
INSPECTION OF CONCURRENT SYSTEMS

INSPECTION OF CONCURRENT SYSTEMS:

COMBINING TABLES, THEOREM PROVING AND MODEL CHECKING

By

VERA PANTELIC, B. ENG.

A Thesis

Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.A.Sc.

Department of Computing and Software

McMaster University

© Copyright by Vera Pantelic, December 22, 2005

ii

MASTER OF APPLIED SCIENCE(2005)
(Computing and Software)

McMaster University
Hamilton, Ontario

TITLE: Inspection of Concurrent Systems:
Combining Tables, Theorem Proving and Model Checking

AUTHOR: Vera Pantelic, B. Eng.(Belgrade University, Serbia & Montenegro)

SUPERVISOR: Dr. Mark Lawford & Dr. David Parnas

NUMBER OF PAGES: ix, 99

iii

Abstract

A process for rigorous inspection of concurrent systems using tabular specification

was developed and applied to the classic Readers/Writers concurrent program by Jin

in [15]. The process involved rewriting the program into a table and then performing

a manual "column-by-column" inspection for safety and clean completion properties.

The key element in the process is obtaining an invariant strong enough to prove

the properties of interest. This thesis presents partial automation of the proposed

approach by combining theorem proving and model checking. Model checking is first

used to validate a formal model of the system with a small, fixed number of concurrent

process instances. The verification of the system for an arbitrary number of processes

is then performed using theorem proving together with model checking on the earlier

model to quickly validate potential invariants before they are used in the formal

proof. This method was used to check the manual proof of the Readers/Writers

problem given in [15], discovering several random and one systematic mistake of the

proof. Then, a new, significantly automated proof was performed.

iv

Acknowledgments

I would like to express my deep gratitude to my supervisors, Dr. Mark Lawford and

Dr. David Parnas, for their guidance and help. Thanks to the committee members,

Dr. Sanzheng Qiao and Dr. Ryszard Janicki, for their useful comments.

I would also like to thank Leonardo de Moura of SRI for his advice on using SAL,

which helped shape the modeling and analysis in SAL. Thanks to Cesar Munoz for

his fast responses to my queries about PVS.

Last, but not least, I thank my family and friends for their support. Special

gratitude I owe to my mother. This thesis is dedicated to her.

Contents

Abstract

Acknowledgements

List of Figures

List of Tables

1 Introduction

1.1 Motivation .

1.2 Our Approach

1.3 Contribution of the Thesis

1.4 Structure of The Thesis .

2 Inspection of Concurrent Programs

2.1 Formal Modeling of Concurrency

2.2 About Inspection Based on Tables

2.3 The Inspection of Concurrent Programs Using Tables

2.3.1 Introduction to the Approach

2.3.2 Example Application: Readers/Writers Problem

3 Introduction to SPIN, SAL, and PVS

3.1 The SPIN Model Checker

3.2 SAL

3.3 PVS

3.3.1 The PVS Language and Proof Checker

v

iii

iv

viii

ix

1

1

1

3

4

5

5

6

6

7

8

13

13

14

15

15

vi

3.3.2 The Sequent Calculus of PVS . . .

3.3.3 Tabular Specification of Functions .

3.3.4 The PVS COND Construct .

3.3.5 The PVS TABLE Construct ...

4 Model Checking The Readers/Writers Problem

4.1 Model Checking The Original Version In SPIN .

4.1.1 Specification in SPIN

4.1.2 Analysis in SPIN

4.2 Formalization of Readers/Writers Problem in SAL .

4.2.1 Specification in SAL

4.2.2 Analysis in SAL .

4.2.3 Summary

5 Theorem Proving in PVS

5.1 The Theory Hierarchy

5.2 The decl Theory

5.3 The table Theory . . .

5.4 Verifying the Hand-Written Proof .

5.5 Verification in PVS Revisited . . .

5.5.1 Proof of the Safety Property .

5.5.2 Proof of the Theorem of Decreasing Quantity

5.6 Summary

6 Conclusion

6.1 Summary

........................

6.2 Limitations and Future Work

A Specification of P /V Semaphore Operations

CONTENTS

16

17

18

20

21

21

22

23

25

25

28

32

34

34

35

38

39

43

44

49

51

52

52

54

59

B The Tabular Representation of the Rewritten Readers/Writers Program 61

C The Readers/Writers Model in SPIN, SAL, and PVS

C.l The Readers/Writers Model in SPIN

C.2 Model of Readers/Writers Program in SAL

66

66

67

CONTENTS vii

C.3 PVS files . 72

C.4 The List of All Auxiliary Invariants 96

C.5 Invariants From the Manual Proof of Readers/Writers Problem. 98

0

List of Figures

2.1 Readers/Writers program rewritten

3.1 Sequents in sequent calculus

3.2 COND construct and PVS interpretation

3.3 One-dimensional vertical table in PVS

4.1 Semaphore in SPIN

4.2 Modeling writer processes in SPIN

4.3 The context rw

10

17

19

20

22

23

26

4.4 Nondeterminism inside of the process module . 27

4.5 The module main . . 28

5.1 The theory hierarchy 35

5.2 Theory decl 36

5.3 PVS definition of the function IntRW 37

5.4 Tabular representation of Readers/Writers problem in PVS . 38

A.l Specification of P(sem) operation 59

A.2 Specification of V(sem) operation 60

B.l The tabular representation of the rewritten Readers/Writers Program 62

B.2 Figure B.1 continued . 63

Vlll

List of Tables

2.1 The IntRW function definition . 11

2.2 The order property of DQ .. 12

4.1 SPIN model checking results . 24

4.2 SAL model checking results 32

ix

X LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Inspection of concurrent programs still presents a challenge for software developers.

The atomic actions of the processes constituting a concurrent program can be inter

leaved in many different ways. Furthermore, the concurrent software systems often

lack the regularity of hardware systems. Thus, the nature of concurrent systems can

make their state spaces large and irregular, making it extremely hard to ensure that

all the possible behaviors of the system have been analyzed.

A reliable and effective inspection approach for the inspection of concurrent pro

grams is proposed in [15). Inspection is made easier and reliable by inspecting each

of the components separately. Further, each component's behavior is described using

program function tables [28). However, as will be shown in this thesis, the manual

proof of the correctness criterion given in [15) failed to explore the whole transition

relation described by the program function table. Automated tool support, on the

other hand, helped discover the flaws of the manual proof easily and was invaluable

for properly proving both safety and liveness properties.

1.2 Our Approach

There are many different approaches to mechanized formal analysis of concurrent

systems represented with transition relations. Those include deduction (theorem

1

2 1. Introduction

proving), model checking, abstraction and model checking, automated abstraction,

bounded model checking [30, 11], and equivalence verification [19, 21, 20].

Model checking is a technique for verifying finite state concurrent systems [2].

First, a model of the program is to be built. Next, the properties of the system

are specified, usually in temporal logic. If the model fails to satisfy the property, a

counterexample is produced that demonstrates a behavior that satisfies the negation

of the property. The most important advantage of model checking over theorem

proving is that it is completely automatic. However, although the state explosion

problem has been addressed by many techniques (e.g., partial order reduction, infinite

state model checking), model checking still cannot handle systems with an arbitrarily

large number of processes.

Deductive verification (theorem proving), on the other hand, can be used to an

alyze very large or infinite systems. It still remains the most general way to reason

about complex systems. However, it can be a tedious and time-consuming process

that requires substantial human guidance.

This thesis represents an extension of the approach of [15], providing partial au

tomaton of the proposed inspection process. The original program can be analyzed in

SPIN. SPIN is a model checking tool specialized for handling concurrent systems. Its

specification language provides the primitives for interprocess communication [14].

Model checking in SPIN can be particularly useful for purpose of refutation (gen

erating a counterexample for a particular version of the system). Full verification,

however, requires the use of theorem proving, since the number of the processes can be

arbitrarily large, and the values of global or local process variables can be unbounded.

The starting point of the full verification is the program function table prepared

as in [15]. The transition relation of the concurrent system as given by the table

is rewritten into the SAL model checker and model checked for safety and liveness

properties. However, at this point, SAL supports neither tables, nor does it offer a full

typechecker. The table is then rewritten into the PVS specification language table

construct and checked for consistency and completeness. Safety properties are proved

in PVS using the inductive invariant approach [30]. The property P is inductive on

transition relation T and set of initial states I if it includes all the initial states (I (s) :::}

P(s)) and is closed on all the transitions (P(s)!\T(s, t):::} P(t)). We try to prove that

a safety property is an invariant of the system, by showing that it is satisfied in the

1. Introduction 3

initial state and preserved by any transition of the system. However, few properties

are inductive. Failed goals indicate the auxiliary invariants that we then use to

strengthen the initial property. Then, we try to prove that the strengthened invariant

(conjunction of the newly found ones and the desired invariant) is inductive. Before

being checked in theorem prover, every new, auxiliary invariant is model checked in

the SAL model-checker for a specific instance of the problem. This check is automatic

and fast. The process iterates until the inductive invariant is found or it is suggested

by the failed proof(s) that a proof of inductivity cannot be found. Proving liveness

property then requires the additional strengthening of the found inductive invariant.

1.3 Contribution of the Thesis

We believe that the contributions of this work are:

1. We provided partial automation of the inspection process of [15].

2. We illustrated the necessity of the computer-aided verification of the concurrent

systems in inspection of [15] by automating the manual proof of the safety

property of the Readers/Writers problem (as in [15]). Not only were we able to

significantly reduce the effort needed to complete the proof (the manual proof of

the safety property is 100 pages long), but we also discovered several inadvertent

and one systematic mistake in the manual proof. We managed to automate the

proof of the safety property almost completely using PVS strategies.

3. Theorem proving and model checking were successfully combined. Two model

checking tools (one of which is specialized for models of concurrency, the other

one with an input language very close that of the theorem prover) were used

for model checking the classical concurrent program. Model checking potential

invariants before using them in the theorem prover reduced the time required

to obtain an inductive invariant compared to using only the theorem prover.

4. The thesis provides a detailed example of the computer-aided verification of a

concurrent programs with an arbitrarily large number of processes.

Model checking tools were used for refutation purposes - for finding the bugs in

both the original program and the one rewritten into table. Moreover, SAL was used

4 1. Introduction

for checking the auxiliary invariants found in PVS. PVS provided almost complete

automation of the consistency and coverage checks of the tabular specification. Failed

goals generated in PVS indicated the auxiliary invariants. The proof was automated

using PVS strategies. The PVS user strategies are given in Appendix C.3, and PVS

built-in strategies are given in [33].

1.4 Structure of The Thesis

• Chapter 2 represents an overview of the inspection of the concurrent programs

with a detailed description of the inspection process of [15] applied to the clas

sical concurrency problem, the Readers/Writers Problem [4].

• Chapter 3 provides an overview of the model-checking tools SPIN and SAL,

and the PVS specification and verification system.

• Chapters 4 and 5 represent our approach applied to the Readers/Writers prob

lem, formulated as in [15].

• Chapter 6 reports on the conclusions of this project and makes suggestions for

future work.

0

Chapter 2

Inspection of Concurrent Programs

The material in this chapter is an important part of the background for the research

presented in this thesis. It provides the reader with essential information on inspection

of concurrent systems and inspection based on tables. Further, a detailed description

of the inspection of concurrent systems using tables is given. This inspection approach

and the example presented here form the basis of our research.

2.1 Formal Modeling of Concurrency

There are many different models of concurrency intended for the formal verification of

concurrent systems. Petri nets represent one well-known formalism [23]. Axiomatic

systems for concurrency are based on Hoare's logic [13] or Dijkstra's weakest precon

dition logic [8]. Extensions of those include the Lamport extension of Hoare logic

[12], the Owicki-Gries extension of Hoare logic [24], and the Lamport extension of

Dijkstra's weakest precondition logic [16].

A number of process algebras have been proposed. CCS (Calculus of Communicat

ing Systems) and CSP (Communicating Sequential Processes) specify a concurrent

systems as consisting of processes that are completely independent except for the

communication between them [1]. CCS was developed as a formalism for describing

multiprocess systems and exploring the notions of equivalence of processes [20]. CSP

was initially developed as a programming language [12]. SCCS (Synchronous CCS)

was developed to extend the CCS with the notion of synchronization between agents

5

6 2. Inspection of Concurrent Programs

[3]. However, the cost of applying the mentioned methods in software engineering has

generally proven to be too high [1].

2.2 About Inspection Based on Tables

Tables are multi-dimensional mathematical expressions describing mathematical func

tions and relations. They were proposed in [28]. Tables have proven to be a useful

method for software inspection, providing clarity in reading and understanding, and

easiness in ensuring input domain coverage and consistency.

Tables were first used at the U.S. Naval Research Laboratory in the 1970s for the

inspection process of the A-7E aircraft software [32]. Another inspection process based

on tables was developed and applied in the Darlington Nuclear Power Generating

Station and first reported in [29]. In [26] a rigorous inspection approach based on

program-function tables was presented.

The application of tool-supported tabular methods to the specification and verifi

cation of safety-critical software for the Darlington Nuclear Power Generation Station

was described in [17, 18].

The Display method, a method of documenting well-structured programs, is de

scribed in [27]. The application of the combination of this method and theorem

proving in PVS was used in [31] for the inspection of the source code implementing

the PPP protocol in Linux. We did not feel the need to use displays in this thesis,

since the example program used is not a long one.

The details on the semantics of tables and type of tables used in this thesis are

given in Section 3.3.

2.3 The Inspection of Concurrent Programs Using

Tables

Note: The material presented in this section is taken mostly from [15].

2. fnspection of Concurrent Programs 7

2.3.1 Introduction to the Approach

In our model a concurrent program begins its execution from the initial state and

advances while interleaving with other components. The key idea of this approach

is the use of the "divide and conquer" principle: the correctness of the program

components implies the correctness of the whole program.

The process includes the following:

1. Auxiliary variables are introduced to capture all the information needed to

analyze the program.

2. The requirements of the program are formulated as a mathematical specifica

tion.

3. The primitive operators are specified (e.g., synchronization primitives) -this

should have been done before the program was written.

4. The program is rewritten so that each primitive statement has a label. The

transfer of control from statement to statement is made explicit by assigning a

label value to an auxiliary variable (that functions as the program instruction

counter) for each statement. The value of this auxiliary variable is the condition

of the execution of each statement.

5. The program is described in a tabular representation.

6. Two properties of a concurrent program are to be proved:

• Invariant property - ensures that the requirement predicate holds in all

the reachable states of the program. A set of invariants that embodies the

essential properties of the execution and is inductive is formulated.

• Liveness property -ensures that all of the program's constituent processes

can cleanly finish their execution.

The program is inspected to show that the invariant is satisfied in the initial state

of the system and the execution of every primitive statement maintains the invariant,

and that the liveness property holds.

8 2. InspeCtion of Concurrent Programs

2.3.2 Example Application: Readers/Writers Problem

One typical concurrency problem is the Readers/Writers problem [4]. Two different

kinds of processes, readers and writers, access the common resource. An unlimited

number of readers can concurrently access the resource, whereas a writer must have

exclusive access to the resource. Among two variants of this problem presented in [4],

the one that gives readers priority over the writers is chosen (the readers' preference is

weak - if at least one reader is accessing the critical section, and both another reader

and writer arrive, then the new reader gets preference over the writer. If, however,

the writer leaves the critical section, and there are both readers and writers waiting

to enter it, choice of which type of process is permitted to enter the critical section is

arbitrary).

The Original Program

The program used to solve the chosen variant from [4] is reproduced below:

integer rdcnt; (initial value = 0)

semaphore mutex, w: (initial value for both = 1)
READER: P(mutex); WRITER: P(w);

rdcnt := rdcnt+1;

if rdcnt=1 then P(w);

V(mutex);

READ;
P(mutex);

rdcnt := rdcnt-1;

if rdcnt=O then V(w);

V(mutex);

WRITE;
V(w);

Two semaphores are used as synchronization primitives. Semaphore w is used as a

mutual exclusion semaphore for the first and the last reader, and any writer entering

the critical section, while semaphore mutex ensures that only one reader process can

enter or leave the critical section at a time. The variable rdcnt counts all the reader

processes who have entered the critical section (meaning, the section protected with

the w semaphore) or have asked for the permission to enter it.

Let rd and wt be the number of active reader and writer processes, respectively.

2. Inspection of Concurrent Programs 9

The informal requirement of the program as stated at the beginning of the subsection

(at most one writer can write while no reader is reading, and any number of readers

can read concurrently) can be written as the safety property:

(rd = 0 V wt = 0) 1\ wt < 2 (2.1)

Applying the proposed approach to the example application

Applying the steps of the proposed approach (as described in the Section 2.3.1), the

original Readers/Writers program can be rewritten as in Figure 2.1.

The stop symbol tells us when a process under execution can be interrupted, allow

ing other processes to resume their execution, i.e., each line of Figure 2.1 represents

a primitive statement.

If more than one process is ready to execute, the choice of the process to be exe

cuted is non-deterministic. The array variable next functions as an instruction counter

variable, locating the execution of each process - the value of next[i] represents

the current statement label of the ith process. The labels waitAtPm1, rlseAtPm1,

waitAtPm2, rlseAtPm2, waitAtPwr, rlseAtPwr, waitAtPww, rlseAtPww are in

troduced so that synchronization primitives can be specified. A process can pass

P(sem) successfully (advance with its execution), it can be suspended (in which case

it gets labeled as waitAtP sem), or released by a V -operation, in which case it acquires

the label rlseAtPsem. The detailed specification of P /V operations of a semaphore

is taken from [15] and reproduced in Appendix A.

The program is then rewritten into the table given in the Appendix B, origi

nally taken from [15]. For these purposes, a parameter k (0 < k ::; M) is intro

duced to denote the identification of a representative process. The pi D represents

the identification of the currently executing process. Two additional boolean ex

pressions are introduced: IsReader and IsWriter, that stand for 0 < k ::; nand

n < k ::; M, respectively, where n is the number of reader processes and 0 ::; n ::; M.

The interested reader is referred to [15] for the details on rewriting the program

as in Figure 2.1 to the table. The program state can be described as a 7-tuple

(rdcnt, rd, wt, mutex, w, next, pi D).

...

10 2. Inspection of Concurrent Programs

READER i:

1 Begin
2 if next[i]=r1 then P(mutex) stop
3 if next[i]=waitAtPm1 then next[i]:= waitAtPm1 stop

4 if next[i]=rlseAtPm1 then next[i]:=r2 stop
5 if next[i]=r2 then rdcnt := rdcnt+1; next[i] :=r3 stop
6 if next[i]=r3 then if rdcnt=1 then P(w); rd := rd+1; stop
7 if next[i]=waitAtPwr then next[i]:=waitAtPwr stop
8 if next[i]=rlseAtPwr then rd := rd+1; next[i]:=r4 stop

9 if next[i]=r4 then V(mutex) stop
10 if next[i]=r5 then READ; next[i]:=r5 stop
11 if next[i]=r6 then P(mutex) stop
12 if next[i]=waitAtPm2 then next[i]:=waitAtPm2 stop

13 if next[i]=rlseAtPm2 then next[i]:=r7 stop
14 if next[i]=r7 then rdcnt := rdcnt-1; next[i]:=r8 stop
15 if next[i]=r8 then if rdcnt=O then V(w); rd := rd-1 stop
16 if next[i]=r9 then V(mutex) stop
17 End

WRITER j:

1 Begin
2 if next[j]=w1 then P(w); wt := wt+1; stop

3 if next[j]=waitAtPww then next[j]:=waitAtPww stop

4 if next[j]=rlseAtPww then wt := wt+1; next[j] :=w2 stop
5 if next[j]=w2 then WRITE; next[j] :=w3 stop
6 if next[j]=w3 then V(w); wt := wt-1 stop
7 End

Figure 2.1: Readers/Writers program rewritten

2. Inspection of Concurrent Programs 11

Showing Clean Completion

We say that a program has a clean completion when all of its constituent processes

can finish the execution (the program counter of every process can reach the label

EOP). For the purposes of proving the clean completion of the program (liveness

property), the vector of decreasing quantity DQ is defined in [15]:

DQ =(Pros, IntRW(next[1]), IntRW(next[2]), ... , IntRW(next[M]))

where M is the total number of processes, Pros is the number of the processes that

have not reached the EOP label yet, and IntRW is the function mapping all the

values of next to integers, as indicated in the Table 2.1.

X IntRW(x)

r1 15

waitAtPm1 14

rlseAtPm1 13

r2 12

r3 11

waitAtPwr 10

rlseAtPwr 9

r4 8

r5 7

r6 6

waitAtPm2 5

rlseAtPm2 4

r7 3

r8 2

r9 1

wl 5

waitAtPww 4

rlseAtPww 3

w2 2

w3 1

EOP 0

Table 2.1: The IntRW function definition

Let l = 1, 2. Suppose that, at the state l, the nextz is the value of next, and Pros1

12 2. Inspection of Concurrent Programs

is the number of processes (meaning, all the processes with a label assigned, except

for those with the label EOP). As before, n is the number of the reader processes

(0 :::; n :::; M). Let

"""' { 0, ~rz=
.E~ 1 IntRw(nextl[i]),

n=O

O<n:s;M

0, n=M

.E~n+l IntRw(nextz[i]), 0:::; n < M

DQt = (Prosz, IntRW(nextl[i]), ... , IntRW(nextz[i])

(2.2)

(2.3)

(2.4)

Then, the order property of DQ is given by the Table 2.2 where DQorder stands for

DQ1 > DQ2.

Prost = Pros2

Prost > Pros2

E~+E~>E~+E~IE~+E~sE~+E~
Prost < Pros2

DQorder TRUE TRUE I FALSE FALSE

Table 2.2: The order property of DQ

Theorem of DQ 1 Assume that there are no new readers/writers arriving. Then:

1. If there is a change of state other than a simple change of the pi D variable, DQ

decreases.

2. If there is no possible change of state other than a simple change of the pi D

variable, DQ is zero.

3. If DQ is zero, there is no waiting process.

The decreasing quantity approach originates from the verification of the loops.

The idea of proving the clean completion using this approach is to find an integer

variable which, when initialized with positive value, will decrease if the program is

making progress; if there is no progress possible, the value of the decreasing quantity

variable should be zero, which in turn should mean that there is no waiting process.

In this particular case, the vector DQ was chosen to be such a variable.

Chapter 3

Introduction to SPIN, SAL, and

PVS

This chapter provides basic information on tools used for the research in this thesis:

the model-checking tools SPIN [14] and SAL [22], and the theorem prover PVS [25).

3.1 The SPIN Model Checker

Note: Material presented in this section is a summary of [14).

SPIN is a tool for model-checking concurrent systems. Systems are modeled using

a specification language called Promela (the name SPIN is an acronym for Simple

Promela Interpreter). The language is targeted to the description of concurrent soft

ware systems, rather than the description of hardware circuits.

The basic building blocks of SPIN are asynchronous processes, buffered and un

buffered message channels, synchronizing statements, and structured data. There

is no notion of time or clock; there are only a few computational functions and no

floating point numbers. The emphasis of the language is on the synchronization and

communication, not the computation.

SPIN is an "on-the-fly" model-checker: it does not precompute the entire global

state graph as a prerequisite for the verification. Correctness properties can be speci

fied as system or process invariants (using assertions), as LTL requirements, as Buchi

13

14 3. Introduction to SPIN, SAL, and PVS

Automata, or as general omega-regular properties in the syntax of never claims.

Some liveness properties can be verified only by compiling the model with the corre

sponding option.

SPIN can be used in two basic modes: as a simulator and as a verifier. As a

simulator, it provides a means of random, guided and interactive simulations. As

a verifier, it offers efficient checking of user specified requirements or validation of

very large models with maximal coverage of the state space. The proof techniques it

applies are based on either depth-first or breadth-first search, optimized with partial

order reduction techniques and BDD-like storage techniques.

3.2 SAL

Note: The material presented in this section is mostly taken from [22], [6], and [5].

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining

different tools for abstraction, program analysis, theorem proving and model checking

towards the calculation of properties (symbolic analysis) of transition systems. The

key part of the SAL framework is a language for describing transition systems. The

language serves as a specification language and as the target for translators that

extract the transition system description for popular programming languages such as

Esterel and Java. The language also serves as a common source for driving different

analysis tools through translators from the SAL language to the input format for the

tools, and from the output of these tools back to the SAL language.

The basic unit of specification in SAL is a module. Modules can be separately

analyzed and composed synchronously or asynchronously. A module consists of a

state type, an invariant definition on this state type, an initialization condition on

this state type, and a binary transition relation on the state type. The state type is

defined by four pairwise disjoint sets of input, output, global, and local variables. The

transition rules are constraints on the current and next states of the transition, given

either as guarded commands or as invariant definitions.

The current SAL toolset provides explicit state, symbolic, bounded, infinite

bounded and witness model checkers for SAL. We will use the symbolic model checker

called sal-smc, which uses linear temporal logic (LTL) as its assertion language. More-

3. Introduction to SPIN, SAL, and PVS 15

over, properties can be specified in computation tree logic (CTL) if they are in the

intersection of these two languages, in which case they are internally converted into

LTL. However, the current version of SAL provides counterexamples only for LTL

properties.

3.3 PVS

This section provides the background information on PVS. We review PVS capabili

ties, properties of the sequent calculus on which PVS is based, tabular specification

and their support in PVS.

3.3.1 The PVS Language and Proof Checker

Note: The material presented in this subsection is largely based on [9].

PVS stands for "Prototype Verification System". It provides mechanized support

for specification and verification: it offers a specification language in which mathe

matical theories and conjectures can be defined, and then, latter can be discharged

using the interactive theorem prover. The specification language of PVS is based on

higher-order logic, which is extended with predicate subtypes and dependent types,

and a theory system. Its type constructors include functions, tuples, records, recur

sive datatypes (e.g., lists and trees), and enumerations; sets are represented by their

characteristic predicates. A prelude of hundreds of theories contains many definitions,

axioms and proved theorems; user-contributed libraries provide many additional the

ories.

The PVS theorem prover is interactive. It is based on a sequent calculus presen

tation. PVS offers the graphical representation of proofs in the form of proof trees.

Proofs can be saved as scripts and rerun either automatically, or in a single-step

mode. While basic proof commands are built-in, most are programmed as strategies.

The built-in commands provide very powerful automaton that include decision pro

cedures for ground (unquantified) integer and linear arithmetic, automatic rewriting,

and BDD-based propositional simplification and symbolic model-checking.

Predicate subtypes offered by the PVS specification language allow for a great

deal of specification to be embedded in its types, contributing clarity and economy

16 3. Introduction to SPIN, SAL, and PVS

in specification. Since the predicate used for defining a predicate subtype can be

arbitrary, typechecking can become undecidable, and may lead to proof obligations

called type correctness conditions (TCCs). Typically, the proof strategies built into

the theorem prover can automatically discharge some of these obligations; the harder

ones are left for the user to guide the proof.

PVS in combination with SAL is chosen for the following reasons:

• PVS has a construct for tabular specification. The construct generates proof

obligations to ensure that the column conditions are disjoint and complete.

• Since the table construct is highly integrated with the other capabilities of PVS,

we were able to prove the invariant property and clean completion theorem

without first converting the tabular expressions to equivalent logical expressions.

• Although PVS has a model checker integrated with its theorem prover, it lacks

the counterexample generation capability and is not particularly fast.

• The specification language syntax of the model checking tool SAL is similar

to that of PVS. Although automatic translators from one tool to another are

not available yet, we found it easy to rewrite the SAL specification into a PVS

specification.

• SAL is an open system intended for the integration and cooperation of different

tools for symbolic analysis and will feature tighter integration with PVS in the

future [9].

3.3.2 The Sequent Calculus of PVS

Note: The material presented up to the end of this chapter is mostly based on [35]

and [17].

Let Pi, i = 1, ... , n and Qj, j = 1, ... , m be formulas in higher order logic

and f- is used to denote a syntactic entailment. Now, --,pb P1 A Qb P1 V Q 1 and

P1 ::} Q1 denote negation, conjunction, disjunction and implication respectively. In

general, assuming that the properties of the system inputs are all true (the Pi's), we

want to prove that at least one of the output properties (one or more of the Qi's)

3. Introduction to SPIN, SAL, and PVS 17

is true. We formally write, P1, P2, ... , Pn I- Q1 V Q2 V ... V Qm, or equivalently,

P1 A P2 A ... A Pn I- Q1 V Q2 V ... V Qm. This expression is called a sequent. If the

proof for it can be found, the sequent is valid. In sequent calculus this is written as

in Figure 3.1.

or

Figure 3.1: Sequents in sequent calculus

Proofs are done by transforming the sequent into one of these forms:

or
T or ~

p

p

Here T and ..L denote TRUE and FALSE, respectively.

3.3.3 Tabular Specification of Functions

The function f : Tl X T2 X ... X T m -+ Tr has the following tabular representation:

cl e1

C1 C2 ... Cn
or

c2 e2
(3.1)

el e2 ... en

Cn en

18 3. Introduction to SPIN, SAL, and PVS

where each ci is a predicate and ei is a term of type Tr. The interpretation is

that when a given condition Ci is true, f is equal to ei. For the table to properly

define a (total) function, two conditions should be satisfied:

1. Disjointness requires that each distinct pair of conditions ci, ci is disjoint, i.e.,

i =J j:::;.. -.(ciA Cj)·

2. Completeness requires that the disjunction of all the c/s is true, i.e., (c1 V ~ V

... V en) evaluates to TRUE.

Therefore, for a given x1 , ... , Xm only one Ci can be true.

Consider the example, sign(x), for x E JR:

sign(x) ~ {

which can be specified as a table:

-1, X< 0

0, X= 0

1, X> 0

3.3.4 The PVS CON D Construct

For specification by cases the standard PVS language offers CON D construct, as

indicated on the left side of Figure 3.2.

The right side of Figure 3.2 shows the equivalent IF-THEN-ELSE statements that

PVS uses as the internal interpretation of the COND statement. While much of the

typechecking required to ensure conservative extension of PVS logic can be done au

tomatically, predicate subtypes (as mentioned earlier) and tabular specification of

functions can cause PVS to generate TCCs. Use of COND causes PVS to automat

ically generate Disjointness and Completeness TCCs. These are often automatically

proved by built-in proof strategies. In case these strategies fail, the resulting unprov

able sequents can often provide useful information regarding the incompleteness or

inconsistency of specifications.

3. Introduction to SPIN, SAL, and PVS

COND

Cn-1- > en-1,

en-> en

ENDCOND

IF c1 THEN e1

ELSIF c2 THEN e2

ELSIF Cn-1 THEN en-1

ELSE en

END IF

Figure 3.2: COND construct and PVS interpretation

19

The following is the PVS definition of sign(x) function using the PVS COND

construct:

signs: TYPE = { i: int I i >= -1 & i <= 1}

sign_cond(x: real): signs=

COND

X < 0 -> -1,

X = 0 -> 0,

X > 0 -> 1

ENDCOND

Typechecking the previous segment generates the following TCCs, which are au

tomatically discharged.

% Disjointness TCC generated (at line 11, column 1) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC1: OBLIGATION

FORALL (x: real):

NOT (x < 0 AND x = 0) AND

NOT (x < 0 AND x > 0) AND NOT (x = 0 AND x > 0);

% Coverage TCC generated (at line 11, column 1) for

% COND x < 0 -> -1, x = 0 -> 0, x > 0 -> 1 ENDCOND

sign_cond_TCC2: OBLIGATION FORALL (x: real): x < 0 OR x = 0 OR x > 0;

20 3. Introduction to SPIN, SAL, and PVS

3.3.5 The PVS TABLE Construct

PVS has various TABLE constructs that provide more readable prover input. They

are internally translated to PVS COND constructs for typechecking and proving

purposes. Consider the table in Figure 3.3.

sign_vtable(x: real): signs= TABLE
%-------------%
I X < 0 I -1 II
%-------------%
I X= 0 I 0 II
%-------------%
I X > 0 I 1 II
%-------------%

ENDTABLE

Figure 3.3: One-dimensional vertical table in PVS

Horizontal lines in Figure 3.3 are simply comments. This specification is equiv

alent to that of sign_cond, it generates the same TCCs and is treated the same

as the equivalent IF-THEN-ELSE in the proofs. In this thesis we will use only one

dimensional vertical tables. For detailed information on PVS' support for other types

of tables (enumeration tables, data type tables, one-dimensional horizontal and two

dimensional tables), the interested reader is referred to [35].

Chapter 4

Model Checking The

Readers/Writers Problem

In this chapter we show how the original version of the Readers/Writers concurrent

program with a fixed number of readers and writers can be formalized and model

checked. We use the SPIN model checker (since it is specialized for concurrent pro

grams) for refutation purposes: some potential bugs of the program can be discovered

in this early stage of the verification. Then, we formalize the program, rewritten as

a tabular specification, to match the SAL specification language, in order to model

check it for safety and liveness properties. This not only allows potential bugs of

the original program to be discovered, but also the potential errors in the rewritten

specification. We will use the SAL model as a prelude to theorem proving of the

general model with an arbitrary number of readers and writers (as will be shown in

the next chapter): every potential auxiliary invariant found by PVS is model checked

in SAL.

4.1 Model Checking The Original Version In SPIN

This section first presents the modeling of the original Readers/Writers program in

PROMELA, the specification language of SPIN. Then, the analysis of this model is

performed using the SPIN model checker.

21

22 4. Model Checking The Readers/Writers Problem

4.1.1 Specification in SPIN

SPIN supports rendezvous and buffered message passing, and communication through

shared memory.

The semaphores used for synchronization in the Reader /Writer problem are easily

modeled as shown in Figure 4.1. Semaphore mutex, which ensures that only one reader

mtype {p, v};

chan mutex = [0] of {mtype};

active proctype m1()
{

}

byte count=1;

do
(count == 1) ->

end: mutex!p; count = 0

(count == 0) ->

mutex?v; count 1
od

Figure 4.1: Semaphore in SPIN

will enter or leave the critical section at the time, is modeled by the process of type m1

with the help of the rendezvous port mutex. (The semaphore w, the mutual exclusion

semaphore for the first and the last reader, is modeled in the same way.) A rendezvous

port is a channel of capacity zero, that can only pass, but cannot store messages [14].

Message interactions via such rendezvous ports are, by definition, synchronous. The

syntax for specifying a message transmission is borrowed from Hoare's CSP language:

the send operator is represented with an exclamation mark and the receive operator

is represented by a question mark. The label end will be explained later.

The definition and instantiation of the writer processes (two of them) are given

in Figure 4.2. The label eopw will be explained later.

Compared to the original program, our SPIN model contains the additional global

variables rd and wt (as in [15]), whose values are updated as a part of the same atomic

sequence in which a process enters/leaves the critical section. The· variables rd and

wt are used as the counters of all the active readers and writers, respectively, in the

4. Model Checking The Readers/Writers Problem 23

active [2] proctype writer()
{

atomic{

w?p; wt++

};

skip;

atomic{

wt--; w!v
};

}

Figure 4.2: Modeling writer processes in SPIN

read/write section. The complete SPIN code is given in Appendix C.l.

4.1.2 Analysis in SPIN

Safety Property: The safety property defined as

(rd = 0 V wt = 0) 1\ wt < 2 1\ rd ~ 0 1\ wt ~ 0 (4.1)

can be checked in SPIN using a never claim. We note that the safety property as given

here is a modified version of the property defined in Equation 2.1 (originally taken

from [15]). Since the rd and wt variables are integers, adding the last two conjuncts

as in equation 4.1 requires that number of readers/writers cannot be negative). We

use a never claim to specify the behavior that should never happen, i.e., it is never

the case that equation 4.1 is false:

never

{

do

od

}

!((rd -- 0 I I wt -- 0) && wt < 2 && rd >= 0 && wt >= 0) ->break

else

24 4. Model Checking The Readers/Writers Problem

The check can be done for the model in which processes repeatedly execute the

piece of code (do not terminate).

Liveness property: The liveness property defined in Section 2.3.1 requires that

every path of the system will eventually reach the state where all the reader/writer

processes have reached the end of their execution. This check can be done in SPIN

by checking for the absence of the invalid end states. By default, the only valid end

states in SPIN are those in which every process that was instantiated has reached the

"end" of its code. We used the labels end in the m1 and m2 processes so that a state in

which all the readers/writers have finished the execution would not be flagged as an

invalid one. So, without the end labels, in checking our model for invalid end states,

a state with all the readers/writers at the end of their execution would be marked

as an invalid one. In verification mode, SPIN checks for the invalid end states by

default.

The SPIN model checking results are given in Table 4.1. All the computations as

presented in this thesis were performed on a dual 2.4 GHz Xeon machine with 4GB

of RAM running RedHat Linux 9.0.

safety/ completion

states time(s)

3R/2W 3619 0.02

5R/5W 0.4·10° 1.25

6R/6W 2.3·10° 115

8R/8W 8.4-107 6555

lOR/lOW - >20h

Table 4.1: SPIN model checking results

From Table 4.1 it is obvious that checking the properties even for the system of 8

readers and 8 writers is very slow. We can use the SPIN's approximation techniques

described in [14] (collapse compression, bitstate hashing, hash-compact) to make a

quick check, but these techniques do not guarantee the complete coverage, and are,

therefore, used only as a last resort. Moreover, even if the size of the state space

would be manageable, the maximal number of processes allowed in a PROMELA

model is 255.

4. Model Checking The Readers/Writers Problem

4.2 Formalization of Readers/Writers Problem

SAL

25

.
Ill

In this section, the Readers/Writers problem is rewritten to match the table from

Appendix B. SAL does not support tables, so the table is rewritten into the transition

part of the SAL module: table headers are rewritten into the guards, and cells into the

assignment part of the guarded commands. Safety and liveness properties are model

checked using SAL's symbolic model checker for refutation purposes since some bugs

might have been introduced while rewriting the program into tabular specification.

Then, the SAL model will be used for checking the auxiliary invariants found in PVS.

4.2.1 Specification in SAL

Figure 4.3 contains a part of the context rw with type declarations. The context rw

has two parameters: the number of processes M, and the number of reader processes

n. The system state is of record type state, which consists of the fields m, w, rdcnt,

next, rd, and wt. The fields m and ware of the sem record type. This type consists

of the cnt and set fields. The field m functions as a mutual exclusion semaphore for

readers to ensure that only one reader will enter or leave the critical section at a time.

The field w provides mutual exclusion in the critical section shared by both readers

and writers. The field rdcnt counts all the readers that have entered or are still

waiting to enter the critical section. The elements of the array next are used to store

the process states by specifying a process's next executing statement (as explained in

Section 2.3.2). These elements are of type label.

Since we are using SAL's symbolic model checker for finite state systems, the types

of the fields of the global state cannot be unbounded. That is why we needed the

subrange type semtype as the type of field cnt of type sem, fields rd and rdcnt of type

rdtype, and wt of type wttype. The types are given with the tightest bounds possible,

in order to minimize the number of BDD variables (model checking is faster), but also

to enable the check that the variables of these types never go over the bounds (see

the typecheck2 theorem in the next section). Users perform this typecheck because

the full typechecker for SAL is not available yet; the present one does not detect

overflows.

26 4. Model Checking The Readers/Writers Problem

rw{; M : nznat, n : nat}: CONTEXT =
BEGIN

Job_Idx: TYPE= [1 .. M];
label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2, r3, waitAtPwr, rlseAtPwr,

r4, r5, r6, waitAtPm2, rlseAtPm2, r7, r8, r9, w1, w2, w3,

waitAtPww, rlseAtPww, EOP};
rdtype: TYPE= [-1 .. n+1];
wttype: TYPE= [-1 .. (M-n+1)];
semtype: TYPE= [-M .. 2];
index: TYPE= [1 .. M];
sem: TYPE = [#cnt: semtype,

set: setof #];
state: TYPE = [#

m: sem,
w: sem,
rdcnt: rdtype,
next: ARRAY index OF label,
rd: rdtype,
wt : wttype #]

Figure 4.3: The context rw

4. Model Checking The Readers/Writers Problem 27

Referring to the SAL input files in Appendix B, the parametric module process

is used to specify the behavior of a reader/writer process. We could have defined

two different parametric modules, one for readers, and one for writers. Instead, we

decided to use only one, so that the state machine it models more closely resembles

the original function table from [15] and more direct comparison to the manual proof

from [15] can be made. The process local bool variable IsReader is initialized with

TRUE if the pi D ::; n, and FALSE otherwise.

The transition relation is described in the TRANSITION part of the module. The

guard commands of the transition relation are labeled by the number of the column

they refer to in the Figure B.1 in Appendix B, originally taken from [15]. There is no

built-in support in SAL for the function that would specify that any process satisfying

some predicate can be chosen. Rather, this is solved by introducing non determinism

inside of the module as in Figure 4.4. In SAL, the symbol [] denotes asynchronous

composition. The use of [] (p: index) provides the nondeterministic choice of

one process to be executed next among those processes whose corresponding guard

formula is satisfied.

[]

([] (p: index) :

c17:

[]

IsReader AND s.next[piD] = r4 AND

s.m.cnt < 0 AND s.m.set(p)

--> s' = (((s WITH .m.cnt := s.m.cnt + 1)

WITH .next[piD] := r5)

WITH .next[p] :=
IF s.next[p] = waitAtPm1 THEN rlseAtPm1

ELSE rlseAtPm2

END IF)

WITH .m.set := remove(p, s.m.set))

Figure 4.4: Nondeterminism inside of the process module

Our model of the Readers/Writers program as defined by the table in Appendix B

has terminal states corresponding to the situations when all of the processes have

reached the end of their code. However, some model checkers, including SAL, may

28 4. Model Checking The Readers/Writers Problem

produce unsound results when checking the liveness properties of a system where not

every state has at least one successor. That is why we add selfloops to those terminal

states by adding a transition to the initializator (as in Appendix C.2), which is

otherwise used for the initialization of the global variable state. The whole system

is obtained by an asynchronous composition of M of process modules and module

ini tializator as in Figure 4.5. The result of initialization is that each process

main: MODULE = initializator []
([] (piD : index): process[piD]);

Figure 4.5: The module main

process is instantiated with a different value of piD.

4.2.2 Analysis in SAL

As mentioned earlier, the current typecheck does not detect overflows. Therefore, we

first have to prove that the variables of an bounded type (e.g., semtype) will not go

over the bounds of this subrange type. This is done with the theorem typecheck2

reproduced below:

typecheck2: THEOREM main

1- G(s.m.cnt <= 1 AND s.m.cnt >= -M+1 AND

s.w.cnt <= 1 AND s.w.cnt >= -M+1);

Here, s .m. cnt and s. w. cnt are of semtype type, as in Figure 4.2.1. After this check

is done, we can continue the analysis with tighter bounds for the types.

The safety properly from Equation 4.1 can be stated as follows:

safety: THEOREM main

1- G((s.wt = 0 OR s.rd = 0) AND s.wt < 2

AND s.rd >= 0 AND s.wt >= 0);

The assertion language is LTL. We decided to use a symbolic model checker, although

we had a choice of infinite bounded model-checker which handles infinite state systems

(unbounded types in the fields of a program state can be used, i.e., instead of the

4. Model Checking The Readers/Writers Problem 29

rdtype, wttype, and semtype we would use integers). The infinite model-checker

can provide counterexamples of a given depth or prove theorems using a generalized

induction rule known ask-induction [7]. This rule first requires proving that a certain

property holds in the first k steps of any execution. Then, the general step requires

that, if the property is satisfied in all the executions of length k, then it will be

preserved after the transition of the system to the next state. sal-inf-bmc was

not able to prove the theorem safety with k-induction for k=9, which took 6667

seconds. As model-checking in our verification process would be used for refutation

purposes and checking auxiliary invariants, we felt its benefits would be lost if we

used sal-inf-bmc.

The liveness property says that all the processes will eventually complete, i.e.,

reach the label EOP. First, we check whether the transition relation is total in order to

avoid unsound results. This is easily done using the SAL's sal-deadlock-checker.

Then, we assume the weak fairness of the scheduler: if a process's enablement con

dition is continuously enabled, then the process will eventually execute. So, if we

assume that it cannot happen that one of the non-waiting processes' enablement

condition is satisfied forever, all the processes will cleanly complete. Therefore, the

formalization of the liveness property under the assumption of weak fairness would

be:

dq: THEOREM main

1-(NOT EXISTS (i: index):

F(G(IsReader[i] AND s.next[i] = r1 AND s.m.cnt = 1)))

AND (NOT EXISTS (i: index):

F(G(IsReader[i] AND s.next[i] = r1 AND s.m.cnt < 1)))

AND ...

=> F(FORALL (k: index): IntRw(s.next[k]) = 0);

where the operand of the first G is the first "non-waiting" enablement condition from

the TRANSITION part of process module, the argument of the second G is the second

"non-waiting" enablement condition, etc.

However, the automaton for this property is too large, so that the computation

runs out of memory. Therefore, we prove the liveness property as suggested in Sec

tion 2.3.2 by proving the theorem of decreasing quantity. However, for the proof

30 4. Model Checking The Readers/Writers Problem

of the theorem of decreasing quantity, we found no need to define a DQ vector as

suggested in Section 2.3.2 (originating from [15]), because of the assumption that no

new readers/writers arrive after the initialization of the system. Moreover, if Pos is

defined as the number of the reader/writer processes with a label other than EOP,

then the case of a process reaching the label EOP (Pos 1 > Pos2) can be considered as

the case of decreasing one of the components of the vector IntRW defined as:

IntRW(next) = (IntRW(next[1]), ... , IntRW(next[M]))

Therefore, the vector I ntRW can be used as the decreasing quantity. We say that

I ntRW has decreased if there is at least one element of the I ntRw that has decreased,

while all the others have decreased or remained the same:

DQdecrease(s, t: state): bool = (EXISTS (i: index):

IntRW(t.next[i]) < IntRW(s.next[i])) AND

FORALL (i: index):

(IntRW(t.next[i]) <= IntRW(s.next[i]));

Note, however, that the ordering defined by DQdecrease is not total. We later

prove that this ordering implies the DQorder, as originally formulated in [15] and

reproduced in Section 2.3.2.

Now, the theorem of decreasing quantity as stated in Section 2.3.2, is formalized

in SAL by the following three theorems:

dqa: THEOREM main

1- G(FORALL (u: state): (s = u AND X(s /= u))

=> X(DQdecrease(u, s)));

dqb THEOREM main

1-AG((FORALL (t: state): (s = t => EX(s /= t)))

OR FORALL (i: index): IntRW(s.next[i]) = 0);

dqc: THEOREM main

1- G((FORALL (i:index): IntRW(s.next[i]) = 0) =>

FORALL (i: index): s.next[i] /= waitAtPm1 OR

4. Model Checking The Readers/Writers Problem

s.next[i] /= waitAtPm2 OR s.next[i] /= waitAtPwr OR

s.next[i] /= waitAtPww);

31

Again, the automaton for the theorem dqa is extremely large, so that symbolic

checker cannot handle it. We solve this problem by introducing the dqmoni tor module

to store the previous system state:

dqmonitor : MODULE =
BEGIN

INPUT s : state

OUTPUT prev_state state

INITIALIZATION

prev_state = ((# m := (# cnt := 1, set := {x:index I false}#),

w := (# cnt := 1, set := {x: index I false}#),

rdcnt := 0, next := [[i:index] IF i <= n THEN r1

ELSE w1

ENDIF],

rd := 0, wt := 0 #))

TRANSITION

prev_state' = s;

END;

We then verify the appropriately modified theorem:

dqa_new: THEOREM main I I dqmonitor

1- X(G(prev_state /= s => DQdecrease(prev_state, s)));

which is easily model-checked.

The theorem dqb is not expressible in LTL logic (because LTL cannot express

the existence of a path with certain properties), so it cannot be model checked by

SAL's symbolic model checker. However, this is the most general form of the theorem

applicable to any concurrent system. If we bring the insight of our problem into it

(meaning, state change is possible if there is at least one non-waiting process that has

not reached the label EOP and has an enabled transition), the theorem can be model

checked by checking the deadlock absence property (which we have already done) and

the LTL formula:

32 4. Model Checking The Readers/Writers Problem

dqb_new1p : THEOREM main I I dqmonitor

1- X(G((prev_state = s => (EXISTS (k: index):

(IsReader[k] AND s.next[k] = r1 AND s.m.cnt = 1) OR

(IsReader[k] AND s.next[k] = r1 AND s.m.cnt < 1) OR

....))OR FORALL (i: index): IntRW(s.next[i]) = 0));

where, again, the operand of first G is the first "non-waiting" enablement condition

from the TRANSITION part of process module, the argument of the second G is the

second "non-waiting" enablement condition etc. The SAL model checking results are

given in Table 4.2. The computation for checking dqa and dqb runs out of memory

for the system consisting of 5 readers and 5 writers, and the check for safety property

and dqc is extremely slow for the system with 6 readers and 6 writers. SAL performs

worse than SPIN, due mostly to the higher complexity of SAL model and the greater

size of state variable vector.

safety dqa_new dqb_newlp dqc

states time(s) states time(s) states time(s) states time(s)

3R/2W 9961 40 34962 180 34962 190 9961 40

5R/5W 14.9·10° 2326 - - - - 14.9·10° 2780

6R/6W 0.3·109 4044 - - - - 0.3·1011 4044

7R/7W 6.1·109 55627 - - - - 6.1·1011 55627

15R/10W - - - - - - - -

Table 4.2: SAL model checking results

4.2.3 Summary

In summary, we were able to model-check our model for safety and clean completion

(using the theorem of decreasing quantity). For the theorem of decreasing quantity,

we had to modify the second part of the theorem, since it initially was not expressible

in LTL. Moreover, since the current version of SAL is missing a full typechecker, we

were not able to check our specification for coverage and consistency, and had to

perform some additional checks (e.g., that the variables of a certain subrange type

will not cross the bounds of that type).

4. Model Checking The Readers/Writers Problem 33

While SAL's performance on the more detailed model of the problem lags behind

the performance of SPIN, we note that the SAL model as described here will be

used in the next chapter for model-checking all the auxiliary invariants discovered by

deduction in PVS.

Chapter 5

Theorem Proving in PVS

In the previous chapter, we formalized the Readers/Writers problem with a fixed

number of readers/writers, rewritten as in [15] using the SAL specification language.

Safety and liveness properties were automatically proven using the SAL symbolic

model checker. In this chapter, we first try to verify the hand-written proof of the

full system with an arbitrarily large number of readers/writers from [15] and then

give a significantly more automated proof of the same problem combining theorem

proving in PVS and model checking in SAL.

5.1 The Theory Hierarchy

The theory hierarchy diagram is given in Figure 5.1, where A ------+- B denotes "The

ory A is imported by theory B". The decl theory contains the type definitions, func

tions, etc. The theory conds imports the decl and defines the headers of the table

given in the theory transition. The getinv theory contains mostly unprovable

theorems, used for reaching the inductive invariant. The invj, invj 1, and cardsem

theories define the invariants and theorems needed to prove the safety property. The

dq, dqb, dqbfinal, and ordering contain the definitions of the invariants and theo

rems needed to prove the clean completion property.

34

5. Theorem Proving in PVS 35

dqbfinal

l
dqb

l
dq

l
cards em

l
invj1

l
invj getinv

l/
transition

l
conds

l
decl

Figure 5.1: The theory hierarchy

5.2 The decl Theory

The decl theory in Figure 5.2 contains the definitions of types, functions, etc. The

program state is defined as the record type state. However, we also needed the

predicate subtype stateneop, which we use to help reflect the fact that a process

that has terminated (reached the label EOP) cannot become the executing process.

The process chosen in the execution of the program is identified by an index

variable piD (the variables are taken from (15]). A global variable of the type state

contains the resources shared by all the processes: semaphores m and w, then counters

rd, wt, rdcnt, array of processes' labels next and piD, the identifier of the currently

executing process. Indices of the array are the process identifiers. The predicate

36 5. Theorem Proving in PVS

M: posnat
ntype: TYPE = {i: nat I i <= M}
index: TYPE= {i: ntype I i >= 1} CONTAINING 1
n: ntype
label: TYPE = {r1, waitAtPm1, rlseAtPm1, r2, r3, waitAtPwr,

rlseAtPwr, r4, r5, r6, waitAtPm2, rlseAtPm2,
r7, r8, r9, w1, w2, w3,
waitAtPww, rlseAtPww, EOP}

x: VAR label

rlabel?(x): bool = (x = r1 or x = waitAtPm1 or
x = rlseAtPm1 or x = r2 or

x = r3 or x = waitAtPwr or
x = rlseAtPwr or x = r4 or
x = r5 or x = r6 or
x = waitAtPm2 or x = rlseAtPm2 or
x = r7 or x = r8 or
x = r9 or x = EOP)

wlabel?(x): bool = (x = w1 or x = w2 or x = w3 or
x = waitAtPww or x = rlseAtPww or

x = EOP)

IsReader(i: index): bool = (i <= n)
ar: TYPE= {a: [index-> label] I forall (i: index):

((IsReader(i) => rlabel?(a(i))) and
(not IsReader(i) => wlabel?(a(i))))}

importing finite_sets[index]
sem: TYPE = [#cnt: integer, set: finite_set#]
state: TYPE = [#

piD: index,
m: sem,
w: sem,
rdcnt: int,
next: ar,
rd: int,
wt: int #]

stateneop: TYPE= {s: state I next(s)(piD(s)) /= EOP}

Figure 5.2: Theory decl

0

5. Theorem Proving in PVS 37

I sReader takes as an argument a variable of type index and is true if the process

in question is a reader process (i ::;; n), and false if the process is a writer process

(n < i ::;; M), where (0 ::;; n ::;; M).

This theory also contains a definition of the function In tRW (also taken from [15]),

used for proving the clean completion of the program. It maps all the possible values

of the variable next to integers as in Figure 5.3.

IntRW(x: label): int =
COND

x=r1 -> 15,

x=waitAtPm1 -> 14,

x=rlseAtPm1 -> 13,

x=r2 -> 12,

x=r3 -> 11,

x=waitAtPwr -> 10,

x=rlseAtPwr -> 9,

x=r4 -> 8,

x=r5 -> 7,

x=r6 -> 6,

x=waitAtPm2 -> 5,

x=rlseAtPm2 -> 4,

x=r7 -> 3,

x=r8 -> 2,

x=r9 -> 1'
x=w1 -> 5,

x=waitAtPww -> 4,

x=rlseAtPww -> 3,

x=w2 -> 2,

x=w3 -> 1,

x=EOP -> 0

ENDCOND

Figure 5.3: PVS definition of the function IntRW

•

38 5. Theorem Proving in PVS

5.3 The table Theory

The tabular representation of the Readers/Writers rewritten program in Appendix B

(originally taken from (15]) is represented as a theory in PVS. Part of this theory is

shown in Figure 5.4.

trans(s : {s:stateneop I
NOT (p1(s) or p7(s) or p10(s) or p12(s)

or p15(s) or p19(s) or p25(s) or p28(s) or p30(s)

or p33(s) or p39(s))}, t: state): bool =
LET k: index = piD(s) IN
table

%---1 I
I p1(s) I II

%---1 I
lp2(s)l rdcnt(t) = rdcnt(s) and rd(t) = rd(s) and %

wt(t) = wt(s) and cnt(m(t)) = cnt(m(s)) - 1 and %
set(m(t)) = set(m(s)) and cnt(w(t)) = cnt(w(s)) and %
set(w(t)) = set(w(s)) and %
(forall (j:index): (j= k and next(t)(j) = r2) or %
(j /= k and next(t)(j) = next(s)(j))) and %
next(t)(piD(t)) /= EOP I I

%---1 I

Figure 5.4: Tabular representation of Readers/Writers problem in PVS

The table from (15] is modeled with a transition relation trans. The relation

trans (s, t) evaluates to TRUE if one of the guard conditions pi (s) to p41 (s) (whose

definitions are given in Appendix C.3) holds and the program can make the transition

from state s to t. Note that the PVS table is the original table transposed for

readability in the PVS ASCII text input format.

The first argument of the trans is of the type stateneop. In order to make the

relation total, the first argument is subtyped to reflect the fact that some states sat

isfying certain predicates (p1(s), p7 (s), p10 (s), p12 (s), p15 (s), p19 (s), p25 (s),

0

5. Theorem Proving in PVS 39

p30 (s) , p33 (s) , p39 (s)) can never be reached. T~e table entries corresponding to

those predicates are left blank. PVS generates TCCs that requires a user to prove that

the states satisfying those predicates are indeed unreachable (see Subsection 5.5.1).

The disjointness obligation for the table trans is automatically discharged by

PVS, and the completeness obligation is discharged after making the type constraints

of next explicit.

5.4 Verifying the Hand-Written Proof

The requirements of the Readers/Writers program say that only one writer can be

active while no reader is reading or one or more readers can read concurrently while

no writer is writing. This can be stated as in [15]:

(rd = 0 or wt = 0) and wt < 2

This global invariant is defined in PVS as two invariants rp1 and rp2:

t: VAR state

rp1(t): bool = wt(t) = 0 or rd(t) = 0

rp2(t): bool = wt(t) < 2

The initial condition for the system is given by:

initcond(t): bool = cnt(m(t)) = 1 and empty?(set(m(t))) and

cnt(w(t)) = 1 and empty?(set(w(t))) and

rd(t) = 0 and wt(t) = 0 and rdcnt(t) = 0 and

(forall (i: index): (i <= n and next(t)(i) = r1)

or (i > n and next(t)(i) = w1))

In initial state, the semaphore m is available (cnt (m (t)) = 1), and there are no

processes waiting for it (empty?(set(m(t)))). The same holds for the semaphore w.

The initial values of rd, wt, and rdcnt are zero, and the reader and writer processes

are at the r1 and w1 label, respectively.

Strictly following the manual proof of [15], we first try to prove rp1, by proving

that it is true after initialization:

40 5. Theorem Proving in PVS

initrp1: theorem initcond(t) => rp1(t)

and, row by row (or, column by column, for the original table), that it is preserved

after every statement in the program.

One of the theorems from the manual proof of [15] we are to prove is:

s: VAR stateneop

t: VAR state

cc14rp1: theorem p14(s) and rp1(s) and trans(s, t) implies rp1(t)

The previous theorem states that if the p14 guard condition is satisfied, rp1

predicate holds, and the system makes a valid transition, the rp1 should also hold in

the new state.

Starting the PVS theorem prover gives three unprovable sequents, one of which is

the following:

{-1} (piD(s!1) <= n)
{-2} rlseAtPwr?(next(s!1)(piD(s!1)))
{-3} rd(s!1) = 0
{-4} rdcnt(t!1) = rdcnt(s!1)
{-5} rd(t!1) = 1
{-6} wt(t!1) = wt(s!1)
{-7} cnt(m(t!1)) = cnt(m(s!1))
{-8} set(m(t!1)) set(m(s!1))
{-9} cnt(w(t!1)) cnt(w(s!1))
{-10} set(w(t!1)) = set(w(s!1))
{-11} piD(t!1) = piD(s!1)
{-12} r4?(next(t!1)(piD(s!1)))

1-------
{1} wt(s!1) = 0

By analyzing the sequent shown above, we realize that it is requiring us

to show that if a process can get a permission to enter a critical section

(rlseAtPwr? (next (s! 1)(piD(s! 1))) then it must be that the critical section is

empty; therefore, there are no writers already writing (wt (s! 1) = 0). The same

thinking can be applied to the remaining two sequents.

Therefore, the proposed new, auxiliary invariant would be:

0

5. Theorem Proving in PVS

inv14(t): bool = forall (i: index): next(t)(i) = rlseAtPwr

=> wt(t) = 0

41

It states that if a reader process has acquired permission to enter critical section, it

must be the case that there are no writers in it; otherwise, it would happen that both

readers are reading and a writer is writing in the critical section at the same time.

The manual proof from [15] used two different invariants, denoted VB and V10

(whose definitions can be found in the list of invariants from the manual proof in

Appendix C.5):

c14rp1: theorem p14(s) and rp1(s) and VB(s) and V10(s) and

trans(s, t) implies rpl(t)

This theorem, however, could not be proven in PVS. The unprovable sequent

indicated the inv14 invariant again. By investigating the manual proof, we came

to the conclusion that the error was made because one branch of the proof was not

explored at all: the first disjunct of the consequent of formula VB was left out during

the course of the proof. This corresponds to the case when there is a writer writing,

and a reader got permission to enter the same critical section. Obviously, this is not

possible, but this conclusion does not follow from the facts provided in the theorem

c14rp1.

If we continue proving rp1 for the remaining rows, discovering more invariants,

then those discovered invariants should be proven themselves. However, proving the

auxiliary invariants of the form (3i: (i = p!D(t) A next(t)(i) = l)) =? P(t), where P

is a predicate on the global state of the system t, and l is some label, discovered a more

serious flaw of the proof: only part of the transition relation was explored. Model

checking in SAL confirmed this conclusion. The manual proof actually considered

the relation from the table with an additional assumption: the piD of the currently

executing process does not change after the transition of the program to the next state.

(Even for this modified relation we found two invariants in [15] needed strengthening

(V10, V15)). Since only a part of the relation was explored, some of the invariants

found by hand do not hold in all the states of the system with the full transition

relation. For instance, the invariant V12 from [15]:

V12(t): bool = (exists (i: index): i = piD(t) and

42 5. Theorem Proving in PVS

(next(t)(i) = r1 or next(t)(i) = rlseAtPm1 or

next(t)(i) r2 or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7 or

next(t)(i) = r9)) implies rd(t) = rdcnt(t)

claims that 'if any reader when executed has a label of e.g. r1, then it must be

that rd is equal to rdcnt'. But, this is not the case. In fact, it can happen that

there is another process whose label is e.g. r3, so that at a state of executing the

process with r1 label, rdcnt would be greater than rd. The counterexample for the

system with two readers and two writers was generated by model checking a modified

version of the invariant in SAL. The invariant is modified, because we did not need to

explicitly model the piD of the currently executing process in SAL, since the model

checker explores all the possible subsequent states of a state, corresponding to different

processes being chosen to be executed next, the validity of the counterexample given

below is preserved. The modified invariant is:

V12(t): bool = (exists (i: index):

(next(t)(i) = r1 or next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r4 or

next(t)(i) = r5 or next(t)(i) = r6 or

next(t)(i) = rlseAtPm2 or next(t)(i) = r7 or

next(t)(i) = r9)) implies rd(t) = rdcnt(t)

Counterexample generated by SAL is given below:

(
plD=l plD=l() r1, r1, w1, w1, 0, 0) -4 (r2, rl, w1, w1, 0, 0) -4 r3, r1, w1, w1, 0, 1

The 6-tuples represent the relevant part of the program state: (next[1],

next[2], next[3], next[4], rd, rdcnt).

To gain a better understanding of what the PVS version of the manual proof really

proved, take a look at the V9 invariant, also from [15]:

V9(t): bool =(exists (i: index): i = piD(t) and

next(t)(i) = r7) => rdcnt(t) > 0

5. Theorem Proving in PVS 43

which should actually be

V9_new(t): bool =(exists (i: index):

next(t)(i) = r7) => rdcnt(t) > 0

The PVS version of the manual proof proved that the predicate V9 is invariant if

there is exactly one process with label r7 (a process having a label r7 is in the critical

section of semaphore m) in states and that is the process currently executing, or there

are no processes at the r7 label in states. It has not, however, discharged the proof

obligations in the case where e.g., there is at least one process with the r7 label in

state s, but any other process is chosen to be executed. In this case, there cannot

exist a process whose execution would decrease rdcnt. If this was the case, it would

mean that there exists another process with label r7, which is a contradiction, because

there cannot be two processes in the critical section of semaphore m. Therefore, we

need another invariant:

CS1(t): bool = (forall (i, j: index): CS1pred(t, i)

and CS1pred(t, j) => i j)

where

i: VAR index

CS1pred(t, i): bool = next(t)(i) = rlseAtPm1 or

next(t)(i) = r2 or next(t)(i) = r3 or

next(t)(i) = r4 or next(t)(i) = rlseAtPm2 or

next(t)(i) = r7 or next(t)(i) = r8 or

next(t)(i) = r9 or next(t)(i) = waitAtPwr or

next(t)(i) = rlseAtPwr

It says that it cannot be the case that there is more than one process in the critical

section of semaphore m. The same thing, of course, holds for semaphore w. This will

be discovered by PVS, as suggested in the next section.

5. 5 Verification in PVS Revisited

In this subsection we give a significantly automated proof for both safety and liveness

properties. While the PVS proof still mimics the manual proof's "divide and conquer"

44 5. Theorem Proving in PVS

technique by considering the proof in a row by row case, the process is significantly

automated. Rather than having to explicitly state and prove a theorem for each row

of the table, proof tactics have been developed that examine the structure of the table

and decompose the complete proof obligation into proof subgoals, one for each row

of the table.

5.5.1 Proof of the Safety Property

First, we change the requirement from [15] as indicated in Subsection 4.1.2:

rp(t): bool = (wt(t) = 0 or rd(t) = 0) and

wt(t) < 2 and rd(t) >= 0 and wt(t) >= 0

Secondly, we prove the global property for the whole table at once, rather than

using "a theorem per row" approach:

crp11: lemma forall t: (initcond(t) => rp(t))

and forall s, t: ((rp(s) and trans(s, t)) => rp(t))

Attempt to prove the crp11 theorem with (GRIND) after making the type con

straints of next explicit and instantiating the corresponding formula with piD(s! 1)

yields 210 subgoals (it takes less than 5 minutes), one of which is shown here:

crp11. 2.1 :

{-1} piD(t!1) <= M

{-2} piD(t!1) >= 1

{-3} r1?(next(s!1)(piD(s!1)))

{-4} wt(s!1) = 0

{-5} rd(s!1) >= 0

{-6} rdcnt(t!1) = rdcnt(s!1)

{-7} rd(t!1) = rd(s!1)

{-8} set(m(t!1)) = set(m(s!1))

{-9} cnt(m(t!1)) = cnt(m(s!1))

{-10} cnt(w(t!1)) = 1 + cnt(w(s!1))

{-11} set(w(s!1))(piD(t!1))

{-12} set(w(t!1)) = remove(piD(t!1), set(w(s!1)))

{-13} wt(t!1) = -1

{-14} (p!1 = piD(t!1))

5. Theorem Proving in PVS

{-15} waitAtPww?(next(s!1)(piD(t!1)))
{-16} rlseAtPww?(next(t!1)(piD(t!1)))

1-------
{1} piD(s!1) > n

{2} cnt(m(s!1)) = 1
{3} EOP?(next(t!1)(piD(t!1)))
{4} cnt(m(s!1)) < 1
{5} (piD(t!1) = piD(s!1))

45

The lines { 2} and { 3} of the previous sequent combined require that cnt (m (s ! 1))

cannot be greater than 1. This should always hold according to the specification of

the semaphore. So, we need to strengthen our property with S1(s): Sl(s):

S1(t): bool = cnt(m(t)) <= 1

Most of the subgoals are repeated, so it is not as hard to analyze the sequents as

it may appear at first. The number of unprovable goals drastically decreases in the

next iterations.

After considering all of the 210 subgoals, we obtained a set of twelve invariants

given in Appendix C.3 to be used to strengthen the initial invariant, so we now prove

the stronger property:

s: VAR stateneop

t: VAR state

ind1(t): bool = rp(t) and S1(t) and S2(t) and S31(t)

and S32(t) and S41(t) and S5(t)

and S6(t) and S7(t) and S81(t)

and S82(t) and S91(t) and S101(t)

crpind1: lemma (forall t: initcond(t) => ind1(t))

and forall s, t: (ind1(s)

and trans(s, t) => ind1(t))

Using the knowledge gained from the analysis in the previous section, we designed

a strategy to prove this lemma, or, rather, gain new invariants. Branches of the

proof corresponding to the invariants that are universally quantified on i are split

into two cases. First case, for i!1 = piD(s!1), we apply GRIND, and contemplate

<!•

46 5. Theorem Proving in PVS

the invariants from the unprovable sequents. However, we choose to skip the case for

i! 1 /= piD(s! 1), since the vast majority of the failed goals corresponding to this

branch can be subsumed into an invariant saying that there cannot be more than one

process in the critical section of semaphore m and semaphore w. One of the sequents

gained from these branches (i! 1 /= piD(s! 1)) is the following:

crpind1.2.4.2.2 :

{-1} r4?(next(s!1)(i!1))
{-2} r4?(next(s!1)(piD(s!1)))
{-3} wt(s!1) = 0
{-4} rd(s!1) >= 0
{-5} (cnt(w(s!1)) <= 1)
{-6} (rdcnt(s!1) >= 0)
{-7} cnt(m(s!1)) = 0

{-8} rdcnt(t!1) = rdcnt(s!1)
{-9} rd(t!1) = rd(s!1)

{-10} wt(t!1) = 0
{-11} cnt(m(t!1)) = 1
{-12} set(m(t!1)) = set(m(s!1))
{-13} cnt(w(t!1)) cnt(w(s!1))
{-14} set(w(t!1)) = set(w(s!1))
{-15} next(t!1)(i!1) = next(s!1)(i!1)

1-------
[1] i!1 = piD(s!1)

{2} r1?(next(s!1)(piD(s!1)))

{3} waitAtPm1?(next(s!1)(piD(s!1)))
{4} rlseAtPm1?(next(s!1)(piD(s!1)))
{5} r2?(next(s!1)(piD(s!1)))
{6} r3?(next(s!1)(piD(s!1)))

{7} waitAtPwr?(next(s!1)(piD(s!1)))
{8} rlseAtPwr?(next(s!1)(piD(s!1)))
{9} piD(s!1) > n
{10} cnt(w(s!1)) = 1

The invariant corresponding to this sequent says that there cannot be two different

processes at one time with the label r4 (a process whose label is equal to r4 is in the

critical section of semaphore m). This invariant is a part of one of the two 'semaphore'

invariants CS1 and CS2, whose definitions are given in Appendix C.4.

5. Theorem Proving in PVS 47

We continue on with strengthening the property using the same tactic without

using semaphore invariants, until we prove that the conjunction of the global property

and the newly found invariants is inductive for the branches corresponding to i ! 1 =

piD(s! 1). We needed six iterations to reach inductivity. Every iteration contains

the following steps:

1. We formalize the theorem in PVS that states that a property includes all the

initial states and is closed under all possible transitions.

2. If the proof fails, we obtain the new potential auxiliary invariants indicated by

unprovable sequents.

3. New invariants are model checked in SAL.

4. The desired property now becomes the conjunction of the old property and

newly found ones. However, we choose to prove only the properties that were

not proved (for i! 1=piD(s! 1)) in the previous iteration and the newly found

ones.

As indicated in step 3, all the auxiliary invariants are first model checked. The

list of those can be found in Appendix C.4. The verification using model checking

being fully automatic made the checking of the auxiliary invariants fast and easy. It

increased the confidence in our PVS deductive analysis and provided fast discovery of

"fake" invariants (proposed invariants originating in a mistake made while contem

plating the invariant from the characteristic equation of an unprovable sequent). The

mistake would, obviously, be caught by PVS, but at best in the next iteration (which

is still time-consuming and not as obvious), and under the assumption that the SAL

and PVS models are equivalent.

Now, we are to prove that all those auxiliary invariants are invariants. We came

up with another four auxiliary invariants, corresponding to the cases where the label

of a process is changed by executing another process (a process is releasing semaphore,

and the other process can enter the critical section). We ended up with 42 invariants

all together. Proofs of the 'semaphore' invariants are divided into lemmas because of

the time and memory constraints. Special proof tactics were also written for those

lemmas.

48 5. Theorem Proving in PVS

All the strategies are in Appendix C.3. They all use a "divide and conquer"

policy: every proof is split into 31 branches (where 31 is the number of non-blank

table columns). We did not use PVS' built-in strategy bddsimp (propositional sim

plification) to break down proof goals; in the general case, the use of bddsimp would

result in many more goals than the number of rows - those would correspond to the

disjuncts in the grid cells of the table. Obtained goals are then tackled with the same

tactic. This tactic is chosen so that the degree of the automaton of the process, and

memory and time consumption, are balanced. The vast majority of the invariant

proofs (around 80%) are completely automated using those strategies; for the rest,

after applying a corresponding strategy, the unprovable sequents of some branches

clearly indicate the further steps, so that a minimal level of human insight is needed

to help finish up the proofs. The achieved run-times of the proofs can be decreased

with more human interaction. The higher level of human guidance would involve

choosing the invariants needed for a particular auxiliary invariant proof (since not all

the invariants in the inductive invariant are needed to prove each auxiliary invariant)

and would substantially decrease the times.

At the end, we are to prove the proof obligations for each of the final lemmas, e.g.

for the S121 invariant:

% Subtype TCC generated (at line 266, column 38) for s

% expected type {s: state! I

% NOT (p1(s) OR p7(s) OR p10(s) OR p12(s)

%

%

c\ OR p15(s) OR p19(s) OR p25(s) OR p28(s)

OR p30(s) OR p33(s) OR p39(s))}

% untried

crpind121_TCC1: OBLIGATION

(FORALL t: initcond(t) => S121(t)) IMPLIES

(FORALL (s, t1):

indc(s) IMPLIES

NOT (p1(s) OR p7(s) OR p10(s)

OR p12(s) OR p15(s) OR p19(s)

OR p25(s) OR p28(s) OR p30(s) OR p33(s) OR p39(s)));

0

5. Theorem Proving in PVS 49

for which strategies are also written. These obligations require us to prove that

the system, so far described with the invariant indc, can never reach a state which

satisfies any of the p 1 to p39 predicates.

The process of proving the safety property as proposed is largely an automated

one. First, the unprovable sequents as the indicators of the invariants needed are

obtained automatically, using specially written strategies. However, human insight

is needed to determine the invariants from these unprovable sequents. The pro

cess of proving that those new invariants are invariants indeed is completely auto

mated for the majority of invariants and takes 10 minutes on average (except for the

"semaphore" invariants which take few hours). The semaphore invariants are system

specific, but could, in the future be generalized in a "semaphore" theory.

5.5.2 Proof of the Theorem of Decreasing Quantity

We use the vector IntRW as a decreasing quantity as explained in Subsection 4.2.2.

We redefine the predicate DQdecrease in PVS as:

s:VAR stateneop

t: VAR state

DQdecrease(s, t): bool (exists i: IntRW(next(s)(i)) >

IntRW(next(t)(i))) and

(forall i: IntRW(next(s)(i)) >=

IntRW(next(t)(i)))

The theorem of decreasing quantity is given in Section 2.3.2 (originally taken from

[15]).

We first formalize the first part of the theorem of decreasing quantity. We prove

that every two states, s and its next state t, that differ in at least one field other

than the piD field, satisfy DQdecrease (s, t):

s:VAR stateneop

t: VAR state

dqa: theorem indc4(s) => (trans(s, t) and not (m(s) = m(t) and

w(s) = w(t) and rdcnt(s) = rdcnt(t) and

50 5. Theorem Proving in PVS

(forall i: next(s)(i) = next(t)(i)) and

rd(s) = rd(t) and wt(s) = wt(t)) => DQdecrease(s, t))

The predicate indc4 (defined in Appendix C.3 in the PVS file cardsem) is the in

ductive invariant found in the safety property proof. Therefore, it contains all the

information on our state space that we have obtained so far.

Part b) of the theorem of decreasing quantity states that it is either the case that

the decreasing quantity has reached zero, or that there is a possible state change

(other than change of piD). We formalize it as:

s1, t, u: VAR state

dqb: lemma forall s1: (indc4(s1) =>

((forall i: IntRW(next(s1)(i)) = 0) or

(exists t: (trans(s1, t) and

(not (m(s1) = m(t) and

w(s1) = w(t) and rdcnt(s1) = rdcnt(t) and

(forall i: next(s1)(i) = next(t)(i)) and

rd(s1) = rd(t) and wt(s1) = wt(t)) or

(exists u: (trans(t, u) and not (m(t) = m(u) and

w(t) = w(u) and rdcnt(t) = rdcnt(u) and

(forall i: next(t)(i) = next(u)(i)) and

rd(t) = rd(u) and wt(t) = wt(u)))))))))

The dqc part of the decreasing quantity theorem says that if the decreasing quan

tity has reached zero, then there are no waiting processes:

t: VAR state

dqc: theorem indc4(t) => (forall (i: index): IntRW(next(t)(i)) = 0)

implies (forall (i: index): (next(t)(i) /= waitAtPm1

and next(t)(i) /= waitAtPm2 and next(t)(i) /= waitAtPwr

and next(t)(i) /= waitAtPww))

Proving the dqb theorem required the additional strengthening of the invariant

that was found sufficient for proving the safety property. Reduction of the state

space from indc4 to indc8 (definition of indc8 is given in Appendix C.3 in the PVS

5. Theorem Proving in PVS 51

file dqbf inal) would have required many iterations, if we were to use exclusively

the failed goals in PVS in order to come up with the invariants. These iterations

were skipped by human intervention with significant help of the SAL model checker.

We needed 12 new invariants. The proofs for those invariants are not completely

automated, since the proofs are distinct, so we did not feel that we would benefit

from writing strategies. On the other hand, the theorems dqa and dqc were easily

proven. Finally, we proved that the partial order DQdecrease implies the total order

DQorder from the original theorem of decreasing quantity from [15].

5.6 Summary

We formalized the Readers/Writers problem rewritten into a table as in [15] in PVS.

The verification of the manual proof of the safety property from [15] using a combina

tion of theorem proving in PVS and model checking in SAL has discovered mistakes

in the manual proof. This was a rather useful guide to some of the problems one

might encounter in inspecting a concurrent problem using the method proposed in

[15], and provided an understanding of the importance of automation in the process.

Finally, a significantly automated proof of the safety property was given using PVS

proof tactics, while the proof of the clean completion property required significant

human assistance.

Chapter 6

Conclusion

6.1 Summary

The state explosion problem limits the scope of use of model checking. For large

state spaces theorem proving still remains the inevitable option. Many techniques

have tried to combine the automaton of model checking and generality of theorem

proving. The central role of our approach is given to theorem proving. Model-checking

is used for refutation purposes: as a debugging tool for the original program (SPIN),

or the program rewritten into a table (SAL) in case SPIN missed on finding some

bugs, or they were introduced while rewriting the program into a table. Moreover,

SAL proved to be extremely useful for checking the auxiliary invariants.

We believe that the contributions of our work are the following:

• We provided partial automaton of the inspection process of [15].

• We provided the basis for automated reasoning about concurrent programs

based on tabular expressions. We believe that many of the issues dealt in the

analysis of the Readers/Writers example in this thesis will reappear in the veri

fication of other concurrent problems using the same inspection approach. E.g.,

the use of 'pregenerated' invariants inherent to the synchronization (communi

cation) mechanisms used would significantly reduce the time needed to obtain

the final, inductive invariant. Moreover, as the next variable is inherent to this

inspection process, the reappearance of the universally quantified implications

52

6. Conclusion 53

of the form 'Vi : (next(t)(i) = l =} P(t)), where P is a predicate on the global

state of the system t, and l is some label, is predictable. Therefore, the tactics

written for some types of invariant are reusable to a certain extent.

• We illustrated the necessity of the computer-aided verification of the concurrent

systems in inspection of [15] by automating the manual proof of the safety prop

erty of the Readers/Writers problem (as in [15]). The proposed combination

of theorem proving and model checking discovered several inadvertent and one

systematic mistake in the manual proof. More precisely, model checking itself

indicated that some of the invariants found in manual proof were not the invari

ants of the program. Theorem proving offered a better insight into the depth

of the systematic mistake made: it showed exactly what part of the transition

relation was left out by the mistake.

• A detailed example of the computer-aided verification of the concurrent pro

grams with arbitrarily large number of processes is given.

• Theorem proving and model checking were successfully combined. Two model

checking tools (one of which is specialized for models of concurrency, the other

one with an input language very close to that of the theorem prover) were

used for model checking the classical concurrent program. Ideally, we would

want to have used only one model checking tool, which would be specialized

for concurrency and offer a successful combination with a theorem prover (e.g.,

capability to export from one to another).

• Our approach pointed out the need for a symbolic analysis framework that

would successfully integrate model checking, theorem proving, invariant gener

ation and abstraction.

Although it provided for a fast and automatic finding of bugs, model checking

was not sufficient to prove the correctness of the systems with arbitrary number of

processes: only the instances of the system could be checked. This is why theorem

proving was needed.

We used a PVS construct for tabular specification in order to specify our program.

The construct generated a proof obligations to ensure that the row conditions are

54 6. Conclusion

disjoint and complete. Since the construct is highly integrated with other capabilities

of PVS, we were able to prove· the invariant property and the theorem of decreasing

quantity. Failed proofs indicated additional invariants needed to prove the invariant

of the program. Formalizing the same problem in SAL using the symbolic model

checker provided checking the auxiliary invariants using the symbolic model-checker

(but, for the system with the fixed number of processes) and increased the confidence

in our deductive analysis.

6.2 Limitations and Future Work

In our verification of Readers/Writers program we used a specific implementation of

semaphore, as specified in Appendix A. For future work, we would suggest investi

gating the possibility of using the specification of a synchronization primitive rather

than its implementation. This should enable us to use the same proof for different

implementations of a synchronization primitive, while only verifying its specification

axioms as given in [10], against a particular implementation.

The process of finding an invariant strong enough is crucial in order to prove safety

property and theorem of decreasing quantity, as already concluded in [15]. Finding

the auxiliary invariants and proving that those are indeed the invariants of the system

was automated as far as possible using special tactics based on PVS' built-in decision

procedures. The proof of the majority of invariant lemmas is completely automated

and took as much as 10 minutes on average. Substantial human guidance can be

used to decrease the times. We believe that the planned integration of PVS and ICS

decision procedures [9] will significantly reduce the time needed to complete the proof.

Obviously, the translator from SAL to PVS would make the process more effec

tive. The further development of SAL as a powerful tool combining the theorem

proving, model checking, abstraction and invariant generation will offer the means of

the enhanced analysis, including the automated invariant generation and the existen

tial abstraction as suggested in [34]. We believe that the lessons learned during the

course of this thesis will offer a valuable guidance on combining tables and automated

verification for the successful inspection of concurrent systems.

Bibliography

[1] D. Berry, "Formal specification and verification of concurrent programs," Tech.

Rep. SEI-CM-27-1.0, Sortware Engineering Institute, Carnegie Mellon Univer

sity, Pittsburgh, PA, 1993.

[2] E. M. Clarke, 0. G. Jr., and D. A. Peled, Model Checking. Cambridge, Mas

sachusetts: The MIT Press, 2001.

[3] B. Cohen, W. T. Harwood, and M. I. Jackson, The Specification of Complex

Systems. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,

1986.

[4] P. J. Courtois, F. Heymans, and D. L. Parnas, "Concurrent control with readers

and writers," Commun. ACM, vol. 14, no. 10, pp. 667-668, 1971.

[5] L. de Moura, "SAL: Tutorial," tech. rep., Computer Science Laboratory, SRl

International, Menlo Park, CA, August 2004.

[6] L. de Moura, S.Owre, and N. Shankar, "The SAL language manual," Tech. Rep.

CSL-01-01, Computer Science Laboratory, SRI International, Menlo Park, CA,

2003.

[7] L. M. de Moura, H. RueB, and M. Sorea, "Bounded model checking and induc

tion: From refutation to verification (extended abstract, category A).," in CAV,

pp. 14-26, 2003.

[8] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ: Prentice

Hall, 1976.

55

56 BIBLIOGRAPHY

[9) Formal Methods Program, "Formal methods roadmap: PVS, ICS, and SAL,"

Tech. Rep. SRI-CSL-03-05, Computer Science Laboratory, SRI International,

Menlo Park, CA, Oct. 2003.

[10] A. N. Habermann, "Synchronization of communicating processes," Commun.

ACM, vol. 15, no. 3, pp. 171-176, 1972.

[11] K. Havelund and N. Shankar, "Experiments in theorem proving and model check

ing for protocol verification," in FME '96: Proceedings of the Third International

Symposium of Formal Methods Europe on Industrial Benefit and Advances in

Formal Methods, (London, UK), pp. 662-681, Springer-Verlag, 1996.

[12] C. A. R. Hoare, "Communicating sequential processes," Comm. ACM, vol. 21,

no. 8, pp. 667-677, 1978.

[13] C. A. R. Hoare, "An axiomatic basis for computer programming," Comm. ACM,

vol. 12, no. 10, pp. 576-580, 583, October, 1969.

[14] G. J. Holzman, The SPIN Model Checker. Addison-Wesley, 2003.

[15] X. J. Jin, "Use of tabular expression in the inspection of concurrent programs,"

Master's thesis, McMaster University, December 2004.

[16) L. Lamport, "Win and sin: Predicate transformers for concurrency," Tech.

Rep. 17, Digital Systems Research Center, Palo Alto, CA, May 1987.

[17) M. Lawford, P. Froebel, and G. Mourn, "Application of tabular methods to the

specification and verification of a nuclear reactor shutdown system." To appear

in Formal Methods in System Design, 2004.

[18] M. Lawford, J. McDougall, P. Froebel, and G. Mourn, "Practical application

of functional and relational methods for the specification and verification of

safety critical software," in Proceedings Algebraic Methodology and Software

Technology, 8th International Conference, AMAST 2000, Iowa City, Iowa, USA,

May 2000 (T. Rus, ed.), vol. 1816 of LNCS, pp. 73-88, Springer, 2000.

BIBLIOGRAPHY 57

[19] M. Lawford and W. Wonham, "Equivalence preserving transformations of timed

transition models," IEEE Trans. Autom. Control, vol. 40, pp. 1167-1179, July

1995.

[20] R. Milner, A Calculus of Communicating Systems, vol. 92 of Lecture Notes in

Computer Science. Springer, 1980.

[21] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.

[22] L. Moura, S. Owre, and N. Shankar, "The SAL language manual," tech. rep.,

SRI, Menlo Park, California, August 2003.

[23] T. Murata, "Petri nets: Properties, analysis and applications," Proceedings of

the IEEE, vol. 77, no. 4, pp. 541-580, April, 1989.

[24] S. Owicki and D. Gries, "Verifying properties of parallel programs: An axiomatic

approach," Comm. ACM, vol. 19, no. 5, pp. 279-285, May, 1976.

[25] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert, PVS

Language Reference. Computer Science Laboratory, SRI International, Menlo

Park, CA, Sept. 1999.

[26] D. L. Parnas, "Inspection of safety-critical software using program-function ta

bles," in IFIP Congress(3), pp. 270-277, 1994.

[27] D. L. Parnas, J. Madey, and M. Iglewski, "Precise documentation of well

structured programs," IEEE Trans. Softw. Eng., vol. 20, no. 12, pp. 948-976,

1994.

[28] D. Parnas, "Tabular representation of relations," Tech. Rep. 260, Communica

tions Research Laboratory, McMaster University, Oct. 1992.

[29] D. Parnas, G. Asmis, and J. Madey, "Assessment of safety-critical software in

nuclear power plants," Nuclear Safety, vol. 32, no. 2, pp. 189-198, April-June

1991.

[30] J. Rushby, "Tutorial introduction to mechanized formal analysis using theorem

proving, model checking and abstraction," tech. rep., SRI, Menio Park, Califor

nia, May 2003.

58 BIBLIOGRAPHY

[31] S. Rusovan, "Inspecting the source code that implements the PPP protocol in

linux," Tech. Rep. 19, SQRL, McMaster University, Jan. 2004.

[32] A. J. V. Schouwen, "The A-7 requirements model: Re-examination for real-time

systems and an application to monitoring systems," Tech. Rep. 242, Communi

cations Research Laboratory, McMaster University, May 1992.

[33] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert, "PVS prover

guide - version 2.2."

[34] N. Shankar, "Combining theorem proving and model checking through symbolic

analysis," in CONCUR '00: Proceedings of the 11th International Conference on

Concurrency Theory, (London, UK), pp. 1-16, Springer-Verlag, 2000.

[35] S.Owre, J. Rushby, and N. Shankar, "Analyzing tabular and state-transition

requirements specifications in PVS," Tech. Rep. CSL-95-12, Computer Science

Laboratory, SRI International, Menlo Park, CA, 1995.

0 •

Appendix A

Specification of P /V Semaphore

Operations

The following tabular specification of P /V operations of a semaphore is taken from

[15].

Figure A.l represent the tabular representation of P(sem) operation of sem

semaphore. x represents the label of currently executing process with pi D equal

to i. The function NextLabel(x) returns the label of the next statement in the ex

ecution of the process. 'v and v', where v is a variable, represent the value of that

variable before and after P /V operation, respectively. Figure A.2 contain the tabular

specification of V (sem) operation.

'sem.cnt > 1 'sem.cnt = 1 'sem.cnt < 1

sem.cnt'l false sem.cnt' = 'sem.cnt - 1 sem.cnt' = 'sem.cnt- 1

sem.set'l false sem.cnt' = 'sem.set sem.set' = 'sem.cnt U { i}

next' I false Table a) Table b)

Table a): Vj, Table b): Vj,

j=i j=/=i j = i j=/=i

ext[j]' = NextLabel(x) ext[j]' =' next[j] ext[j]' = waitAtPse ext[j]' = 'next[j]

Figure A.l: Specification of P(sem) operation

59

60 A. Specification of P /V Semaphore Operations

'sem.cnt > 0 'sem.cnt = 0 'sem.cnt < 0

sem.cnt'i false sem.cnt' = 'sem.cnt + 1 sem.cnt' = 'sem.cnt + 1

sem.set'i false sem.cnt' = 'sem.set :Jt: (t E 'sem.set/\

sem.set' = 'sem.set- {t})

next' I false Table a) Table b)

Table a): 'Vj,

j=i j=f:i

ext[j]' = NextLabel(x)next[j]' = 'next[j]

Table b): 'Vj,

j = i ~=f:il\j E ('sem.set- j # i 1\ •(j E ('sem.set-

~em. set') 1\ 'next[j] - ~em. set') 1\ 'next[j] =
rwaitAtP sem '[waitAtP sem)

[next [j]' = Next Label (x) next[j]' = rlseAtPsem next[j]' = 'next[j]

Figure A.2: Specification of V(sem) operation

•

Appendix B

The Tabular Representation of the

Rewritten Readers/Writers

Program

The tabular representation of the rewritten program as given in [15] is given in fig

ures B.1 and B.2.

61

piD k 1\ IsReader

'next(kl = r1
nextl"J.

waitAtPm1 7::!~),m1 = next(k1 = r2 'next[k] = r3
m.cnt racnt <

1 m.cnt = 1 m.cnt < 1 'rdcnt = 1/\ 1 'rdcnt > 1/\

w.cnt > w.cnt -
1 'w.cnt = 1 w.cnt < 1 'w.cnt < 1 ~

dent - rdcnt rdcnt rdcnt rdcnt rdcnt + 1 rdcnt rdcnt 'rdcnt

d - rd rd rd rd rd rd+ 1 rd rd+ 1

t - wt wt wt wt wt wt wt 'wt

lm-cnt = m.cnt 1 m.cnt l m.cnt m.cnt m.cnt m.cnt m.cnt 'm.cnt

p-n.set =m.set - f>.set -m.set -m.set = m.set = f>.set = f>.set =
1m-set' I m.set m.set U {k} 'm.set 'm.set m.set 'm.set m.set 'm.set

tw.cnt - w.cnt w.cnt w.cnt w.cnt w.cnt w.cnt- 1 w.cnt 1 'w.cnt

tw·•et = w.set =tw.set = tw.set -w.set = w.set = tw·•et = w.set =
tw.set' I w.set w.set w.set 'w.set w.set 'w.set w.setu {k} 'w.set

IPID'I
~ext (piD I 'I- next (pi D I 'I- ~~xt (piD I ;<:next (piD I ;<:~ext (piD I 'I- r_ext (piD I ;<: ~ext (piD I t- ~ext (piD I ;<:
IE;OP EOP OP EOP EOP !EoP iEoP EOP

!next I rrab2 Tab3 ~b4 Tab5 ab6 ab8 rab9 I'abll
1 ~ 3]4 5 7 ~ 10 11 12

piD- k 1\ IsReader

next!l<l_ = nex~L"J.. = next[II:J r4 'next[kj r5 next[II:J r6 nextl~l. 'nex~l~J.. =
waitAtPwr lseAtPwr lwaitAtPm2 lseAtPm2

m.cnt m.cnt •U m.cnt < u m.cnt m.cnt " m.cnt < 1

0 l

rdcnt'= rdcnt rdcnt racnt racnt 'rdcnt rdcnt rdcnt racnt racnt

rd- rd 'rd+1 rd rd rd rd rd rd 'rd

wt 'wt 'wt wt wt wt wt wt wt 'wt
m.cnt = m.cnt m.cnt m.cnt + 1 m.cnt+1 'm.cnt m.cnt -1 m.cnt 1 m.cnt m.cnt

m.set I m.set =im·•et = p-n.set = 3t : (t E m.set = p-n.set -m.set = p-n.set =pon.set =
m.set m.set m.set m.set 1\ {~}:t' = 'm.set m.set m.set u {k} m.set m.set

m.set- t)

w.cnt - 'w.cnt w.cnt w.cnt w.cnt 'w.cnt w.cnt w.cnt w.cnt w.cnt

w.set I tw·•et = tw·•et = tw·•et = w.set - 'w.set tw·•et = tw·•et = w.set = w.set =tw·•et =
'w.set 'w.set w.set 'w.set w.set w.set w.set 'w.set

piD I ~ext (piD I '1- ~e"'t (piD 1 'I- ~ext (piD] '1- n_ext (piD 1 ;"~ext (piD I 'f. ~ext (piD I -1- n_ext (pi D I 'f. t_J;e"'t (piD I ;<: ~ext (piD I '1-
EOP iEoP IEoP EOP EOP iEOP EOP [E_OP IEoP

next I Tab13 l'ab14 l'ab16 Tab17 ab18 l'ab20 Tab21 l'ab22 I'ab23
13 14 15 16 17 18 19 fo!O 21 fl2 fo!3

Figure B.l: The tabular representation of the rewritten Readers/Writers Program

'"Ct:O
"'1 .
0

t-3 OQ
"'1 go s
~
0"'
~ -~
~

"C
"'1
CD
(I)

piD k A IsReader
nezt[lc]- r7 next11e1 TIS nextLICJ r11

racnt ,0_ racnt < racnt > u m.cnt > m.cnt 'u m.cnt < u
w.cnt > w.cnt 0 w.cnt < u

rdcnt rdcnt 1 rdcnt 'rdcnt rdcnt 'rdcnt rdcnt

rd - 'rd rd 1 'rd -1 rd 1 rd 'rd

wt - wt wt wt wt 'wt 'wt

~.cnt = m.cnt m.cnt m.cnt m.cnt m.cnt + 1 m.cnt+ 1

m.set I r>·•et = m.set = m.set - 'm.set !m·•et = tm·••t 'm.set 3t : (t E 'm.set A

m.set m.set m.set m.set' = 'm.set -
t})

w.cnt - w.cnt w.cnt + 1 w.cnt + 1 w.cnt 'w.cnt w.cnt

w.set I [w.set = w.set = 3t : (t E 'm.set A [w.set = [w.set - 'w.set w.set - 'w.set

w.set w.set {;}jet' = 'm.set - w.set

CD

a
~

piD I rext (piD 1 'f. next: [pi D 1 of. ~ext [piD 1 ,. ~ext [piD 1 'f. rext [piD;i ¥- EOPV ~ext (piD 1 ,..
iEOP EOP E_OP !EoP Wt: next1

[i = EOP EOP

next I ~24 ~26 Tab27 l'ab29 ri'&b31 Tab32

f-14 25 26 27 28 f-19 30 [31 2
0

=
0
1-t'j

c+

=-CD

~
p'D-kA sWriter

~
"'1
c+
c+
CD

nextt"l w• nextlkl_ = nex~l"! = next[kJ W2 next[lc] w3

[waitAtPww lseAtPww
w.cnt > w.cnt 1 w.cnt < 1 w.cnt > w.cnt- w.cnt < 0

rdcnt - rdcnt rdcnt rdcnt rdcnt 'rctcnt rdcnt rdcnt =
::0
CD
ll)
Q..
CD

rd - rd rd rd rd rd rd rd

wt wt+1 wt wt wt+ 1 wt wt 1 wt 1

m.cnt-=' m.cnt m.cnt m.cnt m.cnt m.cnt m.cnt m.cnt

m.set I m.set =f>.set = m.set f>.set =tm.set = m.set - 'm.set m.set - 'm.set

m.set m.set m.set 'm.set m.set

w.cnt - w.cnt 1 w.cnt 1 w.cnt w.cnt w.cnt w.cnt + 1 w.cnt + 1 "'1
(I)

...........

~
c+
CD

w.set I r»·••t =[w.set = w.set = [w.set =rw.set = w.set 'w.set 3t : ~t E 'w.set A
w.set w.setU {k} 'w.set w.set 'w.set ~-.set = 'w.set -

t})

piD I i"_e:rt [piD 1 'f. ~ext (piD 1 i- ~ext (pi D' 1 'f. ~ext [piD 1 # lr'_e:rt:[p/D 1 'f. next (piD 1 # EOPV ~ext:(piD 1

"' !BoP EOP lf_OP EOP iEOP IIi: next'Ji1 = EOP Jf_OP

next'[_ ab34 Tab35 Tab36 ab37 l'ab38 Tab40 ab41
"'1
(I)

1 f.! 3 4 5 ~ 7 8

Figure B.2: Figure B.l continued

~
~

B. The Tabular Representation of the Rewritten Readers/Writers

64 Program

Tab2: Vj,

j=k

next[j]' = r2 next[j]' =' next[j]

Tab4: Vj,

j=k

Tab3: Vj,

j=k

next[j]' = waitAtPml next[j]' =' next[j]

Tab5: Vj,

j=k

next[j]' =' next[j] next[j]' =' next[j] next[j]' = r2 next[j]' =' next[j]

Tab6: Vj, TabS: Vj,

j=k

next[j]' = r3 next[j]' =' next[j]

Tab9: Vj,

j=k

.---------.-------------.
j=k

next[j]' = r4 next[j]' =' next[j]

TabU: Vj,

j=k

next[j]' = waitAtPwr next[j]' =' next[j]

Tab13: Vj,

next[j]' = r4 next[j]' =' next[j]

Tab14: Vj,

j=k j=k

next[j]' =' next[j] next[j]' =' next[j]

Tab16: Vj,

next[j]' = r4 next[j]' =' next[j]

j=k

next[j]' = r5 next[j]' =' next[j]

Tabl7: Vj,
i=k j ¥- k 1\ j E (' m.set - m.set) j ¥- k 1\ (j fi (m.set- m.set')v

next(j) - waitAtPml I next(j] - waitAtPm2 ~('next(j] = waitAtPml v' next(j]
waitAtPm2))

next(j]' = r5 next(j]' = rlseAtPml I next(j]' = rlseAtPm2 next[j]' =' next(j]

Tab18: Vj,

j=k

next[j]' = r6 next[j]' =' next[j]

Tab21: Vj,

j=k

Tab20: Vj,

j=k

next[j]' = r7 next[j]' =' next[j]

Tab22: Vj,

j=k

=

next[j]' = waitAtPm2 next[j]' =' next[j] next[j]' =' next[j] next[j]' =' next[j]

Tab23: Vj, Tab24: Vj,

j=k j=k

next[j]' = r7 next[j]' =' next[j] next[j]' = r8 next[j]' =' next[j]

B. The Tabular Representation of the Rewritten Readers/Writers

Program · 65

Tab26: Vj,

j=k jf=k

next[j]' = r9 next[j]' =' next[j]

Tab27: Vj,

j=k j i= k 1\ j E ('m.set- m.set') j i= k 1\ (j rf. ('m.set- m.set')v

'next[j] = waitAtPww -/next[j] = waitAtPww)

next[j]' = r9 next[j]' = rlseAtPww next[j]' =' next[j]

Tab29: Vj, Tab31: Vj,

j=k jf=k

next[j]' = r9 next[j]' =' next[j]

Tab32: Vj,

j=k jf=k

next[j]' = EOP next[j]' =' next[j]

j-k j # k A j E ('m.set- m.set1
) j # k A (j ¢ ('m.set- m.set1

)V

~('next[j] = waitAtPml v' next[j] = waitAtPm2)) next[j] - waitAtPml next[j] - waitAtPm2

next[j] - EOP next[j] - rlseAtPml next[j] - rlseAtPm2 next[j] - next[j]

Tab34: Vj,

j = k jf= k

next[j]' = w2 next[j]' =' next[j]

Tab36: Vj,

j=k jf=k

next[j]' =' next[j] next[j]' =' next[j]

Tab38: Vj,

j=k jf=k

next[j]' = w3 next[j]' =' next[j]

Tab41: Vj,
j-k j # k A j E (w.set- w.set1

)

Tab35: Vj,

j=k jf=k

next[j]' = waitAtPww next[j]' =' next[j]

Tab37: Vj,

j=k jf=k

next[j]' = w2 next[j]' =' next[j]

Tab40: Vj,

j=k jf=k

next[j]' = EOP next[j]' =' next[j]

j # k A (j ¢ (1w.set- w.set')v

next[j] - waitAtPww next[j] - waitAtPwr ~('next[j] = waitAtPww v' next[j] = waitAtPwr))

next[j] 1 = EOP next[j] 1 = rlseAtPww next[j] 1
- rlseAtPwr next[j] 1

-
1 next[j]

0

•

Appendix C

The Readers /Writers Model

SPIN, SAL, and PVS

•
Ill

C.l The Readers/Writers Model in SPIN

•type {p, v};

clum autex • [0] of {mtype};

chan v • [OJ of {atype};

int wt, rd, rd.cnt • 0;

active proctype at()

{

byte count•t;

do

:: (COUllt - 1) ->

end: mutextp; count • 0

:: (COUllt - 0) ->

od

}

1111tex?v; count • 1

act1 ve proctype 112 ()

{

byte count•!;

do

• • (count - 1) ->

end: wtp; count • 0

•• (COUllt - 0) ->
v?v; count • 1

od

active [10) proctype reader()

{

mutex?p;

rdcnt++;

atomic{

if

: : rdcnt - 1 ->

w?p;

:: else ->

fi;

rd++}

mutaxlv;

66

• 0

C. The Readers/Writers Model in SPIN, SAL, and PVS

critical: skip;

autax7p;

rdcnt--;

atoaic

rd--;

u
:: rd.cnt - 0 -> wlv

.. alae ->

f1

};

autextv;

active [10] proctype writer()

atomic{

w?p; vt++

};

critical: skip;

atoaic{

wt--; vlv

};

C.2 Model of Readers/Writers Program in SAL

rwf3{; M : nznat, n : nat}: CONTEXT •

BEGIN

Job_Idx: TYPE • [1. . H) ;

label: TYPE • {rl, vaitAtPml, rlaeAtPal, r2, r3, vaitA.tPvr, rlseAtPwr,

r4, r5, r6, vaitAtPm2, rlseA.tPm2, r7. r8, r9, vt, v2, v3,

waitAtPvv, rlseAtPvv, EOP};

r<ltypa: TYPE • [-1. .n+l);

wttypa: TYPE • [-1 .. (H-n+1));

aeatypa: TYPE • [-H .. 2);

index: TYPE • [1 .. H);

aotof: TYPE • [index -> bool) ;

a8111ber(x: index, a: setof): bool • a(x);

npty?(a: setof): bool • (FOR.ALL (x: index): NOT aaber(x, a));

aptyaetof: aetof • b:: ind.ex I false};

union(a: aetot, b: aetof): aetof • {x: index I aembar(x, a) OR aember(x, b)};

r•ove(x: index, a: setof): aetof • {y: index I x /• y AND aeaber(y, a)};

88111: TYPE • [•cnt: semtype,

set: setof •l ;

IntRW(z: label): int •

IF x-r1 THEil 15

ELSIF x...,aitAtl'll1 THEil 14

ELSIF x-rlaeAtPII1 11IEII 13

ELSIF x-r2 THEil 12

ELSIF x-r3 THEil 11

ELSIF x...,ai tAtPvr 11IEII 10

ELSIF x-rlseAtPvr 11IEII 9

ELSIF x-r4 THEil

ELSIF x-r5 THEil

ELSIF x-r6 THEil

ELSIF x-waitAtl'll2 111E11 5

ELSIF x-rlaeAtl'll2 11IEII 4

ELSIF x•r7 11IEN 3

ELSIF x-r8 THEil

ELSIF x-r9 THEil 1

ELSIF x...,1 THEil 5

ELSIF x...,a1tAtPw THEil 4

ELSIF x-rlseAtPw THEil 3

ELSIF x...,2 THEil 2

8

7

6

67

68 C. The Readers/Writers Model in SPIN, SAL, and PVS

END IF;

ELSIF x-v3 THEN

ELSIF x•EOP THEN

ELSE 0

state: TYPE • [I

m: sam,

w: sem,

relent: rdtype,

next: ARRA. Y index OF label,

rd: rdtype,

wt: wttype •J ;

1

0

DQdecrease (s, t: state): bool • (EXISTS (1: index):

IntRW(t.next [i]) < IntRW(s.next [1])) AIID

FORALL (1: index):

(IntRW(t.next[i]) <• IntRW(a.next[i]));

process [piD

BEGIN

index] : MODULE •

GLOBAL s state

LOCAL IaReacler : bool

INITIALIZATION

IsReader • IF (piD <• n)

THEN TRUE

ELSE FALSE ENDIF;

TRANSITION

(

(]

c3:

ct:

IsR.eader AND s. next [piD] • rt AND s .a. cnt > 1

-->

0
c2:

IsRead.er AND s.next[piD] • rt AND s.m.cnt • 1

--> a• • ((s WITII .m.cnt :• s.m.cnt - 1) WITII .next(pmJ :• r2)

IsReader AND s.next[piD] • rt AND s .•. cnt < 1

--> s' • ((s Wlnl .m.CD.t :• B.II.CD.t - 1) WITH

.m.set :• union({:r.: index I x • piD}, s.m.set))

WITII .next (piD] :• va1tAtPm1

0
c4:

IsReader AHD s.next[piD] • waitAtPml

--> s' • a

0
c5:

IsRead.er AND s.naxt[piD] • rlseAthl

--> a• • (s Willi .next[piD] :• r2)

0
c6:

IsReader AIID a.next(piD] • r2

--> s• • (s Willi .rd.cnt :• s.rdcnt + 1)

WITII . next [pmJ : • r3

0
c7:

IsRead.er AND a.next[piD] • r3 AND s.rdcnt • 1 AND s.v.ent > 1

-->

0
c8:

IaReader AND s.next[piD] • r3 AND s.rdcnt • 1 AND s.v.cnt • 1

--> a• • ((a WITII .rd :• a.rd + 1) WITII

.w.cnt :• s.v.cnt - 1)

WITII • next (piD] : • r4

0
C9:

IsReader AND s.next[piD] • r3 AHD s.rdcnt • 1 AND s.w.cnt < 1

--> s' • ((s WITH .w.cnt :• s.w.cnt - 1) WITH

.w.set :• union({x: index I x • piD}, s.w.aet))

Wim .next[piD] :• waitAtPwr

0

C. The Readers/Writers Model in SPIN, SAL, and PVS

clO:

IsReader AND s. next [plD] • r3 AND s . rdcnt < 1

-->

0
ell:

IsReader AND s.next[piD] • r3 AND s.rdcnt > 1 AND s.w.cnt < 1

--> s• • (s WITH .rd :• s.rd + 1)

WITH .next [piD) : • r4

[)

c12:

!&Reader AND s.next[piD] • r3 AND s.rdcnt > 1 AND s.w.cnt >• 1

-->

0
c13:

IsRoador AND a.noxt[piD) • vaitAtPvr

--> s' • s

[)

c14:

IsRead.er AND a. next [piD] • rlseAtPvr

--> a• • (s WITH .rd :• s.rd + 1)

WITH .noxt[piD) :• r4

[)

c15:

IsRoader AND a.noxt[piD) • r4 AND s.m.Cilt > 0

-->

[)

c16:

0

IsReader AND s.next[piD] • r4 AND s.m.cnt • 0

--> s' • (s WITH .m.cnt :• s.m.cnt + 1)

WITH .noxt(piD) :• r5

([) (p: index) :

Y.c17:

IsReader AND s. next [piD] • r4 AND

s.m.cnt < 0 AND s.m.set(p)

--> s' • (((s Willi .m.cnt :• s.a.cnt + 1)

WITH .noxt[piD) :• r5)

WITH .noxt[p) :•

[)

c18:

IF s.next[p] • va1tAtPm1 11IEH rlseAtPa1

El.SE rlseAtPII2

EIIDIF)

Wlnl .m.aet :• ruove(p, a.m.set))

IsReader AND s.next[piD]• r5

[)

c19:

--> s• • (a WITH .noxt[piD) :• r6)

IsReader AND s.next[piD] • r6 AND a .•. cnt > 1

0
c20:

-->

IsRoador AND a .next [piD) • r6 AND a ·•. cnt • 1

--> a' • (s WITH .m.cnt :• s.a.cnt - 1)

WITH .next[piD) :• r7

[)

c21:

IsR.eader AND s .next [piD] • r6 AND s .11.. cnt < 1

--> s' • ((s WITH .m.cnt :• s.m.cnt - 1) WITH

.•. set :• union({x: index I x • piD}, a.•.set))

WITH .next [piD) : • va1tAtPII2

0
c22:

!&Reader AND s.next[piD] • vaitAtPm2

--> s' • s

0
c23:

IsReader AND a.next [piD] • rlseAtPa2

69

70 C. The Readers/Writers Model in SPIN, SAL, and PVS

--> a' • a WITH .nn:t[piD] :• r7

[)

c24:

IsReader AND s .next [piD] • r7

--> s' • (s WI111 .rdcnt :• s.rdcnt - 1)

WITH . next [plD) : • r8

[)

c25:

IsReader AND s.next[piD] • rB AND s.rdcnt • 0 AND s.w.cnt > 0

-->

[)

c26:

IsReader AIID s .next [plD) • r8 AIID s. rdcnt • 0 AIID s. v. cnt • 0

-> a• • ((a WITH .rd :• a.rd - 1)

Wlnl .w.cnt :• s.v.cnt + 1)

WITH .next[plD) :• r9

[)

([) (p: index):

c27:

IsReader AND s.next[piD] • rB AND s.rdcnt • 0

AND a.w.cnt < 0 AND s.w.set(p) AND s.next[p] • waitAtPvw

--> s' •

((((a WITH .rd :• s.rd - 1)

WITH .next[piD) :• r9)

WITII .w.CDt :• s.w.cnt + 1)

WITH .next[p) :• rlaeAtPvv)

WITH .w.set :• rem.ove(p, s.w.set))

[)

c28:

IsReader AND a .next [piD] • r8 AND a. rdcnt < 0

-->
[)

c29:

IsReader AND s.next[piD] • r8 AND s.rdcnt > 0

--> s' • (s WITH .rd :• s.rd. - 1)

WITH . next [plD) : • r9

[)

c30:

IsReader AND s.next[piD] • r9 AND s.a.cnt > 0

[)

c31:

-->

!&Reader AND a .next [piD] • r9 AND s .a. cnt • 0

--> a• • (s WITH .m.cnt :• s.m.cnt + 1)

WITH . next [plD) : • EOP

[)

([) (p: index):

c32:

!&Reader AIID a. next [piD) • r9 AIID

s.a.cnt < 0 AND s.m.set(p)

--> s' •

(((a WITH .m.cnt :• a.m.cnt + 1)

WITH .next [plD) :• EOP)

WITH .next[p) :•

END IF)

IF a.next[p) • wa1tAtP111 THEil rlseAtPm1

ELSE rlseAtP.2

WITH .m.set :• remove(p, s.a.set))

[)

c33:

NOT IsReader AND s.next[piD] • wt AND a.v.cnt > 1

-->

[)

c34:

NOT IsReader AND s. next [piD] • v1 AND a. v. cnt • 1

--> s• • ((s WITH .wt :• a.wt + 1) WITH

.w.cnt :• s.w.cnt - 1)

WITH .next[plD) :• v2

C. The Readers/Writers Model in SPIN, SAL, and PVS

0
c35:

NOT IsReader AND a. next [piD] • w1 AND a. w. cnt < 1

--> a' • ((a WITH .v.cnt :• s.w.cnt - 1) Wltll

.w.set :• union({x: index I x • piD}, a.v.set))

Wlnt .next[piD] :• vaitAtPw

0
c36:

NOT !&Reader AND a.next[piD] • waitAtPvv

--> a' • s

0
c37:

NOT IaReader AND a.next [piD] • rlaeAtPvw

--> a' • {s WID .wt :• s.vt + 1)

Wlnt .next[piD] :• w2

0
c38:

NOT IsReader AND s. next [piD] • w2

--> a' • a WITH .next[piD] :• v3

0
c39:

NOT IaReader AND a. next [piD] • w3 AND a . v. cnt > 0

-->

0
c40:

IIOT IsReader AND s.next[pm] • v3 AND s.w.cnt • 0

--> a' • ((a Wlnt .vt :• s.vt - 1) Wlnt

.w.cnt :• s.w.cnt + t)

Wlnt .next[piD] :• EOP

0
(0 (p: index):

c41:

IIOT IsReador AND a. next [piD] • w3 AND

a.v.cnt < 0 AND a.w.set(p)

--> s' •

((((a Wlnt .vt :• s.vt - 1)

Wlnt .next[plD) :• EOP)

Willi .v.cnt :• a.v.cnt + 1)

WITH .next[p] :•

ELSE rlseAtPwr

END IF)

IF s.nart[p] • vaitAtPwv 11IEN rlseAtPww

WITH .v.aet :• reaove(p. s.w.aet))

END;

dqmoni tor : MODULE •

BEGIN

IMPtn' a : state

outPUT prev _state : state

INITIALIZATION

prev_state • ((I 11 :• (I cnt :• 1, set :• b::index I false} 1),

v :• (I cnt :• t, set :• {x: index I false} I),

rdcnt : • 0, next : • [[1: 1n4exl IF 1 <• n THEN rt

ELSE w1

ENDIF),

rd :• 0, vt :• 0 •»
TI\ANSITIOII

prev_stata' • s;

END;

initializator: MODULE •

BEG Ill

GLOBAL s: state

INITIALIZATION

a • ((t • :• (# cnt :• 1, sat :• {x:index I false} t),

w :• (t cnt :• 1, set :• {x: index I false} #),

rd.cnt :• 0, next :• ((!:index] IF 1 <• n THEN rt

ELSE v1

ENDIF],

71

72 C. The Readers/Writers Model in SPIN, SAL, and PVS

rd :• 0, wt :• 0 #))

TRANSITION

[

FOIW.L (i: index): s.nezt[i] • EOP

--> a' • a

ENO;

main: MODULE • initializator [)

([) (piD : index): process [piD]);

C.3 PVS files

1. decl.pvs

decl: THEORY

BEGIN

XM is the nUJDber of processes, n is the number of readers

M: posnat

ntype: TYPE • {1: nat I i <• H}

index: TYPE • {1: ntype I i >• 1} CONTAINING

n: ntype

label: TYPE • {rl, waitAtPa1, rlaeAtPm.l, r2, r3, vaitAtPvr,

rlseA.tPvr, r4, rS, r6, va1tAtPII.2, rlaeAtPm2,

r7, r8, r9, wt, v2, v3,

vaitAtPvv, rlseAtPw, EOP}

x: VAR label

rlabel?(x): bool • (x • r1 or x • vaitAtPa1 or

x • rlseAtPml or x • r2 or

x • r3 or x • waitAtPvr or

x • rlseAtPwr or x • r4 or

x•r5orx•r6or

x • vaitAtPm2 or x • rlaeAtPa2 or

x•r7orx•r8or

X • r9 or X • EDP)

wlabel?(x): bool • (x • vl or x • w2 or x • v3 or

x • vaitAtPvw or x • rlseAtPvv or

x • EOP)

Xwe use finite sets, because we'll need to play with cardinality

Y.in ord.er to prove safety and. clean co.pletion

importing fini te_sets [index]

ar: TYPE • {a: [index -> label] I forall (i: index):

((1 <• n •> rlabel?(a(i))) and

(1 > n •> vlabel?(a(i))))}

IsRead.er(i: index): bool • (1 <• n)

In tRW (x) : int •

COND

x-r1 ->16,

x-vaitAtPm1 -> 14,

x-rlseAtPm1 ->13,

x-r2 ->12,

x•r3 ->11,

x-waitAtPvr ->10,

x•rlaaAtPvr ->9,

x-r4 ->8,

x-r5 ->7,

x-r6 ->6,

x-vai tAtPa2 ->6,

x-rlseAtPa2 ->4,

x•r7 -> 3,

x-r8 ->2,

x•r9 ->1,

x-v1 ->5,

x-waitAtPvv ->4,

C. The Readers/Writers Model in SPIN, SAL, and PVS

2.

x-rlaeAtPww ->3,

x-v2 ->2,

x-v3 ->1,

x•EOP ->0

ENDCOND

sam: TYPE • [ICDt: integer, set: finite_sett]

state: TYPE • [I

piD: index,

v:

rdcnt: int,

next: ar,

rd: tnt,

wt: 1nt I]

a: eem,

Xve need stateneop type to make sure that the next chosen cannot

Y.be the process who finished executing

atateneop: TYPE • {s: state I noxt(a)(piD(s)) /• EOP}

END decl

conds.pvs

conds: THEORY

BEGIN

illlportiDg decl

a: V AR stateneop

p1(a): bool • IaReador(plD(a)) and next(s)(piD(s)) • r1 and cnt(m(s))

p2(o): bool • IsReader(piD(a)) and next(s)(piD(s)) • r1 and cnt(a(s))

p3(s): bool • IsReader(piD(s)) and next(s)(piD(s)) • r1 and cnt(a(s))

p4(s): bool • IoReader(piD(s)) and next (a)(piD(s)) • vaitAtPa1

p5(s): bool • IaReader(piD(a)) and next(s) (piD(s)) • rlseAtPm1

p6(s): bool • IsReador(piD(s)) and next(s) (piD(s)) • r2

p7(s): bool • IsReader(piD(s)) and next(s)(piD(s)) • r3 and

rdcnt(s) • 1 and cnt(w(s)) > 1

pB(s): bool • IsReader(piD(a)) and next(s)(piD(s)) • r3 and

rdcnt(s) • 1 and cnt(w(s)) • 1

p9(s): bool • IsReador(piD(s)) and noxt(s) (piD(s)) • r3 and

rdcnt(s) • 1 and cnt(w(s)) < 1

p10(s): bool • IaRoader(piD(o)) and next(a) (piD(s)) • r3 and rdcnt(s)

p11(o): bool • IoReader(piD(o)) and nut(o)(piD(o)) • r3 and

rdcnt(s) > 1 and cnt(w(s)) < 1

p12(s): bool • IsRoader(piD(s)) and n-(s) (piD(s)) • r3 and

rdcnt(s) > 1 and cnt(w(a)) >• 1

p13(s): bool • IsRoador(piD(o)) and n-(s)(piD(s)) • vaitAtPvr

p14(s): bool • IsReader(piD(a)) and nut(s) (piD(s)) • rlsaAtPvr

p15(s): bool • IsReador(piD(s)) and next (s) (piD(a)) • r4 and cnt(m(s))

p16(s): bool • IsReader(piD(s)) and next(s) (piD(s)) • r4 and cnt(m(s))

p17(s): bool • IsReader(piD(s)) and n-(s)(piD(s)) • r4 and cnt(•(s))

p18(s): bool • IsReador(piD(s)) and next(s) (piD(s)) • r6

p19(s): bool • IsReader(piD(s)) and next(s)(piD(s)) • r6 and cnt(m(s))

p20(s): bool • IsReader(piD(a)) and next(a)(piD(s)) • r6 and cnt(m(s))

p21(s): bool • IsReador(piD(s)) and next(s)(piD(s)) • r6 and cnt(m(s))

p22(s): bool • IsReador(piD(a)) and next (s)(piD(s)) • wa1tAtPa2

p23(s): bool • IsReador(piD(a)) and noxt(s)(piD(s)) • rlseAtPII2

p24(s): bool • IsReader(piD(s)) and next(s) (piD(s)) • r7

p26(s): bool • IsReader(piD(s)) and noxt(s)(piD(s)) • r8 and

rdcnt(s) • 0 and cnt(w(a)) > 0

p26(s): bool • IaReader(piD(s)) and next(s)(piD(s)) • r8 and

rdcnt(s) • 0 and cnt(w(s)) • 0

p27(s): bool • IsReader(piD(s)) and next(s) (piD(s)) • r8 and

rdcnt(s) • 0 and cnt(w(s)) < 0

> 1

• 1

< 1

< 1

>O

- 0

< 0

> 1

- 1

< 1

73

74 C. The Readers/Writers Model in SPIN, SAL, and PVS

p28(s):

p29(s):

p30(s):

p31(s):

p32(s):

p33(s):

p34(sl:

p35(a):

p36(s):

p37(s):

p38(s):

p39(s):

p40(s):

p41(s):

bool • IsReador(piD(s)) and noxt(s)(piD(s)) • r8 and rd.cnt(a) < 0

bool • IsReador(piD(s)) and noxt(s)(piD(o)) • r8 and rdcnt(s) > 0

bool • IsReador(piD(s)) and noxt(s)(piD(s)) ·r9 and cnt(m(s)) > 0

bool • IsReador(piD(s)) and next (a)(piD(s)) •r9 and cnt(m(s)) • 0

bool • IsRaader(piD(s)) and next (s)(piD(a)) • r9 and cnt(m(s)) < 0

bool • not IsReader(piD(s)) and next(a) (piD(s)) • w1 and cnt(w(s))

bool • not IsReader(piD(s)) and next(o)(piD(a)) • w1 and cnt(w(a))

bool • not IsReader(piD(s)) and ne:rt(s)(piD(o)) • w1 and cnt(w(s))

bool • not IsReador(piD(s)) and next(s)(piD(a)) • wa1tAtPww

bool • not IsReader(piD(s)) and next(s)(piD(a)) • rlseAtPwv

bool • not IaRoader(piD(s)) and noxt(s)(piD(s)) •w2

bool • not IsReader(piD(s)) and next (a)(piD(a)) • w3 and cnt(w(a))

bool • not IsReader(piD(a)) and next(s)(piD(s)) • w3 and cnt(w(s))

bool • not IsRoader(piD(s)) and next (a)(piD(s)) • w3 and cnt(w(a))

END conds

3. table.pvs

transition X (parameters

THEORY

BEGIN

1aportillg conde

j: VAR 1ndex

trans (s : {s: stateneop

NOT (pl(s) or p7(s) or p10(s) or p12(s)

or p15(a) or p19(s) or p25(s) or p28(s)

or p30(s) or p33(s) or p39(s))}, t: state): bool •

LET k: 1ndox • piD(s) IN

table

Y.--11
lp1(al I II

Y.--11
lp2(a) I rdcnt(t) • rdcnt(a) and rd(t) • rd(a) and Y.

wt(t) • wt(s) and cnt(a(tll • cnt(m(s)) - 1 and Y.
set(m(t)) • set(m(s)) and cnt(w(t)) • cnt(w(a)) and Y.

set(w(t)) • set(w(s)) and Y.

(forall j: (j• k and next(t)(j) • r2) or Y.

(j /• k and next(t)(j) • next(s)(j))) and 7,

ne:rt(t)(piD(t)) /• EOP II

Y.--11
I p3(sll rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

wt(t) • wt(a) and cnt(m(t)) • cnt(m(s)) - 1 and Y.

set(•(t)) • add (k, setCm(s))) and Y.

cnt(w(t)) • cnt(v(o)) and sot(v(t)) • aet(v(s)) and Y.

(forall j: (j• k and nsxt(t)(j) • vaitAtPm1) or Y.

(j /• k and next(t)(j) • next(s)(j))) and Y.

next(t)(piD(t)) /• EOP II

Y.---11
lp4(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

wt(t) • wt(s) and cnt(m(t)) • cnt(m(s)) and X

sot(m(t)) • aet(m(s)) and cnt(v(t)) • cnt(w(o)) and Y.

set(v(t)) • set(v(a)) and X

(forall j: next(t)(j) • next(a)(j)) and Y.

ne:rt(t)(piD(t)) /• EOP II

Y.---11
lp5(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

wt(t) • wt(s) and cnt(m(t)) • cnt(m(s)) and X

set(m(t)) • set(a(s)) and cnt(v(t)) • cnt(v(s)) and Y.
-~W>·-~Wland Y.
(forall j: (j• k and next(t) (j) • r2) or Y.

(j /• k and next(t)(j) • nsxt(s)(j))) and ll,

next(t)(piD(t)) /• EOP II

Y.--1 I
lp6(s) I rdcnt(t) • rdcnt(s) + 1 and rd(t) • rd(s) and Y.

wt(t) • wt(s) and cnt(m(t)) • cnt(m(s)) and Y.

> 1

• 1

< 1

> 0

• 0

< 0

C. The Readers/Writers Model in SPIN, SAL, and PVS

set(m(t)) • set(a(s)) and c:nt(w(t)) • cnt(w(s)) and X
sot(w(t)) • set(w(a)) and 7.

(forall j: (j• k and next (t)(j) • r3) or X

(j /• k and noxt(t)(j) • noxt(s)(j))) BDd 7.

next(t) (piD(tll /• EOP II

r.---11
lp7(sl I II

r.---11
lpB(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) + 1 and X

wt(t) • wt(s) and cnt(m(t)) • cnt(lll(a)) and 7.

aot(m(t)) • aot(a(s)) and cnt(v(t)) • c:nt(v(s)) - 1 andY,

~~Wl·~~Wland X
(forall j: (j• k and noxt(t)(j) • r4) or 7.

(j /• k and noxt(t)(j) • noxt(s)(j))) and X

noxt(t) (piD(t)) /• EOP II

r.---11
lp9(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(a) and X

vt(t) • vt(s) and cnt(m(t)) • cnt(m(s)) and X

aot(v(t)) • sdd(k, sot(v(s))) and X

cnt(v(t)) • cnt(v(s)) - 1 BDd aet(a(t)) • sot(m(s)) and 7.

(forall j: (j• k and noxt(t)(j) • vaitAtPvr) or 7.

(j /• k and noxt(t)(j) • noxt(a)(j))) and 7.

noxt(t) (piD(t)) /• EOP II

r.---11
lp10(sl I II

7.---ll

lpU(s)l rdcnt(t) • rdcnt(s) and rd(t) • rd(s) + 1 and 7.

wt(t) • vt(s) and cnt(m(t)) • cnt(m(s)) and X

sot(a(t)) • set(a(a)) and cnt(v(t)) • cnt(v(a)) and 7.

~~Wl·~~Wland 7.

(forall j: (j• k and noxt(t)(j) • r4) or 7.

(j /• k BDd noxt(t)(j) • noxt(s)(j))) and 7.

next(t)(piD(t)) /• EOP II

7.---l I

lp12(sl I II

x---11
lp13(s) I rdcnt(t) • rdcnt(a) and rd(t) • rd(s) and 7.

vt(t) • vt(a) and cnt(a(t)) • cnt(m(s)) and 7.

set(a(t)) • sot(a(s)) and cnt(v(t)) • cnt(v(s)) and 7.

sot(v(t)) • sot(v(a)) and 7.

(forall j: noxt(t)(j) • noxt(a)(j)) and X

next(t)(piD(t)) /• EOP II

x---11
lp14(sll rdcnt(t) • rdcnt(s) and rd(t) • rd(s) + 1 and X

wt(t) • vt(a) and cnt(a(t)) • cnt(m(a)) and 7.

aot(lll(t)) • aot(m(a)) and cnt(v(t)) • cnt(w(a)) and X

aet(v(t)) • set(v(a)) and 7.

(forall j: (j• k and next (t)(j) • r4) or 7.

(j /• k and noxt(t) (j) • noxt(s)(j))) and X

next(t)(piD(t)) /• EOP II

r.---11
lp15(a)l II

7.--ll

lp16(a) I rdcnt(t) • rdcnt(a) and rd(t) • rd(a) and X

vt(t) • vt(s) and cnt(m(t)) • cnt(a(a)) + 1 and 7.

set(m(t)) • set(m(s)) and cnt(v(t)) • cnt(v(s)) and 7.

aot(v(t)) • aot(v(s)) and 7.

(forall j: (j• k and noxt(t)(j) • r6) or X

(j /• k and noxt(t)(j) • noxt(s)(j))) and X

noxt(t) (piD(t)) /• EOP II

r.---11
lp17(a)l rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and 7.

wt(t) • vt(a) and cnt(a(t)) • cnt(a(s)) + 1 and X

~~Wl·~~WlBDd ~~Wl·~~W)BDd X

(exists (p: index): (set(m(s)) (p) and X

sot(m(t)) • rsmovo(p, set(m(a))))) and 7.

(forall j: (j• k and noxt(t) (j) • r6) or 7.

(j /• k and difference(sot(m(s)), set(m(t)))(j) and 7.

75

76 C. The Readers/Writers Model in SPIN, SAL, and PVS

((next(e) (j) • va1tAtl'lll1 and next(t){j) • rlseAtl'lll1) orY.

(next(s)(j) • va1tAtl'lll2 and next{t)(j) • rlseAtJ>.2))) Y.

or (j /• k and (not d1fferenca(sat(lll{s)), set(m{t))){jJX

~ X
(next(s)(j) /• va1tAtPm1 and next(s){j) /• va1tAtPm2)) X

and next(t) (j) • next(o)(j))) and Y.

next(t) (piD(t)) /• EOP II

Y.--11

lp18(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(o) and Y.

vt(t) • vt(s) and cnt(m(t)) • cnt(a(s)) and X

set(m(t)) • set(m(s)) and cnt(v(t)) • cnt(v(s)) and Y.

set(v(t)) • set(v(o)) and 7.

(forall j: (j• k and nsxt (t){j) • r6) or X

(j /• k and next{t){j) • next(a){j))) and 7.

next(t) (piD(t)) /• EOP II

7.---ll

lp19(ol I II

Y.---11

lp20(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

vt(t) • vt(s) and cnt(m(t)) • cnt(m(s)) - 1 and Y.

aet(•(t)J • set(a(s)) and cnt(w(t)J • cnt(v(s)) and Y.

-~~l·-~WJand Y.

(forall j: (j• k and next(t){j) • r7) or 7.

(j /• k and next(t)(j) • next(s)(j))J and X

next(t)(piD(tJJ /• EOP II

Y.--11

lp21(o) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

vt(t) • vt(s) and cnt(m(t)J • cnt(m(s)) - 1 and Y.

set(m(t)) • add(k, set(m(s))J and Y.

cnt(v(t)) • cnt(w(s)) and set(v(t)) • set(v(s)J and Y.

(forall j: (j• II: and nsxt(t)(j) • va1tAtl'lll2) orY.

(j /• II: and next(t)(jJ • next(s){jJJ) and Y.

next (t){piD(t)) /• EOP II

7.---ll

lp22(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

vt(t) • vt(s) and cnt(a(t)) • cnt(m(s)) and Y.

eet(m(tJJ • set(m(s)) and cnt(v(t)) • cnt(v(s)) and Y.

-~~J·-~W)and Y.

(forall j: (next(t)(j) • next(s){j)JJ and Y.

next(t)(piD(tJJ /• EOP II

7.---ll

lp23(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and Y.

vt(t) • vt(s) and cnt(m(t)) • cnt(a(s)) and Y.

set(a(t)J • set(m(s)) and cnt(v(t)) • cnt(v(s)) and X

-~~l·-~Wland Y.

(forall j: (j• k and next (t)(j) • r7) or Y.

(j /• k and next(t){j) • next(s)(j))) and Y.

next(tJ<piD(tJJ /• EOP II

Y.---11

lp24(s) I rdcnt(t) • rdcnt(s) - 1 and rd(t) • rd(s) and X

vt(t) • vt(a) and cnt(m(t)J • cnt(lll(o)J and Y.

oet(m(t)) • oet(m(s)J and cnt(v(t)) • cnt(v(o)) and Y.

ost(v(t)) • aet(v(o)) and Y.

(forall j: (j• k and nsxt(t)(j) • r8) or Y.

(j /• k and next(t)(j) • next(s){j))) and Y.

naxt(t) (piD(tJ) /• EOP II

Y.---11

lp25{sJI II

7.---ll

lp26(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) - 1 and Y.

vt(t) • vt(s) and cnt(m(t)J • cnt(m(o)) and Y.

set(m(t)J • oet(m(s)) and cnt(v(t)J • cnt(v(o)J + 1 and%

-~~J·-~Wland Y.

(forall j: (j• k and next(t){j) • r9) or Y,

(j /• k and next(t)(j) • next(o)(j))) and X

next(t){piD(tJJ /• EOP II

7.---ll

lp27(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) - 1 and Y.

C. The Readers/Writers Model in SPIN, SAL, and PVS

vt(t) • vt(s) and cnt(m(t)) • cnt(a(s)) and

cnt(v(t)) • cnt(v(s)) + 1 and set(a(t)) • set(m(s)) and%

(exists (p:index):(set(v(s))(p) and X

aet(v(t)) • remove(p, set(v(a))))) and X

(torall j: ((j • k and next(t)(k) • r9) or X

(j /• k and d1fferenco(set(v(a)), sot(w(t)))(j) X

and next(s)(j) • wa1tAtPwv and next(t)(j) • rlsoAtPwv) X

or (j /• k and (HOT difforonce(aot(w(a)), aet(v(t)))(j)X

or next(a) (j) /• vaitAtPwv) and X

naxt(t)(j) • next(e)(j)))) and next(t)(piD(t)) /• EOP II

x--11
lp28(al I II

Y.---11
lp29(a) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) - 1 and X

vt(t) • vt(s) and cnt(m(t)) • cnt(m(s)) and X

set(a(t)) • set(a(s)) and cnt(w(t)) • cnt(w(s)) and X

set(v(t)) • set(w(s)) and X

(forall j: (j• k and next(t) (j) • r9) or X

(j /• k and next(t)(j) • noxt(s)(j))) and X

next(t)(piD(t)) /• EOP II

x---11
lp30(sl I II

x--11
lp31(s)l rdcnt(t) • rdcnt(s) and rd(t) • rd(a) and X

vt(t) • vt(a) and cnt(m(t)) • cnt(a(s)) + 1 and X

set(a(t)) • set(m(s)) and cnt(w(t)) • cnt(w(s)) and X

set(w(t)) • set(w(s)) and X

(forall j: (j• k and next(t)(j) - EOP) or X

(j /• k and next(t)(j) • next(s)(j))) and Y.
(next(t)(piD(t)) /• EOP or X

torall (1: index): next(t) (1) • EOP) II

Y.---11
lp32(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and X

vt(t) • wt(s) and cnt(a(t)) • cnt(a(s)) + 1 and X

cnt(w(t)) • cnt(v(s)) and aet(w(t)) • set(w(s)) and X

(exista (p:index): (aet(a(s))(p) and X

set(m(t)) • remove(p, set(a(a))))) and X

(forall J: (j• k and next(t)(j) • EOP) or X

(j /• k and d1fference(oet(a(s)), aet(m(t)))(j) and X

((next(s)(j) • wa1tAtPm1 and next(t)(j) • rloeAtPm1) or%

(noxt(o)(j) - wa1tAtPm2 and noxt(t)(j) • rlsoAtPm2))) orX

(j /• k and (not diftoronco(aot(a(s)), sot(a(t)))(j) X

or (noxt(s)(j) /• wattAtPa1 and next(s)(j) /• wa1tAtPm2))7.

and next(t)(j) • next(o)(j))) and 7.

noxt(t)(piD(t)) /• EOP II

x---11
lp33Coll II

x--11
lp34(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(a) and X

vt(t) • wt(s) + 1 and cnt(a(t)) • cnt(m(s)) and X

set(a(t)) • set(a(a)) and cnt(w(t)) • cnt(v(s)) - 1 andY.

set(w(t)) • oot(w(s)) and X

(forall j: (j• k and naxt(t)(j) • v2) or X

(j /• k and noxt(t)(j) • next(s)(j))) and Y.
next(t)(piD(t)) /• EOP II

x---11
lp35(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(a) and

wt(t) • wt(s) and cnt(m(t)) • cnt(m(s)) and

X

X
sot(m(t)) • set(m(s)) and cnt(v(t)) • cnt(w(s)) - 1 and%

sot(v(t)) • add(k, sot(v(o))) and

(forall j: (j• k and next(t) (j) • waitAtPwv) orX

(j /• k and next(t)(j) • next(o)(j))) and Y.
next(t) (piD(t)) /• EOP II

x--11
lp36(s) I rdcnt(t) • rdcnt(o) and rd(t) • rd(o) and X

vt(t) • wt(s) and cnt(a(t)) • cnt(a(s)) and X

oet(a(t)) • aet(a(s)) and cnt(v(t)) • cnt(v(s)) and X

-~Wl·-~Wland X

77

78 C. The Readers/Writers Model in SPIN, SAL, and PVS

(forall j: next(t)(j) • next(s)(j)) and Y.

next(t)(piD(t)) /• EOP II

Y,---11
lp37(s) I rdcnt(t) • rdcnt(sr and rd(t) • rd(s) and Y.

vt(t) • vt(s)+ 1 and cnt(m(t)) • cnt(m(s)) and Y.

set(m(t)) • set(m(s)) and cnt(v(t)) • cnt(v(s)) and Y.

set(v(t)) • set(vfs» and Y.

(forall j: (j• k and next(t)(j) • v2) or 7.
(j /• k and next(t)(j) • next(s)(j))) and Y.

next(t) (piD(t)) /• EOP II

Y.---11
lp38(s)l rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and

vt(t) • vt(s) and cnt(m(t)) • cnt(m(a)) and

set(a(t)) • set(m(s)) and cnt(v(t)) • cnt(v(s)) and Y.
set(v(t)) • set(v(s)) and Y.

(forsll j: (j• k and next(t)(j) • v3) or X

(j /• k and next(t) (j) • next(s)(j))) and X

next(t)(piD(t)) /• EOP II

Y.--11
lp39(a)l II

7.---ll

lp40(s) I rdcnt(t) • rdcnt(s) and rd(t) • rcl(s) and Y.

vt(t) • vt(s) - 1 and cnt(m(t)) • cnt(m(s)) and Y.

set(m(t)) • set(m(s)) and cnt(v(t)) • cnt(v(s)) + 1 andY,

set(v(t)) • set(v(s)) and 7.

(forall j: (j• k and next(t)(k) • EOP) or Y.

(j /• k and next(t)(j) • next(s)(j))) and Y.

(next(t)(piD(t)) /• EOP or Y.

forall (1: inclex): next(t)(i) • EOP) II

Y.---11
lp41(s) I rdcnt(t) • rdcnt(s) and rd(t) • rd(s) and 7.

and tabla

vt(t) • vt(s) - 1 and cnt(m(t)) • cnt(m(s)) and 7.

cnt(v(t)) • cnt(v(s)) + 1 and set(m(t)) • set(m(s)) andY,

(exists (p:index):((set(v(s)))(p) ancl Y.
set(v(t)) • remove(p, aet(v(s))))) ancl Y.

(forall j: (j• k and next(t)(j) • EOP) or 7.

(j /• k and difference(aet(v(s)), set(w(t)))(j) and 7.
((next(s) (j) • vaitAtPvv and next(t)(j) • rlseAtPvv) orY.

(next(s) (j) • vaitAtPvr and next(t)(j) • rlseAtPvr))) Y.
or (j /• k and (not difference(set(v(s)), set(v(t)))(j)Y.

or (next(s)(j) /• waitAtPvv and next(s)(j) /• vaitAtPvr))Y,

and next(t)(j) • next(a)(j))) and Y.

next(t)(piD(t)) /• EDP II

END transition

4. getinv.pvs

gatinv: THEORY

BEGIK

iJDporting transition

s: VAR atatenaop

t: VA!\ state

1: VAR index

rp(t): bool • (vt(t) • 0 or rd(t) • 0) and vt(t) < 2 and rd(t) >• 0

and vt(t) >• 0

1nitcond(t): bool • cnt(m(t)) • 1 and ompty?(set(m(t))) and

cnt(v(t)) • 1 and empty?(set(w(t))) and

rd(t) • 0 and vt(t) • 0 and rdcnt(t) • 0 and

(forall 1: (1 <• n and next(t)(i) • rl)

or (1 > n and next(t)(1) • vl))

crpU: lemma (forall t: (initcond(t) •> rp(t)))

and (torall a, t: (rp(s)

and trans(s, t) •> rp(t)))

X after the first iteration frOJI failed proofs of crpU

Y.ve read the invariants as below

C. The Readers/Writers Model in SPIN, SAL, and PVS

S7(t): bool • rdcnt(t) >• 0

S2(t): bool • cnt(w(t)) <• 1

S1(t): bool • cntU.(t)) <• 1

S6(t): bool • cnt(w(t)) • I •> (wt(t) • 0 and rd(t) • 0)

S91(t): bool • forall 1: noxt(t)(1) • rlaoAtPwr

implies wt (t) - 0

S31(t): bool • forall 1:

noxt(t)(1) • r4 illpllaa cnt(m(t)) <• 0

S32(t): bool • forall 1:

next(t)(1) • r9 illplioa cnt(m(t)) <• 0

S41(t): bool • forall 1: next(t)(1) • r3

implies rdcnt(t) • rd(t) + I

S6(t): bool • forall 1: next(t) (1) • r8

illpllea rd(t) • rdcnt(t) + I

S81(t): bool • forall 1: next(t)(1) • rlaeAtPww

illpliea wt(t) • 0

S82(t): bool • forall 1: noxt(t)(1) • rlaeAtPww

illpliea rd(t) • 0

S101(t): bool • forall 1: next(t)(i) • w3

illpliea wt(t) • 1

1Dd1(t): bool • rp(t) and Sl(t) and S2(t) and S31(t)

and S32(t) and S41(t) and S6(t)

and S6(t) and S7(t) and S81(t)

and S82(t) and S91(t) and S101(t)

crpllld1: le111111a (forall t: 1n1tcond(t) •> lndl(t))

and forall a, t: (1ndl(a)

and trano(a, t) •> llldl(t)) ~619

X froa the unprovable sequent& ve got aore

%invariants, which together with previous ones. give us new set:

S92(t): bool • forall 1: noxt(t)(i) • rlaeAtPwr

implies cnt(v(t)) <• 0

S36(t): bool • forall 1:

next(t)(1) • r3 illpliea cnt(ll(t)) <• 0

S38(t): bool • forall 1:

next(t) (1) • rB i.Ja.pliea cnt(a(t)) <• 0

S39(t): bool • forall 1:

a.ext(t)(i) • rlseAtPwr illplies ca.t(a(t)) <• 0

S10(t): bool • forall 1: next(t)(1) • w2

illpliea wt(t) • 1

S83(t): bool • forall 1: noxt(t)(i) • rlaoAtPww

illplioa cnt(w(t)) <• 0

S111(t): bool • forall 1: next(t)(1) • r7

illpliea rd(t) • rdcnt(t)

S112(t): bool • forall 1: next(t)(1) • r2

illpliea rd(t) • rdcnt(t)

S126(t): bool • forall 1: next(t)(1) • r7

illplioa rd(t) >• 1

lnd2(t): bool • llldl(t) and S92(t) and S36(t) and

S38(t) and S39(t) and S10(t) and S83(t) and SUI(t) and

S112(t) and S126(t)

llld2a(t): bool • 831(t)

and S32(t) and S6(t)

and S6(t) and S7(t) and S91(t)

and S101(t) and S92(t) and S36(t) and

S38(t) and S39(t) and SIO(t) and S83(t) and SIU(t) and

S112(t) and S126(t)

crp1nd2: lemaa (forall t: 1n1tcond(t) •> lllcl2a(t))

and forall a, t: (ind2(s)

and trana(a, t) •> llld2a(t)) Y,nev-4677

Y.new invariants:

S34(t): bool • forall 1: next(t)(1) • r2

illplies cnt(a(t)) <• 0

S37(t): bool • forall 1: next(t)(1) • r7

illpliea cnt(m(t)) <• 0

SU4(t): bool • torall 1: naxt(t)(1) • rlaaAtPII2

illpliaa rd(t) • rdcnt(t)

SU6(t): bool • forall 1: naxt(t)(1) • rlaoAtPm1

illplias rd(t) • rdcnt(t)

79

80 C. The Readers/Writers Model in SPIN, SAL, and PVS

S131(t) : bool • forall 1:

next(t)(1)• r1 and cnt(m(t)) • 1

implies rd(t) • rc!Cilt(t)

S123(t): bool • forall 1: next(t)(i) • r6

implies rd(t) >• 1

S124(t): bool • torall 1: next(t)(1) • rlseAtPm2

implies rd(t) >• 1

S133(t): bool • torall 1: next(t)(1) • r6 and cnt(m(t)) • 1

implies rd(t) • rdcnt(t)

ind3(t): bool • ind2(t) and S34(t) and S37(t) and S114(t) and

S115(t) and S123(t) and S124(t) and S131(t) and S133(t)

1nd3a(t): bool • S35(t) and S38(t) and S111(t) and S112(t) and S125(t) and

S34(t) and S37(t) and S114(t) and

S115(t) and S123(t) and .S124(t) and S131(t) and S133(t)

crp1nd3: lemma (torall t: in1tcond(t) •> ind3a(t))

and forall s, t: (ind3(s)

and trans (a, t) •> ind3a(t)) Y.6000

S33(t): bool • forall 1: next(t) (1) • rlseAtPm1

implies cnt (m (t)) <• 0

S36(t): bool • torall 1: next(t) (i) • rlseAtl'll2

illplies cnt(m(t)) <• 0

S122(t): bool • torall 1: next(t)(1) • r5

illpUes rd(t) >•

S132(t): bool • torsll 1: next(t)(1) • r5 and cnt(m(t)) • 1

lmpliea rd(t) • rdcnt(t)

ind4(t): bool • ind3(t) and S33(t) and S36(t) and S122(t) and S132(t)

1nd4s(t): bool • S34(t) and S37(t) and S123(t) and S133(t) and

S33(t) and S36(t) and S122(t) and S132(t)

crp1nd4: lemma (forall t: in1tcond(t) •> ind4a(t))

and forall a, t: (ind4(s)

and trana(a, t) •> ind4s(t)) Y.3520

S113(t): bool • forsll 1: next(t)(1) • r4

implies rd(t) • rdcnt(t)

S121(t): bool • torall 1: next(t)(1) • r4

lmpliea rd(t) >• 1

1nd5(t): bool • ind4(t) and S113(t) and S121(t)

1nd5a(t): bool • S122(t) and S132(t) and S113(t) and S121(t)

crpind5: lemma (forall t: in1tcond(t) •> ind5a(t))

and torall a, t: (ind5(s)

and trana(a, t) •> ind5a(t)) 1(2377

S42(t): bool • forall 1: next(t)(1) • rlseAtPvr

illpliea rdCilt(t) • rd(t) + 1

1nd6(t): bool • ind5(t) and S42(t)

1nd6a(t): bool • S113(t) and S42(t)

crpind6: l8111111a (torall t: in1tcond(t) •> ind6a(t))

END getinv

5. invj.pvs

invj X [parameters

THEORY

Y. ASSUMING

X a&SWiing declarations

Y. ENDASSUMING

BEGIN

Y, ASSUMING

h assuming declarations

Y, ENDASSUMING

importing transition

s: VAl\ atateneop

and forall a, t: (ind6(a) and

trans (a, t) •> 1nd6s(t)) 'X973

C. The Readers/Writers Model in SPIN, SAL, and PVS

t: VAR state

1, j: VAll index

%safety property:

rp(t): bool • (vt(t) • 0 or rd(t) • 0) and vt(t) < 2 and rd(t) >• 0

and vt(t) >• 0

'Xinitial state:

1n1tcond(t): bool • cnt(m(t)) • I ud empty?(set(•(t))) and

cnt(v(t)) • I and empty?(sat(v(t))) and

rd(t) • 0 and vt(t) • 0 and rdcnt(t) • 0 and

(forall (1: inclex): (1 <• n and. next(t) (1) • r1)

or (1 > n and naxt(t) (1) • vi))

Xinvarianta as found in inlong. pvs

51 (t): bool • (cnt(a(t)) <• I)

S2(t): bool • (cnt(v(t)) <• 1)

S6(t): bool • (cnt(v(t)) • I •> (vt(t) • 0 and rd(t) • O))

57(t): bool • (rdcnt(t) >• 0)

S31(t): bool • forul 1:

next (t) (1) • r4

implies cnt(m(t)) <• 0

S32(t): bool • forul 1:

next(t)(i) • r9

implies cnt(m(t)) <• 0

533 (t) : bool • forall 1:

next(t)(1) • rlseAti'JII

implies cnt(m(t)) <• 0 7.dona, 3535.12

S34(t): bool • forul 1:

noxt(t)(1) • r2 implies cnt(m(t)) <• 0% dona, 3867

S36(t): bool • forul 1:

naxt(t)(1) • r3

implies cnt(m(t)) <• 0

S36(t): bool • forall 1:

next(t) (1) • rlseAt1'112

implies cnt(m(t)) <• 0

S37(t): bool • forul 1:

naxt(t) (1) • r7

implies cnt(m(t)) <• 0

S38(t): bool • forall 1:

naxt(t) (1) • r8

implies cnt(m(t)) <• 0

S39(t): bool • forall 1:

naxt(t)(i) • rlseAtPvr

implies cnt(m(t)) <• 0

S41(t): bool • torall 1: next(t)(1) • r3

implies rdcnt(t) • rd(t) + I

S42(t): bool • forul 1: next(t)(1) • rlseAtPvr

implies rdcnt(t) • rd(t) + I

S6(t): bool • forul 1: next(t)(1) • r8

implies rd(t) • rdcnt(t) + I

SBI(t): bool • forul 1: next(t)(1) • rlsoAtPvv

implies vt(t) • 0

S82(t): bool • forall 1: next(t) (1) • rlaaAtPvv

implies rd(t) • 0

SS3(t): bool • forul 1: naxt(t)(1) • rlaaAtPvv

implies cnt(v(t)) < I

S91(t): bool • forul 1: naxt(t)(1) • rlsaAtPvr

implies vt(t) • 0

S92(t): bool • forul 1: naxt(t)(1) • rlsaAtPvr

implies cnt(v(t)) <• 0

SIO(t): bool • forall 1: next(t)(i) • v2

implies vt(t) • I

SIOI(t): bool • forall 1: naxt(t)(i) • v3

implies vt(t) • 1

SUI(t): bool • forall 1: next(t)(1) • r7

implies rd(t) • rdcnt(t)

S112(t): bool • forall 1: noxt(t)(1) • r2

implies rd(t) • rdcnt(t)

S113(t): bool • forall 1: next(t)(1) • r4

implies rd(t) • rdcnt(t)

81

82 C. The Readers/Writers Model in SPIN, SAL, and PVS

S114(t): bool • forall 1: next(t) (1) • rlsaAtPm2

illlplies rd(t) • rdcnt(t)

S115(t): bool • forall 1: next(t) (1) • rlseAtPm1

illlplies rd(t) • rdcnt(t)

S121(t): bool • forall 1: next(t)(1) • r4

illlplies rd(t) >• 1

S122(t): bool • forall 1: noxt(t)(1) • r5

illlplies rd(t) >• 1

S123(t): bool • forall 1: noxt(t)(1) • n;

illlplies rd(t) >• 1

S124(t): bool • forall 1: next(t)(1) • rlseA.tPII2

illlplies rd(t) >• 1

S125(t): bool • forall 1: next(t) (1) • r7

illlpliea rd(t) >- 1

S131(t): bool • forall 1: noxt(t) (1) • r1

and cnt(m(t)) • 1

illlpliea rdcnt(t) • rd(t)

S132(t): bool • forall 1: next(t)(1) • r5

and cnt (m(t)) • 1

illlplies rdcnt(t) • rd(t)

S133(t): bool • forall 1: noxt(t)(1) • n;

and cnt(Jo(t)) • 1

illlplies rdcnt(t) • rd(t)

CS1prod(t, 1): bool • noxt(t)(1) • rlsoAtPm1

or next(t)(1) • r2 or

next(t)(i) • r3 or next(t)(i) • r4 or next(t)(i) • rlsoAtPm2

or next(t) (i) • r7 or nezt(t) (i) • r8

or noxt(t) (1) • r9 or next(t)(i) • wa1tAtPwr or

next(t)(1) • rlsaAtPwr

CSl(t): bool •

(forall (1, j: index): CS1prod(t, 1) and CS1pred(t, j) •> 1 • j)

CS2prod(t, 1): bool • next(t)(i) • w2

or next (t)(1) • w3 or

next(t)(1) • rlsaAtPwr or noxt(t) (1) • rlsaAtPww

CS2(t): bool •

(forall (1, j: index): CS2prod(t, 1) and CS2prod(t, j)

•> 1 - j)

1ndc(t): bool • CS1(t) and CS2(t) and rp(t) and Sl(t) and S2(t)

and S31(t) and S32(t) and S33(t) and S34(t) and S35(t)

and S36(t) and S37(t) and S36(t) and S39(t)

and S41(t) and S42(t) and S5(t) and S6(t)

and S7(t) and SSl(t) and S82(t) and S83(t)

and S91(t) and S92(t) and S10(t) and S101(t)

and S111(t) and S112(t) and S113(t) and S114(t) and S115(t)

and S121(t) and S122(t) and S123(t) and S124(t) and S125(t)

and S131(t) and S132(t) and S133(t)

crpindrp: 1..,... (forall t: in1tcond(t) •> rp(t))

and forall 8, t: (indc(s)

and trans(s, t) •> rp(t)));1464, 1851kipd

crpindl: lomma (forall t: in1tcond(t) •> Sl(t))

and forall 8, t: (indc(s)

and trans(8, t) •> Sl(t)) l(now-30(s1)

crpind2: le11111a (forall t: initcond(t) •> S2(t))

and forall 8, t: (indc(s)

and trans(s, t) •> S2(t)) Xnew-218(s1)

crpind6: lemma (forall t: in1tcond(t) •> SS(t))

and forall 8, t: (indc(8)

and trans(a, t) •> S6(t)) Xnew-4670

crpind7: lSIDIIa (forall t: in1tcond(t) •> S7(t))

and forall s, t: (indc(s)

and trans(8, t) •> S7(t))Y.new-130(s1)

crp1nd31: 1011111a (forall t: initcond(t) •> S31(t))

and forall s, t: (indc(s)

and trans (s, t) •> S31(t)) Y.new-480

crpind32: 1011111a (forall t: in1tcond(t) •> S32(t))

and forall s, t: (indc(e)

and trans(s, t) •> S32(t)) X new-6S4(s'r')

crpind33: lemma (forall t: in1tcond(t) •> S33(t))

0

C. The Readers/Writers Model in SPIN, SAL, and PVS

and forall s, t: (1ndc(s)

and trans(&, t) •> S33(t)) 7,nev-298(s"r")

crp1nd34: lelllll& (forall t: 1n1tcond(t) •> S34(t))

and forall s, t: (1ndc(s)

and trans(&, t) •> S34(t))7,nev-364(s•r•)

crp1nd36: lemma (forall t: 1n1tcond(t) •> S36(t))

and. torall s, t: (indc(a)

and trans(s, t) •> S35(t)) 'Y,nev-403

crp1nd36: lOIIIlla (forall t: 1n1tcond(t) •> S36(t))

and forall a, t: (inclc(s)

and trans(&, t) •> S36(t))7.nev-471(a"r")

crp1nd37: 18111111& (forall t: 1n1tcond(t) •> S37(t))

and forall s, t: (indc(s)

and trans(s, t) •> S37(t)) 'Y,new-671

crp1nd38: le1111a (forall t: 1n1tcond(t) •> S38(t))

and forall a, t: (indc (a)

and trans(s, t) •> S38(t)) 'Y.nsv-612

crp1nd39: luma (forall t: 1n1tcond(t) •> S39(t))

and forall a, t: (ia.dc(s)

and trans(&, t) •> S39(t))

%we found another iDvariant while proving crpiD439:

S140(t): bool • forall 1: nert:(t) (1) • va1tAtPwr

implies cnt(m(t)) <• 0

1ndc1(t): bool • indc(t) and S140(t)

crp1nd140: lemma (forall t: 1n1tcond(t) •> S140(t))

and forall s, t: (indcl(s)

and trans(s, t) •> S140(t) l'Y.nev(srl-644-n:perilllent

crp1nd391: lemma (forall t: 1n1tcond(t) •> S39(t))

and forall s, t: (1ndc1(s)

and trans(s, t) •> S39(t))%nev-723(s"r"+revinst)

Y. "divide and conquer" CS1 and CS2, so that proof would be faster

CSU (t): bool •

forall 1, j: next(t)(1) • rlseAtPa1

and CS1pred.(t, j)

•> 1 - j

CS12(t): bool •

forall 1, j: nert:(t)(1) • r2

and CSlpred.(t, j)

•> 1 - j

CS13(t): bool •

forall 1, j: nert:(t)(1) • r3

and CSlpred.(t, j)

•> 1 - j

CS14(t) : bool •

forall 1, j: next(t)(i) • r4

and CS1pred.(t, j)

•> 1 - j

CS15(t): bool •

forall 1, j: nert:(t)(1) • rlseAtPa2

and CS1pred(t, j)

•> 1 - j

CS16(t): bool •

forall 1, j: next(t) (1) • r7

and CSlpred.(t, j)

•> 1 - j

CS17(t): bool •

forall 1, j: next(t)(1) • rB

and CSlpred.(t, j)

•> 1 - j

CS18(t): bool •

forall i, j: next (t) (i) • r9

and CSlpred.(t, j)

•> 1 - j

CS19(t): bool •

forall 1, j: nert:(t)(i) • va1tAtPwr

aod CS1pred.(t, j)

•> 1 - j

CSUO(t): bool •

83

84 C. The Readers/Writers Model in SPIN, SAL, and PVS

forall 1, j: next (t)(1) • rlsoAtPvr

and CSlprod(t, j)

•> 1 • j

CS21(t): bool •

forall 1, j: noxt(t)(1) • v2

and CS2pred(t, j)

•> 1 • j

CS22(t): bool •

forall 1, j: noxt(t)(i) • w3

and CS2prod(t, j)

•> 1 • j

CS23(t): bool •

forall 1, j: next (t)(1) • rl8oAtPww

and CS2prod(t, j)

•> 1 • j

CS24(t): bool •

forall 1, j: next(t)(1) • rl8&AtPwr

and CS2pred(t, j)

•> 1 • j

1ndc811: leaa (forall t: initcond(t) •> CSl(t))

and forall 8, t: (indc1(8)

and trans(8, t) •> CSU(t))7,now-3443

1ndc812: l011111a (forall t: in1tcond(t) •> CSl(t)) Xno-4026

and forall s, t: (1D.dcl(a)

and tran8(8, t) •> CS12(t))

1ndc813: lemma (forall t: in1tcond(t) •> CSl(t))

and forall 8, t: (indc1(s) 7.no-3277

and tran8(8, t) •> CS13(t))

1ndcs14: lemma (forall t: inltcond(t) •> CS1(t))

and forall 8, t: (indc1(s)

and tran8(8, t) •> CS14(t))7,no-3252

indc815: l811111a (forall t: initcond(t) •> CSl(t))

and forall 8, t: (1ndc1(8)

and trans(8, t) •> CS15(t))7,no-3159

1ndc816: 1- (forall t: in1tcond(t) •> CS1(t))

and torall a, t: (indcl(a)

and trans(s, t) •> CS16(t)) Xno-3198css

1ndc817: l ... a (forall t: in1tcond(t) •> CS1(t))

and forall a, t: (1ndc1(s)

and trana(s, t) •> CS17(t)) Xno-3198

indcs18: lom.a (forall t: 1n1tcond(t) •> CS1(t))

and forall s, t: (indc1(s)

and trans(8, t) •> CS18(t)) Xno-3373(ccs)

indcs19: l ... a (forall t: 1nitcond(t) •> CS1(t))

and forall s, t: (indc1(a)

and tran8(8, t) •> CS19(t)) Xno-3444(c88)

1ndc8110: lemsa (forall t: in1tcond(t) •> CS1(t))

and forall a, t: (indc1(s)

and tran8(s, t) •> CSUO(t)) 7,no-3505 (cas)

1ndc821: 101111a (forall t: in1tcond(t) •> CS2(t))

and forall 8, t: (indcl(s)

and trans(8, t) •> CS21(t))Y, no-3137(c8s 'C82')

indcs22: lom.a (forall t: 1n1tcond(t) •> CS2(t))

and forall a, t: (inclct(s)

and trans(s, t) •> CS.22(t)) Xno 3084

indc823: lemma (forsll t: 1n1tcond(t) •> CS2(t))

and forall 8, t: (indc1(s)

and trans(s, t) •> CS23(t)) Xno-2940(cs8+10goal8)

indc824: lemma (forall t: in1tcond(t) •> CS2(t))

and forall 8, t: (indc1(s)

and tran8(8, t) •> CS24(t))Xno-2794(c8s)

indcslf: lemma (forall t: in1tcond(t) •> CSl(t))

and forall 8, t: (indcl (s)

and trans(s, t) •> CSl(t))Xnev-17

1ndcs2f: lemma (forall t: 1n1tcond(t) •> CS2(t))

and forall 8, t: (indcl (s)

and trans(s, t) •> CS2(t))Xnov-7

crp1nd41: l01111a (forall t: initcond(t) •> S41(t))

C. The Readers/Writers Model in SPIN, SAL, and PVS

and forall s, t: (indcl(s)

and trans(a, t) •> S41(t)) Y.new-463(a"r")

crpind42: lemma (1orall t: iDitcond(t) •> S42(t))

and torall a, t: (illdc1(a)

and trans(&, t) •> S42(t)) YoDov-706

X This is where we need 543

S43(t): bool • torall 1: nert(t)(i) • vaitAtPvr

illpliea rdcnt(t) • rd(t) + 1

indc2(t): bool • indcl(t) and S43(t)

crpind43: lemma (1orall t: iDitcond(t) •> S43(t))

and forall a, t: (indc2(a)

and trans(a, t) •> S43(t)) %nov-654(a•r•)

crpind421: lemma (forall t: 1D1tcond(t) •> S42(t))

and torall s, t: (1Ddc2(a)

and trans(s, t) •> S42(t)) Y.nev-726(s"r"and revins)

crpiDd6: lamma (torall t: iDitcond(t) •> S6(t))

and torall a, t: (1Ddc2(s)

and trans(a, t) •> SS(t)) Xo.ev-690(s"r")

crpindlO: lelllllla (torall t: iDitcond(t) •> S10(t))

and forall a, t: (1Ddc2(s)

and trans(&, t) •> StO(t)) Y.new-346(a"v")

crpind101: loiDIIa (torall t: iDitcond(t) •> SlOI(t))

and forall a, t: (1Ddc2(s)

and trana(s, t) •> S101(t)) %nov-403(a •v•)

crpind81: 1e1111a (torall t: iDitcond(t) •> S81(t))

and forall a, t: (1ndc2(a)

and trans(s, t) •> S81(t))%nev-617,but

Y.ve had to use 883 (kindot; s "v")

crpind82: lemma (toraH t: iDitcond(t) •> S82(t))

and torall s, t: (1Ddc2(s)

and trans(s, t) •> S82(t))hev-567(s"v"+s83revins)

crpiDd83: lemma (torall t: iDitcond(t) •> S83(t))

and forall a, t: (1ndc2(s)

and trans(&, t) •> S83(t))Xnev-406(s •w•+rev)

crpind91: lemma (torall t: iDitcond(t) •> S91(t))

and forall a, t: (1D.dc2(a)

and trans(s, t) •> S91(t)))'.new-512(& .. w") rev(S92)

crpind92: 101111a (forall t: iDitcond(t) •> S92(t))

and torall s, t: (1Ddc2(s)

and tra.ns(s, t) •> S92(t))7.new-nead CS2 too,

%add after all tor one goal and inat-730

END iDvj

6. invjl.pvs

invjl: TIIEOI\Y

BEGIN

illporting iDvj

s: VAR stateneop

t: VAR state

crpindlll: l811111la (torall t: initcond(t) •> Slll(t))

and torall s, t: (indc2(s)

and trans(s, t) •> Slll(tl>YoDew-684

crpiDdl12: l01111a (torall t: iDitcond(t) •> S112(t))

and forall s, t: (1ndc2(s)

and trans(s, t) •> S112(tll7oDev-466

crpind113: 1-a (toran t: initcond(t) •> S113(t))

and torall s, t: (indc2(s)

and trans(a, t) •> S113(t))%nev-626

crpind114: lemma (toraH t: initcond(t) •> S114(t))

and forall s, t: (1ndc2(s)

and tran.s(s. t) •> S114(t))% bev-604 ve need another:

Sl60(t): bool • forall (i: index): next(t)(i) • r9

implies rdcnt(t) • rd(t)

85

86 C. The Readers/Writers Model in SPIN, SAL, and PVS

1ndc3(t): boo1 • 1ndc2(t) and Si60(t)

crpind1141: 18111111& (forall t: initcond(t) •> S114(t))

and forall s, t: (1ndc3(s)

and trans(s, t) •> S114(t))% new 792

crpind150: 1e1111a (forall t: initcond(t) •> S160(t))

and forall s, t: (indc3(s)

and trans(s, t) •> S160(t))Y. nev-1477

crpind115: lODIII& (forall t: initcond(t) •> S115(t))

and forall s, t: Cindc3(s)

and trans(s, t) •> S115(t)) Xnew-786

crpindl21: lODIIIa (forall t: lnitcond(t) •> S121(t))

and forall s, t: (1ndc3(s)

and trans(s, ·t) •> S121(t)) Y,new~916(gk)

crpind122: 181111& (forall t: initcond(t) •> S122(t)) Xno prt for those 3

and forall s, t: Cindc3(s)

and trans(s, t) •> S122(t)) Xneed r6 •> rd.cnt>•l

crpind123: 1e111111a (forall t: initcond(t) •> S123(t))

and forall s, t: (indc3(s)

and trans(s, t) •> S123(t)) Xr6•>rdcnt >• 1

crpind124: 1811111la (forall t: initcond(t) •> S124(t))

and forall s, t: (1ndc3(s)

and trans(a, t) •> S124(t))Xneed waitAtPa2

7. •> rdcnt>•l

crpind126: 181111& (forall t: in1tcond(t) •> S126(t))

and forall a, t: (indc3(s)

and trans(s, t) •> Sl26(t)) Xnew-1296 (a •r•)

crpind131: 18111111& (forall t: initcond(s) •> S131(s))

and forall a, t: (1ndc3(s)

and trans(s, t) •> S131(t)) Xnew - 1063(s "r")

crpind132: 18111111& (forall t: initcond(t) •> S132(t))

and forall a, t: (1ndc3(s)

and trans(s, t) •> S132(t))Xnew-1200 (s •r•)

crpind133: 18111111& (forall t: initcond(t) •> S133(t))

END invjl

7. cardsem.pvs

11IEORY

BEGIN

iaporting invj I

s: VAR atateneop

t: VAR state

1: VAR 1D.clex

and forall s, t: (i.ndc3(s)

and trans(s, t) •> S133(t))Y,new-1160(s •r•)

P(t, 1): bool • next(t)(i) • r3 or next(t)(i) • r4

or next(t) (1) • r6 or next(t)(i) • r6

or next(t)(i) • r7 or next(t)(1) • wa1tAtPwr

or neJ:t(t) (1) • rlseAtPwr or next(t) (1) • vaitAtPm2

or next(t)(1) • rlseAtPs2

au(t): fin1to_sot(indax] • {1: index I P(t, 1)}

aux: 181'1111& torall (t~ state)! (exists (1: index): next(t)(i) • r4

or next(t)(1) • r6 or next(t)(1) • r6

or next(t) (1) • r7 or next(t) (1) • vaitAtPwr

or next(t)(1) • rlseAtPwr or naxt(t)(1) • wa1tAtPm2

or next(t)(1) • rlaaAtl'lll2) •> card(au(t)) >• 1 Xnew

a(t): bool • card(au(t)) • rdcnt(t)

1ndc4(t): bool • 1ndc3(t) and a(t)

a_inv: lBIIDIIa (forall t: initcond(t) •> a(t))

and torall s, t: (1ndc4(s)

and trans(s, t) •> a(t)) Xnew-348

crp1nd1221: 181111& (forall t: initcond(t) •> S122(t))

and forall a, t: (1ndc4(s)

and trans(s, t) •> S122(t)) Y,new-130

C. The Readers/Writers Model in SPIN, SAL, and PVS

crpind123i: 10111111a (fora11 t: initcond(t) •> S123(tll

and fora11 s, t: (indc4(a)

and trans(&, t) •> S123(tll Y.new-130

crpind124i: 1emaa (forall t: initcond(t) •> S124(t))

and fora11 s, t: (indc4(s)

and trans(a, t) •> S124(t)) X new-140

Xthe proofs of the three previous tbeoreaa pretty much alike

END carciaem

8. dq.pvs

dq: THEORY

BEGIN

iaporting cardaem

a: VAR atataneop

al, t, u: VAR state

i: VAl\ index

DQdecreaae(s, t): boo1 • (exists i: IntRW(next(a)(i)) > IntP.W(next(t)(i)))

and (fora11 i: IntP.W(noxt(a)(1)) >• IntRW(next(t)(i)))

dqa: theorem 1D.dc4(s) •> (trana(s, t) and. not <•<•> • a(t) and

v(a) • v(t) and rdcnt(a) • rdcnt(t) and

(fora11 i: next(a)(i) • noxt(t)(i)) and

rd(e) • rd(t) and vt(a) • vt(t)) •> DQdecrease(s, t)))l.new-1600

dqb: 1011111& foral1 s1: (indc4(a1) •>

((fora11 i: IntRW(next(s1)(i)) • 0) or

(exists t: (triiDS(al, t) and

(not (a(s1) • a(t) and

v(s1) • w(t) and rdcnt(s1) • rdcnt(t) and

(fora11 i: next(a1)(i) • next(t)(i)) and

rd(s1) • rd(t) and vt(e1) • vt(t)) or

(exists u: (trans(t, u) and not (a(t) • •(u) and.

v(t) • w(u) and rdcnt(t) • rdcnt(u) and

(fora11 i: next(t)(1) • noxt(u)(i)) and

rd(t) • rd(u) and vt(t) • vt(u)))))))))

X the previous unprovable, need. dqbinvt 8Dc:l. Sse tat, . . . as belov

dqc: theoroa indc4(t) •> (fora11 (i: index): (lntRW(next(t)(i)) • O))

iaplies (fora11 (1: index): (next(t)(i) /• vaitAtPa1

and next(t)(i) /• waitAtPa2 and next(t)(i) /• vaitAtPvr

and next(t)(i) /• vaitAtPvv)) ll.nov-3s

dqbinvi(t) :boo1 • forall i: (next(t)(i) • vaitAtPII1 or

next(t)(i) • vaitAtPil2 or next(t)(i) • vattAtPvr or

next(t)(i) • vaitAtPvv)•>

exists (j: index): (next(t)(j) /• vaitAtPa1 and

next(t) (j) /• waitAtPa2 and noxt(t) (j) /• vaitAtPvr and

next(t) (j) /• vaitAtPvv and next(t) (j) /• EOP)

dqb2i: 1oama (forall t: initcond(t) •> dqbillv1(t))

and forall a, t: (dqbinvi(a) and indc4(s)

and trans(s, t) •> dqbinv1(t)) Xvo need:

Xdqbinv2 and dqbinv3

dqbinv2(t): bool • cnt(v(t)) <• 0

•> exists 1:

(next(t) (1) • rlaeAtPa1 and rd(t) >• 1) OR

(next(t)(i) • r2 and rd(t) >• 1) OR

(next(t)(i) • r3 and rd(t) >• 1) OR

next(t)(i) • rlseAtPvr or next(t)(i) • r4 or

next(t)(i) • r6 or next(t)(i) • r6 or

next(t) (1) • rlaeAtPm2 or next(t) (1) • r7 or

next(t)(i) • r8 or ne:r.t(t)(i) • rlaeAtPvv or

dqbinv3(t): boo1 •

(next(t)(i) • r9 and rd(t) >• 1 and cnt(a(t)) < 0)

or nert(t) (1) • v2 or next(t) (1) • v3

cnt(a(t)) <• 0

•> exists 1:

next(t) (1) • rlseAtPat or next(t) (1) • r2 or

next(t) (i) • r3 or next(t)(i) • rlaoAtPvr or

next(t) (i) • r4 or next(t) (i) • r1aeAtPa2 or

87

88 C. The Readers/Writers Model in SPIN, SAL, and PVS

noxt(t)(i) • r7 or noxt(t)(i) • r8 or noxt(t)(i) • r9 or

(noxt(t)(i) • rlsoAtPww snd cnt(v(t)) < 0) or

(noxt(t)(i) • v2 snd cnt(v(t)) < 0) or

(noxt(t)(i) • v3 and cnt(v(t)) < 0)

dqb211: lomma (forall t: initcond(t) •> dqbinv2(t))

snd forall s, t: (dqbinv2(a) and 1ndc4(a)

and trans(s, t) •> dqbinv2(t))

7.Ssotm(t): bool • cnt(m(t)) < 0 •> exists 1: sot(m(t)) (1)

Ssetm1(t): bool • forall 1 :sot(m(t)) (1) <•> noxt(t)(i) • vaitAtPm1

or noxt(t)(i) • vaitAtPm2

XSsotm2(t): bool • forall 1: noxt(t)(i) • vaitAtPm1

Y.or noxt(t)(i) • vaitAtPm2 •> sot((•(t)))(i)

7.Ssotv(t): bool • cnt(v(t)) < 0 •> exists 1: sot(v(t))(i)

Ssotv1(t): bool • forall 1 :sot(v(t))(t) <•> noxt(t) (1) • vaitAtPvv

or next(t) (1) • vaitAtPvr

7.Ssotv2(t): bool • forall 1: noxt(t)(i) • vaitAtPvv

Y.or noxt(t)(i) • vaitAtPvr •> sot(v(t))(i)

Ssotc(t): bool • cnt(m(t)) <• 0 •> card(set(m(t))) • abs(cntC.(t)))

Ssetc1(t): bool • cnt(m(t)) • 1 •> card(set(m(t))) • 0

Ssotc2(t): bool • cnt(v(t)) <• 0 •> card(sot(v(t))) • abs(cnt(v(t)))

Ssotc3(t): bool • cnt(v(t)) • 1 •> card(aot(v(t))) • 0

indcS(t): bool • 1ndc4(t) snd dqb1nv1(t) and dqbinv2(t) snd dqbinv3(t)

aod Ssetm1(t) and Ssetv1(t) and Ssotc(t)

END dq

9. dqb.pvs

dqb: TIIEOI\Y

BEGIN

importing dq

a: VAR atateneop

t: VAR state

1: VAB index

and Ssetc1(t) and Ssotc2(t) and Ssotc3(t)

7.Ssetc(t): bool • cnt(m(t)) <• 0 •> card(aot(m(t))) • abs(cnt(m(t)))

Ssetm11nd: lomma (forall t: initcond(t) •> Ssotml(t))

snd forall s, t: Undc5(a) and

trans(s, t) •> Ssetml(t)) Y.new-1172<•>

Ssetcind: 101111a (forall t: initcond(t) •> Saetc(t))

and forall s, t: Undc5(a)

snd Ssotc (s)

and trans(s, t) •> Ssetc(t))

Y.unprovable, we need. another one for the previous:

1.Ssotc1(t): bool • cnt(•(t)) • 1 •> card(sotC.(t))) • 0

Ssotcind1: lomma (forall t: initcond(t) •> Ssetc(t))

and forall a, t: (1ndc6(a)

snd traos(s, t) •> Ssetc(t)) Y.nev-67

SsetcUnd: lemma (forall t: initcond(t) •> Ssetc1(t))

and forall a, t: (1ndc5(s)

and trans(s, t) •> Saetcl(t))Y.nev-62

7.Ssetc2(t): bool • cnt(w(t)) <• 0 •> card(sot(v(t))) • aba(cnt(w(t)))

Ssetwlind: lemma (forall t: initcond(t) •> Ssetvl(t))

and forall a, t: (1ndc6(s)

snd trans(s, t) •> Ssotv1(t)) Y.nov-1155

%unprovable, we need. another one for the previous:

Y.Ssotc3(t): bool • cnt(w(t)) • 1 •> card(aet(v(t))) • 0

Ssotc21nd1: lemma (forall t: inltcond(t) •> Ssotc2(t))

and foral.l s, t: (1ndc6(a)

and trans(s, t) •> Saetc2(t)) Y.new 100

Ssetc31nd: lemma (forall t: initcond(t) •> Ssetc3(t))

and forall a, t: (1ndc5(s)

and traos(s, t) •> Ssotc3(t))

dqbinv11: lemma (forall t: initcond(t) •> dqb1nv1(t))

snd forall s, t: (1ndc5(s)

snd traos(s, t) •> dqbinv1(t)) 7.nev 852

C. The Readers/Writers Model in SPIN, SAL, and PVS

dqbinv2: l8111D1a (forall t: initcond(t) •> dqbinv2(t))

and. torall s, t: (1D.dc6(s)

and trans(s, t) •> dqb1nv2(t))Xunprovable, ve need:

Pi(t, 1): bool • next(t)(i) • r4

or next(t)(i) • r6 or next(t)(i) • n;

or next(t)(i) • r7 or next(t) (1) • r8

or next(t) (i) • waitAtl'll2

or next(t)(i) • rlseAtPII2

cr(t): finite_sot[indox] • {1: index I P1(t, 1)}

craux: leama :torall (t: state): (exists (1: index): next(t) (1) • r4

or noxt(t)(i) • n; or noxt(t)(i) • r6

or noxt(t)(i) • r7 or noxt(t)(i) • r8

or noxt(t) (1) • waitAtl'll2

or next(t) (1) • rlsoAtl'lll2) •> csrd(cr(t)) >• 1

cr1(t) :bool • card(cr(t)) • rd(t)

indc6(t): bool • indc6(t) and cr1(t)

crinv: lama (forall t: 1D.itcond(t) •> crl(t))

and forall s, t: Undc6(s)

and trans(s, t) •> cri(t)) Y.nev 669

dqbinv2final: 1...,.. (forall t: initcond(t) •> dqbinv2(t))

and forall s, t: (indc6(s)

and trans(s, t) •> dqbinv2(t)) Xnow-1777

dqbinv3: 1-a (forall t: initcond(t) •> dqbinv3(t))

and foral1 s, t: (indc6(s)

and trans(s, t) •> dqbinv3(t)) Xtor tho last goal

Xve nee<i dq1Dv4

dqinv4(t): boo1 • foral1 1: (noxt(t)(i) • r1soAtPww or next(t)(i) • w2

or next(t)(i) • w3) and cnt(w(t)) < 0 and cnt(•(t)) <• 0

and (forall (k: index): noxt(t)(k) /• waitAtPwr)

•> exists (k: index) :

noxt(t)(k) • rlseAtl'll1 or next(t)(k) • r2 or

next(t) (k) • r3 or next(t) (lr.) • rlseA.tPvr or

next(t)(k) • r4 or noxt(t)(k) • rlsoltl'll2 or

next (t)(k) • r7 or next (t) (k) • r8 or

next (t)(k) • r9

indc7(t): bool • indt6(t) and dqinv4(t)

dqbinv3final: 1...,.. (foral1 t: initcond(t) •> dqbinv3(t))

and torall a, t: (indc7(s)

and trans(s, t) •> dqbinv3(t)) Xnow - 756

dqinv4: 1..,aa (forall t: initcond(t) •> dqinv4(t))

and foral1 s, t: (indc7(s)

and trans(s, t) •> dqinv4(t)) Xnow-2694, with indc7

END dqb

10. dqbfinal.pvs

dqbfinal X [parameters

THEORY

BEGIN

X .ASSUMING

X assuming declarations

X ENDASSUMING

IMPORTING dqb

a: V AI\ stateneop

s1, t, u: VAR state

1: VAR index

'Y.in order to prove TCC for dqb

dqbinv6(t): boo1 • next(t)(piD(t)) /• EOP or foral1 1: next(t)(i) • EOP

indc8(t): boo1 • indc7(t) and dqbinv6(t)

dqbinv6tinal: 1...,... (forall t: initcond(t) •> dqbinv6(t))

and forall s, t: (1ndc8(s)

and trans(s, t) •> dqbinv6(t))

dqbaasistl: lemma nonempty? ({1: index I

0

89

90 C. The Readers/Writers Model in SPIN, SAL, and PVS

noxt(t)(i) /• vaitAtPIII1

AND next(t)(i) /• vaitAtPIII2

AND next(t) (1) /• vaitAtPvr

AND next(t)(t) /• vaitAtPw

AND next(t)(i) /• EOP}) and (LET rdcnt • rdcnt(t),

piD-

choose({!:

rd - rd(t),

wt. vt(t),

index I

next(t) (1)

AND next(t) (1)

AND next(t)(i)

AND next(t) (1)

AND next(t) (1)

cut. • cnt(•(t)),

set. • aet(a(t)),

cntw • Cllt(v(t)),

setv • set(w(t)),

nert • naxt(t)

IN

<• piD :• piD,

/• waitAtPat

/• vaitAtPII2

I• vaitAtPvr

/• vaitAtPw

/• EOP}),

m :• (I cnt :• CDtll, set :• setm I),

w :• (t: cnt :• cntv, set :• setw I),

rdcnt :• rd.cnt,

next :• next,

rd. :• rd.,

vt :• vt •>>
• u and illdc8(t) •> 1ndc8(u)

dqbasaist2: 181111a forall s: illdc8(s) •> (p17(s) •>
(exists t: trans(s, t) and not (m.(s) • m(t) and

v(s) • v(t) and rdcnt(s) • rdcnt(t) and

(forall 1: next(s)(i) • next(t)(t)) and

rd(s) • rd(t) and vt(a) • vt(t)))) X

dqbassist3: 101111a forall s: 1Ddc8(s) •> (p27(s) •>

(exists t: trans(s, t) and not (m(s) • m.(t) and

v(s) • v(t) and rdcnt(s) • rdcnt(t) and

(forsl1 1: next(a)(i) • next(t)(t)) and

rd(a) • rd(t) and vt(s) • vt(t)))) Xnev-120

dqbasaist4: 1._a forsl1 a: 1ndc8(a) •> (p32(a) •>

(exists t: trans(s, t) and not (a(s) • 11(t) and

v(s) • v(t) and rdcnt(s) • rdcnt(t) and

(forsll i: next(s)(t) • next(t)(i)) and

rd(a) • rd(t) and vt(a) • vt(t))))

dqbassist5: 1emaa forsll s: 1Ddc8(s) •> (p41(s) •>

7.120

(exists t: trans(s, t) and not (a(s) • m(t) and

v(s) • v(t) and rdcnt(s) • rdcnt(t) and

(forsl1 1: next(s)(i) • next(t)(i)) and

rd(s) • rd(t) and vt(s) • vt(t)))))1;181

dqbaasist6: 1- forsll s: 1Ddc8(s) •> (p31(s) or p40(s) •>

(exists t: trans(s, t) and not (m(s) • m(t) and

v(s) • v(t) and rdcnt(s) • rdcnt(t) and

(forsl1 1: next(s)(t) • next(t)(i)) and

rd(s) • rd(t) and vt(s) • vt(t)))) 7.153

dqbaasist: 1011111a forsll s: 1Ddc8(s) •>

(p4(s) or p13(s) or p22(s) or p36(s)

•> (exists t: (trans(&, t} and exists u: trans(t, u) and

not (m(t) • a(u) and

v(t) • v(u) and rdcnt(t) • rdcnt(u) and

(forall 1: next(t)(i) • noxt(u)(t)) and

rd(t) • rd(u) and vt(t) • vt(u)))))

dqb: lUIIIla torall at: (1ndc8(s1) •>

((forsl1 1: IntRW(next(s1)(1)) • 0) or

(exists t: (trans(st, t) and

(not (m(sl) • m(t) and

w(st) • v(t) and rdcnt(st) • rdcnt(t) and

(forsll 1: next(sl)(i) • next(t)(1)) and

rd(s1) • rd(t) and vt(s1) • vt(t)) or

(exists u:

C. The Readers/Writers Model in SPIN, SAL, and PVS

(trans(t, u) and not (A(t) • a(u) and

v(t) • v(u) and rdcnt (t) • rdcnt(u) and

(forall i: next(t)(i) • noxt(u)(i)) and

rd(t) • rd(u) and vt(t) • vt(u))))))))) Xnev-365justrerun

END dqbfinal

11. ordering

ordering

THEORY

BEGIN

iaporting dqbfinal

s: VAR stateneop

t: VAR state

activa(l: label): nat • if 1 • EOP then 0

else 1

end if

SUK(t: state, i: index): 1\EaJRSIVE nat •

if i • 1 then lntRW(noxt(t)(1))

else Inti\W(noxt(t)(i)) + SUM(t, i-i)

end if

measure 1

Pos(t: state, 1: index): RECURSIVE nat •

if i • 1 then act1ve(next(t)(1))

else active(next(t)(i)) + Pos(t, 1-1)

end if

measure 1

DQtotal(s, t): bool• table

Y.---------------------------------Y.
I Pos(s, Ml > Pos(t, K) I TIWE II

Y.----------------------------------1.
I Pos(s, M) • Pos(t, M)

and SUK(s, M) > SUK(t, M) I TI\UE II

1.-----------------------------------r.
I Pos(s, M) • Pos(t, M)

and SUK(s, M) <• SUK(t, M) I FALSE II

r.----------------------------------1.
I Pos(s, M) < Pos(t, M) I FW!E II

1.----------------------------------r.
endtable

partot: 18JIIIIla DQdecrease(s, t) •> DQtotal(a, t)

END ordering

12. pvs-strategies

%finding invariants

(defstep get_inv ()

(branch (split)

(then

(skoloal)

(flatten)

(typepred "next(t!1)")

(inst - "plD(t! 1) ")

(flatten)

(ind_inv1$)

(branch (split +)

((then

(try (skoloal)

(then

(ind_inv1$)

(expand "initcond")

(flatten)

(!nat - "i! 1")

(grind)) (grind))))))

91

92 C. The Readers/Writers Model in SPIN, SAL, and PVS

(then

(skolemtl

(flatten)

(ind_inv1$l

(typepred "next(s! 1l"l

(inst - "piD(st1)")

(flatten)

(expand• "ind7" "1nd.6" "1nd6" "1nd4"

"incl3" "1nd2" "indl" "incl.")

(branch (split +)

((then

(1nd_inv1$)

(try (skolOII!)

(then

(flatten)

(1nst - "111")

(branch (case "1!1-piD(s!1)")

((then

(a:r:pand "trans")

(branch (tasimpl

((if (equal (get-goalnum •ps•l 30)

(then (lemma '"trans_ TCC2")

(branch (inst - "piD(s!t)" "s!t" "s!l")

((branch (split -1)((1f (equal (get-goalnum •ps•l 30)

(then (grind))(postponell l)(then (reveal -2)

(hide -3 -4 -5 -6 -7 -8 -9 -10 +)(grind)))))

(then (inst - "plD(s!1)")(gr1nd))))))(sk1p))))

.. "")

(defstep 1nd_inv1 ()

(let ((sforas (s-fo:rms (current-goal •ps•)))

(1nv _name (string (icl (operator

(grind))))))))

(formula (car (select-seq storms 1llllllll

(ezpand inv_n.,...))

"")

(defstep 1nd_inv2 0
(let ((storms (a-forms (current-goal •ps•)))

(inv _name (string (id. (operator

(formula (car (select-seq storms 2llllllll

(expand inv_name))

"")

(defstep bddtrans 0

(let

((transvar

(gather-fnuas

(a-forms +goal•)

nil

•• (lambda (sf)

(and (negation? (formula sf)) (branch? (srgs1 (formula sf)))))) l

(bddsimp transvar)

);invariants of type forall (1:1ndex): P(x) •> v

(defstep a (srg)

(branch

(split)

((then (akolem!)

(flatten)

(expand "1n1tcond")

(flatten)

(ind_inv1$)

(skolem!)

(inst - "i!1"l

(grind)

C. The Readers/Writers Model in SPIN, SAL, and PVS

(then

(skoleml)

(flatten)

(let ((sfons (a-toms (current-goal •ps•)))

(indinv (string (id (operator (argst

(formula (car (select-seq storms -1)))))))))

(then (if (equal indinv "indc3") (expand• "1ndc3" "indc2"

"indc1" "indc•) (it (equal indinv "1ndc2")

(expand• "indc2" "1ndc1 11 "indc")(if (equal indinv "indct")

(expand• "indc1" "indc")(expand "indc"))))

(flatten)

(ind_inv1$)

(skolaall

(inst?)

(flatten)

(branch

(case "111-piD(sl1)")

((then

(h1de -2 -3)

(expand "trans")

(branch (tas1mp)

((if (equal (get-goalnum •ps•l 30)

(then

(then (leiDIIIa "trans_TCC2")

(branch Unst - "piD(alt)" "all" "aft")

((branch (split -1)((if (equal (get-goalnum +ps+) 30)

(then (grind))(postpone))))(then (reveal -4) (hide-all-but

: keep-fnums

(expand "trans")

(-1 -2 -12 -13 -14 -16 -16 -24

-26 -35 -27 -28))(grind)))))(then

(inst - "piD(s!1)")(grind))))))

(11 (equal arg "r") (then (hide -2) (expand• "CS1" "CSlpred")

(inst - "il1" "plD(BI1)"))

(then (hide -1) (expand• "CS2" "CS2pred")

(inat - "i!1" "piD(s!1)")))

(branch (tasimp)

((if (equal (get-goalnum •ps+) 30)

(then (leuaa "trans_TCC2")

(branch (iDst - "piD(sU)" "s!l" "ell'')

((branch (split -1)((1f (equal (get-goalnus +ps•l 30)

(then (inst - "il1")(gr1nd))(propax))))(then (reveal -4) (hide-all-but

: keep-fnWIS

(-1 -2 -12 -13 -14 -16 -16 -24

-26 -27 -28 -36))(grind)))))(then

(inst - "i11")(grind))))))))))))) .. "")

(defstep s1 0

(branch

(Split)

((grind)

(then

(skolea!)

(flatten)

(typepred "next(s! 1) ")

(inst - "piD(sl1)")

(let ((storms (a-forms (current-goal •pa•)))

(indinv (string (id (operator (args1

.. "")

(fonula (car (select-seq sfor118 -2)))))))))

(then (U (equal indinv "indc3") (then (expand "1ndc3") (expand "1ndc2")

(expand "indcl")(expand "indc")) (if (equal indinv "indc2")

(then (expand "1ndc2")

(expand "indc1")(expand "indc"))(if (equal indinv "1ndc1")

(then (expand "1ndc1")(expand "indc"))(expand "indc'))))

(flatten)

(grind))))))

93

94 C. The Readers/Writers Model in SPIN, SAL, and PVS

(da:tstep ind_invs 0

(let ((storms (a-forms (currentCgoal •ps•)))

(inv_name (string (i4 (operator

(fozmula (car (select-seq sfonos 2))))))))

(expsn4 inv _name))

"")

(4efstep ref_in4uct0

(let ((storms (s-torms (current-·goal •ps•)))

(refStepN&me (string (id (fomula (car storms))))))

(then (expand refStepName)

(split)))

till'"')

(defstep tasimp 0

(lot

((transvar (car

(gather-fnuma

(s-fol'IIB •goal•)

nil

I • (lambda (sf)

(and (negation? (formula sf)) (branch? (args1 (formula sf))))))))

(then (branch (split transvar) ((then (flatten) (skip)) (rspeato

(if (equal (get-goalnwa ops•) 1)

(then (flatten) (skip)) (then (flatten)

(branch (split -1) ((skip)(skip))))))))))

(4etstep s_tcc 0

(then

.. "")

(flatten)

(hi4e -1)

(skolem!)

(flatten)

(let ((sfozms (s-torms (current-goal ops•)))

(1n41nv (string (i4 (operator (args1

(formula (car (select-seq storms -1)))))))))

(then (expan4 indinv) (1f (equal 1nd1nv "1ndc8")

(expand• "1ndc8" "indc7" "indc6" "indc5"

"indc4" "indc3" "1ndc2" "i.Ddcl" "indc")

(it (equal ind.inv "indc7")

(expand.• •tndc7• "ind.c6" "indc6"

"indc4• "'1ndc3" 11 indc2" "indcl" "indc")

(if (equal indinv "1ndc6")

(expand• "indc6• 11 indc5"

"1ndc4" "indc3" "1nd.c2" "indcl" "indc")

(if (equal in4inv "indcS")

(expand• "1ndc6"

"1ndc4" "1ndc3" •1ndc2" 11 1ndc1" "indc")

(if (equal indinv "1ndc4")

(expand•

"1ndc4" "indc3" "1ndc2" "indcl" "indc")

(it (equal indinv "1ndc3")

(expand• "illd.c3" "1ndc2" "indcln "indc")

(1f (equal indinv "in4c2')

(expand• "indc2" "iD.dcl" "indc")

(if (equal indiDv "1ndc1")

(expand• "inclc1" "1nclc")(expand "inclc")))))))))

(flatten)

(s_tcc_aux$)

(expand• "pi" "p7" "plO" "p12" "p16"

"p19" "p25" "p30" "p33" "p39')

(grlncl))))

(de1step s_tcc_au:r. 0

(let

((transvar (car

C. The Readers/Writers Model in SPIN, SAL, and PVS

(gather-fnlllla

(s-fo%'118 •goal•)

nil

I • (lambda (sf)

(and (negation? (for11ula sf)) (disjunction?

(argo! (foi'IIula at))))))))

(hide-all-but :keep-fnu.a (-3 -4 -6 -6 -7 -15 -17 -18 -19 -26

tranavar)))

xa .. aphore invariants

(dofstop cas (inv)

(let ((invname (concatenate 'string inv "pred.")))

(branch

(split)

((than (akol .. l)

(flatten)

(expand inv)

(expand "initcond")

(flatten)

(skolea!)

(inat - "111")

(grind)

)

(than

(sko18J11!)

(flatten)

(expand• "ind.cl" "ind.c")

(flatten)

(expand• inv iD.VD81l8)

(ind_invl$)

(akolaal)

(inst-ep- "ill" "jll')

(flatten)

(expand• "531" "832" "833" "S34" "S35" "S36" "837" "S38" "839"

"S4t" "842" •set • "S82" "583" •sto• •stot.. "sut • "S112"

"5113" '5114" "5116" '8121" '5122" "5123" '5124" '5126"

"5131" '8132' '8133" "591' '592" '5140")

(branch

(case "i11-piD(sl1)')

((then

(it (equal inv "C51") (hide -4 -6) (hide -2 -3))

(ropoato (inst - 'jll"))

(expud "trans")

(then

(brancb (tasisp)

((it (equal (got-goalDUil •ps•) 30)

(then (luaa. "trana_T<X::2")

(branch (iD.at - •piD(alt)" "s!t" "a11")

((brancb (split -!)((if (equal (got-goalnua •ps•) 30)

(than (inst-ep- "piD(sll)')(inst- "jll")(grind))(propu))))

(than (hide-all-but :koop-fn1111B -1)

(it (equal inv 'CSI")

(reveal -12 -13 -26 -26 -27 -66 -74 -82 -63 -86)

(reveal -11 -12 -13 -26 -26 -27 -66 -74 -82 -63))

(grind)))))

(than (inet-cp - 'plD(a!l)")(inst - "jll")(grind))))))

(If (equal inv "CSI') (hide -6) (hide -1))

(inst-ep - "111" "piD(stl)")

(inst - 'jll" "piD(al1)")

(repeat• (inst - "1!1"))

(expand "trans")

(branch (taelmp)

((if (equal (got-goalnua •pa•) 30)

(then (leJUDa "trans_TCC2")

95

96

.. "")

C.4

C. The Readers/Writers Model in SPIN, SAL, and PVS

(branch (inst - "piD(stt)" "&!1 11 •s!l")

((branch (split -1)((if (equal (get-goalnum •ps•) 30)

(then (inst-ep- 'jl1')(inst - "111")(grinci))(propu:))))

(then (hide-all-but :keep-tnums -1)

(i:t (equal inv "CSP)

(reveal -13 -14 -26 -27 -28 -67 -75 -83 -84 -86)

(reveal -12 -13 -14 -26 -27 -28 -67 -75 -83 -84))

(grind)))))

(then (inst-ep - "jl1")(inst - 'il1')(grinci))))))))))))

The List of All Auxiliary Invariants

t: VAR state

i, j: VAl\ index

S7(t): bool • (rdent(t) >- 0)

S2(t): bool • (cnt(v(t)) <• 1)

51 (t): bool • (cnt(m(t)) <• 1)

S6(t): bool • (cnt(v(t)) • 1 •> (vt(t) • 0 and rd(t) • 0))

S91(t): bool • forall (i: index): next(t)(i) • rlaeAtPvr

implies vt (t) • 0

S92(t): bool • torall (1: index): next(t)(i) • rlseAtPvr

implies ent(v(t)) <• 0

S33(t): bool • forall (1: index):

(next(t)(i) • rlseAtl'll1)

implies cnt(m(t)) <• 0

S34(t): bool • torall (i: index):

(next(t)(i) • r2) implies cnt(m(t)) <• 0

S35(t): bool • forall (i: index):

(next(t)(i) • r3)

implies ent(a(t)) <• 0

S31(t): bool • torall (i: index):

next(t) (1) • r4

implies cnt(m(t)) <• 0

S36(t): bool • forall (i: index):

(next (t)(i) • rlseAtPm2)

implies cnt(m(t)) <• 0

S37(t): bool • forall (i: index):

next(t) (i) • r7

implies cnt(m(t)) <• 0

S38(t): bool • torall (i: index):

next(t)(i) • r8

implies ent(m(t)) <• 0

S32(t): bool • forall (i: index):

next(t)(i) • r9

implies cnt(m(t)) <• 0

S39(t): bool • forall (1: index):

next(t) (i) • rlseAtPvr

implies ent(m(t)) <• 0

S41(t): bool • torall (i: index): next(t) (i) • r3

implies rdcnt(t) • rd(t) + 1

S42(t): bool • forall (i: index): next(t)(1) • rlseAtPvr

implies rdcnt(t) • rd(t) + 1

S5(t): bool • forall (i: index): next(t)(1) • r8

implies rd(t) • rdent(t) + 1

S81(t): bool • torall (i: index): next(t) (i) • rlseAtPvv

implies vt (t) • o

S82(t): bool • torall (i: index): next(t)(i) • rlseAtPvv

implies rd(t) • 0

S83(t): bool • torall (i: index): next(t)(i) • rlseAtPvv

implies cnt(v(t)) < 1

S10(t): bool • torall (i: index): next(t)(i) • v2

implies vt(t) • 1

C. The Readers/Writers Model in SPIN, SAL, and PVS

S101(t): bool • forall (i: index): next(t)(i) • v3

implies vt(t) • 1

5111 (t): bool • forall (i: index): next(t)(i) • r7

tap lies rd(t) • rdcnt(t)

S112(t): bool • :torall (i: index): next(t)(i) • r2

implies rd(t) • rdcnt(t)

S113(t): bool • forall (i: index): next(t)(1) • r4

implies rd(t) • rdcnt(t)

S114(t): bool • forall (i: index): next(t)(i) • rlsaAtJ>.l

implies rd(t) • rdcnt(t)

S116(t): bool • forall (i: index): next(t)(1) • rlseAtPIR1

S121(t):

S122(t):

S123(t):

S124(tl:

S126(t):

S131(t):

implies rd(t) • rdcnt(t)

bool • :torall (1: index): next(t)(i)

illplies rd(t) >- 1

bool • forall (1: index): next(t)(i)

ialplies rd(t) >• 1

bool • forall (1: index): next(t)(i)

implies rd(t) >- 1

bool • forall (1: index): next(t)(1)

implies rd (t) >• 1

bool • forall (i: index): next(t)(i)

implies rd (t) >- 1

bool • forall (i: index): next(t)(1)

and cnt(m(t)) • 1

implies rdcnt(t) • rd(t)

• r4

• r6

•r6

• rlsaAtPil2

• r7

• r1

S132(t): bool • forall (i: index): next(t)(i) • r6

and cnt(m(t)) • 1

implies rdcnt(t) • rd(t)

S133(t): bool • forall (i: index): next(t)(i) • r6

and cnt(m(t)) • 1

implies rdcnt(t) • rd(t)

S140(t): bool • forall 1: next(t)(i) • vaitAtPwr

implies cnt(a(t)) <• 0

S43(t): bool • torall i: next(t)(1) • vaitAtPwr

implies rdcnt(t) • rd(t) + 1

S160(t): bool • forall 1: next(t) (1) • r9

implies rdcnt(t) • rd(t)

a(t) :bool • card(au(t)) • rdcnt(t), where

au(t): finite_set[index) • {1: index I P(t, 1)}

P(t, 1): bool • next(t)(i) • r3 or next(t) (1) • r4

or next(t)(i) • r6 or naxt(t)(i) • r6

or next(t)(1) • r7 or next(t)(i) • vaitAtPwr

or next(t)(i) • rlseAtPwr or next(t)(i) • vaitAtPa2

or next(t) (1) • rlseAtPa2

CS1(t): bool •

(forall (1, j: index): CS1pred(t, 1) and

CS1pred(t, j) •> 1 • j), where

CS2(t): bool •

CS1pred(t, i): bool • next(t)(i) • rlsaAtPa1

or next(t) (1) • r2 or

next(t)(i) • r3 or next(t) (1) • r4

or next(t)(i) • rlsaA.tPa2

or next(t) (i) • r7 or next(t) (i) • r8

or next(t) (i) • r9 or next(t) (i) • waitA.tPwr

or next (t)(i) • rloeAtPwr

(forall (1, j: index): CS2pred(t, 1) and CS2pred(t, j)

•> 1 • j), where

CS2pred(t, 1): bool • next(t) (i) • v2

or next(t) (1) • v3 or

next(t)(1) • rlseAtPwr or next(t) (i) • rloeAtPvv

%The additional invariants need.ecl :tor the clean coapletion proof:

Ssetal(t): bool • forall 1 :aot(•(t))(i) <•> noxt(t)(i) • wa1tAtPm1

or next(t) (1) • vaitA.tPIII2

Soetvi(t): bool • forall 1 :set(v(t)) (1) <•> next(t)(1) • va1tAtPvv

or naxt(t) (1) • waitA.tPwr

Ssetc(t): bool • cnt(m(t)) <• 0 •> card(oet(m(t))) • abo(cnt(m(t)))

Ssetcl(t): bool • cnt(m(t)) • 1 •> card(oet(a(t))) • 0

Ssetc2(t): bool • cnt(v(t)) <• 0 •> card(set(v(t))) • aba(cnt(v(t)))

97

98 C. The Readers/Writers Model in SPIN, SAL, and PVS

Ssetc3(t): bool • cnt(v(t)) • 1 •> card(set(v(t))) • 0

cr1Ct) :bool • csrd(cr(t)) • rd(t), whore

P1(t, 1): bool • noxt(t)(1) • r4

or next(t)(1) • r6 or next(t) (1) • r6

or noxt(t)(t) • r7 or next(t)(1) • r8

or next(t) (1) • wa1tAtPm2

or next(t) (1) • rlsoAtl'll2,

cr(t): tinite_set[indox] • {1: index I Pt(t, 1)}

dqbinvt(t) :bool • torall (1: index): (next(t)(i) • vaitAtl'llli or

next(t) (1) • va1tAtl'll2 or noxt(t) (1) • vaitAtPvr or

next(t) (1) • vaitAtPvv)•>

exists (j: index): (next(t)(j) /• va1tAtl'lll1 and

next(t)(j) /• va1tAtPs2 and next(t)(j) /• vaitAtPvr and

next(t)(j) /• vaitAtPvv and next(t)(j) /• EOP)

dqb1nv2(t): bool • cnt(v(t)) <• 0

•> exists 1:

(next(t) (1) • rlseAtl'llli and rd(t) >• 1) OR

(noxt(t) (1) • r2 and rd(t) >• 1) OR

(next(t) (1) • r3 and rd(t) >• 1) OR

next(t) (1) • rlseAtPvr or next(t) (1) • r4 or

next(t)(i) • r6 or next(t)(i) • r6 or

next(t) (1) • rlseAtPa2 or next(t) (1) • r7 or

next (t) (1) • r8 or next (t)(1) • rlseAtPvv or

(next(t)(1) • r9 and rd(t) >• 1 and cnt(m(t)) < 0)

or next(t)(1) • v2 or next(t)(1) • v3

dqb1nv3(t): bool • cnt(m(t)) <• 0

•> exists 1:

next(t)(i) • rlseAtl'llli or next(t)(i) • r2 or

next (t)(1) • r3 or next (t)(1) • rlseAtPvr or

next(t)(1) • r4 or next(t)(1) • rlseAt1'112 or

next(t)(1) • r7 or next(t)(i) • r8 or next(t)(1) • r9 or

(next(t)(i) • rlaeAtPvv and cnt(v(t)) < 0) or

(next(t)(1) • v2 and cnt(v(t)) < 0) or

(next(t)(1) • v3 and cnt(v(t)) < 0)

dqinv4(t): bool • forall 1: (next(t)(1) • rlseAtPvv or next(t)(i) • v2

or next(t)(i) • v3) and cnt(v(t)) < 0 and cnt(•(t)) <• 0

and (forall (k: index): next(t)(k) /• vaitAtPvr)

•> exists (k: index) :

next(t)(k) • rlaeAtPml or next(t)(k) • r2 or

next(t)(k) • r3 or next(t)(k) • rlseAtPvr or

next(t)(k) • r4 or next(t)(k) • rlseAtl'lll2 or

next(t) (k) • r7 or next(t) (k) • rB or

next(t) (k) • r9

dqb1nv5(t): bool • next(t)(piD(t)) /• EOP or forall 1: next(t)(i) • EOP

C.5 Invariants From the Manual Proof of Read-

ers/Writers Problem

rpl(t): bool • vt(t) • 0 or rd(t) • 0

rp2(t): bool • vt(t) < 2

Vi(t): bool • rd(t) >• 0

V2(t): bool • vt(t) >• 0

V3(t): bool • (rdcnt(t) >• 0)

V4(t): bool • (cnt(w(t)) <• 1)

VS(t): bool • (cnt(m(t)) <• 1)

V6(t): bool • (cnt(w(t)) • 1 •> (vt(t) • 0 and rd(t) • 0))

V7(t): bool • (rdcnt(t) > 1 •> rd(t) >• 1)

V8(t): bool • (cnt(w(t)) < 1 •> ((vt(t) • 1 and rd(t) • 0) or

(rd(t) >• 1 and vt(t) • 0) or

(rd(t) • 0 and vt(t) • 0 and

exists (1: index): (next(t)(i) • rlseAtPvr

or next(t)(i) • rlsoAtPvv))))

C. The Readers/Writers Model in SPIN, SAL, and PVS

V9(t): bool • (exists (i: index): (1 • piD(t) and (next(t)(i) • r3 or

next (t)(i) • rlseAtPvr or

next(t)(i) • r4 or naxt(t)(i) • r6 or

next(t)(1) • r6 or next(t)(i) • rlseAtl'll2

or next(t)(i) • r7))) •> rdcnt(t) > 0

V10(t): bool • ((exists (i: index): i • piD(t) and next(t)(1) • rlaeAtPvr)

illlpliea (rd(t) • 0 and cnt(v(t)) < 1))

VU(t): bool • (exists (i: index): i • piD(t) and (next(t)(i) • rlseAtl'll1 or

next(t)(1) • r2 or next(t)(i) • r3 or

next(t) (i) • rlseAtPvr or

next(t)(i) • r4 or

next(t)(i) • rlaaAtl'll2 or

next(t)(i) • r7 or naxt(t)(i) • r8 or

naxt(t)(1) • r9)) illplies cnt(•(t)) < i

V12(t): bool • (exists (i: index): i • piD(t) and (next(t)(1) • r1 or

next (t)(i) • rlseAtPal or

next(t)(i) • r2 or next(t)(i) • r4 or

next(t)(1) • r6 or next(t)(i) • r6 or

next(t)(l) • rlaeAtPII2 or next(t)(i) • r7

or next(t)(i) • r9)) illplias

rd(t) • rdcnt(t)

V13(t): bool • (exists (i: index): i • piD(t) end (next(t)(1) • r3 or

next (t)(1) • rlseAtPvr)) illplies

rd(t) • rdcnt(t) - 1

V14(t): bool • (exists (i: index): i • piD(t) and next(t)(i) • r8) implies

rd(t) • rdcnt(t) + 1

V16(t): bool • (exists (i: index): i • piD(t) and next(t)(i) • rlseAtPw)

implies (vt(t) • 0 and cnt(v(t)) < 1)

V16(t): bool • (exists (i: index): i • piD(t) and (next(t)(i) • v3 or

next (t) (1) • v2)) implies

(vt(t) • 1 end cnt(v(t)) < 1)

99

	Pantrlic_Vera_2005_12_master0001
	Pantrlic_Vera_2005_12_master0002
	Pantrlic_Vera_2005_12_master0003
	Pantrlic_Vera_2005_12_master0004
	Pantrlic_Vera_2005_12_master0005
	Pantrlic_Vera_2005_12_master0006
	Pantrlic_Vera_2005_12_master0007
	Pantrlic_Vera_2005_12_master0008
	Pantrlic_Vera_2005_12_master0009
	Pantrlic_Vera_2005_12_master0010
	Pantrlic_Vera_2005_12_master0011
	Pantrlic_Vera_2005_12_master0012
	Pantrlic_Vera_2005_12_master0013
	Pantrlic_Vera_2005_12_master0014
	Pantrlic_Vera_2005_12_master0015
	Pantrlic_Vera_2005_12_master0016
	Pantrlic_Vera_2005_12_master0017
	Pantrlic_Vera_2005_12_master0018
	Pantrlic_Vera_2005_12_master0019
	Pantrlic_Vera_2005_12_master0020
	Pantrlic_Vera_2005_12_master0021
	Pantrlic_Vera_2005_12_master0022
	Pantrlic_Vera_2005_12_master0023
	Pantrlic_Vera_2005_12_master0024
	Pantrlic_Vera_2005_12_master0025
	Pantrlic_Vera_2005_12_master0026
	Pantrlic_Vera_2005_12_master0027
	Pantrlic_Vera_2005_12_master0028
	Pantrlic_Vera_2005_12_master0029
	Pantrlic_Vera_2005_12_master0030
	Pantrlic_Vera_2005_12_master0031
	Pantrlic_Vera_2005_12_master0032
	Pantrlic_Vera_2005_12_master0033
	Pantrlic_Vera_2005_12_master0034
	Pantrlic_Vera_2005_12_master0035
	Pantrlic_Vera_2005_12_master0036
	Pantrlic_Vera_2005_12_master0037
	Pantrlic_Vera_2005_12_master0038
	Pantrlic_Vera_2005_12_master0039
	Pantrlic_Vera_2005_12_master0040
	Pantrlic_Vera_2005_12_master0041
	Pantrlic_Vera_2005_12_master0042
	Pantrlic_Vera_2005_12_master0043
	Pantrlic_Vera_2005_12_master0044
	Pantrlic_Vera_2005_12_master0045
	Pantrlic_Vera_2005_12_master0046
	Pantrlic_Vera_2005_12_master0047
	Pantrlic_Vera_2005_12_master0048
	Pantrlic_Vera_2005_12_master0049
	Pantrlic_Vera_2005_12_master0050
	Pantrlic_Vera_2005_12_master0051
	Pantrlic_Vera_2005_12_master0052
	Pantrlic_Vera_2005_12_master0053
	Pantrlic_Vera_2005_12_master0054
	Pantrlic_Vera_2005_12_master0055
	Pantrlic_Vera_2005_12_master0056
	Pantrlic_Vera_2005_12_master0057
	Pantrlic_Vera_2005_12_master0058
	Pantrlic_Vera_2005_12_master0059
	Pantrlic_Vera_2005_12_master0060
	Pantrlic_Vera_2005_12_master0061
	Pantrlic_Vera_2005_12_master0062
	Pantrlic_Vera_2005_12_master0063
	Pantrlic_Vera_2005_12_master0064
	Pantrlic_Vera_2005_12_master0065
	Pantrlic_Vera_2005_12_master0066
	Pantrlic_Vera_2005_12_master0067
	Pantrlic_Vera_2005_12_master0068
	Pantrlic_Vera_2005_12_master0069
	Pantrlic_Vera_2005_12_master0070
	Pantrlic_Vera_2005_12_master0071
	Pantrlic_Vera_2005_12_master0072
	Pantrlic_Vera_2005_12_master0073
	Pantrlic_Vera_2005_12_master0074
	Pantrlic_Vera_2005_12_master0075
	Pantrlic_Vera_2005_12_master0076
	Pantrlic_Vera_2005_12_master0077
	Pantrlic_Vera_2005_12_master0078
	Pantrlic_Vera_2005_12_master0079
	Pantrlic_Vera_2005_12_master0080
	Pantrlic_Vera_2005_12_master0081
	Pantrlic_Vera_2005_12_master0082
	Pantrlic_Vera_2005_12_master0083
	Pantrlic_Vera_2005_12_master0084
	Pantrlic_Vera_2005_12_master0085
	Pantrlic_Vera_2005_12_master0086
	Pantrlic_Vera_2005_12_master0087
	Pantrlic_Vera_2005_12_master0088
	Pantrlic_Vera_2005_12_master0089
	Pantrlic_Vera_2005_12_master0090
	Pantrlic_Vera_2005_12_master0091
	Pantrlic_Vera_2005_12_master0092
	Pantrlic_Vera_2005_12_master0093
	Pantrlic_Vera_2005_12_master0094
	Pantrlic_Vera_2005_12_master0095
	Pantrlic_Vera_2005_12_master0096
	Pantrlic_Vera_2005_12_master0097
	Pantrlic_Vera_2005_12_master0098
	Pantrlic_Vera_2005_12_master0099
	Pantrlic_Vera_2005_12_master0100
	Pantrlic_Vera_2005_12_master0101
	Pantrlic_Vera_2005_12_master0102
	Pantrlic_Vera_2005_12_master0103
	Pantrlic_Vera_2005_12_master0104
	Pantrlic_Vera_2005_12_master0105
	Pantrlic_Vera_2005_12_master0106
	Pantrlic_Vera_2005_12_master0107
	Pantrlic_Vera_2005_12_master0108
	Pantrlic_Vera_2005_12_master0109
	Pantrlic_Vera_2005_12_master0110
	Pantrlic_Vera_2005_12_master0111

