARIES OF TRANSFER OPTIMIZATION 

Consider a series of K optimization problems (or tasks) that 

are labeled as T1, T 2, …, T K, belonging to domains D1, D2, 

…, DK, respectively. The kth domain, denoted as Dk, consists 

of a search space Xk, and an auxiliary space Yk. To elaborate, 

Yk contains the set Yk of all possible operating conditions for 
which the optimization exercise may be carried out. For a 

particular instantiation of an optimization task Tk in Dk, an 
element yk of Yk provides the specific operating conditions. 

Furthermore, Tk is described by an objective function fk and a 

set of inequality and equality constraints gk and hk, 
respectively. With this, the optimization problem formulation 

for Tk is stated as, 
 max𝒙 𝑓𝑘(𝒙, 𝒚𝑘), 

 
subject to, 𝑔𝑘𝑖(𝒙, 𝒚𝑘) ≤ 0, for 𝑖 = 1, … , |𝒈𝑘|,   (1) 

 
and, ℎ𝑘𝑖(𝒙, 𝒚𝑘) = 0, for 𝑖 = 1, … , |𝒉𝑘|. 

 
Here, fk can either be a scalar, for a single-objective 
optimization problem (SOP), or a vector constituting a multi-
objective optimization problem (MOP) – in which case it is 
written in boldface as fk. Further, |gk| and |hk| are the number 
of inequality and equality constraints, respectively. In Eq. (1), 
note that yk ∈ Yk is not directly part of the search, as we only 

optimize with respect to candidate solutions x ∈ Xk. 
From a different point of view, when describing Eq. (1) in 

the context of search distributions instead of raw candidate 
solutions, its statement can be rewritten as, 

 max𝑝(𝒙) ∫ 𝑓𝑘(𝒙, 𝒚𝑘) ∙ 𝑝(𝒙) ∙ d𝒙.       

 
Here, p(x) represents the probability density function of 

candidate solutions in Xk. Adhering to this probabilistic 
viewpoint, the operating conditions and the set of constraints 

of Tk induce a prior distribution p0(x | yk, gk, hk) over Xk at the 
onset of the search, such that,  
 𝑝0(𝒙) = 0 if 𝒙 ∉ 𝑋𝑘,       (2) 
 

where Xk ⊆ Xk is the set of all seemingly admissible solutions 

of Tk. Assuming little prior knowledge about the task, as is 
often the case for traditional black-box optimization 
algorithms, the prior distribution generally satisfies, 
 

      𝑝0(𝒙) > 0 ∀𝒙 ∈ 𝑋𝑘,       (3)   
 
which implies that the search assigns a positive sampling 
probability to all elements of the admissible set. A uniform 
prior is commonly used in this regard. 

Next, consider Vk to be the set of all features spanned by 

the feature space Vk = Xk × Yk of domain Dk. The 

dimensionality of Vk is the cardinality of the set Vk, which is 
denoted as |Vk|. Each constitutive feature of Vk imparts 
domain-specific contextual meaning that characterizes all 
optimization tasks within the domain. At a high-level, 
comparing the overlap in the domains (or feature spaces) of 
distinct tasks can provide qualitative hints on the suitability of 
knowledge transfer between them. Indeed, precise quantitative 
analysis of inter-task relationship must take into account {f, 
p0(x | y, g, h)}. However, in many real-world applications, 
analytical forms of the objective function and constraints may 
either be unavailable or inaccessible to rigorous mathematical 
treatment.  Thus, in what follows, we categorize task pairs 
purely based on the extent of domain overlap, as a means of 
providing practical and intuitive guidelines to practitioners on 
the suitability of transfer optimization [21]. 



1)  Complete domain overlap 

For any two optimization tasks T1 and T2, their respective 

domains D1 and D2 are said to be completely overlapping if 
the features spanned by their corresponding features spaces 

are semantically the same, i.e., the relation V1 = V2 holds. 
Equivalently, denoting the intersection of feature sets as 
Voverlap = V1 ∩ V2, we have, 
 

V1 \ Voverlap = ∅ ∧ V2 \ Voverlap = ∅.     (4) 

 
2) Partial domain overlap 

Domains D1 and D2 are said to be partially overlapping if 
there exists a subset of features that is unique to at least one 
task. This condition is expressed as follows, 
 

Voverlap ≠ ∅ ∧ (V1 \ Voverlap ≠ ∅ ∨ V2 \ Voverlap ≠ ∅). (5) 

 
3) No domain overlap 
Finally, we label a pair of domains as being completely non-
overlapping if, 
 

Voverlap = ∅.          (6) 

 
Note that in all three aforementioned cases |V1|, |V2| > 0.  

Ideally, with increasing values of |𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝| |𝑉1 ∪ 𝑉2|⁄ , the 

efficacy of transfer optimization can be expected to grow in 
conjunction. However, even in cases of no domain overlap, 
the potential benefits of knowledge transfer cannot be 
immediately rejected. Indeed, some recent studies have 
empirically demonstrated that hidden correlations between 
tasks may be revealed through appropriate search space 
transformation schemes, such as domain adaptation [22] or 
cross-domain solution unification [23], [24].  

Accordingly, in the formal setup that follows, we make the 
explicit assumption that a unification procedure exists that 
facilitates the alignment of features in a transformed space. 
Thus, a candidate solution x shall hereafter represent a point in 

such a unified space X, from which it can be decoded to a 

task-specific solution in X1, or X2, …, or XK.  

A. The Formalization 
 

The key motivation of this work is to achieve human-level 
intelligence, particularly with regard to automatically learning 
from experience and generalizing the learned knowledge to 
solve related tasks more efficiently. To this end, we note that, 
the increase in efficiency of a machine is traditionally defined 
as the increase in output of the machine per unit of input. 
Even for the case of numerical algorithms, the same definition 
can be applied. In the context of optimization, the output can 
be interpreted as a scalar measure quantifying the quality Q of 
solution(s) obtained. On the other hand, the input is specified 
by available computational resources, such as the computing 
machinery and the time (or cost) budget. Accordingly, in 
subsequent formalizations, we denote the efficiency of a 

search algorithm on task Tk as Qt(Tk), which represents the 
quality of solution(s) achieved with regard to fk in ‘t’ time-
steps on a designated computer. In particular, if we denote the 

set of candidate solutions evaluated over ‘t’ time-steps as 𝑋𝑘𝑡 , 
then the algorithmic efficiency for an SOP can be stated as, 

 
Qt(Tk) = 𝑓𝑘(𝒙∗) : 𝒙∗ ∈ 𝑋𝑘𝑡  ∧ (∄𝒙 ∈ 𝑋𝑘𝑡  : 𝑓𝑘(𝒙) > 𝑓𝑘(𝒙∗)).  (7) 

 
Even for the case of MOPs, where a Pareto optimal set of 
trade-off solutions are searched for [25], scalar efficiency 
measures can be specified based on commonly used quality 
indicators such as the hypervolume metric [26]. For the sake 
of brevity, we do not present details of the hypervolume or 
other related measures in this paper. However, it is important 
to highlight that given such a scalar measure, it is generally 
possible to analyze MOPs analogously to SOPs.  

For a computational intelligence to learn with experience – 
i.e., for it to specifically demonstrate transfer optimization 
capabilities – it must be endowed with a knowledge base, 

which we denote as M, for gathering information from 
different problem-solving exercises. Assuming the knowledge 

building-block extracted from Tk to be mk, the knowledge base 
is considered to grow as, 

 

M = ∪∀𝑘 𝑚𝑘.         (8) 
 

Herein, we make an instinctive assumption that the knowledge 
extracted a posteriori from an unknown optimization task is 
identical to the prior knowledge required to spontaneously 
address the same task. With this, we interpret the effect of a 
knowledge building-block mk as inducing a biased probability 

distribution pt(x | fk, yk, gk, hk) that favors elite solutions of Tk. 
We denote this relation as mk → pt(x | fk, yk, gk, hk). 
Mathematically, the notion of a biased distribution is deemed 
to satisfy the following, 

 ∫ 𝑓𝑘(𝒙, 𝒚𝑘) ∙ 𝑝𝑡(𝒙 | 𝑓𝑘, 𝒚𝒌, 𝒈𝒌, 𝒉𝒌) ∙ d𝒙 ≥ 𝑓𝑘∗ − 𝜀,  (9) 
 

where (*) represents the global optimum, and ε (> 0) is a small 
convergence tolerance threshold. Based on the above, observe 

that if the prior in Eq. (3) is set as p0(x) ← mk, then Tk will be 
spontaneously addressed, which aligns with our initial 
assumption about knowledge building-blocks. This implies 
that in scenarios where similar problems recur, solutions can 
be obtained faster by directly reusing one of {m1, m2, …, mk-1} 

for Tk. However, following Eq. (8), it can also be seen that, 
 

if m1 ≈ m2 ≈ … ≈ mK, then ∪𝑘∈{1,2,..,𝐾} 𝑚𝑘 ≈ 𝑚1. 

 

Clearly, M does not grow if only very similar problems are 
solved repeatedly. Thus, in order to continuously expand the 
knowledge base, it is crucial to tackle diverse optimization 

tasks. To elaborate, in a series of K tasks, TK is said to be 
diverse relative to all other tasks if, 
 𝑚𝐾\∪∀𝑘≠𝐾 𝑚𝑘 ≠ ∅.        (10) 

 
Importantly, based on abstract probabilistic interpretations 

of knowledge, i.e., mk → pt(x | fk, yk, gk, hk), the diversity of TK 
may alternatively be stated as follows. 



pt(x | fK, yK, gK, hK) – ∑ 𝛼𝑘∀𝑘≠𝐾 ∙ pt(x | fk, yk, gk, hk) ≠ 0, ∀𝜶 = [𝛼1;  𝛼2; … ] s.t. αk ≥ 0 ∧  ∑ 𝛼𝑘∀𝑘≠𝐾 = 1. 
 

At this stage, note that even if distribution pt(x | fK, yK, gK, hK) 

cannot be precisely reconstructed using M, the acquired 

knowledge base can still be useful for optimizing TK. Indeed, 
there may exist a latent vector α* of mixture coefficients for 
which the gap between ∑ 𝛼𝑘∗ ∙∀𝑘≠𝐾 pt(x | fk, yk, gk, hk) and the a 
priori unknown distribution pt(x | fK, yK, gK, hK) is small (albeit 
non-zero). Therefore, assuming that an appropriate α ≈ α* can 

be gleaned online while optimizing TK, relevant information 

can still be retrieved from M to accelerate the search. 
In order to begin learning optimal mixture coefficients, 

the gap between distributions must first be quantified. In this 
regard, a commonly used measure with convexity properties is 
the Kullback-Leibler divergence (DKL) [27]. In particular, DKL 
specifies the amount of information lost when a distribution q 
is used to approximate distribution p; 

 𝐷𝐾𝐿(𝑝||𝑞) = ∫ 𝑝(𝒙) ∙ [log 𝑝(𝒙) − log 𝑞(𝒙)] ∙ d𝒙.  (11) 
 

With this, the coefficient vector α* that minimizes the gap 
between pt(x | fK, yK, gK, hK) and ∑ 𝛼𝑘∀𝑘≠𝐾 ∙ pt(x | fk, yk, gk, hk) 
is the optimal solution of the following mathematical program, 
 min𝜶 𝐷𝐾𝐿(𝑝||𝑞(𝜶)), 

where, p = pt(x | fK, yK, gK, hK),     (12) 

and q(α) = ∑ 𝛼𝑘∀𝑘≠𝐾 ∙ pt(x | fk, yk, gk, hk). 
 

Eq. (12) sets out a blueprint for an adaptive transfer 
optimization algorithm in which the transfer of knowledge 
occurs by sampling solutions from the optimized mixture 
distribution. In particular, the coefficient 𝛼𝑘 can be interpreted 
as a learned similarity measure between the kth knowledge 
building-block and the current target task of interest, such that 𝛼𝑘 determines the extent to which transfer occurs by setting 
the weight of the kth probability distribution in the mixture.  

Extending Eq. (12), if we consider 𝜶̅ = [𝜶; 𝛼𝑎𝑑𝑑], where 
αadd is the mixture coefficient corresponding to an additional 
knowledge building-block madd → pt(x | fadd, yadd, gadd, hadd) 

extracted from task Tadd, then it follows that, 
 𝐷𝐾𝐿(𝑝||𝑞(𝜶∗)) = min𝜶 𝐷𝐾𝐿(𝑝||𝑞([𝜶; 𝛼𝑎𝑑𝑑 = 0])) ≥ min𝜶̅ 𝐷𝐾𝐿(𝑝||𝑞(𝜶̅)).      (13) 
 
Simply put, Eq. (13) indicates that additional problem-solving 
experiences should, in principle, monotonically enhance the 
ability to approach any desired target distribution arbitrarily 
closely. Although such a target distribution is not known 
beforehand, it can be gradually approximated during the 
course of the search via known density estimation schemes. 
Nevertheless, the key message of Eq. (13) is that, with a 

growing knowledge base M, it is increasingly more plausible 
that the knowledge needed to solve a new task is in fact 
already contained in the knowledge base. With an idealized 
transfer optimization algorithm, it may be possible to glean the 

 
Fig. 1. The connectivity offered by IoT and cyber-physical systems, 
driven by a cloud infrastructure backbone, gives rise to the scope of 
seamlessly information communication across distinct problem-
solving exercises at geographically distributed locations (L). 

 
 
relevant knowledge online while automatically circumventing 
the deleterious effects of transferring useless (or possibly 
harmful) information (negative transfer [3]). Keeping this in 
mind, the principal goal of the transfer optimization paradigm 
is summarized by the following definition. 
 
 

Definition (Transfer Optimization) Given a diverse 

experiential knowledge base M = ∪∀𝑘 𝑚𝑘, and a newly 

presented optimization task of interest (T), transfer 
optimization facilitates performance speedup measured as 𝑄𝑡(T |M) – 𝑄𝑡(T) ≥ 0, where 𝑄𝑡(T |M) is the algorithmic 

efficiency conditioned on the knowledge embedded in M.  
 

Notably, with the widespread inter-connectivity of 
physical devices offered by the IoT, the scope to build and 
leverage a rich knowledge base is greater than ever. This 
aspect is highlighted in Fig. 1, where the cyber space brings 
together geographically distributed physical systems, thereby 
making it possible for embedded solvers to harness large 
amounts of information shared by related tasks elsewhere. 
Similar ideas of automatic knowledge sharing apply to diverse 
applications such as multitasking robotics as well, with data 
streaming in through multiple sensory inputs at once.  

As an aside, the definition above also sheds light on the 
impact of transfer optimization on the inverse efficiency of 
computational systems, suggesting that lesser compute power 
may be needed to achieve desired outputs. This view aligns 
with the recent impetus on moving computations closer to the 
edge of the IoT, such that devices with low computational 
capabilities can be directly utilized [28]. 

B. Categorizing Transfer Optimization  

Our proposed definition for transfer optimization is quite 
broad, and gives rise to various conceptual realizations of the 
paradigm. In what follows, we classify these realizations into 
three distinct categories that are deemed to shed light upon the 
range of ways in which transfer optimization can be put to use 
in practical settings. 
1) Sequential Transfer 
For sequential transfer optimization, we make the strict 

assumption that while tackling task TK, the tasks T1, T2, …, 
TK-1 have already been addressed previously with the extracted  



 
 

Fig. 2. In sequential transfer, the assumption is that while solving a 
new (target) optimization task, external information is made available 
from a knowledge base encompassing all tasks that have been tackled 
previously (labeled as source). Thus, the transfer is viewed as being 
largely unidirectional from the past to the present. For now, the fact 
that knowledge from the present can be used to refine what has been 
learned in the past is ignored for simplicity of exposition. 
 
 

information available in the knowledge base M. Herein, TK is 

said to act as the target optimization task, while T1, T2, …, 
TK-1 are said to be source tasks – the situation is illustrated in 

Fig. 2. Thus, 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
(TK |M) represents the efficiency 

achievable on TK conditioned on the knowledge captured in 

M. Following the definition of transfer optimization, the aim 
for performance speedup as a consequence of sequential 
transfer is portrayed as, 
 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(TK |M) – 𝑄𝑡(TK) ≥ 0.     (14) 
 

Here, Qt(TK) is the efficiency of a traditional optimization 
algorithm with no transfer, as given by Eq. (7).  

The problem-solving efficacy of a computational system 
that successfully mimics human intelligence must ideally grow 

monotonically with experience (indicated by the size of M). 
The viability of such an outcome – given an ideal transfer 
optimization algorithm – is reinforced by Eq. (13). With this, 
Eq. (14) may be further generalized; 
 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

(TK |M) – 𝑄𝑡𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟
(TK |M’) ≥ 0 if M’ ⊆ M. (15) 

 
2) Multitasking 
Different from sequential transfer, where we are concerned 
with optimizing a single target task at a time, multitasking 
caters to distinct tasks of equal priority occurring concurrently 
[24], [29]. Thus, in certain situations, it may not be possible to 
wait for one optimization task to be completed for knowledge 
to be made available for subsequent tasks. As an alternative, 

the optimization exercises T1, T2, …, TK can progress in 
tandem, with the information generated being continuously 
updated and shared in the common knowledge base, which is 
immediately accessible to all tasks in the multitasking 
environment. A high-level schematic of multitasking is 
depicted in Fig. 3. Notice that as the knowledge base 
continuously evolves during the course of multitasking, it is 

denoted as a function of time M(t). 

 
 

Fig. 3. During multitasking, multiple optimization tasks are tackled 

concurrently in a unified search space. The knowledge base M(t) is 
continuously updated and spontaneously shared among all tasks in 
the multitasking environment. 
 
 
 

To emphasize, one of the major distinctions between 
sequential transfer and multitasking is that while the former is 
characterized by largely unidirectional transfer of knowledge 
from the past to the present, multitasking promotes 
omnidirectional transfer for more synergistic search. 

Due to the simultaneous problem-solving, analyses of 
multitasking efficiency (𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘) place requirements on the 
quality of solutions obtained across tasks, over a cumulative 
time budget of ‘t’ time-steps, to be appropriately aggregated. 
Assuming this aggregation function to be Φ, we have, 

 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (T1, …, TK | M(t)) = Φ(Q(T1 |M(t)), …, Q(TK |M(t)). (16) 

 
where the efficiency achievable on each task is conditioned on 

M(t). The aggregation function is monotonic, which implies 

that for distinct algorithms A and A’, if measures Q and Q’ 
follow Q(Tk ) ≥ Q’(Tk ) ∀k, with at least one strict inequality, 

then Φ(Q(T1), …, Q(TK )) > Φ(Q’(T1), …, Q’(TK)). A sample 
aggregation technique has recently been reported in [30]. 

Given the same batch of K tasks, the efficiency of a 
traditional single-task optimization algorithm without the 
scope of knowledge transfer is simply, 

 𝑄𝑡(T1, T2, …, TK) = Φ(Q(T1 ), Q(T2 ), …, Q(TK)).  (17) 
 

Hence, the envisioned speedup due to multitasking suggests, 
 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑡𝑎𝑠𝑘 (T1, …, TK | M(t)) – 𝑄𝑡(T1, T2, …, TK)  ≥ 0. (18) 

 
3) Multiform Optimization 

While sequential transfer and multitasking deal with distinct 
(self-contained) optimization tasks, multiform optimization is 
a novel concept for exploiting alternate formulations of a 
single target task of interest [18]. It is noted that in practical 
settings, several ways of formulating a particular optimization 
problem can be conceived, such as changing the structure of 
the objective function [31], [32], choosing the fidelity of an 
approximate objective function (in the spirit of multi-fidelity 
optimization [33]), deciding the number of control parameters 
needed [34], constrained/unconstrained formulations [35], etc.  



 
 

Fig. 4. Multiform optimization combines distinct formulations of a 
particular optimization task of interest into one all encompassing 
(multitasking) algorithm. 
 
 

The challenge lies in the fact that it can often be difficult to 
ascertain which formulation is most suited for a particular 
problem at hand, given the known limits on computational 
resources. Indeed, different formulations induce different 
search behaviors, which may not be suitable in all scenarios. 
Thus, in such cases, the basic idea of multiform optimization 
is to combine different formulations into a single all-
encompassing (multitasking) algorithm, such that the hurdle of 
selecting a single formulation is bypassed. Most importantly, 
each formulation can serve as a helper (or catalyst) task [36], 
[37] in the multitasking environment, thereby allowing us to 
leverage the unique advantages offered by each of them 
through the process of continuous knowledge transfer.  

As a simple illustration of an instantiation of multiform 
optimization, consider the notion of multiobjectivization [31]. 
To elaborate, in multiobjectivization, additional objectives are 
introduced in a manner such that, if x* is an optimal solution 

of the original task T, and 𝑋𝑅∗  is the set of all Pareto optimal 

solutions of the reformulation TR, then, 
 ∃𝒙𝑅∗ ∈ 𝑋𝑅∗ ∶ 𝒙𝑅∗ = 𝒙∗.       (19) 

 
It has been shown theoretically that multiobjectivization has 
the effect of introducing plateaus in the function landscape 
[38]. On one hand, this can have the positive effect of 
reducing local optima in the original formulation of the 
objective function. On the other hand, excessive plateaus may 
also make a problem more difficult to solve as an optimization 
algorithm is reduced to random walk behavior. This gives rise 
to a situation where multiform optimization can thrive, as 
shown in [18], as little can be said beforehand about which 
formulation is better suited for a particular problem instance. 

With this, the conceived performance speedup through 
multiform optimization can be stated as, 

 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑓𝑜𝑟𝑚
 (T | T1, …, TK, M(t)) – 𝑄𝑡(T)  ≥ 0,  (20) 

 

Where T is the original problem, T1, T2, …, TK are alternate 

formulations, and 𝑄𝑡𝑚𝑢𝑙𝑡𝑖𝑓𝑜𝑟𝑚
 is the multiform efficiency. 

III. TRANSFER BAYESIAN OPTIMIZATION 

Heretofore, we have laid down a basic structure for transfer 
optimization. In this section, we focus on a specific 
methodological perspective for knowledge transmission in 
practice – namely, transfer Bayesian optimization. 

Bayesian optimization is a fundamentally model-based 
approach for tackling black-box problems characterized by 
high cost of function evaluations. Due to the considerable 
expense, there is strong emphasis on sample-efficiency. In 
other words, the knowledge embedded in solutions evaluated 
so far during an optimization exercise must be fully tapped 
while determining the most promising candidate solution to 

evaluate next. For any task T, the technique iterates through 
the following steps: (a) learn a probabilistic model p(f) – 
typically a Gaussian process – describing the objective 
function f, (b) use p(f) to define a low cost acquisition function 
that provides a trade-off between exploration and exploitation 
while quantifying how promising it is to evaluate a particular 
point in the search space, and (c) optimize the acquisition 
function to determine the next point to evaluate using the 
expensive objective function [39], [40]. 

Although Bayesian optimization is highly sample-efficient 
compared to most other global optimization algorithms, it still 
requires tens to hundreds of evaluated solutions to build a 
sufficiently good model p(f) that makes effective 
recommendations on the next solution to evaluate (also see 
Section IV-A). This is commonly referred to as the cold start 
problem, and has served as the main impetus to incorporate 
the notion of knowledge transfer in Bayesian optimization.  

Recently, the majority of examples of practical Bayesian 
optimization with knowledge transfer across problems have 
been in the domain of automatic hyperparameter tuning of 
machine learning models [41]-[42], with certain methods 
reporting as much as 40% savings in optimization time 
(reduced from 10 days to 6 days) as opposed to the no transfer 
case [19]. Therefore, in the next subsection, we use this 
domain as the starting point for our subsequent discussions. 

A. The Automatic Hyperparameter Tuning Problem 

Considering x to denote hyperparameters, A to be the 
machine learning algorithm, and d to represent the dataset – 
which is split into a training set dtrain, and a validation set dvalid 

on which the generalization error f (x, A, dtrain, dvalid) of A is 
measured – the goal of hyperparameter optimization can be 
stated as follows, 
 min𝒙 f (x, A, dtrain, dvalid).      (21) 

 
As the evaluation of each candidate solution includes the 
training and validation of the machine learning algorithm, the 
tuning of hyperparameters can be extremely computationally 
expensive. The matter is further exacerbated in the case of big 
data, i.e., when the dataset d is very large. 

To overcome the aforementioned challenge, it is contended 

that if d1, d2, …, dK-1 are different datasets on which A has 
been applied in the past, then the solutions/models generated 
during the previous hyperparameter optimization exercises 

may be useful when A is applied to a new dataset dK. Indeed, 
it is this ability to harness experiential knowledge that 



separates an expert (human) machine learning practitioner 
from a beginner. Importantly, the proposition fits perfectly 
within our conceived scope of transfer optimization, with a 

task Tk being associated to dataset dk. 
On comparing Eq. (21) with Eq. (1), dk can be seen as 

resembling the operating conditions yk for which optimization 
is to be carried out. Therefore, it is claimed that recently 
developed transfer Bayesian optimization algorithms for 
automatic hyperparameter tuning have immediate implications 
for general optimization problems as well. To emphasize the 
generality of our discussion, in the next subsection we replace 
dataset d with operating condition y throughout. 

B. Methods of Transfer 

In [19], the exchange of knowledge among tasks T1, T2, …, 
TK was accomplished by using a multitask Gaussian process 
to learn a joint probabilistic model p(f1, f2, …, fK). In particular, 
similarities across tasks were exploited by using the following 
product covariance function for solution and task pairs, 
 

c((x, yj),(x’, yk)) = cX(x, x’) · cT(yj, yk),    (22) 
 

where, cT is the covariance between tasks and cX is a 
correlation function between inputs [43]. The salient feature of 
the approach is that inter-task correlations are explicitly 

accounted for through cT. To elaborate, if two tasks Tj and Tk 

are indeed mutually informative, cT(yj, yk) will assume a high 

magnitude while learning p(f1, f2, …, fK). In contrast, if Tj and 

Tk are unrelated, then cT(yj, yk) ≈ 0, so that the optimization 
exercise is not hampered due to harmful transfer.  

Incidentally, accurately learning the parameters of the 
product covariance function becomes challenging when many 
tasks exist simultaneously. As an alternative, in [41], transfer 
was facilitated by constructing a common response surface for 
all tasks. A scenario was presented where optimization 
exercises for different operating conditions appear one after 
the other in a sequential manner. The authors assume that for 

similar tasks T1, T2, …, TK the underlying functions f1, f2, …, 
fK look qualitatively similar, although their location and the 
scale parameters can differ. Based on this assumption, when 

faced with TK, the common response surface is constructed by 
normalizing the objective function values as, 

 𝑓𝐾 = 𝑓𝐾−𝜇𝜎 ,         (23) 

 
where μ and σ are the mean and standard deviation, 
respectively, calculated from the solutions evaluated so far for 

TK. The effect of the normalization procedure is to transform 
similar-looking functions in a manner such that they have 
comparable means and scale parameters as well, which allows 
a common Gaussian process model with shared covariance 
function to be transferred across tasks. 

Along the same lines as the above, in [42] the common 
response surface was constructed by considering, for a given 

task Tk, the ordinal (or ranking) information ‘r’ of the 
objective function fk instead of its absolute value. To 
elaborate, fk(x, yk) < fk(x’, yk) ⇔ r(x, yk) < r(x’, yk). Since 
rankings have a consistent scale, a single Gaussian process 

regression model p(r) is built by combining the ranking 
information accumulated across all tasks. Thereafter, for a 

newly faced task TK, an acquisition function defined on p(r) is 
optimized to determine the next candidate solution to evaluate.  

While [19], [41], [42] put forward elaborate procedures 
for transfer to be carried out effectively, in [16] a simple meta-
learning initialization scheme was proposed that can be 
incorporated within any traditional Bayesian optimization 
algorithm to combat the cold start problem. To this end, the 
initial solutions to be evaluated for building the probabilistic 

model p(fK) for a newly faced task TK are biased towards the 

set of optimized solutions of tasks T1, T2, …, TK-1 solved in 
the past. Specifically, optimized solutions of those tasks that 

are most similar to TK are considered. The similarity is 
determined by a learned regression model that captures the 

correlation c(yj, yk) between any Tj and Tk, where, 
 𝑐(𝒚𝑗 , 𝒚𝑘) = 𝑟𝑠(𝑓𝑗(𝒙, 𝒚𝑗), 𝑓𝑘(𝒙, 𝒚𝑘)).    (24) 

 
In the above, rs represents the Spearman rank correlation 
coefficient between the two functions. 

IV. TRANSFER EVOLUTIONARY OPTIMIZATION 
 

In this section, we first compare and contrast Bayesian 
optimization with evolutionary algorithms (EAs). Thereafter, 
we discuss three different methodological perspectives that 
have been proposed in the literature for achieving knowledge 
transfer in evolutionary optimization. 

A. Bayesian vs. Evolutionary Optimization 

Despite many success stories, there are several challenges that 
limit the general applicability of Bayesian optimization. For 
instance, the methods described in Section III do not directly 
extend to combinatorial optimization problems as the 
covariance matrix of the probabilistic Gaussian process model 
becomes indefinite under combinatorial representations [44]. 
Further, handling high-dimensional search spaces in Bayesian 
optimization leads to considerable difficulties as the number 
of solution evaluations needed to get a good coverage of the 
search space increases exponentially. As a result, a 
probabilistic model built with a small number of evaluated 
solutions may no longer be sufficient for making effective 
prescriptions about the next point to evaluate.  

It is worth mentioning that many of the difficulties 
associated with Bayesian optimization are commonplace in 
real-world applications. Therefore, a clear need arises for the 
development of alternate black-box optimization algorithms. 
EAs effectively fill this void. The key distinguishing feature of 
evolutionary methods is their fundamental reliance on 
evolutionary selection pressure (i.e., the principle of survival 
of the fittest) which generally acts on a population of search 
agents (or individuals). Typically, an individual solution in an 
EA is encoded as a chromosome (i.e., a string of genes) and 
endowed with a fitness that corresponds to its objective 
function value. If the fitness of the individual is relatively high 
(compared to the other individuals generated), its probability 
of survival and subsequent offspring creation is also high. On 
the other hand, if its fitness is low, it is bound to get gradually 
eliminated from the evolutionary search. The simplicity of the 



idea provides much flexibility for the design of highly 
parallelizable EAs that can tackle various practically relevant 
scenarios, including high dimensional searches [45], and 
combinatorial representations [46]. Another feature of EAs is 
the seamless interplay possible between evolutionary 
mechanisms and model-based search. This has given rise to 
surrogate-assisted EAs, which form a class of methods tailored 
for computationally expensive problems; similar to Bayesian 
optimization. However, while Bayesian approaches require 
probabilistic function approximations, EAs can be combined 
with different surrogate models, including deterministic neural 
networks, polynomial response surfaces, etc. [47].  

B. Genetic Transfer 

The salient feature of EAs lends itself well to the transfer 
optimization paradigm. Specifically, if the knowledge 
transferred from a different optimization exercise is useful, the 
EA automatically preserves it and allows it to be further 
refined during the evolutionary search. However, if the 
transferred knowledge does not contribute to the solution of 
the current problem being solved, the selection pressure takes 
care of sieving out the useless (or harmful) genetic material.   

In recent times, several attempts have been made to 
exploit the inherently adaptive nature of EAs for efficient 
transfer optimization. Given some form of cross-task solution 
unification (as alluded to in Section II), the general strategy is 
to bias the initial population distribution of a target task 
towards elite solutions obtained for source tasks through direct 
seeding of optimized genetic material [6], [48], [49]. The 
rationale behind such a strategy is that if the objective 

functions of tasks Tj and Tk are highly correlated in the 
ordinal sense, which implies, 

 
 fj(x) < fj(x’) ⇔ fk(x) < fk(x’),     (25) 

 
then optimizing one task immediately solves the other – by 

simply sharing the optimized genetic material. Contrarily, if Tj 

and Tk are uncorrelated, then the transferred genetic material 
is automatically ejected during the selection stage of the 
evolutionary search. 

C. Evolutionary Multitasking 

The motivation for evolutionary multitasking emerges from 
two observations that act over and above the ones discussed in 
the previous subsection. To begin, the implicit parallelism of a 
population offers an ideal platform for multiple concurrently 
occurring optimization tasks to be addressed without delay, 
such that the unified treatment enables latent correlations to be 
automatically harnessed during the search [21]. Further, for 
tasks that are not strongly correlated in the ordinal sense, it has 
been found that the (genetic) transfer of non-elite solutions 
often proves to be more useful [6]. However, this feature is not 
appropriately exploited by sequential transfer strategies where 
the initial population of the target task is simply biased 
towards elite source solutions. In contrast, algorithms for 
evolutionary multitasking facilitate the continuous exchange 
of genetic material throughout the course of the evolutionary 
search [24], thereby making it possible for all tasks in the 
multitasking environment to synergistically gain maximum 
benefits from one another. 

 
Fig. 5. A simple task can be exploited by a complex task in the 
same multitasking environment for faster convergence. 
 

 
To further demonstrate this aspect of evolutionary 

multitasking, we refer to the illustrative minimization example 

in Fig. 5. Therein, task T1 is shown to have a relatively 
smooth objective function that is typically easier to optimize, 

while T2 possesses a rugged landscape such that any 
optimization algorithm has a tendency of getting trapped at a 

local optimum. The global optimum of T2 is located at 0 and 

that of T1 is located at 0.6. Interestingly, the point 0.6 is also a 

local optimum of T2 (as can be seen in Fig. 5). Assuming that 

T1 and T2 are solved in a sequential manner, if we bias the 

initial population distribution of T2 as p0(x) ← pt(x | f1), then 
the search is likely to stagnate at the local optimum. However, 

if T1 and T2 are solved together via multitasking, then, in the 
range [-0.8, 0], the continuous exchange of genetic material 

enables T2 to exploit the smooth landscape of f1 as an alternate 
gradient descent direction, thereby avoiding several local 
optima to converge faster to its global optimum.  

Nevertheless, as for transfer optimization in general, 
determining the suitability of evolutionary multitasking in 
arbitrary scenarios is not trivial. This is due to the lack of prior 
data in black-box optimization, which makes the viability of 
knowledge transfer difficult to ascertain beforehand. Thus, 
there arises the need for fast online measures of the similarity 
across problems – possibly based on the blueprint set out in 
Section II-A – such that adaptive multitasking can be carried 
out (as is currently possible in Bayesian optimization). We 
note that while offline methods to measure the synergy 
between optimization landscapes have been proposed for 
benchmark problems [50], these may rarely apply in practice 
where little is known beforehand about the objective function. 
Alternatively, the guidelines specified in Section II, based on 
the extent of overlap between the feature spaces of distinct 
tasks, provide useful intuition as to when multitasking may be 
successful. Further, examples in multiform optimization are 
deemed to be well suited for multitasking, as a fundamental 
relationship is already known to exist between the tasks.  

D. Evolutionary Algorithms with Model-based Transfer 

The techniques discussed heretofore were all essentially based 
on the direct transfer of genetic material across optimization 
tasks. However, as mentioned earlier, the flexibility offered by 
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EAs allows the interplay of evolutionary mechanisms with 
model-based transfer. To elaborate, the learned models serve 
to capture hidden patterns in optimized solutions, which may 
then be useful for future problem-solving exercises. In the 
memetic computing literature [51], such computational 
representations of knowledge are often referred to as memes, 
which can either be passed from one individual to another (via 
imitation) [52], or even be propagated across problems [16]. 

In contrast to genetic transfer, the hallmark of model-
based transfer schemes is that the knowledge is represented in 
a more succinct manner (instead of storing the raw data), and 
shows lesser tendency of overfitting. Thus, while the success 
of genetic transfer is largely restricted to very similar 
problems with the same search space dimensionality, higher-
order computational models can encapsulate generalizable 
knowledge with increased potential for transfer.  

Lately, notable success stories have surfaced to 
substantiate the efficacy of EAs with model-based transfer.  
For instance, in [53] the model (m) takes the form of a matrix 
that induces a modified distance metric for graph-based 
clustering cum sequencing problems – such as classical 
vehicle and arc routing [54]. In particular, given a pair of 
nodes na (with Cartesian coordinates sa) and nb (with Cartesian 
coordinates sb) of a graph embedded in Euclidean space, the 
model scales the distance between them as, 

 

dist(na, nb) = √(𝒔𝑎 − 𝒔𝑏)𝑇𝑚(𝒔𝑎 − 𝒔𝑏),    (26) 

 
so as to bring nodes that belong to the same cluster closer to 
one another, while moving nodes belonging to different 

clusters further apart. When faced with a new task, say TK, a 
combination of the previously learned models m1, m2, …, mK-1 

is applied on the nodes of TK to map to solutions that are 
(hopefully) close to the optimum clustering. Note that since 
the m’s map to a small subset of all possible clusterings, they 
can be seen as inducing a biased distribution conditioned on 
the knowledge acquired from the past (which aligns with our 
abstract interpretation of m in Section II). It is worth 
mentioning that in [16], [55], the distance metric learning 
technique was extended to account for sequencing information 
as well. What is more, in [56], an artificial neural network-
based binary classification model was proposed as a substitute 
to distance metric learning for identifying pairs of nodes that 
belonged to the same cluster. 

Conceptually similar to the examples above, in [57]-[59] 
it was shown that in estimation of distribution algorithms 
(which are a class of probabilistic model-based EAs [60]), 
recurrent patterns in the linkages between genes (variables) of 
discrete optimization problems could be gleaned from 
previous probabilistic models to guide the model learning 
process for related problems in the future. By doing so, not 
only was the complexity of model building reduced, but the 
search was also made more effective on future tasks. An 
alternate strategy within the same class of algorithms was 
proposed in [61], where, when a new problem arises, the 
probabilistic models of previously solved problems that are 
deemed similar are retrieved from a case base, combined [62], 
and then sampled to generate the initial population. The 
method is technically a lot like genetic transfer-based seeding. 

 Even in the domain of continuous optimization, promising 
results have been achieved by incorporating model-based 
transfer mechanisms. For example, in [63], a decision tree was 
learned on data generated during the optimization exercise to 
decipher the feasibility structure of an underlying highly 
constrained problem. Using the trained model to bias the 
initial population to lie entirely in the predicted feasible region 
resulted in substantial speedups of the evolutionary search on 
related problems in the future. More recently, in [64], a 
denoising autoencoder was used to learn a mapping between 
corresponding populations of distinct optimization tasks. To 
elaborate, at generation G, if the population of solutions (in 

matrix form) of the target task TK is 𝑋𝐾𝐺, and the 
corresponding population of a previously solved source task 

Tk is 𝑋𝑘𝐺, then the denoising autoencoder (mk) is learned as, 
 min𝑚𝑘 ||𝑚𝑘 ∙ 𝑋𝑘𝐺 − 𝑋𝐾𝐺||𝐹,      (27) 

 
where 𝑋𝑘𝐺 is treated as a corrupted version of 𝑋𝐾𝐺. In Eq. (27), 
||· ||F indicates the Frobenius norm.  The trained autoencoder 
was then used to transform and transfer the optimum solutions 
of the source task to the current target task of interest. 
Numerical experiments based on this approach demonstrated 
accelerated convergence characteristics for a variety of 
benchmark and real-world MOPs.  

Finally, much like the recent advances seen in Bayesian 
optimization, there exists significant scope for augmenting 
surrogate-assisted EAs with concepts of adaptive transfer 
learning, such that data/models from related problems can be 
used to build accurate and low cost approximations of costly 
functions in the target task of interest. Preliminary work in this 
direction has been done for multi-fidelity problems [33], [65], 
where information from low fidelity models is used to 
accelerate high fidelity optimizations.  

V.  PRACTICAL TRANSFER OPTIMIZATION EXEMPLARS  

Any practically useful system will generally face a large 
number of problems in its lifetime, most of which will either 
be repetitive or have domain-specific similarities. Mechanisms 
for automatically exploiting these latent similarities are the 
distinguishing feature of transfer optimization algorithms. In 
this section, we present latest research activities that offer a 
glimpse of the considerable utility of the paradigm across a 
wide array of real-world applications, ranging from machine 
learning to engineering design. 

A. Transfer Optimization in Machine Learning 

In addition to the automatic hyperperameter tuning problem 
discussed in Section III (which has largely been the arena of 
transfer Bayesian optimization), there exist a plethora of 
opportunities for the different conceptual realizations of 
transfer optimization to come to the fore in machine learning. 
Particularly noteworthy advancements have been made in 
transfer optimization enabled genetic programming (GP). As 
an example, [66]-[68] showed that by transferring optimized 
genetic material (in the form of trees or sub-trees of computer 
programs evolved by a GP solver) from a source to a target 
symbolic regression task helped achieve better training error 
as well as improved generalization performance. The authors 



of [69], [70] applied a similar strategy to learning classifier 
systems, demonstrating that building-blocks of knowledge in 
the form of code fragments (GP-like sub-trees), that were 
extracted from small-scale problems, could be reused while 
learning more complex (large-scale) problems in the same or 
related domains akin to the behavior of human beings. In [71], 
it was revealed that this general approach can solve very 
difficult variants of the n-bit multiplexer problem that were 
previously insolvable by any other method. 

The GP-based transfer scheme was further extended in 
[23] to the case of image classification. In particular, 
potentially useful code fragments extracted from simpler 
image classification problems were incorporated into the 
initial population and genetic mutation steps of a transfer 
learning GP algorithm, thereby leading to improved 
performance in complex, e.g., rotated and noisy, problems 
from similar as well as different domains. 

While the examples presented above follow a procedure 
aligned to sequential transfer, there have also been recent 
applications of evolutionary multitasking in the field of 
machine learning. For instance, an evolutionary multitasking 
variant of Cartesian GP has been shown to solve a set of 
elementary logic functions twice as easily as with a direct 
single-task approach [72]. In [73], a multifactorial EA 
(MFEA) based multitasking engine [18], in conjunction with 
GP, was used for learning an ensemble of decision trees. The 
results showed that the multitasking algorithm was able to 
achieve classification accuracy comparable to an ensemble 
generated through multiple runs of traditional GP, and yet at 
the computational cost of only a single run. Likewise, in [74], 
a real-coded MFEA was used for modular training of feed-
forward neural networks (where each task was described by a 
network of distinct width), showing superior convergence 
characteristics and classification performance in comparison 
to classical single-tasking for the n-bit parity problem. In [75], 
the basic idea of modular topologies through evolutionary 
multitasking was extended to extreme learning machines. 
Further, a co-evolutionary multitask learning approach has 
only recently been proposed for multi-step-ahead time series 
predictions [76], where different prediction horizons are seen 
as different but related tasks enabling transfer optimization.  

B. Transfer Optimization in Robotics 

A commonly encountered challenge in robot control tasks is 
the bootstrap problem [77], which concerns the lack of a 
sufficient fitness gradient during the initial stages of the search 
process.  While evolving the controllers, the problem is further 
magnified when a randomly generated initial population is 
used. To overcome this hurdle, a genetic transfer-based family 
bootstrapping approach was proposed in [78], where the 
optimized solutions of a common source task were used to 
bias the initial population for associated target tasks. In other 
words, the optimized solutions from the source task formed 
the family ancestry for the subsequent stage of target tasks. 
The most interesting conclusion drawn from the experimental 
results was that creating the ancestry from a source MOP 
proved more helpful than a source SOP. This leads to the 
insight that the Pareto optimal solutions of an MOP can lead to 
a more diverse knowledge base, which, as has been argued in 
Section II-A, is beneficial for transfer optimization.  

In addition to sequential knowledge transfer, the potential 
impact of evolutionary multitasking in robotics has been 
investigated in [21]. Therein, preliminary work was presented 
on improving the path planning of unmanned aerial vehicles 
by tackling multiple related missions simultaneously. 
 

C. Transfer Optimization in Games 

The computer gaming industry is rapidly growing, and has 
much benefitted from the use of artificial intelligence in 
enhancing game-play experience [79]. As a result, games are 
also commonly used by researchers as test beds for 
showcasing the efficacy of state-of-the-art algorithms [80]. It 
therefore comes as little surprise that the potential of transfer 
optimization has been established in computer games as well. 
In [81], EAs were used to develop player strategies that could 
lead to challenging opponents in tactical and strategic games. 
Specifically, the concept of genetic transfer was invoked to 
respond quickly to changing game dynamics – where a change 
was simply viewed as a new problem that is likely to share 
some similarities with previous settings. In addition to the 
above, knowledge was automatically acquired from human 
players by recording their game-play, so as to learn how to 
avoid potential traps. 

The efficacy of an evolutionary transfer reinforcement 
learning framework for multi-agent systems, based on the 
concepts of memetic automaton [82], has lately been 
demonstrated on a first person shooter computer game [83]. 
The success of the approach is attributed to the scope of 
transfer across agents, which enables them to learn faster from 
better performing agents and thereby solve complex tasks 
more efficiently and effectively. 

Besides computer games, the capability of solving 
complex puzzles can provide insights about the prowess of 
machine intelligence. In [84], Sudoku puzzles (which can be 
cast as highly constrained combinatorial optimization 
problems) were considered because of the interesting feature 
that outwardly unlike puzzles can often end up having final 
solutions that are alike; which provides an analogy to the 
prevalence of latent synergies between seemingly disparate 
problem-solving tasks. The numerical experiments showed 
that when latent synergies in the form of complementary 
constraints existed, the multitasking MFEA resulted in rapid 
streamlining of the search towards feasible solutions. 
However, it was also found that for the case of task clones 
(i.e., puzzles that were identical in every sense), multitasking 
performed the same as standard single-tasking; possibly 
because no new information was available from the other task. 
This led to the realization that in evolutionary multitasking, 
inter-task complementarity emerges from myriad interactions 
between tasks that may not be apparent to the eye. For the 
sake of brevity, we refrain from discussing this matter in depth 
in this paper. For preliminary thoughts on what it might mean 
for one task to complement another in a general multitask 
setting, the reader is referred to [50]. 

D. Transfer Optimization in Dynamic Environments 

The ubiquitous need for prompt decision making in dynamic 
environments provides a perfect setting for transfer 
optimization. This is because any change in the environment 
can be seen to constitute a new problem, to which knowledge 



can be transferred from previously tackled environments. 
When the changes are cyclic in time, the transfer of 
knowledge can work particularly well. These observations 
have been exploited for designing various approaches for 
optimization in dynamic environments, a review of which is 
available in [85]. For instance, an associative memory scheme 
was proposed in [86], where probabilistic models together 
with optimized solutions of past environments were stored for 
reuse whenever a change in the environment occurred. While 
[86] is memory-based, prediction-based approaches for 
dynamic environments have also been proposed in the past 
[87], where changes in the solutions are estimated based on 
changes that have occurred previously. More recently, the 
distance metric learning-based transfer procedure (described 
in Section IV-D) has also been adapted for handling 
dynamism in the logistics industry [88]. In particular, 
whenever new customer requests are received during the 
execution of a delivery plan, the knowledge captured from the 
previous time slot is applied for maximally aligning the 
customer distribution to the customer-vehicle assignments – 
thereby reducing the effort needed for re-optimization.  

E. Transfer Optimization in Engineering Design 

Engineering designs are usually gradually improved over time. 
Further, it is found that modern day design cycles are typically 
distributed in nature, consisting of multiple teams working on 
associated ideas in tandem [89]. Various conceptual designs 
are analyzed, before selecting the one that best suits a set of 
requirements [90]. Thus, manual knowledge adaptation and 
reuse is routine practice to speed up the process. By extension, 
the utility of transfer optimization emerges naturally, as the 
paradigm facilitates automatic exploitation of the overlaps 
between related designs.  

A number of optimization strategies have been proposed 
lately for accelerating engineering design. In [64], the 
denoising autoencoder was used to map optimized solutions of 
previous process design exercises to the current target task of 
interest. Alternatively, a decision tree trained to decipher the 
feasibility structure of a problem was used in [63] as a 
transferrable nugget of knowledge within a family of 
processes for composite materials manufacturing.  

Even the benefits of evolutionary multitasking have been 
demonstrated in the context of engineering design [91], [92]. 
To elaborate, by tackling designs of more-or-less similar type 
concurrently, the cost of exploring common parameter spaces 
was shown to be substantially reduced. This feature is strongly 
highlighted in [91] where multitasking was shown to push the 
envelope of EAs, facilitating simultaneous convergence to 
Pareto optimal solutions of multiple MOP design formulations 
at the same time. The efficacy of multitasking further extends 
to highly constrained search spaces common in engineering 
design, such that the distribution of feasible solutions is 
gleaned and automatically transferred from simpler to more 
difficult problems through continuous genetic exchange [93]. 

VI. FUTURE DIRECTIONS 

So far in the paper, we have discussed two distinct research 
strands in the field of global black-box optimization that have 
addressed the notion of automatic knowledge transfer. To 
summarize, model-based approaches of Bayesian optimization 

algorithms is found to enable explicit learning of the similarity 
between optimization problems as the search progresses and 
data is gradually accumulated. As a result, the extent to which 
transfer should occur between tasks can be automatically 
modulated online during the course of the search. In other 
words, transfer Bayesian optimization provides an appealing 
option for truly adaptive transfer. However, there are certain 
shortcomings. To begin, the Gaussian process models that are 
typically used for probabilistic approximations of the objective 
function in Bayesian optimization do not directly extend to the 
case of combinatorial representations. Further, as the 
dimensionality of the problem grows, Bayesian optimization is 
severely hampered by the cold start problem, as an 
exponentially increasing number of data points are needed to 
start learning sufficiently informative models. Thus, despite its 
notable features, there exists a wide range of real-world 
scenarios in which Bayesian optimization may fail. 

To deal with the aforementioned challenges, evolutionary 
computation has emerged as an attractive alternative. The 
flexibility offered by the simple mechanisms of EAs allows 
combinatorial representations, as well as problems with 
significantly larger search space dimensions, to be tackled 
with relative ease. Notably, EAs also allow for automatic 
knowledge incorporation through direct genetic transfer, or 
through different forms of model-based transfer. However, a 
drawback of existing methods in this regard is that they are 
generally found to be over reliant on the sieving effect of the 
evolutionary selection pressure. Sufficiently in-depth analysis 
is seldom done to infer the similarity across problems. 
Therefore, given many diverse information streams, it is 
highly likely that the selection pressure will be overburdened 
in the process of culling an abundance of useless information. 
In the worst case, this may severely hamper the overall 
efficacy of the evolutionary search process [94]. 

Taking note of the strengths and weaknesses of these two 
prominent strategies for black-box optimization, it is deemed 
that the future of transfer optimization as an industrial norm 
depends on a conceptual unification of the research strands. 
On one side, research efforts are needed towards the 
development of novel representation schemes and genetic 
operators that are better suited for seamless knowledge 
transfer and multitasking, such that the burden on the 
evolutionary selection module can be reduced. On the other 
side, lessons must be learned from the advances in transfer 
Bayesian optimization, such that some theoretical guarantees 
can be achieved with regard to minimizing the deleterious 
effects of harmful negative transfer through the explicit 
capture of the similarities across problems. 

Given the path ahead of us, it is our view that the future 
lies in a new generation of memetic computing, where, with 
the widespread connectivity of devices supported by the IoT, 
the notion of memes in computational intelligence will take a 
form analogous to their social connotation. We elaborate in 
the next subsection.  

A. The Emerging Problem-Solving Web 
 

As has been alluded to throughout this paper, real-world 
problems seldom exist in isolation. The implications of this 
fact are further magnified with the dawn of the IoT. While 
optimization problems have largely been dealt with as self-



contained silos, the future shall give rise to complex networks 
of related problems, with each node in the network being 
either a self-contained task, or a single component of a much 
larger multicomponent problem. Memetic computing is 
expected to thrive in such settings. In particular,  the 
interconnected web of problems will make it possible for 
knowledge memes generated at any node to propagate 
throughout the network (mimicking the viral effect [95]), such 
that other problem-solving exercises can immediately benefit 
from related experiences elsewhere. 

Finally, we note that a conceptual simplification in the 
theoretical formalizations in this paper has been that a 
knowledge building-block (or meme) extracted from a 
particular task (or node) does not evolve despite what is 
learned from subsequent tasks. However, it is understood that 
as a meme propagates through a network of problems, it may 
be progressively augmented at each node, such that it houses 
increasingly complex knowledge that is suited for tasks of 
growing complexity. The utility of such progressive 
knowledge transfer for problem-solving has been shown in the 
context of neuroevolution of challenging controller design 
tasks [96]. Notably, the idea of continuously evolving memes 
is somewhat analogous to that of continual learning [97].  

VII. CONCLUSIONS 

This paper is dedicated to establishing the notion of transfer 
optimization as a novel paradigm facilitating the automatic 
transfer of knowledge across problems as a way to mimic an 
essential feature of human intelligence. A formalization of the 
paradigm was presented, showing, in particular, that with a 
growing knowledge base the problem-solving capability of an 
ideal transfer optimization algorithm will in principle grow in 
tandem. A rough blueprint for such an adaptive algorithm was 
also proposed based on the learning of an optimal mixture of 
knowledge represented in the form of probability density 
estimations. Following from the formalizations, three distinct 
conceptual realizations of transfer optimization were 
identified, namely, sequential transfer – where problems 
appear one after the other, multitasking – where multiple 
optimization tasks occur simultaneously, and multiform 
optimization – where multiple distinct formulations of a single 
target task of interest are tackled in conjunction.  

In addition to introducing the general problem statement, 
various methodological perspectives spanning Bayesian as 
well as evolutionary techniques were surveyed, with the idea 
that the future of transfer optimization depends on a 
conceptual unification of the complementary aspects of the 
two research strands. Further, a variety of noteworthy real-
world exemplars, ranging from machine learning to 
engineering design, were discussed, highlighting the practical 
implications of associated research activities. 

To conclude, it is observed that the widespread 
connectivity offered by present-day technologies, such as IoT 
and cyber-physical systems, provides immense scope for 
harnessing the knowledge embedded in vast information 
streams from related tasks in geographically distributed 
locations. Such settings point towards a new generation of 
memetic computing, where knowledge memes extracted from 
a specific task can be spontaneously propagated through an 
inter-connected web of related problem-solving exercises, 

thereby lending memes in computational intelligence a form 
analogous to their social connotation.  
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