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Abstract 

Background: Gaining further insights into SARS-CoV-2 routes of infection and the underlying pathobiology of 

COVID-19 will support the design of rational treatments targeting the life cycle of the virus and/or the adverse effects 

(e.g., multi-organ collapse) that are triggered by COVID-19-mediated adult respiratory distress syndrome (ARDS) and/

or other pathologies.

Main body: COVID-19 is a two-phase disease being marked by (phase 1) increased virus transmission and infection 

rates due to the wide expression of the main infection-related ACE2, TMPRSS2 and CTSB/L human genes in tissues of 

the respiratory and gastrointestinal tract, as well as by (phase 2) host- and probably sex- and/or age-specific uncon-

trolled inflammatory immune responses which drive hyper-cytokinemia, aggressive inflammation and (due to broad 

organotropism of SARS-CoV-2) collateral tissue damage and systemic failure likely because of imbalanced ACE/ANGII/

AT1R and ACE2/ANG(1–7)/MASR axes signaling.

Conclusion: Here we discuss SARS-CoV-2 life cycle and a number of approaches aiming to suppress viral infection 

rates or propagation; increase virus antigen presentation in order to activate a robust and durable adaptive immune 

response from the host, and/or mitigate the ARDS-related “cytokine storm” and collateral tissue damage that triggers 

the severe life-threatening complications of COVID-19.
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Introduction
Coronavirus disease 2019 (COVID-19) is caused by 

severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) and has resulted in more than 1.45 mil-

lion of deaths worldwide as of November 30, 2020. 

While the majority of SARS-CoV-2 infected patients 

will not require hospitalization, a minority will present 

with more severe symptoms requiring hospitalization 

and may experience severe life-threatening complica-

tions, including acute respiratory distress syndrome 

(ARDS), which may trigger a systemic multi-organ col-

lapse [1]. Since SARS-CoV-2 is a new virus and there 

are few  (e.g., Remdesivir; an antiviral drug initially used 

against hepatitis C virus) [2] anti-viral drugs that have 

been re-purposed for COVID-19 treatment [3], a better 

understanding of the underlying COVID-19 pathobiol-

ogy is required in order to design prophylactic and/or 

therapeutic strategies. SARS-CoV-2 infects human cells 

by binding to the cell surface protein angiotensin-con-

verting enzyme 2 (ACE2) through the Receptor Bind-

ing Domain (RBD) of its spike (S) protein (Fig.  1) [4]. 

In addition, the cellular transmembrane serine protease 

Open Access

*Correspondence:  itrougakos@biol.uoa.gr; mdimop@med.uoa.gr
1 Department of Cell Biology and Biophysics, Faculty of Biology, National 

and Kapodistrian University of Athens, 15784 Athens, Greece
2 Department of Clinical Therapeutics, School of Medicine, National 

and Kapodistrian University of Athens, 11528 Athens, Greece

Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6179-2772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12929-020-00703-5&domain=pdf


Page 2 of 18Trougakos et al. J Biomed Sci            (2021) 28:9 

2 (TMPRSS2) is required for the priming of the virus 

S protein [4, 5], while virus entry in the cell may also 

depend on the endosomal/lysosomal cysteine proteases 

cathepsin B and L (CTSB, CTSL) although their activity 

is likely not essential [4]. More recently, it was found 

that furin protease is also involved in the infection pro-

cess since SARS-CoV-2 contains an unusual for coro-

naviruses furin cleavage site in the S protein [6], and 

that the cellular receptor neuropilin-1 (NRP1, binds 

furin-cleaved substrates) potentiates SARS-CoV-2 

infectivity providing also a pathway into the central 

nervous system [7]; SARS-CoV-2 may also utilize the 

putative alternative receptor CD147 (expressed in high 

levels in the brain) to infect cerebral nervous system [8, 

9].

Fig. 1 Illustration of the main cell signaling axes [i.e., ACE/ANGII/AT1R and ACE2/ANG(1–7)/MASR] and of other cellular components being involved 

in SARS-CoV-2 infection (i.e., TMPRSS2 or furin), endocytosis and replication. 1. SARS-CoV-2 (extracellular); 2. binding to ACE2; 3. TMPRSS2 (or FURIN) 

priming; 4. clathrin-mediated endocytosis (entry to early and acidic late -microtubule bound- endosomes) - 4* denotes endosomal compartments 

during exocytosis; 5, 6. uncoating, genomic RNA release and viral-protein synthesis in free and endoplasmic reticulum-attached ribosomes; 7. 

vesicle-mediated exocytosis; 8. antigen presentation by endocytic compartments (MHC II) and proteasomes (MHC I); 9. immune cell attraction and 

development of immunity or elimination of infected cells. MHC II/MHC I, Major Histocompatibility Complex class II, I. ┤inhibition, → induction
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The critically balanced ACE/ANGII/AT1R and ACE2/
ANG(1–7)/MASR axes
ACE2 is a main component of the renin-angiotensin sys-

tem (RAS) which maintains fluid and salt balance, as well 

as blood pressure homeostasis [10]. Renin, angiotensino-

gen (AGT), angiotensin-converting enzyme (ACE), 

angiotensin II (ANGII) and the ANGII type 1 and type 2 

receptors (AT2R1 and ATR2) (Fig. 1; AT2R is not shown) 

are major components of RAS. ACE generates ANGII 

which is a key effector peptide causing vasoconstriction. 

Overactivation of RAS has been implicated in the patho-

physiology of atherosclerosis, heart failure, hypertension, 

diabetes, renovascular disorders, pulmonary hyperten-

sion, pneumonia, fibrosis, and sepsis [11, 12]. On the 

other hand, ACE2 which has considerable homology 

(40% identity and 61% similarity) to ACE metalloprotease 

[13, 14], functions as a negative regulator of the RAS sys-

tem. Specifically, ACE2 reduces ANGII levels by cleaving 

it to the sorter ANG(1–7) peptide, which can then acti-

vate the vasodilation-promoting and anti-inflammatory 

MAS receptor (MASR) (Fig. 1) [15]. Furthermore, it has 

been reported that ACE2 links amino acid malnutri-

tion to intestinal inflammation, as it is a key regulator of 

innate immunity, dietary amino acid homeostasis and gut 

microbial ecology [16]. Overall, the balance between the 

ACE/ANGII/AT1R and the opposing ACE2/ANG(1–7)/

MASR axes is central in (among others) the physiological 

regulation of cardiovascular, blood pressure, neural and 

kidney functions [10, 12, 15].

It can be assumed that increased ACE2 expression or 

the co-expression at high levels of the ACE2, TMPRSS2 

and CTSB/L proteins in SARS-CoV-2 targeted cells/tis-

sues will correlate with higher risk of viral infection. 

Reportedly, the ACE2, TMPRSS2 and CTSB/L genes/pro-

teins are widely expressed in human tissues; being par-

ticularly enriched in kidney, heart, as well as in tissues of 

the respiratory and gastrointestinal tract [17]. �e ACE2 

and TMPRSS2 genes are minimally expressed in blood 

cells and tend to be co-regulated [17]; it was also found 

that the SARS-CoV-2 entry factors are expressed at high 

levels in nasal epithelial cells [18]. �ese observations 

suggest that even in the absence of underlying co-mor-

bidities most vital human organs are potentially vulner-

able to SARS-CoV-2 infection. It was also found that the 

ACE2/TMPRSS2 genes are (among others) downregu-

lated by tumor necrosis factor (TNF) and are induced by 

several pro-inflammatory conditions including Barrett’s 

esophagus, gastric infection by Helicobacter pylori, obe-

sity, diabetes, autoimmune diseases, as well as by viral 

infections, cigarette smoking, growth factors, interferons 

(IFNs) and androgens [17]. In support, ACE2 expres-

sion was stimulated by a type I Interferon (IFN-a) gene in 

human airway epithelial cells [19] and thus, SARS-CoV-2 

could (indirectly) exploit IFN-driven upregulation of 

ACE2 to enhance infection rate in target tissues.

In pathologies like diabetes, obesity, hypertension, res-

piratory or cardiovascular disease which have all been 

found to associate with high-risk severe COVID-19 [20], 

the pro-inflammatory ACE/ANGII/AT1R axis is overac-

tivated triggering the overexpression of the counteract-

ing ACE2 pathway increasing thus SARS-CoV-2 available 

binding sites. In most cases these patients are treated 

with anti-hypertensive drugs including ACE inhibitors or 

ANGII receptor blockers (Fig.  1) [21]; consistently, pre-

scription of anti-hypertensives was more frequent among 

patients with COVID-19 [22].

Interestingly, it has been shown in mice that SARS-

CoV-1 (the coronavirus that caused the SARS epidemic 

in 2003) infection downregulates ACE2 protein (but not 

ACE) contributing to severe lung injury [23]. �e ACE2-

dependent pathogenicity of SARS-CoV-2 has been also 

confirmed in mice expressing human ACE2 [24]. Sup-

pressed ACE2 expression and locally increased ANGII 

production can induce leakage of pulmonary blood ves-

sels (a hallmark in ARDS pathogenesis) via AT1R stim-

ulation [25]. Notably, in a model of lung injury being 

mediated by direct binding of nanoparticles to ACE2, 

which led to suppression of ACE2 expression levels and 

activity, administration of losartan (an AT1R antago-

nist) ameliorated nanoparticle-induced lung injury [26]. 

Likewise, extensive lung infection by SARS-CoV-2 in 

COVID-19, triggers capillary leakage which if sustained 

may lead to viremia (i.e., the presence of infectious virus 

in the circulation), local over-activation of the ACE/

ANGII/AT1R signaling due to ACE2 diminishment, 

extensive inflammation and the so-called “cytokine 

storm” (Fig.  2a). Worth mentioning is however, that 

the etiology of “cytokine storm” remains largely elusive 

and may be well triggered by mechanisms not directly 

related to ACE2 through modulation of pulmonary mac-

rophages, dendritic cells and/or neutrophils [27–30]. 

�e alarming “cytokine storm”-related pro-inflammatory 

signals spread throughout the body most likely trigger-

ing ACE2 overexpression and thus increased ACE2/

ANG(1–7)/MASR signaling as a counterbalancing effect. 

Given the extensive expression of ACE2 in most human 

organs, which is now exaggerated because of the pro-

inflammatory alarming cytokines, the potentially (in 

cases of viremia) circulating virus can attack most vital 

organs (e.g., kidneys and heart). �is vicious cycle may 

then accelerate due to infection-related locally increased 

ANGII production, which exaggerates ACE/ANGII/

AT1R signaling causing systemic failure. Consistently 

to this hypothesis, postmortem examination of patients 

with COVID-19 revealed the existence of SARS-CoV-2 in 

multiple (apart from the lung) organs including pharynx, 
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heart, liver, brain, and kidneys further supporting the 

broad organotropism of the virus [31, 32]. Worth noting 

is, that although there is seemingly no detectable viremia 

during asymptomatic infection or in the absence of clini-

cal disease [33], SARS-CoV-2 RNA has been detected in 

blood samples from patients with mild symptoms [34] 

and detectable viral RNA in blood is a strong prognostic 

factor for clinical deterioration [35].

In line with these notions, the enrichment of all SARS-

CoV-2 infection-related cellular modules (i.e., ACE2, 

TMRSS2 and CTSB, CTSL) in the gastrointestinal 

tract [17, 36] explain diarrhea as a major symptom of 

COVID-19 and SARS-CoV-2 RNA isolation from stool 

[33, 37, 38] (Fig.  2b). Given that SARS-CoV-2 produc-

tively infects human gut enterocytes [36] or human intes-

tinal organoids [39] it is plausible that human intestinal 

tract represents a major entry and replication site for 

SARS-CoV-2 due to consumption of contaminated food. 

In support, intra-gastric inoculation of SARS-CoV-2 in 

a mouse model expressing human ACE2 caused pro-

ductive infection and most interestingly led to pulmo-

nary pathological changes [40]. A significant association 

between liver dysfunction and mortality of COVID-19 

patients has been also reported [41, 42], which may 

Fig. 2 Major severe COVID-19 pathologies and infection routes. a The modules involved in, 10. acute phase of SARS-CoV-2 infection in the lung 

(ARDS); 11. vasodilation, increased capillary permeability, apoptosis/necrosis of endothelial cells as well as 12. ARDS-induced “cytokine storm” and 

likely virus entry to the circulation which may then cause systemic failure due to broad organotropism in tissues expressing high levels of ACE2 (e.g., 

heart and kidneys) or the “cytokine storm”-related excessive inflammation, are indicated. b Sites of potentially SARS-CoV-2 infected organs in the 

alimentary tract of the digestive system and in accessory organs i.e., salivary glands, liver, gallbladder, and pancreas. ACE2 is expressed in relatively 

high levels in duodenum, small and large intestines, rectum, as well as in gallbladder. Thus, following the consumption of contaminated food the 

virus likely reaches the stomach passively; the reported adverse effects in other accessory organs like liver or pancreas are probably the result of 

excessive inflammation during severe COVID-19. c Central (brain, spinal cord) and peripheral nervous system as an infection route of SARS-CoV-2; 

ACE2, neuropilin-1 (NRP1) and CD147 that reportedly potentiate virus infectivity into the central nervous system are shown. The molecular 

pathways involved in SARS-CoV-2 infection in human (e.g., lung) cells are depicted in Fig. 1
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relate to direct viral infection (still questionable due to 

relatively low ACE2 expression levels in the liver [17]); to 

indirect damage because of drug-induced liver injury or 

because of COVID-19-triggered systemic inflammation 

[43]. Analyses of severe COVID-19-induced biochemical 

alterations in the liver have shown the elevation of liver 

enzymes, such as alanine aminotransferases and aspar-

tate aminotransferases, and significantly lower albumin 

levels [43, 44] and thus, liver markers should be moni-

tored continuously during COVID-19 evolvement. ACE2 

and TMPRSS2 are highly expressed in gallbladder [17], 

whereas regarding pancreas ACE2 is expressed in exo-

crine tissue microvasculature and in a subset of pancre-

atic ducts with TMPRSS2 expression being restricted to 

ductal cells [45, 46]. Notably, both ACE2 and TMPRSS2 

are rarely expressed in single  pancreatic β cells from 

donors with or without diabetes [45, 46] suggesting that 

SARS-CoV-2 cannot directly infect β cells.

Similarly, COVID-19 impact to the  nervous system 

may relate to SARS-CoV-2 infection-mediated systemic 

imbalance of the neuroprotective ACE2/ANG(1–7)/

MASR axis signaling [47, 48] or to direct effects mediated 

by SARS-CoV-2 neurotropism. SARS-CoV-2 canonical 

cell entry factors i.e., ACE2 and TMPRSS2 are expressed 

in glial cells, neurons, endothelial and arterial smooth 

muscle cells in the brain [49], while neuropilin-11 or 

CD147 may also facilitate SARS-CoV-2 entry into the 

central nervous system [7, 9] (Fig. 2c). In support SARS-

CoV-2 can directly target neurons of 3D human brain 

organoids [50, 51] and the virus has been found in cer-

ebrospinal fluid and neuronal cells [49, 52] indicating 

that SARS-CoV-2 is neuroinvasive, neurotropic and neu-

rovirulent. �e two main infection pathways are likely 

the hematogenous and the neuronal, with the olfactory 

route (where nasal cell express high levels of ACE2 [18]), 

along with the lymphatic tissue and the cerebrospinal 

fluid likely playing a significant role in SARS-CoV-2 neu-

roinvasion [52]. Most common COVID-19 neurologi-

cal symptoms are headache, dizziness, hypogeusia and 

hyposmia, with rarer being severe symptoms like acute 

cerebrovascular disease, meningitis/encephalitis, acute 

necrotizing hemorrhagic encephalopathy, or even acute 

Guillain–Barré syndrome [52]. SARS-Cov-2 can also 

affect neuronal function indirectly by extensive inflam-

mation-mediated increase of circulating cytokines which 

can penetrate the damaged blood brain barrier [52].

Conclusively, regarding primary sites of SARS-CoV-2 

infection although lungs (Fig. 2a) and likely the gastroin-

testinal tract (Fig. 2b) are grounds zero during the infec-

tion process, SARS-CoV-2 and/or COVID-19 also tear 

multiple organ systems, with major targets (because of 

high ACE2, TMPRSS2 expression) being the  heart and 

kidneys.

We propose that (a) the imbalance in the action of 

ACE- and ACE2-derived peptides, i.e., the increased 

ANGII versus ANG(1–7) ratio, which occurs due to 

SARS-CoV-2 binding-mediated diminishment of ACE2 

expression, along with, (b) the high ACE-2 expression 

levels-related increased tropism of the virus to vital 

human organs (e.g., kidneys and heart) are major drivers 

of COVID-19 pathobiology. �us, those at high risk for 

severe COVID-19 (e.g., the elderly or those with underly-

ing morbidities) should probably be (among others; see 

below) on prophylactic treatment with RAS inhibitors 

(e.g., AT1R antagonists or ACE inhibitors) to decrease 

systemic damage risk and thus blunt COVID-19-associ-

ated morbidity and mortality.

Given the aforementioned sequence of events, tis-

sues affected and downstream pathologies, the design of 

COVID-19 therapeutics (until the discovery of an effec-

tive highly specific anti-viral drug and/or a vaccine) may 

be complex, but it also presents with several potentially 

druggable opportunities. Overall, it is now understood 

that acute COVID-19 is a two-phase disease, including 

(a) infection and spreading of the virus mainly in the res-

piratory and gastrointestinal tracts, and, (b) ARDS (which 

can occur after a temporal improvement) and the uncon-

trolled immune response of the host [53] which can then 

lead to worsening of ARDS, development of multi-organ 

pathologies and systemic failure (Fig.  2) [54]. Effective 

therapeutic treatments should thus probe both SARS-

CoV-2 inhibition through better understanding of its life 

cycle and also the side-effects induced by COVID-19 due 

to immune system overactivation and organ dysfunction 

caused by the broad organotropism of SARS-CoV-2.

Targeting the life cycle of the virus
For prophylactically targeting the virus life cycle (phase 1 

of the disease), the magic bullet will be the development 

of an effective vaccine which can induce SARS-CoV-

2-specific neutralizing antibodies. Indeed, more than 

90 vaccines are being developed against SARS-CoV-2 

by researchers in companies and universities worldwide 

where research teams are trialing different technologies, 

some of which have not been used in a licensed vaccine 

before [55]. Most of these vaccines were found to induce 

protective neutralizing antibodies and  CD8+ T cell 

responses to wild-type (D614) and D614G mutant SARS-

CoV-2 in mice, rats, guinea pigs, rabbits, and non-human 

primates [56–62], while some of them are already being 

tested in advanced clinical trials with encouraging results 

[63–65] indicating a potential to provide protection 

against COVID-19 [66, 67]. Alternatively, the isolation 

of virus-specific human monoclonal antibodies exert-

ing SARS-CoV-2 neutralization activity from memory B 

cells (e.g., by high-throughput single-cell sequencing) of 
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SARS-CoV-2 infected and recovered individuals [68–74] 

or from genetically-humanized mice [73] can be poten-

tially applied as prophylactic treatment in individuals 

at high risk for infection or as a post-exposure therapy 

to limit or treat severe disease. To this end noncompet-

ing antibody cocktails (e.g., REGN10987/REGN10933 

or S2E12/S2M11) that target nonoverlapping epitopes 

on the SARS-CoV-2 S protein can prevent the genera-

tion of escape S mutants [75] and are highly effective in 

both hamsters and rhesus macaques COVID-19 models 

[76, 77]; additional cocktail (or not) neutralizing antibody 

preparations were found to be protective in both mice 

and non-human primates COVID-19 models [78–80] as 

well as in an interim analysis of a phase 2 trial [81]. Worth 

mentioning is that beyond the potential prophylactic 

and/or therapeutic usage of SARS-CoV-2 neutralizing 

antibodies it would be essential to monitor SARS-CoV-2 

seroprevalence and neutralizing activity in donors’ and 

patients’ blood during the on-going second wave of the 

COVID-19 pandemic, as well following the initiation of 

community vaccination; pseudovirus [82] or virus-, cell-

free ([83], recently received FDA authorization for use) 

neutralization assays can be used in this screening.

In another approach, soluble ACE2 (e.g., rhACE2; 

APN01, GSK2586881), although with less affinity to the 

virus and half-life as compared to well-selected specific 

antibodies, can be used as a decoy to neutralize the virus 

due to competitive binding with cellular ACE2. Support-

ively, SARS-CoV-2 infections were suppressed in engi-

neered human tissues by clinical-grade soluble human 

ACE2 [84]. SARS-CoV-2 direct binding to ACE2 can be 

also suppressed by antibodies or small molecules that 

target ACE2, such as SSAA09E2, which inhibits SARS-

CoV-1 interaction with ACE2 [85]. To reduce the avail-

able ACE2 viral binding sites, approaches that suppress 

ACE2 and/or TMPRSS2 gene expression (e.g., TNF or 

androgen inhibitors) [17] may be employed. To test this 

hypothesis, it would be interesting to investigate e.g., 

whether prostate cancer patients on anti-androgens have 

less severe COVID-19 due to TMPRSS2 gene suppres-

sion. Regarding ACE2 and given the anticipated toxic 

effects of systemic loss-of ACE2/ANG(1–7)/MASR sign-

aling, any relevant intervention should be transient and 

with close monitoring of the patients’ clinical condition. 

An alternative and probably safer, versus ACE2 inhibi-

tion, approach would be the use of TMPRSS2 inhibitors. 

TMPRSS2 is druggable and camostat mesylate partially 

blocked SARS-CoV-2 cell infection [4] while preliminary 

reports showed that it reduced  the severity of COVID-

19 sepsis [86]; thus, several clinical trials are currently 

ongoing to test whether camostat mesylate could be 

repurposed and utilized to combat the current pandemic 

[87]. TMPRSS2 inhibition could also reduce viral tropism 

at the initial site of SARS-CoV-2 infection and enhance 

anti-viral humoral immune responses of the host [88, 89]. 

Additional steps to be targeted at SARS-CoV-2 life cycle 

include its fusion with cell membrane as well as clathrin-

mediated endocytosis. In these pathways, ikarugamycin 

(clathrin-mediated endocytosis inhibitor; [90]), dynasore 

or its analogs (dynamin inhibitor; [91]), as well as latrun-

culin B (actin depolymerizing drug, [92]) can be tested in 

cell-based or preclinical models. Additionally, the small 

molecule SSAA09E3 was found to suppress the fusion of 

the host cellular membrane with the virus membrane in 

a SARS-CoV-1 infection model [85]. Other fusion inhibi-

tors that can be considered include 25-hydrocholesterol 

which showed broad anti-coronavirus activity by block-

ing membrane fusion and inhibiting SARS-CoV-2 infec-

tion in lung epithelial cells and viral entry in human lung 

organoids [93].

In the cell, novel SARS-CoV-2-specific antiviral drugs 

can target the virus’ main protease (Mpro) due to its 

critical role in processing the polyproteins that are trans-

lated from the viral RNA [94, 95] or the SARS-CoV-2 

RNA-dependent RNA polymerase (RdRp) that is used for 

viral genome replication and transcription of viral genes 

[96]. As a temporary alternative, existing antiviral drugs 

can be tested (repurposing) since according to molecu-

lar docking studies they bind tightly to SARS-CoV-2 

RdRp [97]. Here, various anti-polymerase drugs that 

have been approved for use against other viruses are cur-

rently tested and Remdesivir (an RdRp inhibitor) [2] has 

shown promising clinical effects in patients with severe 

COVID-19 [98, 99] and in October 22 it became the first 

COVID-19 drug approved by FDA; worth mentioning, 

however, is that some well-designed studies, including 

the WHO’s giant Solidarity trial, challenge its therapeu-

tic value [100]. In general, as was found with other viral 

pathogens, targeting either Mpro or RdRp are currently 

the most promising anti-SARS-CoV-2 approaches. Addi-

tional intracellular modules of the virus life cycle that 

can be targeted include tubulin and/or CTSB/L (Fig. 1). 

Colchicine is an efficient inhibitor of tubulin polym-

erization [101] and thus of virus loaded endosomes and 

could be a promising treatment in inhibiting the early 

phases of virus infection. Similarly, the lysosomotropic 

compounds chloroquine or hydroxychloroquine inhibit 

(non-specifically) the activity of endosomal/lysosomal 

compartments likely reducing the initial phases of viral 

infection; also, by suppressing lysosomal activity these 

compounds may also suppress renin production [17] fur-

ther relaxing the potentially harmful ACE/ANGII/AT1R 

overactive signaling. Both chloroquine and hydroxychlo-

roquine have been already used as therapeutics against 

COVID-19 [102]. Yet, given their cardiotoxic effects 

[103] they should probably be used only in the context of 
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clinical trials or monitored conditions, and likely in early 

phases of the infection. Indeed, the RECOVERY trial 

announced the ending of its hydroxychloroquine arm, as 

it was concluded that the drug had no clinical benefit for 

hospitalized patients with COVID-19 [104], while in an 

open label, randomized controlled trial, adverse events 

were higher in hydroxychloroquine recipients than in 

non-recipients [105]. Several existing CTSB/L specific 

inhibitors, including intracellular regulators (e.g., cysta-

tins) of cathepsin B activity [106], can be also considered. 

Notably, cathepsins B/L activity is upregulated during 

aging [107] and has been correlated with atherosclerotic 

vascular disease and arterial stiffening [108]; these find-

ings further support the notion that age and cardiovas-

cular morbidities are main risk factors for COVID-19. At 

the dark side of inhibiting the acidic cellular endosomal/

lysosomal compartments or CTSB/L is their functional 

involvement in MHC class II antigen presentation (Fig. 1) 

[109]. It can be assumed that the usage of chloroquine/

hydroxychloroquine; of CTSB/L specific inhibitors or 

even the excessive loading of the endosomal compart-

ments by the virus could reduce MHC class II antigen 

presentation. Suppressed antigen presentation along 

with the presence of O-linked glycans at the surface of 

the virus [110] could result in evasion of the immune sys-

tem. �us, virus clearance may proceed via proteasome-

mediated MHC class I-related antigen cross presentation 

[111] and the activity of MHC-I dependent cytotoxic T 

immune cells. Proteasome activity is downregulated dur-

ing aging [112] and also proteasome is less responsive to 

IFN-γ in senescent cells [113], which would then result 

in reduced antigen presentation by MHC class I mol-

ecules and therefore reduced immune responses in aged 

patients. In this context, small molecules and/or drugs 

that activate proteasome and in parallel suppress cath-

epsins B/L activity could provide useful therapeutics 

against COVID-19. Finally, the finding that SARS-CoV-2 

infection reshapes essential cellular pathways, such as 

nucleic acid metabolism, splicing, translation and carbon 

metabolism in human cells [114] indicates that a number 

of small molecule inhibitors that target these pathways 

could contribute to preventing viral replication in human 

cells.

Targeting the adverse e�ects of COVID-19
In relation to phase 2 of the disease, i.e., ARDS induction 

and the alarming “cytokine storm” (Fig.  2a) which can 

then lead to systemic failure (see above), the ANG(1–7) 

peptide (or non-peptide analogs) can likely rescue local 

SARS-CoV-2 infection-related ACE2 loss and the sub-

sequent ANGII accumulation, leading to reactivation of 

the anti-inflammatory MASR signaling pathway (Fig. 1). 

Consistently, ANG(1–7) protects endothelial cells from 

inflammation and high glucose-mediated injury [115], 

enhances insulin action [116] and was protective in heart 

failure [117] and stroke [118]. Because of SARS-CoV-2 

infection-induced overactivation of the pro-oxidative 

ACE/ANGII/AT1R axis, which can trigger endothelial 

dysfunction due to unbalanced reactive oxygen species 

and nitric oxide ratios in the vessel wall [119], the use of 

drugs (or small molecules) that activate anti-oxidant cel-

lular defenses [e.g., the Nuclear factor erythroid 2-related 

factor 2 (Nrf2), pathway] or act as radical scavengers 

could be an additional prophylactic intervention. Report-

edly, COVID-19 may also cause endotheliitis in several 

organs as a direct consequence of both viral involve-

ment and of the host inflammatory response [120]. Also, 

COVID-19 correlates with venous thromboembolism 

and disseminated intravascular coagulation [121, 122]; 

in this context anticoagulant medications can be used as 

either prophylactic and/or therapeutic treatment.

Finally, regarding COVID-19-induced “cytokine storm”, 

i.e., the uncontrolled systemic inflammatory response 

that relates to the release of high amounts of pro-inflam-

matory cytokines along with complement  components, 

coagulation dysfunction and immunological “misfir-

ing” [68, 123–126]; the idea of adjunct immunothera-

pies which inhibit key pro-inflammatory pathways such 

as IL-6 signaling [127, 128] is a reasonable approach. 

More specifically, studies in animal models and cell-

based assays following SARS-CoV-2 infection, as well 

as serum and transcriptional profiling of COVID-19 

patients, revealed an exaggerated abnormal inflamma-

tory response being marked by reduced levels of type I 

and III IFNs, along with increased chemokines and IL-6 

expression [129]. Also, a single-cell atlas of immune 

responses in patients with severe COVID-19 revealed a 

reconfiguration of peripheral immune cells phenotype 

during life-threatening COVID-19, including HLA class 

II downregulation, a heterogeneous IFN-stimulated gene 

signature and a developing neutrophil population that 

relates to plasmablasts which appear in patients devel-

oping ARDS and requiring mechanical ventilation [130]. 

Interestingly, patients with life-threatening COVID-19 

pneumonia (but not with asymptomatic or mild SARS-

CoV-2 infection) had neutralizing IgG auto-Abs against 

IFNs [131] or errors of TLR3- and IRF7-dependent type 

I IFN immunity [132] suggesting that inborn errors of 

type I IFN immunity underlies severe COVID-19. Across 

these lines of research it was found that coordinated 

 CD4+,  CD8+ T cells and antibody responses are protec-

tive, whereas uncoordinated responses frequently fail to 

control disease, with a connection between aging and 

impaired adaptive immune responses to SARS-CoV-2 
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[133]. Furthermore, lymphocytopenia (especially reduced 

 CD8+ and  CD4+ T cell counts upon admission), was pre-

dictive of disease progression and correlated with high 

levels of IL-8 and IL-6 also in patients with severe or 

critical disease [134]. Interestingly, disease severity seems 

to mostly stem from host factors such as lymphocyto-

penia, the associated “cytokine storm” and age, whereas 

genetic variation of the virus was not shown to associ-

ate with patients’ clinical outcome [134]. Nonetheless, an 

excessive inhibition of the immune system by corticos-

teroids should be avoided since dampening of a cytokine 

response could allow excessive viral replication. In sup-

port, the UK RECOVERY trial found that dexamethasone 

(a common steroid) could reduce COVID-19 fatalities 

by as much as one-third when administered to patients 

who require supplemental oxygen or are on ventilators 

(RECOVERY); however, dexamethasone treatment has 

not been shown to offer  a benefit for people with mild 

COVID-19 who do not need oxygen support, possibly 

because it weakens defenses against the virus itself [135]. 

Moreover, the observations that IFNs induce ACE2 gene 

expression [17, 19] prompts for an urgent detailed analy-

sis of how key effectors of the immune system regulate 

the ACE2, TMPRSS2 and CTSB/L genes and hence, tro-

pism and infection rates of the virus in targeted human 

tissues.

Interestingly, it has been recently reported the exist-

ence of SARS-CoV-2-specific T cells in individuals with 

Table 1 Possible targets to alleviate the life-threatening complications of COVID-19

Numbers in bold italics (see, respective red color numbers in Figs. 1, 2) indicate major components in SARS-CoV-2 life cycle and in COVID-19 progression and 

pathology

Pre-Phase 1

- Vaccine (e.g., against the SARS-CoV-2 S protein) 1
(for the various technologies employed see also text and [149–152])

Phase 1 of the disease: Life cycle of the virus (extracellular – early steps of infection)

- SARS-CoV-2 neutralizing monoclonal antibodies 1
(see text and [153–155]; because antibody-dependent enhancement of disease [156] cannot be reliably predicted after either vaccination or treatment 

with antibodies, the on-going clinical trials for COVID-19 immune interventions should depend on careful analyses for safety in humans; also, pref-
erentially the development of neutralizing antibodies after vaccination should be monitored) – (neutralizing antibodies from Eli Lilly and Regeneron 
Pharmaceuticals Inc. have received FDA emergency use authorization and GlaxoSmithKline/Vir Biotechnology has moved an anti-SARS-CoV-2 mAb 
into Phase 3 clinical trials)

- Soluble ACE2 (decoy for virus) 2
(a recent development is this field is the production of engineered human ACE2 with optimum binding to the S protein of SARS-CoV-2 [157])

- Antibodies or small molecules that target ACE2 2

- Treatments that suppress ACE2 and/or TMPRSS2 genes expression 2

- TMRPSS2 protease inhibitors 3

- Inhibitors of membrane fusion and/or clathrin-mediated endocytosis 4

Phase 1 of the disease: Life cycle of the virus (intracellular)

- Tubulin polymerization inhibitors 4,4*,7

- Inhibitors of the endosomal/lysosomal compartments 4,4*
(recent studies in non-human primates do not support the use of hydroxychloroquine -either alone or in combination with azithromycin- for the treat-

ment of COVID-19 in humans [158]; also, chloroquine was not found to inhibit infection of human lung cells with SARS-CoV-2 [159])

- CTSB/L specific inhibitors 4

- Small molecule inhibitors of cellular pathways reshaped by SARS-CoV-2 infection
(not shown)

- Inhibitors of the virus’ main protease 5,6

- Virus’ RNA-dependent RNA polymerase inhibitors 5,6

- MHC class II/MHC class I antigen presentation enhancement 8

Phase 2 of the disease: adverse effects of COVID-19

- ACE inhibitors, AT1R blockers 10–12

- The ANG(1–7) peptide (or non-peptide analogs) 10–12

- Antioxidants or radical scavengers 10–12

- Adjunct immunotherapies (or corticosteroids) to mitigate “cytokine storm” (e.g., inhibition of IL-6 signaling) 10–12
(notably, the use of hydrocortisone [160] or dexamethasone [161] showed some beneficial effects on mortality, organ support, days alive and free of 

mechanical ventilation in patients with severe COVID-19)

- Anticoagulant medications to alleviate intravascular coagulation
(not shown)

- Additional life-supporting measures (e.g., ventilation or intubation)
(not shown)
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Table 2 Treatments (non-FDA approved) which can potentially suppress SARS-CoV-2 infection rates and/or  COVID-19 

complications (see also, Table 1)

Intervention Study type Biologic e�cacy References

Induction of SARS-CoV-2-specific neutralizing antibodies

Recombinant Novel Coronavirus Vaccine
Gam-COVID-Vac Vaccine

Phase 3 clinical trial (viral two-vector vac-
cine based on the human adenovirus 
fused with the S protein of SARS-CoV-2)

Unknown [162, 163]

Adsorbed COVID-19 (inactivated) Vaccine
SARS-CoV-2 Vaccine (Vero cell)

Phase 3 clinical trial (absorbed inactivated 
SARS-CoV-2)

Unknown [164, 165]

mRNA-1273 vaccine Phase 3 clinical trial (mRNA-based vaccine 
that encodes for a full-length, prefusion 
stabilized S protein of SARS-CoV-2)

Unknown [166]

SARS-CoV-2 neutralizing monoclonal antibodies

COV2-2196, COV2-2130 In vitro and in vivo study (mouse) Reduce viral burden and level of inflamma-
tion in mouse’s lungs

see text

P2C-1F11, P2B-2F6, P2C-1A3 In vitro (antibodies derived from 8 individu-
als infected with SARS-CoV-2)

Substantial neutralizing activities against 
SARS-CoV-2 infection

see text

CB6 In vivo (specific human antibodies adminis-
trated in rhesus macaques)

Prophylactic group: prevention of SARS-
CoV-2 infection. Treatment group: 
reduced SARS-CoV-2 titre

see text

Soluble angiotensin converting enzyme 2 (ACE2) (decoy for virus)

GSK2586881 Phase 2 clinical trial (recombinant human 
ACE2 in ventilated patients with ARDS)

Unknown [167]

RhACE2 APN01 Ongoing phase 2 clinical trial (recombinant 
human ACE2)

Unknown [168]

Antibodies or small molecules that target ACE2

SSAA09E2 In vitro (small molecule added to 293 T and 
Vero cells)

Inhibits fusion of the SARS-S envelope with 
the host cellular membrane

see text

COV2-2196 COV2-2381 In vivo (monoclonal antibodies adminis-
trated in rhesus macaques)

Prophylactic group: prevention of SARS-
CoV-2 infection

see text

TMRPSS2 protease inhibitors

Camostat mesylate In vitro (lung cell line) Blocks SARS-CoV-2 infection of lung cells see text

Inhibitors of membrane fusion and/or clathrin-mediated endocytosis

Ikarugamycin In vitro (H1299 cells) Acutely inhibits clathrin‐mediated endocy-
tosis (CME)

see text

Dynasore, Dyngo 4a, Dyngo 6a In vitro Inhibit specifically dynamin and clathrin-
mediated endocytosis

see text

Latrunculin b In vitro Inhibits Australian bat lyssavirus G-medi-
ated entry into HEK293T cells through 
actin depolymerization

see text

SSAA09E3 In vitro (small molecule added to 293 T and 
Vero cells)

Prevents fusion of the SARS-CoV-2 mem-
brane with the host cellular membrane

see text

Virus’ RNA-dependent RNA polymerase (RdRp) inhibitors

Setrobuvir, IDX-184, YAK In vitro Bind to RdRp tightly and hence may contra-
dict the polymerase function

see text

Cathepsin L inhibitors

SSAA09E1, Oxocarbazate, MDL-28170, 
K11777, EST

In vitro (293 T cells) Blocks SARS CoV-2 entry see text, [169]

Inhibitors of cellular pathways reshaped by SARS-CoV-2 infection

Cycloheximide In vitro
(human Caco2 cells)

Inhibits translation elongation and SARS-
CoV-2 replication

see text

Emetine In vitro
(human Caco2 cells)

Inhibits the 40S ribosomal protein S14 and 
SARS-CoV-2 replication

see text

Pladienolide B In vitro
(human Caco2 cells)

Inhibits splicing factor SF3B117 and SARS-
CoV-2 replication

see text

2-Deoxy-D-glucose In vitro
(human Caco2 cells)

Blocks glycolysis and inhibits SARS-CoV-2 
replication

see text



Page 10 of 18Trougakos et al. J Biomed Sci            (2021) 28:9 

no history of SARS, COVID-19 or contact with indi-

viduals who had SARS and/or COVID-19; these T cells 

target (among others) SARS-CoV-2  N protein [136]. 

Consistently, it was found that S-reactive  CD4+ T cells in 

SARS-CoV-2-unexposed healthy donors reacted primar-

ily to C-terminal S protein epitopes, which show a higher 

homology to spike glycoproteins of human endemic 

coronaviruses versus N-terminal epitopes. Moreover, 

S-reactive T cell lines that were generated from SARS-

CoV-2-naive SARS-CoV-2-unexposed healthy donors 

were found to respond similarly to the S protein (C-ter-

minus) of the human endemic coronaviruses OC43 and 

229E and, interestingly enough, of SARS-CoV-2, dem-

onstrating the likely presence of S-cross-reactive T cells, 

probably generated during past infections with endemic 

coronaviruses [137]. �e presence of S protein cross-

reactive T cells in a significant portion of the general 

population is of critical importance as apart from affect-

ing the dynamics of the current pandemic it may also 

have important implications for the design and analysis 

of upcoming COVID-19 vaccine trials.

Towards the development of an effective vaccine, it is 

encouraging that SARS-CoV-2 is likely mutating slowly 

with most variants with amino acid changes at RBD 

being less infectious [138]. Nonetheless, variants which 

impact on virus infectivity such as the D614G muta-

tion which alters SARS-CoV-2 fitness by increasing its 

replication  ex  vivo and transmission in  vivo [139–141] 

or others (e.g., variants A475V, L452R, V483A, F490L) 

that affect reactivity to neutralizing antibodies and sera 

from convalescent patients [141, 142] have emerged. Fur-

thermore, it was found that the majority of glycosylation 

deletions were less infectious, whereas deletion of both 

N331 and N343 glycosylation drastically reduced infec-

tivity, further supporting the importance of glycosylation 

for viral infectivity; notably, N234Q was markedly resist-

ant to neutralizing antibodies, whereas N165Q became 

more sensitive [142]. �us, a close monitoring of novel 

SARS-CoV-2 variants with a possible fitness advantage is 

needed.

Conclusions
COVID-19 is a two-phase disease being marked by 

(phase 1) rapid virus propagation due to the wide expres-

sion of ACE2, TMPRSS2 and CTSB/L genes (along with 

the other putative alternative receptors and/or attach-

ment factors) in tissues of the respiratory and gastro-

intestinal tract, as well as by (phase 2) host- [143], and 

probably sex- [144] and/or age-specific [145, 146] uncon-

trolled inflammatory immune responses which drive 

aggressive inflammation, hyper-cytokinemia, and (due to 

the  broad organotropism of SARS-CoV-2) collateral tis-

sue damage and systemic failure because of imbalanced 

ACE/ANGII/AT1R and ACE2/ANG(1–7)/MASR axes 

signaling. Discussed notions provide a basis of resources 

for (a) future investigations of COVID-19 pathogenesis 

and (b) possible combinatorial therapeutic approaches 

(Table  1); lists of non-FDA and FDA approved poten-

tial treatments targeting specific mechanisms that 

likely mediate COVID-19 complications are reported in 

Tables 2, 3 respectively.

It is suggested that the evidence-based (i.e., from 

both pre-clinical models and clinical trials) use of spe-

cific therapeutic approaches/drugs that target modules 

in pathways 1–12 (Table 1) shown in Figs. 1 and 2, can 

provide possible means to alleviate the life-threatening 

complications of COVID-19. In addition, the emerged 

issues of convalescent plasma treatment effectiveness in 

severe COVID-19 patients [147]; the duration of anti-

SARS-CoV-2 antibodies persistence  in mild or severe 

COVID-19 recovered patients [148] and the possibil-

ity of auto-antibodies development against type I IFNs 

[131] or inborn errors of type I IFN immunity [132] in 

patients with life-threatening COVID-19 should be fur-

ther investigated and addressed in adequately powered, 

randomized controlled trials. Finally, given the fact that 

COVID-19 has certainly an age-related component [145, 

146], as clinical complications mostly develop in the 

elderly and in patients with non-communicable (age-

related) diseases, additional efforts should also focus in 

those pathways that reportedly become dysfunctional 

Table 2 (continued)

Intervention Study type Biologic e�cacy References

Ribavirin In vitro
(human Caco2 cells)

Inhibits inosine monophosphate dehydro-
genase and SARS-CoV-2 replication

see text

NMS-873 In vitro
(human Caco2 cells)

Inhibits the AAA ATPase p97 and SARS-
CoV-2 replication

see text

ANG(1–7) peptide

Angiotensin 1–7, TXA127 Ongoing Phase 3 clinical trial Unknown [170, 171]
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during aging (e.g., reduced proteasome functionality 

that causes minimized viral MHC antigen presentation, 

immune senescence, age-related increased inflammation, 

unbalanced ACE/ANGII/AT1R and ACE2/ANG(1–7)/

MASR regulatory axes, etc.) and likely exaggerate the 

clinical complications of severe COVID-19.
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