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A mechanism by which smooth initial conditions evolve towards a topological reconfiguration of
fluid interfaces is studied in the context of Darcy’s law. In the case of thin fluid layers, nonlinear
PDEs for the local thickness are derived from an asymptotic limit of the vortex sheet representation.
A particular example considered is the Rayleigh—Taylor instability of stratified fluid layers, where
the instability of the system is controlled by a Bond numBelt is proved that, for a range & and

initial data “subharmonic” to it, interface pinching must occur in at least infinite time. Numerical
simulations suggest that “pinching” singularities occur generically when the system is unstable,
and in particular immediately above a bifurcation point to instability. Near this bifurcation point an
approximate analytical method describing the approach to a finite-time singularity is developed. The
method exploits the separation of time scales that exists close to the first instability in a system of
finite extent, with a discrete spectrum of modes. In this limit, slowly growing long-wavelength
modes entrain faster short-wavelength modes, and thereby, allow the derivation of a nonlinear
evolution equation for the amplitudes of the slow modes. The initial-value problem is solved in this
slaved dynamics, yielding the time and analytical structure of a singularity that is associated with the
motion of zeros in the complex plane, suggesting a general mechanism of singularity formation in
this system. The discussion emphasizes the significance of several variational principles, and
comparisons are made between the numerical simulations and the approximate thedi§98 ©
American Institute of Physic§S1070-663(98)01810-9

I. INTRODUCTION singularities there is a whole class that can be formulated in
the flux form
Since the work of Plateau in the 19th century and con- i o
tinuing with Rayleigh's contributions, one focus in the study ~ M7 ix=0, with j=R(hget---). @
of natural patterns has been hydrodynamic instabilities. BYEquations of this type describe phenomena as diverse as in-
and large, models of these phenomena were solved in theigrface motion in thin-film flow, Marangoni convectidmat-
linearized form. These solutions have provided us with aern formation in population dynami@s’;he homogenized
great wealth of information such as characteristic length an¢hodel of Type-ll superconductofsand the oxidation of
time scales associated with the incipient patterns. Howevegsemiconductor surfacés.
it is clear that some of the most interesting situations occur ~ Within this group we study here the case of the
beyond the point at which these linearized approximationgRayleigh—Taylor(RT) instability of stratified fluid layers in
break down. For example, linear theories @sually un-  Hele—Shaw flow:’ This flow is described by Darcy’s law,
able to provide us with finite time singularities. This fact which is not only intrinsically interesting, but also of consid-
alone renders them inaccurate at best and plain and simpbtable importance by being a prototype of models of continu-
wrong at worst. No linear theory can describe a phenomenogus media that display instabilities. Thus, it serves as a natu-
as familiar as the splitting of a drop of water. This is but oneral testing ground for methods of studying finite-time
example of a more general question: How do smooth initiakingularities. In this context, we give a complete derivation
conditions evolve to produce finite-time singularities? of a partial differential equatioPDE) that describes the
Of the many different systems that present finite-timeRayleigh—Taylor instability of thin fluid layers, starting from
an exact vortex sheet formulation, the basic results of which
“Author to whom correspondence should be addressed. Telephone: 21%/€r€ announced earliThis derivation provides a system-
998-3284; Fax: 212-995-4121; Electronic mail: shelley@cims.nyu.edu  atic justification for more phenomenological arguments used
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in related work®° and is based on an expansion in powers ofwith that found in our numerical simulations.
the aspect ratio of the layer; truncation at second order gives
what is known as “lubrication theory.” Heré is the layer
thickness. The flu=hU in Eg. (1) has a velocityU~
— Py arising from Darcy’s law, and the pressiPes set by In this section we derive the equation of motion of in-
boundary conditions involving surface tension and gravity.terfaces bounding a thin layer of fluid in a Hele—Shaw cell.
In other contexts, the velocity has the more general farm The necessary mathematical formalism is best illustrated by
~—h™VP, such as in the spreading of dropa<2). Such  considering first the motion of a single interfateThe two
lubrication approximations have been the focus of a considfluids which it separates are labeled 1 and 2, and likewise for
erable body of subsequent work on the flow and rupture otheir densitiesp and viscositiesu, and are assumed to obey
thin films and the spreading of drops,” and provided the Darcy’s law
background for long-wave theories used to study the fission- 2
ing of axisymmetri¢®~??and planar jet$3 Vit~ 12u; (VPj—p;F) and V-v;=0. 2

Two of the works based on the derived lubrication ) . . ]
model(1) are of particular relevance here. First, Bertozzi and€reb is the gap width of the cell; andP; are the velocity
Pugh* analyze a class of lubrication-type PDEs which haved pressure in each fluid<1,2), andF=—V¢ is a body
a long-wave instability. This class includes the P[Eg. (9),  force(e.g., gravitational forge Each pressur®; is harmonic
below] that is the primary focus here. For this PDE they@nd acts as a velocity potential. We defire= (u,
provide ana priori upper bound of,, and prove thatih ~ — #2)/ (k2T 1) as the Atwood ratio for the viscosities,
is positive then it is also smooth. Thus, smoothness can onI9P2P1_P2v and0=6(,u.1.+ m2)/0%. ) )
be lost though a pinching singularity, i.é1)0. They also _ The.boundgry conditions at the interfateare (i) the
prove the global existence of a nonnegative “weak” solu-kinematic condition
tion, a result that does not preclude the formation of pinching (V17— V2)* n|r=0, G
singularities. They conjecture that one scenario for the ultiand i) the Young—Laplace condition
mate state of the system is relaxation to a set of compactly P,—P,=-0x«, 4)
lejr?]g(:;id g:r?gg/;’ rz%‘gné’r ecnonrgrer::;(\alg t;)tlufj?éz Stﬁtes"iﬁ_conv(?/heren is the upward normal td’, © is the surface tension,

forced” lubrication equation, which is a special case of the\?v?tikt ;]Set:ix;\ﬁltsi:je\?;'Olcr;t;dd't'on’F is required to move
m w nsider, and which has no long-wave in ility. . ' L
system we consider, and which has no long-wave instability We assume thal” is a graph %,h(x,t)), that is, its

For a special class of smooth initial data forthey observe . e g . . .

numerically and analyze three types of pinching singulari-he'ghth(x‘t) IS :_smglle valued irx. Sincel” moves with fluid

ties, two of which were found earlie?*and are central " the normal directionhi(x,t) obeys

here. hy(x,t)=v —uh,(x,t), (5)
We obtain variational principles that allow us to study where {,v) is the mean fluid velocity &f.

the stability of nontrivial positive steady-states. For the  The dynamics ofl’ can be given self-consistently by

Rayleigh—Taylor case, these same variational principles alsesing a vortex sheet representation for the fluid

allow us to prove that PDE must develop a pinchh¢0, in  velocity>?®?"That is,U= (u,v) can be expressed entirely in

at least infinite time, for a range of bond number and initialterms ofh(x,t) and its derivatives

IIl. THE EQUATIONS OF MOTION

data that is subharmonic to its associatedndimensional — 1 ro (h(x")—h(x),x—=x")
length-scale. If a pinch occurs in finite time, thenmust Y[ 71= or Pf_x dx’y(x') (x—x") 2+ (h(X)—h(x' )2’
develop a singularity. Our numerical results suggest that the (6)

approach to a pinch is generic when the system is unstable. - .

We also find strong numerical evidence to support a finitdVhere the vortex sheet strengghsatisfies a Fredholm inte-
time singularity in the PDE immediately above the bifurca-9r@l €quation of the second kind

tion to instability. Finally, we develop an approximate ana-7+2A,Uly]-(1hy)

lytical technique to solve the initial-value problem, based on

a separation of time scales near this onset of instability. This = 7 {O ky+ApV d(x,h(x))-(1h,)}. @
analysis involves the merging of two previously independent

ideas from dynamical systems theory: The coupling ofFor the problems of interest here, this integral equation has a
slaved small spatial scales to low-mode dynamics as in thanique solution.

reduction of dissipative PDEs to inertial manifofdsand the This framework is readily extended to the case of two
description of interface motion in terms of zeros or singulari-interfaces bounding a layer of fluid and yields a pair of
ties in the complex plan®. Comparison of this approximate coupled equations analogous(& and(7). We consider the
theory with our numerical simulations show very good simplest case, shown in Fig. 1, where the interfaces are mir-
agreement until quite close to the apparent singularity timeror images with respect to theaxis. This is equivalent to the
when the assumptions underlying the theory break down, andase of a single interface bounding a fluid layer against a
the simulations show a divergence from its predictionswall.

Nonetheless, we do find that the ultimate spatial structure of To gain insight into this mathematically complicated
the singularity suggested by this analysis agrees very weblystem, we simplify the equations of motion by considering
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as opposed to the exact result

8 1 —
hy I o=~ 5 ([K[*=Blk|)(1—e kM), (12

v Equation(11) follows from Eq.(12) by expansion in small

;h(x,t) keh, as the lubrication approximation is a long-wavelength
—————————————————————————————— theory.

P, 1, The relation(11) gives the familiar result that the fluid is

T unstably stratified i8>0, i.e., the heavier fluid is on top.
L This Rayleigh—Taylor instability is suppressed at small

i length scales by surface tension.

FIG. 1. A schematic of a thin layer of fluid, trapped between two others, in
the Hele—Shaw cell. B. The gravity-driven jet

Again expanding to second orderdnand rescaling time
as above, we find thdt is governed by the nonlocal PDE
a thin fluid layer. Let the fluid layer have lengthand a B M1
mean thicknessv. We considelL as scaling with the lateral he(x.1) = € hy= _aX{ h( M= B o '%{hx]) ] (13
width of the cell. We define a thin fluid layer as one for . .
which e=w/L <1, and expand the full system & We will where 7 repiresen:i the :c-hlt?ert transform
see that retaining only the leading-order terms of this expan-  71f]= = p dx’ )
sion yields the so-called lubrication approximation. T )
The essential aspects of the expansion procedure are §ge nonlocal term if13) is absent when there is no outer
follows. We rescalex with L, h with w, and t with T q,ig resulting in the simpler local jet dynamics
=0/L36 (y scales naturally then with/T). The expansion B
in € of the vortex sheet integrals, which dependwoh, , and hi(X,t) — — hy=—d,(hhyy). (15
k=hy/(1+h2)%2 is very involved; the details of the €
method are given in Appendix A, and rely on techniquesin either case, the ternB(e)h, arises only because of time
developed in Ref. 28. being scaled upore [as in Eq.(9)]. This term is neutral
We consider two cases. The first consists of a fluid layewithin the dynamics and can be removed by a change-of-
against a wall, with the gravitational force acting perpendicuframe (at least for periodic boundary conditions
lar to the layer E=—gy). This leads to a Rayleigh—Taylor Once again, the linearization of the full lubrication
instability. The second case is that of a gravity driven jettheory result(13) about a jet of mean thickne$syields the
falling through another fluid. Here, the gravitational force islong-wavelength limit of the exact result from the vortex
parallel to the layerf=gx). Unless stated otherwise, for the sheet formulation. The growth rate frofh3) is

x (14

X—X

remainder of the paper we considetr-periodic solutions to B R,
the equations of motion. ox=1 — k+iBk PR hk| - hk®. (16)
A. The Rayleigh—Taylor instability Thus the density stratification, regardless of the sigBof
By expanding to second order ig we find thath is leads only to linearly dispersive waves damped by the sur-
governed by the local PDE face tension. _ .
The equations of motioi9), (13), and (15 are in the
(1-A, ) hi=—edy(h(hywt+Bhy)). (8  form of a conservation law fon
By defining a rescaled tim& =et/(1—-A,) (and immedi- h+j,=0, j=hU, (17)

ately dropping th€), we have o ) o
wherej is a current andJ is the mean velocity given by

hi=— dx(h(hyx,+ Bhy)). (9 Dparcy’s law. It follows from this form that ifh vanishes
Here the Bond number anywhere in finite time there is a singularity in the velocity
gApL2 gradientU, .
B= 9 (10

Ill. VARIATIONAL PRINCIPLES AND THEIR
measures the relative importance of buoyancy to the restoCONSEQUENCES

ing force of surface tension. Whed=0, we recover the . . .
'ng > S! W v The equations of motion for both the Rayleigh—Taylor

equation studied in earlier worRs. ) ) .
It is useful to compare the linear stability of a flat inter- problem(9) and the local jet dynamicel5) have the varia-

faceh(x)=h in the lubrication approximation with the exact tional form
vortex sheet calculation. In the lubrication approximation, B o
the growth rate of a disturbance of wave numkés he=—dx) hox Sshll: (18)

o= —F(k“— Bk?), (11  The characteristic velocity
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B o
U=-—9, ik (29 a

is the gradient of a generalized pressure, according to Dar-
cy’s law. It follows from (18) and (19) that.” decreases
monotonically in time

2
7t: - J dthZ, (20) FIG. 2. Bifurcation diagram showing stab{solid) and unstablgdashed
0 solution branches as a function of bond number. The solid circles represent
. . . . maximum amplitudes for positivi.
provided the widthh is non-negative.

The functional that generates E®) from (18) is

2m J—
o RT”‘]:%L dx{h;—B(h*=h")} - J “axt? (25)
. t__ X*
hJo
=32 (k=B)|h 2, (21) o o
k%0 Now the entropy derivative is completely definite in sign,

A ) ) and the entropy is monotonically increasing.
whereh, is thekth Fourier amplitude oh. Note that when These variational principles lead very directly to several
B<1, 7rr is strictly positive, but otherwise is of indefinite  agts.

sign. For the jet dynamickl5) the energy functional is

27 1 B
7 = Zn2+ =
Tielh]= fo dx[z hi+ € hx]. 22 Steady states for the stratified layer

) For the unstably stratified layer, the variational principle

In both cases, the term)h; represents the excess arclengthyjiows an enumeration of possible steady states. Here, we
of a curved interface, while the contribution proportional to giscuss smooth steady states and their stability.
B is the potential energy of the fluid layer in the gravitational Let ho(x) be a smooth and positive m2periodic steady
field. This second term is invariant in time, and so does Nokiate to Eq.9). Then, by Eq.(20), hy(x) must satisfyU
contribute to the evolution of the energy. =0, or equivalently,h, must be in the null space of the

A quite different, but very useful, quantity is the entropy skew-symmetric linear operatalg = d,,,+ Bdy. For B<0,
of the system, defined as only the flat equilibrium,ho=h, is possible. However, for

o B>0, this requirement gives two possibilities, either

Shl=- fo dxf(x)In f(x), (23 (i) ho=h,

_ or, for B=m?, m an integer,
where f=h/h. It satisfies.”’<0, and achieves its upper (i) hp=h(1+a cos\/§x).
bound only for the flat interfach=h.

For the Rayleigh—Taylor problem, the entropy evolves
in time according to

Herea is an undetermined constant that satishesl.
These are the only possible smooth and positive steady
states. While terms involving sigiBx are also allowed, they
1 on can be subsumed into the forin) above.

(71:=J' dx(h)z(x—Bh)z() Figure 2 shows a bifurcation diagram of these steady
hJo states, as a function of the bond numBeiThe parametea
is a convenient amplitude. The stability associated with each
_ E 2 k2(k2—B)|ﬁk|2. (24) branch is indicgte(ﬂso!id is stable, dashed is unstabl&hat _
2 k#0 the branches bifurcating from the flat state do not bend with
B follows directly from U being a linear operator upom
Again, for B>1, this quantity is indefinite in sign, while for Thjs is a nongeneric behavior, which we will use later to our
B<1,.” increases monotonically. - _advantage. The linearity d itself follows from the expan-

For B=0 with periodic boundary conditions, Bertozzi gjon of the curvature terms in the vortex sheet strengh
and Pugf? have used estimates based in part upon the efne derivation of the lubrication approximation.
tropy to prove the global existence of a weak solution, and  \ye can also find a set of weak solutions by knitting
ultimate relaxation oh to a flat state. The entropy also plays {ogether the cosinusoidal solutions with zero sets. These
a central role in their more recent work on unstable lubricayyeak solutions are the time independent solutions of the full

tion type equatiorié (as discussed in the Introduction equation of motion for the interface and are given by:

For the gravity-driven jet, the result is quite different.
Because the transforn# is a skew-symmetric operator, ex-
plicit dependence upoB in the entropy evolution is lost. We _ ho(1+cos VBx) X< B (26)
find that 0 w/\B<|x|<m,
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where hg is an arbitrary constant that sets the maximum R T I AL AL I
height of the interface. This same set of solutions could be 3
obtained by using the variational principles for the energy 1 e B=1
functional T
& 0

T= J dx{3h2+3Bh2 —\ dxh (27) 1 E
since the weak solutions for the equations of motion are its 2l I IPRFEPIT R .
minimizers. The energy of these weak solutions is 10 B B I

7 =—mh3iB%2 (28 5

While we have not been able to prove it, we suspect that
such weak equilibria are stable. Numerical solutions of a
“regularized” PDE, that allows evolution past a putative
singularity time, show relaxation to nonoverlapping distribu- (b)
tions of these solutior®. This agrees with the conjecture of _10 01 I
Bertozzi and Pugfi! and agrees with their simulations for a 0.0 0.2 04 06 0.8 1.0
related lubrication equation. X/27T

S 0 e

FIG. 3. lllustrations of the effect of bond number on the stability of steady
. states under perturbations with a common initial conditiodashedl (a)
1. The stability of the smooth steady states B=1: Stable.(b) B=4: Unstable.

From Eg.(11), it is clear that the flat equilibrium is where C=2 minhy(X)>0. Since py is an integer forB
stable forB<1 and unstable foB>1. The stability of the —=m2 we have thatk“pﬁ?ikzpk, which immediately

nontrivial steady states, f@=m?, is likewise not difficult yields the two inequalities

to ascertain. Lehy=h(1+a cosmy), andh=hg+ €, with s =+CZ  or £=e"Cle (0 35
e<1 and(Z)=0. The linearized evolution aboty, is given e o (0). ( ,),
by These expressions will allow us to understand the stability of

the solutions to the evolution equations for different values
&= = dx(ho Z20). (29 of the Bond numbeB.
a. B=m?=1. The steady state, is stable in the sense
%at a perturbationy decays into the null-space af; .
Form=1, Eq.(32) implies #;<0, and that*;,=0 if and
only if nis entirely in the null space af, (in this latter case,

Since( is periodic and of zero mean, it can be represented a
the derivative of another periodic and zero mean functlon
that is,{= 7., with (%)=0. The evolution is then rewritten

as . ) : .
7 is a steady state solutipnNow, making use of the in-
7=—hoLmemx - (30 equalities we find the relationship
Sincehy lies in the null space of.2, (7)=0 is preserved 0=#=7(0)e !, (36)
by this evolution. We define thesquared norm as where #£;(0)=<0. This means that;—0 ast—o which in
o 2 turn implies thath, is a stable equilibrium.
™ (X, t) -
L= f (32) As an example the upper graph in Fig. 3 shows, Bor
2 ho(x) =1, the evolution of a multimode initial condition foy, as it

relaxes to the null space @f,. This behavior reflects quite

whose time derivative satisfies ) . ) )
well that observed in numerical simulations of the full PDE.

([ E b. B=m?>1. The steady stath, is unstable to(at
== 0 dx( 75— m?oR) == 20 K2y i, (32) leas) subharmonic perturbations. The second inequality in
Eq. (36) gives

wherep,=k?—m? and 7, are the Fourier amplitudes of It 7= £(0)eC, 37
is unclear whether there exists a straightforward physical in- ~ % ~*

terpretation of the nor as defined above. Howevef, is  If we consider an initial condition for, occupying only Fou-
clearly the equivalent of the functionaf introduced in Eq.  fier modes with k|k|<m (i.e., modes subharmonic tg),

(18) for the full equations of motion. And s&;, satisfies  then from Eq.(32) (which yields #(0)>0) and the bound
above we deduce that; will grow at least exponentially.

P & 2 The lower graph in Fig. 3 shows the growth gf pre-
({“_Zfo AxPo(Zim27,)7=0. (33 dominantly in thek=1 mode, from a multimode initial con-
o . ) dition for » with B=4. Eventual instability seems generic
This yields the following inequality: also for initial conditions for which¥, is initially negative,
27 R and to which the instability arguments above do not directly
5&>ch dX(Z/mzﬂx)ZICzk: k*pil 7, (34)  apply. While an initial decay of towards the null space of

Zm2 may be observed, mode coupling through the variable
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coefficient nature of the PDE30) leads to an excitation of For simplicity, we restricB to the values ZB<4, so that

the subharmonic modes, and to eventual growth. k=1 is the only mode that is subharmonic {8. Thus, in
Finally we note that for the dynamics of the gravity Eq. (38) the contributions of the Fourier modes can be sepa-

driven jet the evolution of the entropy as defined in Exh) rated into positive and negative, yielding

precludes the existence of any nontrivial, periodic steady

states. F=—(B—1)|hy[?+ kEZ plhil?, (44)

B. Touchdown of the interface o ) ) )
. o and negativity of# gives immediately that
The usefulness of the variational principle that governs .
|hyl?

these motions is not just limited to the study of linear stabil-
ity. It can also be used to prove that for the full systéam gfz Pk W<B_l' (45)
opposed to the linearized versjdhere are initial data which !
will give rise to pinches, at least in infinite time. As was From Eq.(43) it follows that that the first term of E¢44),
important in the previous section in the demonstration ofwhich is the only negative contribution and measures the
linear instability of steady states f@&> 1, this initial data is subharmonic amplitude, must diverge and|bg|*— as
again subharmonic tq/B. t—oo.

Consider the energy functional for the Rayleigh—Taylor ~ Now observe thah(x,t) itself is given by
PDE

h(x,t)=h+h,e*+h*e *+ h, e’k

2m — ~
=3 Tanz-sre-m)=3 a9 =2

0 k=1 ~

— . he
and its time derivative =h+|hy|| 2 cogx+ ¢)+ ; — e"‘x)
k=2 h,
2 _ .

‘%:_Jo dXh(hxxx+th)2- (39 =h+|h1|g(x,t), (46)

, o Wheree‘¢=ﬁll|ﬁl|. The functiong(x,t) can be uniformly
If hpin(f)=min,, h(xt), then we obtain directly bounded in bothx andt since

; Beikx
|k[=2 hl

e S K 215, |2 40 This inequality follows from the Holer inequality and in-
Soomin &~ pidhul®. (40 equality (45). Mg is known in closed form, and is finite
except whenB=m?, m integer. For a small range of
It can be shown that fotk|=1 and B=2, the inequality B(2<B<2.075), Mg<2. This implies thafg(t)<Mg—2
k?pg>—p, is satisfied. Equatiort40) then directly yields <0, whereg=min, g. As h, diverges, this implies then that
71=2hmin()7, which can be transformed upon application h(x t) becomes negative in a finite time, i.e., a pinch.

of the Gronwall inequality into We extend this conclusion to2B<4 by a straightfor-
ward argument using

2
~—¢'ts_hminfo dx(hxxx"'th)zi =Mg. (47)

1
<2 B—1(2 —
k=2 Pk

+ o

7(0). (41) )

() o dxg(x,t)=0,

t
.7(t)sex;( Zfodshnm(s)

As has been proved by Bertozzi and Pdfthe only singu-
larity that can be realized by the equation of moti@ is Py
one associated with| 0. We now assume that such an event (i) f dxgz(x,t) =2+ ;
does not occur at a finite time. In this circumstance it has 0 =2
also been proved in Ref. 14 that there is the global existence (i) |g(x,t)|<2+Mg. (49)

of a smooth solution, which we also henceforth assume. —
Then ast— o« the function Without loss of generality, assume tiat 1. Then there is a

time T=0 for which min/hy(t)|g(x,t)<—1, i.e., pinching. To
i _ see this, assume that there is not such a time. Then given any
dshyin(s), (42) = -
0 €, there is a timeT, such that B2g=—¢€ for t=T,. Then
dproperty(i) implies that

2
=2 and

hi
hy

must be either finite or infinite. Assume the latter, as woul

be the case wheh,,, is strictly bounded away from zero. 2m
We show now that this assumption implies tiamust 0 dx|g|<4me, 49
pass through zero at a finite time. Consider initial data which ) e
is subharmonic to/B, giving.7(0)<0. Then which with property(iii) implies
. . 27
lim .7 (t)— —oo. (43 f dx|gl’<=4me(2+Mp). (50)
t—oo 0
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But this contradicts propertyii) for € chosen sufficiently with £ a linear operator. A simple implicit, second-order

small. treatment of this PDE is the mixed Crank—Nicholson differ-
Thus, the hypothesis of no finite time pinching is contra-encing
dicted, and it must be that R+ pn 1
» A - ™3 (h"zhn 14 hntlozpn) |, (56)
| “dst(s <. (51
0 We find no high order time-step constraint arising from this
That is, if there is no finite time pinchindp,;, must vanish  implicit differencing.
faster thart 2. For evolution that is not yet near a singularity, the op-
There are a few important points to be noted: erator #h is typically evaluated on a uniform mesh using the

(i) These arguments can be extended to other rangds of Discrete Fourier TransforDFT), and the quadratic nonlin-
by simple rescalings of the equation. However, it would beearities are evaluated pseudo spectrally. Near an incipient
most useful to extend these arguments to the rang® 1 singularity, we introduce a smooth and graded mesh that is
<2, where the Gronwall inequality we have used here doegeformed periodically, and that collapses as the singularity is
not hold. Numerical experiments indicate nonetheless thaapproached. This amounts to a periodic change of variable,
pinching occurs generically in this range Bfas well, and where the new spatial variabjesatisfies
singularity formation there is the object of an approximate 1 r2r dx
theory given in Sec. V. e A -

(ii) There are two other constraints ¢nthat can be yho 27 Jo \h
derived. First, an isolated minimuim.;,(t) itself obeys the

. It is motivated by the observation that the observed pinching
flux equation

singularities are usually close to assuming a local scaling
d form h~£(t)?H(7), where n=(X—xp)/{, and{ is a col-

gt Mmin(1) =~ hmin(H Ux(X(1), 1), (52 |apsing length scale. Then, locally to the point of pinching,
] o ] X,={~ Jh, and soy is such a scaling variable in the neigh-
whereX(t) tracks the location of the minimum &f Then if o604 of the singularity. The constant on the right hand

there is no finite time pinching, we formally integrate this gjqe (rh9 is chosen to enforce periodicity of the mapping.

equation and apply Ed51), to obtain We take this approach because it required relatively minor
o s changes to the uniform mesh spectral code. In either case,
fo exp( —f dSUx(X(S),S)) <o, (53)  this change of variable simply introduces metric factors into
the evaluation of spatial derivatives, and produces at the next
Second, the same arguments can be applied to time step a full system of equations fof** on the mesh,
fgﬂdxhuz which we write as
hm(t):W’ (54) A" Fl=p, (57)

This system is solved using the iterative linear solver
GMRES (see Ref. 3) which requires only the result of ma-
fmdshn(s)<°°, (55) ftrix multiplications byA upon a vector. This is accomplish_ed
0 in O(N InN) operations by pseudo-spectral collocation,
whereN is the number of grid points. The iteration is accel-
erated by a finite difference based preconditioner, and the
first guess at each time step is given by an extrapolation of
solutions at previous time steps. Convergence to the solution
requires typically only a few iterations.
An alternative approach is a self-similar adaptive mesh
In this section, we present simulations of the evolutionscheme, developed by BertoZzand others, which uses fi-
of the full equation of motion in the lubrication approxima- nite differences. It is especially effective in resolving the fine
tion for the Rayleigh—Taylor problert®). These simulations structure of symmetric singularities, where round-off error
indicate that, at least f@> 1, finite-time pinching singulari- can be reduced by special choices for mesh point locations.
ties are generic. Further, as the bond number is increased,
there is a change in both the form and the number of singu-

and which bound$,,;, from above, to conclude also that

if there is no finite time pinching.

IV. INSTABILITIES, BIFURCATIONS, AND
SINGULARITIES

larities produced. B. Numerical results
A. Numerical methods The initial condition chosen is a perturbation of the flat
. . . interface:
The simulations use pseudo-spectral collocation meth- o
ods, both uniform and adaptive in space, and implicitintime  h(x,t=0)=h(1+a cosx), 0sx<2. (58
:ﬁec?or:tr:]ol the high-order stability constraints. The PDE haSFor B>1, this is an unstable eigenfunction of the linearized
problem, and is also an exagtable steady state foB=1.
h= —d,(h2h), For B<1, simulations from this data show only decay to the
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FIG. 4. (a) The slow evolution towards pinching f@&=1.05.(b) The van-
ishing of the minimum thickness on a log—log scale.

any a. Despite the oncoming singularity associated with the
collapse, this observed separation of scales—kthd mode

mean h, as expected from linear theory. We note thatpeing active with higher modes remaining damped—is main-

Almgren et al.** have found special initial data which f@&  5ined surprisingly well,

=0 show thg formatlon. of pinching S|ngularltles. , To examine this, consider the two integral quantities as-
We consider here in greatest detail the cBsslightly  gqcjated with this system that decompose naturally in Fourier
g.reater than un'lty, where the smgulgrlty occurs through %pace—the energy” and the entropy time derivative’; .
single, symmetric touchdown, and which allows comparisorg, are quadratic and so are expressible as sums of squared
with a nonlinear theory developed in Sec. V. &sis in-  ampjitudes. Only.7 has a prescribed behavior; it must
creased, allowing more unstable length scales, there is gfgnotonically decreaser; is examined also because of its
eventual “splitting” of this single singularity into two, as ,qqal separability, though from the simulation f®

well as an apparent change in its type. =1.05,.7 itself decreases monotonicalfie., motion away
from the meaj If h=p+q, wherep is the Fourier projec-
1. B=1+e¢, €<1 tion of h onto them lower modes, and the remainder, then

WhenB=1+ ¢, linear theory gives for the initial condi- the energy7 divides naturally as
tion (58) a growth ratehe. Data will typically be plotted . .
relative to this(long) time scale. Where<1 only thek=1 T ot Tq=2m ; plhl?+27 ; pulhil?, (59
mode is unstable, while all higher modes are damfibd [kj<m [K[>m
k=2 mode becomes linearly unstable only B 4). Figure ~ wherep,=k?—B and a conserved part due to the meat of
4(a) shows the evolution ofi for B=1.05, withh=0.1 and has been dropped. One has a like expression/fps./?
a=0.5. (h can be scaled out of the equation, but we did not+.”{. Figure a) shows.7 (solid) and h.? (dashed]
do so) This simulation uses adaptive time stepping and gridwhile Fig. 5b) shows.79 andh.»{ for B=1.05. Choosing
ding, and quadruple precision, allowing us to follby;, to  m=21 gives definite signs to the separate elements of the
very small levels. The simulations indicate thhafx,t) decompositionp; <0, p,>0 for k>1). For the energy7,
reaches zero at the single poit 7, at the finite timet,  .7P, and.7“ remain separated by three orders of magnitude,
~173.7. To demonstrate this, Figh} showsh,;, on alog— even as the singularity is approached.
log scale, relative to an estimated pinch titgesee below, Is mode damping responsible for keepiad small? To
over many decades of decreasehip,. The curve is very study this further, we examine the relative importance of the
close to being of unit slope, a point to which we will return. time derivatives, andq; of the decomposed functidm . If

A central point to much of what follows is the observa- q; is small relative tg;, then the dynamics of the modes in
tion that as the minimum slowly descentisretains very g are slaved to those im Fore=0.05, 0.1, and 0.2, Fig.(8)
closely a cosinusoidal shape. This is consistent with the linshows the ratidq, /p;| usingm=1, atx= 1. The singularity
ear analysis around the flat equilibrium, as noted above, anime—shown as a dashed line and decreasing #ths at
also with the PDE system being in proximity to tBe=1  the point whereg, reaches its greatest amplitude. We see
case, for which initial dat458) is a stable steady state for three distinct behaviors. First, for a short initial time interval,
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1.0 R LA B L (1) a(t)—1 at a finite timet,. This corresponds to a
(a) ] pinch in our slaving theory, and we find that near the singu-
o : larity time ppin(®)~(t,—t) + O((t,~)*?). _
& 05 ] (2) q(x,t) has the Fourier series representation
N W
j - * —a(a)k
) i a(x)=A(@) 2, (~1)* 55 coskx, (60
N — 0 k=2
i ] L1 7] i . o
L Lo Lo Lo 1 ' which corresponds to a pair of complex pole singularities in
SRELELELE LR UL L B L the complex extension od,,, located atx=m=*ia. As
0.2 |— () ] t—t,, a—0, and analyticity ofy is lost as the poles collide
. C ] on the real axis ax= .
a - i ] (3) A local scaling form can be found fay,, andgyy, as
S 01— | t—t,
e N ! .
1 ] 1,
0.0 | | | | : E Oux~In Vtp—t+In{ 1+ 57
0.0 0.2 0.4 0.6 0.8 1.0 1 1 1
. ~~ + , (61
cht BN e (S
FIG. 6. Plots of the relative magnitudes of time derivatives of upper and . —
lower modes. (a) Ratios as functions of(rescaled time for B Wheren—anSt (X_ 77)/ tp—t. i .
=1.05,1.10,1.20. Dashed lines are estimated pinching tifdesreasing True to its derivation, we do find that the slaving theory
with €). (b) Comparison of the ratio foB=1.05 form=1 (upper solid  describes very well the approach of the system to the singu-
curve andm=2 (lower solid curve. larity, at which point its underlying assumptions break down

(i.e., g; becomes comparable @), and some divergences
are observed. However, using a change of scaling variable
very near the singularity time, as suggested by Almgren

whose length decreases wighp;, andq; are of the same ) ) , !
order and the ratio quickly relaxes to much smaller values€t &~ we find that Eq(61) do predict the apparent spatial

That these quantities must initially be of the same order folform of the singularity. We turn back now to the results of
lows simply from initial mode mixing in the quadratic non- the numerical simulations.

linearity. Second, until close to the singularity time, the ratio  Again, much of the behavior of the PDE f@&=1+e¢
maintains a small value, with amplitude that decreases witfan be collapsed by considering motion on the normalized
€. And third, near the singularity timgs, andq, become of ~time t’=eht. Figure a) showshp, (the solid curvesfor

the same ordefalthough oppositely signgdthough again several values ok, with h evolved from the same initial
the length of the time interval over which this is true de- condition as above. The solid curve closest to the dashed
creases withe. Lastly, inspection ofj, shows that the spatial Curve is that forB=1.05. The dashed curve arises from the
extent aroundk= 7 over which it is comparable tp, de- slaving theory discussed in Sec. V; it is clearly the limiting

creases withe. behavior anl(_). _ . .
Figure &b) compares the ratiog; /p;| for m=1 and 2, We have fit the collapsing width with the Ansatz
with €e=0.05. Form=2, the initial relaxation period is re- Rin(t) ~ (t,— )%, (62)

moved, the ratio is smaller overall, and remains small until

yet closer to the singularity time. In summary, it appears that/sing a nonlinear least-squares method over a sliding set of

over the the bulk of the evolution of the PDE, until very nearten data points. Figure(d) showst, as a function of. This

the singularity time, the modes gfare slaved to those @f figure shows the singularity times to deviate linearly dn
Separation of scales and slaving underlie an approximat&om a limiting value, determined by the slaving theory. Fig-

“slaving theory,” developed in detail in Sec. V. However, to ure Ac) shows the result of sliding fits te, for several

assist in the further interpretation of our numerical simula-values ofe, as the singularity time is approached. The non-

tions, it is useful here to outline several of the theory’s re-linear theory gives thaltyn(t")~(t,—t")+O((t,~t")*?), and

sults. we include its fit, even though the form is known, as a check
In the simplest casdsettingh=1) we decomposé as  On the fitting procedure; the influence of the higher-order

correction term is clear, though the ultimate convergence of

¢ to unity is also apparent. Somewhat similar behavior is

seen for finite values of. For times away front,,, for each

€, the fit ¢ is more or less constant, with value varying al-

i.e., m=1. By assuming thad is small and slaved tp, that = most linearly ine from unity. But very close to the singular-

is q;~0, q can be found as a functional pfand the ampli- ity, the fit value for¢ begins a rapid decrease, perhaps to

tudea(t) determined. Such a single mode representation foone.

p is only accurate fore<1, as suggested by Fig. 6. From Rather than examining the precise details of the singu-

these approximations we find that: larity form, we first discuss an analytic structure hgx,t)

h(x,t)=1+a(t)cosx+q(x,t)=p+q,
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The approaching loss of smoothness$iis evidenced by
FIG. 7. Properties of the singularitya) The minimum ofh, for several a loss of decay irhk (for k>1) as the singu|ari'[y time is
values ofB, as a function of rescaled time. Inset: Close-up of behavior ”earapproached. If the oncoming singularity is algebraic and iso-
pinch time. (b) Rescaled pinch time as a function of bond numkey. . .
Effective exponent near the pinch point as a function of time. lated, then we anticipate that the Iargebehawor of the
Fourier spectrum can be interpreted as that induced by two

algebraic singularities, one above and one below the real axis
that emerges at early times and persists until quite close to

the singularity. To do this, we study the Fourier spectrum  [hy(k,t)[~C(t)k™#Ve™ (V¥ (63
h,. Figure 8 shows log|h,| for B=1.05 for times near the
singularity time. This simulation was performed on a uni-
form mesh, again in quadruple precisi@® digity, rather
than double precisiorfl5 digit9, to provide more of the
decaying range of the spectrum for data fitt{isge also Ref.
31).

(see also Refs. 28, 31, and)3Zhese singularities would be
of order 8+1, and lie a distance: above and below thz

axis (i.e., a is the analyticity strip width In this Ansatz, the
singularity is signaled by becoming zero at some time, and
exponential decay in the spectrum being lost. The algebraic
order of the singularity is then revealed I8/ Using the
approach in Shelley (see also Sulem, Sulem, and Fri&8h
O——T— — we have fit values tdC, B, and a, using a sliding fit to
successive quadrupletin k) of |h,].

Figure 9 shows these fits at the times of the previous
figure. The upper graph is that fat The uppermost curve is
the earliest time shown, and is the fit for the leftmost graph
in Fig. 8. That the curves show irregular spacing reflects the
use of adaptive time stepping in the numerical code. The fits
are very flat ink, as desired, becoming noisier as decaying
amplitudes approach the round-off levat earlier times As
time proceeds, the amplitude at the Nyquist frequency rises
above the round-off level, and the domainkiover whicha
achieves a flat fit decreases as truncation errors become im-
portant. At the last time shown, very close to the singularity
time, the fit is hardly satisfactory. This also reflects the ex-
pectation that the calculation should become inaccurate as
the analyticity strip width of the solution approaches the
k mesh spacing. And indeed, at the next-to-last time shown,

FIG. 8. Fourier spectrum df as a function of time. Increasing time corre- the fit to a is ~0.011, while the mesh spacing itself is
sponds to decreasing decay. 27/2048~0.006.
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FIG. 10. Spectral coefficientsa) The'deviation of the power-law exponent giG. 11. (@ h,, at several times as the singularity time is approackied.
from three.(b) Loss of the exponential decay. h, atx= 1 on a logarithmic time scale, relative to the estimated singularity
time.

The fits to B8 are represented by the one shown in the
lower graph, which corresponds to the 12th time shown in
the upper {'~0.867). On the region o8 having a smooth  With having a single minimum ot as the singularity time is
fit, it appears very close to three. All the other times, in theiraPproached. In light of this we examine our adaptive simu-
respective regions of displaying a good fit, also lie close tdations.
three—this particular fit is shown because it has the broadest Figure 11a) showsh,,(x,t) at several times near the
such domain irk. We note that because governs the less Singularity time, which is seen to be developing a very sharp
dominant, algebraic part of the spectral decay, it is usualltructure arounet= s, while Fig. 1Xb) showsh,(,t) on a
more difficult to determine well than. Nonetheless, thgg  logarithmic time scale, again relative tp. While h,(,t)
is very well fit by three is confirmed by Fig. 10, whose upperis decreasing, it is doing so very slowly, and is certainly not
graph shows the discrepancy between three and thegia ~becoming negative on the range of scales to which we have
a function ofk. The difference seems to be decreasing a®een able to compute. Moreover, this graph has a persistent
1/&? for k>1. The lower graph of Fig. 10 shows at the upward curvature which is not consistent with a logarithmic
representative valuk=300 as a function of time. It shows divergence, as predicted by E(1), and may instead be
clearly the oncoming loss of smoothness. The singularitghowing saturation to a finite value ggsis approached.
time predicted by becoming zero corresponds closely to ~ This discrepancy from the slaving theory is reinforced
that ofh,,(t). And so, examination of the spectrum from the by Fig. 12a), which showsh,,, in rescaled coordinates as
uniform grid simulations suggests that its lalgbehavior is  the singularity time is approached. We have nplotted
given by ohex(7,t), Wheren=(x—m)/o ando=A(t,— )" where
A is a constant. This rescaling does only a fair job of col-
o albk lapsing the behavior dfi,,, as it varies over five orders of
—, (64) magnitude, but suggests tha,, is diverging as something
k close to an inverse square-root behavior. This rescaling was
motivated by Fig. 1&), which shows the the divergence of
in good agreement with the slaving theory. While we havemax |h,y,, on a log—log scalérelative tot,). On this scale,
been focusing on the behavior of the spectrurh wéry near  the curve is quite flat with a slope very close-g.
the singularity time, we emphasize again that this emerges at A far superior rescaling of the data is found by following
early times in the evolution. the suggestion of Almgren, Bertozzi, and BrertAén their
If this precise spectral behavior were maintained to thestudy of symmetric singularity formation in the unforced
singularity time, then in physical space there would occur ecase B=0), namely to collapse the data very near the sin-
logarithmic spatial singularity ih,,, with h,,| — logarith-  gularity time on the intrinsic length scale(l
mically in time, as in Eq(61). However, as A. BertozZthas ~ =[h(,t)/h,(,t)]¥% As an Ansatz we consider the scal-
pointed out,h,, becoming negative at= 7 is inconsistent ing functions suggested by the slaving theory, &)

e~ At (— 1)
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tions converging to a single form. These forms do indeed

ho~C+D In(1+17?), hxxx~9 7 , (65) seem to be given by the .scal'ing functions m@/2) and

F1+1 92 »l(1+ 5?/2), also plotted in Figs. @) and 13b), respec-
tively, as dashed curves but obscured by the converging
graphs.
C=hy(m,t) and D=%hxdmt). And so the slaving theory appears to predict the spatial
forms of the singularity, though there are departures in terms
of the inner scaling and temporal behavior. This is also the
same singularity structure uncovered by Almgegrall? in
their study of symmetric singularities in the unforced case,
and they also give numerical evidence for the emergence of a
larger, second length scale around the singularity region. If
6 ——r—1— T T interpreted in the language of complex singularities, this sug-

gests the development of a singularity structure more com-

plicated than, say, a single pair of poleshif,, though that
form does apparently govern the innermost scale.

with »=(x—m)/{. C andD are then determined as

To lay bare this presumed scaling in the numerical solution
we plot (h,,—C)/D andh,,,/D, as functions ofy andt, in
Figs. 13a) and 13b), respectively. At earlier times, we see
the emergence of scaling behaviorsat 0, with both func-

C. As B increases

The number of unstable length scales in the [#riod
increases agB with increasingB. This increase in the num-
ber of unstable scales leads eventually to a splitting of the
singularity forB sufficiently large, i.e., foB~1.35. The up-
per graph of Fig. 14 shows(x,t) near pinching forB
=1.5, 4.0, and 10, respectively. Asincreases, the distance
between the bifurcated singularities increases, leaving
trapped regions of fluid between the “Rayleigh—Taylor”
spikes abouk=0 and 2r. The lower graph shows the loca-
tion of the two critical points as a function & (the solid
_20 _10 0 10 20 curves. The dashed curves are B,(v-r/\/ﬁ) and
(B,m(2—1/y/B). These curves correspond to a spike width
of 27r/\/B, the most unstable length scale, as well as give the
FIG. 13. Results of rescaling on an intrinsic length. width of the weak solution(26), given in Sec. Il A. For

(=]

rescaled h(n,t) rescaled h.(n,t)
o
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FIG. 15. The function$(x,t) (a) andh,,(t) (b) as pinching in the system
is approached. Inset ifb) shows detail oh,, near the end of the simula-
tion.
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FIG. 16. h,,(x,t) as pinching in the system is approached. Inset shows
detail of jump discontinuity in the pinch region.

larger B, this length not only describes the width of the ob- 7= (x— X0, 7= [h(Xmin )/emin D)2 We find that in
served spikes, but the weak solution with properly chosennis rescaled variable thét,,, is very nearly an even func-
amplitude also fits closely the spatial form of the spike.  tion, suggesting that in terms of poles
We concentrate on thB=10 case, for which the most
unstable wave number i§ ~2.2. Figure 18) showsh(x,t) _ A _ i
at several times, as the lubrication approximation is evolved ™ 14 1,2 y3j
from the initial condition(58). Again, an approach to pinch- )
ing is observed, and as remarked previously,t) pinches WhereA=h,(Xmin.t). In Figs. 18a) and 18b) we plot the
asymmetrically, in contrast to the symmetric pinching ob-8ven and odd parts diy,.(7.,t)/A. In Fig. 18a) is also
served for values of8 near one. Figure 1B) shows Plotted, as a dashed curve, the scaling form i/@f/Z),
l0gyo himin(D). In the initial stages of the collapsé,,, is  adain obscured b}_/ the relaxation of other curves to it. We see
given byh(m,t) as the unstable=1 mode grows in ampli- N the pdd parfFig. 18b)] the appearance of a persistent
tude. However, nonlinearity feeds energy into the smallefOrrection(at about 3% to the apparenteven pole struc-
scales, including those near that which is most unstable, arf§"e- At early times in the figure, the odd part has the appear-
new minima appear at the sides of the developing spikes. NC€ of the pole arrangement seen for the symmetric singu-
Figure 16 shows#,,, with the inset showing the details
in the pinch region. In further contrast to the behavior Bor
near one, now,, appears to develop a jump discontinuity, 0
with an accompanying divergence m,,. This ultimate
jump discontinuity inh,, would suggest agaifas in Eq.
(64)] a largek behavior governed by a cubic algebraic decay
multiplied by an exponential decay that is being lost. In such
a form, it is anticipated that the approach to the seakis of
two simultaneous, oncoming singularities hirnwill produce
an additional oscillation irk of wavelength 2r/x,,. This is
consistent with the observed behavior in Fig. 17, which
shows loggk3h,| (from a uniform mesh simulatigrversus
k, as the singularity is approached. While we have not tried |
to fit this behavior, on a logarithmic scale it shows the an- -8 it
ticipated linear decrease, overlaid by an oscillation of the i ‘ )”
expected wavelength. ‘
Again, if this spectral behavior persisted, it would indi- -10
cate the ultimate collision on the real axis of pole singulari-
ties in the analytic extension of,,. We consider again our k
adaptive simulations in the neighborhood of the incipientg g, 17, spectrum di, multiplied byk?, corresponding to evolution in Fig.
singularity, again rescaling the data on the variableis.

1 1

n—V2i p+V2i

log,, k3lhk|

A .
| NP
0 100 200
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RN SRS RAREE REER LAY SRR RN LA RS do note that a two-mode slaving approximatidiscussed in
- L (a) s the next sectiop which may serve to describe an “outer
S 0.8 N ] solution” at least near the bifurcatiofin B) to two touch-
06 — downs, does not show any transitions in behavior as touch-
§ 0.4 T ] dpwn is_approached. The_re we find that appr_oaches the
Mg o L N pinch with constant velocity, witlp,,, decreasing to zero
D | LA linearly in time (as did the single mode cagse
0 1 1111 1111 1
0.04 _IIIbIIIIIIIIIIIIIIIIIIIIIIIIIIII|IIII_
2 o0zl (b) . V. THE DYNAMICS OF SMALL-SCALE SLAVING
= 0. = —
Y - . A. Partitioning of scales
S - 1 We have seen in the previous section that the global
o 0.02 - ] aspects of the Rayleigh—Taylor instability in Hele—Shaw
—0.04 = flow are primarily controlled by the Bond number. Beyond

but still near the critical valuB=1, a single unstable mode
—20-15-10 -5 0 5 10 15 20 dominates the flow, leading to a symmetric touchdowm at
Y| =q. Even at the singularity time the amplitudes of the

higher Fourier modes remain small, although decaying only
algebraically with mode number. Further increas®ilead-
sultimately to singularity splitting; two asymmetric touch-
downs straddlingc= 7. This phenomenon is associated with
the presence of an appreciable amplitude of the first har-
larity structure at smaller bond numbers, but it develops intgyonic (cos ®). Still, modes three and above remain small.
a more complicated form as the singularity develops. Based on the linear stability analysis of the previous section,

For these simulations, we have skirted the issue ofye see that wheB is close to unity the growth rates of the
whether hy,, |0 at a finite time. Up to about~0.9798  higher modes are all negative ard(1), while that of the
(hmin=2x10"7) hy, shows a rate of decrease that if main- ynstablem=1 mode is small. This suggests a separation of
tained would yield a finite time pinch. However, at this time, ime scales like that used in the derivation of amplitude
there is an abrupt slowing diiy, in its descent. This is  equations for convective and lasing instabilities.
shown in the inset of Fig. 1b), showing this slowing on a These observations further suggest that one might con-
log scale inh. It is also at this slowing time that there is a gtyyct an approximate dynamics based on the dominance of
transition in the odd part oh,,(7.,t) (see Fig. 18 from  ihe active modes over the linearly stable small-scale modes.
what looks like thg odd two pole arrangement of B8p), to A npatural approach is to partitiminto low (p) and high(q)
some more complicated structure. modes by means of an operatet, that projects a periodic

In the unforced B=0) case Aimgreret al*? also stud-  fynction onto its lowerm modes, where the numben in-

ied “exploding” singularities, in which two singularities  cjydes at least those that are linearly unstable. Thus we write
emerge from what is initially a single minimum, and which

may describe the double singularity that appears in the split-  h=P+d (7mp=p, 7na=0), (66)

ting near the bifurcation point in Fig. 14. Such singularitiesgng seek a reduced dynamics for the lower modes in terms of
were studied and quantified earlier by Dupettl? for the  their time-dependent amplitudes.

B=0 equation being forced by boundary conditions. In their A yseful simplification in developing the slaved dynam-
analyses of this singularity, both studies predict a behavior ofcs arises from the fact that the RHS of the Rayleigh—Taylor

hminf((tp_t)/ln(tp_.t))z- However, the descent here is slower, ¢ (9) may be integrated further, so that it has the form
showing a nearly linear decrease on the log scale. Of course,

2
from our spectral simulations we have less than two decades Di=— dx(hhy— zhi+3Bh?). (67)

of decrease in this regime. Though not shown here, less agow substituting the decompositidfé) into the lubrication

curate finite-difference simulationghese are considerably PDE (67), we make the fundamental slaving hypothegas;
faster to performshow an apparent continuation of this be- ignore contributions of ordeg?, and (b) ignore the time

havior. In some agreement with these studies, we do Obser\éf'ependence of the high modeg£0). We obtain the linear

FIG. 18. The decomposition &f,,,( 7,t)/A into even(a) and odd(b) parts,
as a function ofy.

at this transition a “slowing down” in the motion of,,  ihhomogeneous differential equation for the high moges
though it is unclear if the post-transition behavior will be to -
a constant velocity, as predicted in Refs. 9 and 12. We do not  POyx— Pxdx+ (Pxxt Bp)gd=—p;—J,+C, (68)

yet know if the behavior found in these other studies is uni,
versal, and applies here. Indeed, another possibility is infinite_
time relaxation, without intervening singularity, to an
asymptotic state incorporating a weak solutisee Sec.
Il A). Such a situation was studied by Constarmiral® for
aB=0 case, again being forced by boundary conditions. We

here J,=p“gp is the flux associated with the lower
odes,C is an integration constant, and for any function
f(x) we define

?zfxdx’f(x’). (69
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By construction, the functiop is periodic inx, and thus Eq. g
(68) is the inhomogeneous Hill equatidnin which both the 5 (n?+3n+3-B)Cp1—(n*~B)C,
function g and the time dependence of the lower moggs,
are unknowns.

Equation(68) may be cast in the more standard form of
Hill's equation by the transformation

a
+§(n2—3n+3—B)Cn,l=O. (77

] A first observation concerns the asymptotic behavior of the
q(x)=Vp(x)Z(x), (700 ¢,’s for n>1, which may be deduced using standard meth-
ods for difference equatiori$.In brief, for n—o the recur-

where’ obeys . . e
¢ y sion relation(77) simplifies to

d? 2pPyx— p>2< ﬁt"’jp_C
—+B+3———— | = ——3—. 71 a a
dx? 4p? p3 7D 5 Cni1=Cnt 5 Coa=0, (78)

The explicit appearance of the factor®inside the operator . ) - ) )

in (71) makes it clear that the natural periodicity of the Sys_for which one readily verifies the exponential behavior
tem, at least for small deviations from a planar state/Bs C.~\" (79
incommensurate with that of the lower modes whg# 1. " ’

This representation has the disadvantage that the clear sepahere) satisfies the quadratic equation

ration of modes in the initial partitiof66) has been lost in

the transformatior{70). aNZ—2\+a=0, 7\+=E[1tm]. (80)
- a

Note that\ ;A _=1, and in general\ ;=1 and\_<1. The
1. Spectral properties of q equality holding only whera=1, which corresponds to a
touchdown of the lower modes.
More information on the large-behavior is obtained by
writing C,,=\"D, and using the same methods, whereby

To illustrate the means by which E@8) is solved both
for g andp,, consider the simplest hypothesis for the active

modes
one findsD,~n"2 independent oB. We thus conclude that
p=1+a(t)cosx. (72 for largen the solution to the recursion relation has the form
In light of the linear stability resulatzﬁ(B—l)a and the b
similar scaling of the fluxJ, with (B—1), a natural set of Ch~ §+ A, 3 (n>1). (82)

rescalings to adopt is
B — B Clearly the solution corresponding ¥o. does not satisfy the
r=(B=Dht; q=(B-1)Q, (73 requirement of boundedness. The solvability condition is that

reducing(68) to an inhomogeneous form of Ince’s equafion  the solution be bounded, which now means tgtthe only
unknown in the recursion relation§6), should be chosen

(1+a cosx)Quxta sinxQ+[B+(B—1)a cosx]Q such thatA, =0. We have not succeeded in finding a closed
a2 form analytic solution fora(7) for generalB, although one
=(a,—a)cosx— T cos X, (74 can be found in the special limB— 1 (see below. Never-

thelessa, as a function of, and thenca( ), may be found
where we have determined the integration constant in E¢hrough a very straightforward numerical procedure de-
(68) to beC=(1+a?/2)/2 in order that the RHS di74) have  scribed below.

zero mean value. The goal of the numerical procedure is to fiad, for

Now we turn to the solution of the inhomogeneous Incegiven B and a, such that the growing solution given by the

Eq. (74) for general values of the bond number. It is anrecursion relation is eliminated. Note the crucial feature that
alternating Fourier series of the form with B and a fixed, A, is a linear function ofa, since the
only place in the recursion in whidh, occurs explicitly is in

_ - N the amplitudeC,. Thus, an arbitrary guess fa, can be
q n; (=1)"Cy cosnx. (79 used to find the exact value by means of a Newton—Raphson
. o . ] method that will converge in a single step.
Direct substitution into Eq(74) yields the relations for the Figure 19a) shows the functiora(a) so obtained for
first two modes several different values of the Bond number. Even Bor
quite far from unity the general features of the function re-
Co=—z—+(a,—a), main unchanged. In particular, all of the curves asymptote to
a(B—-7) : L : .
the same linear behavia,=a asa—0, simply reflecting
a2 the analytic linear stability result. Moreover, all converge to
Cszm 2 T(B=4)C;), (76) 3 from above asa— 1. Finally, note that the larger B, the

lower is the curvea,(a). This implies a delay in the rescaled
while for n=4 the recursion relation is pinch time that grows larger witB.
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FIG. 19. Curves corresponding to the solvability condition for bond num-

bers 1.05, 1.5, and 2.0.

Goldstein, Pesci, and Shelley

It is possible to introduce still some further simplifica-
tions of this system. In fact, g8 has zero mean, we define a
new functiony such thaty,=p;. After replacing it in Eq.
(83) and integrating once with respect to the variakléhe
slaving equation reduces to

%——,Z(erq). (84
The lack of an arbitrary constant of integration is the conse-
quence ofp%4p being a perfect derivative, and the orthogo-
nality of the functiong andq. It is possible to decouple the
evolution ofp from g

Now we apply the projection operators,, and 7,
where 7, is defined as before an@,, is the operator that
projects a periodic function onto its modes higher timan
The slaving approximation then becomes

y .
P:=Yx, ?//)m B = %p! (85)
Y
Cm E: - Q. (86)

It can be shown that any Ansatz for the active modedn this description, the determination of the correctipiis
contained inp generates a set of zeros in the complex planeNow completely decoupled from the evolutionmfThe sys-

and the asymptotic spectrum is always of the form

2m

)\n
Co~ 21 A,

73 (n>1).

(82
Elimination of the secular solutions associated with the
values ofA>1 constitutes then solvability conditions that
determine the time evolution of the mode amplitudes. Som
of these singularities will move toward, although not all
reach the unit circle as the pinch time is approached.

2. An alternative slaving approximation

We now discuss an alternative version of the slaving
approximation that makes use of these results on the speg

trum of g. The difference of this new approach lies in the

possibility of neglecting one other term that can be shown tg
be of higher order. A remarkable consequence of the irrel
evance of that term will be a partial decoupling of the lower
and higher modes, achieved through the definition of an aux-

iliary function.

We shall now proceed with the detailed explanation. By

substitution of the spectral decomposition lofh=p+q)
into the full equation of motion, Eq9), it becomes clear that
for the largek limit there is a termg.%4p which is of even
higher order than the temporal derivatiyeand thus that can

tem of Eq.(85) is a natural, albeit nonstandard, Galerkin
approximation to the lubrication equation, and one that re-
tains the variational features of the original equation.
Namely, the functionals#]p] and.{p], as defined in the
previous section, are the energy and the entropy, respec-
tively, and satisfy the same evolutions and inequalitsee
Appendix C; also see Ref. 37 for dissipative Galerkin

Schemes for the Kuramoto—Sivashinsky equation

The functionp is the finite Fourier series

m

>

D(X,t)=k N ay(t)e'. (87)

Since p is even and real, the coefficientg are real and

atisfya,=a_,. We now introduce the analytic continuation
of the functionp through the new variabld=x+iv. For
convenience we use the notatioa ;4. Therefore, Eq(87)

can be rewritten as
1 m
p(z,t)= o k;

-—m

1
a2 =5 U(2), (88)
where the functiorJ(z) is a polynomial of degreerf, and
so has 2n zeros. Since the amplitudeg are real and sym-
metric, if N is a complex zero obJ, then its conjugate)*

and its inverse & will also be zeros olU. If p>0 for |Z]

be consistently neglected. These manipulations lead to a sim- 1, thenU has no zeros on the unit circle. Then obviously
pler slaving approximation, that can be summarized in thef the zeros lie within the unit circle, anah without. This

following set of equations:

pi=—(PZ(p+a))x, FmP=p, (83
where 7, is the projection operator for the firgh modes.

P ma=0,

allows us to rewritdJ(z) as the product

(89

U<z>=Akljl (2= N(1)| 2— m)

Notice the very important feature that the shallow-water
form persists after all the transformations and approximawhere|\,|<1 andA and\ are functions of the amplitudes

tions.

ag.

Downloaded 16 Sep 2004 to 130.237.224.68. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 10, No. 11, November 1998 Goldstein, Pesci, and Shelley 2717

Now we construct the functioy from p, using (83).  Appendix B. In this approachp andq are found simply as
Sincey has zero mean value, it can be written in the form successive terms in an asymptotic expansioh of powers
m of e.
> U2)adt), (90 I_n_the resc_:aled time= (B_— i, Eq. (_94) is solved_as an
k=1 implicit equation fora(7), given the initial valueay=a(r

whereU, is a polynomial of degreer@—2. The left hand =0)

side of(85) involves applying the projection operatef,, to f(ag)—f(a)=71 (95
the ratioy/p. This is simply a matter of findingrd+ 1 Fou-

rier amplitudes. Using the properties of evenness and arevé(here

z2-1
Zm

y(z,t)=i

conservation, the projection actually involves ontcontour 1-J1—a? 1—J1—2a2
integrals fork=—m,—m+1,...—1 of the form f(a)= — log — | (96)
i fzwdxe—ikx]c(x): i dzz % (z). (91 Pinching occurs when(7) /1 at the time
2 0 2 |zj=1
When applied td =y/p these projections become the sum of mp="Ff(ap)—1, or tp:M_ (97
residues at the zeros,. Assuming that the\,’s are all (B-1)

simple zeros, the syste(B5) can be calculated as the linear

X p Let us note several important features of soluti(@®—
set of equations foa,(t)

(97). First, when the interface is nearly flat we obtain a

m m )\lj(an()\j) _ weakly nonlinear equation of motion
an(t
nzl I | EETONED WO TONE /)W) ot 1,
P#| aT:a—Za +---, (a<l), (98
=—A(a)(k’-Bk)ay. (92)

_ _ _ . showing that the nonlinearities of the lubrication dynamics
Equation(92) constitutes a closed set of algebraic relationssjo, down the exponential growtla(7)=a, exp() de-

that completely determines the time evolution of the modegcribed by the linear stability analysis. Indeed, near the pinch
a(t). time the amplitude is linear in time

B. The dynamics of zeros a(n)=1-3(r,— 1)+, (7,/t). (99

Once the values of all the,'s are obtained, every other A second issue concerns the scaling of the pinch time. When
related quantity can be determined, at least in an |mp||c|i:he initial amplitude is small, so that its initial growth is well
fashion. Indeed, since the meanpfs conserved, the pref- described by exponential amplification, we find
actor A can be given, in general, as a function of thgs,
which we represent a8=A(\), yielding in turn thea,’s.
As a consequence of this, the systéB) can also be recast
as the Qynamlcs of the zeros pf_by means of a residue .The logarithmic form of this behavior is what one would
calculation analogous to the previous one. The end result is, .~ . : - : .

Obtain by simply continuing the exponential growth urtil
Em: m )\ron()\j ) ) =1, although the particular factor of 2 100 does not
. m n emerge from so simple an estimate.
LTt Hﬁijl()‘j_)\p)()\j_lh\p) Figure 20 shows excellent agreement between these
asymptotic results and numerical studies of the lubrication

log(2/ay)
ty F(B— N (100

= — 3—
AA()\)(k Bl (M), (93 PDE (9) for the pinch timest,(a,), and for the minimum
where U, (z;\) is a polynomial of degreer@—2, with its  heighth,;,=(1—a(t)).
coefficients being functions of the's. The correction functiom can now be obtained in closed
1. Special cases for modal dynamics form
=1 = A_ sinXx
m=1: We choosg@=1+a cosx and deduce froni92) q(x)=7\+: \/ﬁ sin x tart - COSX)

a=(B—1) g (1+y1-a%. (99 1
+ = (a+cosx)IN(1+2\_ cosx+A2)
This result can also be obtained analytically within the pre- 2
vious slaving approximation in the limB—1.” It is found
from Eq. (74) by settingB=1+ ¢, rescalingt, and applying —a
the solvability condition through the method of variation of

parameters. For this purpose, we note that a general featukéere A . are the two real zeros of the quadratic previously
of the Ince Eq.(68) is that the Wronskian is equal to the introduced in Eq(80). Asa, "1, \ _— 1, and thus within this
lower mode functiorp(x). A third approach, different from analysis the interface curvature, through(x), develops a
the two ‘“slaving” approximations given here, is found in logarithmic singularity. This divergence can also be inter-

3 1

i +_
4)\, COSX 2

. (101
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FIG. 20. Comparison betwedB=1+ e calculation and numerical results.
(@) Singularity time as a function of initial amplitudéb) Minimum inter-  FIG, 21. Comparison between analytical correction functisalid) and
face height as a function of time. numerical resultgdotted near the singularity.
preted as the collision on the real axis of two singularities, a\ bl[l-¢é+n> —9 1 (B—1)a
located atr =i In|\_| in the complexx plane. b T2l —2g 5 2 : (104

(B—4)b

wheren=\;+\, andé=\\, are both real. The four zeros
(N and)\i’l) are found as solutions to the pair of equations

Observe also that the Fourier-space representation of
g(x) has the very simple form

)\n

n3—n

q(x)=A(a)nZ2 (-1)" cosnx, (102

b a
A2—yA+1=0, §y2+§y+(1—b)=0. (105
whereA(a) is a smooth function of the time-dependent am-

E"i“‘fﬁ a(n). S|r|1ce)\_s1t, and gqual;t;;frg)olds only whe? | space as a function @&. This space is constrained by requir-
=1, the power-law spectrum ofis cutoff by an exponentia ing thatp=0 and is reflection symmetric aboat= 0. Figure

factor whose range diverges to infinity as the low mode. . : :
o . . .22 shows the constrained domain. In the right half-plame
touches down. This is fully consistent with the asymptotic 9 P (

X : =0), the lineb=a—1, for —1<b=<3}, defines those pinch-
Iriee?ults of Eq.(82) and the numerical results described ear-ing| configurations with a single touchdown =& . For

Let us now examine the two-dimension@,b) phase

One interesting point to note is that near the singularity
time t, and singularity poink, =, the asymptotic behavior — T T T
of the correction function is not of scaling form 1
(t,— D) “F((x—Xp)/(t,—1)7).

Until times very close to the singularity, full simulations
show very good agreement between the form of the correc-
tion function (and its spectrumwith the asymptotic result m o\
(103). Figure 21 shows a comparison between the two in real L
space. o ol

m=2: Here we choose

1 touchdown

p=1+a(t)cosx+b(t)cos X. (103 -

2 touchdowns B

This case is interesting for two main reasons. First, it allows
us to examine a correction to the single mode truncation,

where thek=2 mode now has its own independent dynam- -1= ]
ics. Second, beyond a threshold value of the bond number, it AP I RIS P S
is possible to observe the development of two singularities -1 0 1 2
instead of one. a
Substitution into(92) yields two evolution equations for FIG. 22. Division of the phase domain for the two-mode approximation,
the amplitudes of the independent modes indicating behavior of the interface.
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1.05
&
1.5

FIG. 24. Trajectories of zeros in the complaxplane as a function of
FIG. 23. Trajectories of solutions in theb phase domain for increasing increasing bond number. Solid and dashed lines represent complex conju-
bond number. Motion is towards and out along the curved unstable manigate pairs. Motion is towards the unit circle.
fold.

ellipse as the unit circle is approached. Bor 2.15, the two

l<p<1 the ellipsea=[8b(1—b)]¥? is the locus of con- initially real zeros collide at some time, and bifurcate off into
figurations with two touchdowns. The functiqnis strictly ~ the complex plane. Then they flow together as a conjugate
positive in the interior of the ice cream cone-shaped regionPair towards the unit circle. The point of collision is where
This domain is divided by the line=a/4 into regions where ~the unstable manifold crosses the ellipse. Ber2.5 the en-
p has a single minimum and where it has two. The domairire unstable manifold lies within the ellipse, and the two
can also be divided in terms of the locations of the complexZ€ros evolve directly as conjugate pairs towards the unit
zerosh; and )\, within the unit circle in thez plane. Within ~ Circle. The presence of a conjugate pair would give a spec-
the ellipse defined above,;=\} and they are complex, UM similar to that seen in Fig. 17. Examination of the nu-
while exterior to that ellipse both zeros lie on the real axis. Merical evidence suggests thgj;, approaches zero linearly

We focus now on the organization of the phase trajectoln time, as for the single mode case, and thgft) also
ries defined by Eq104). Linearization about the steady state approaches linearly ty(tp).
(a,b)=(0,0) givesa=(B—1)a andb=2(B—4)b, as also
found from linear analysis of the full PDE. Thus, B 1 VI. CONCLUSIONS

the point(0,0) is asymptotically stable. For<1B<4, the In this work, we have developed an approximate analyti-
local stable manifold is thé axis, while thea axis is an  cal description of finite-time singularities in a class of vis-
unstable invariant manifold. cous flows. Starting from the exact highly nonlocal vortex

Figure 23 shows théa,b) phase domain foB=1.05,  sheet description of interface motion in Hele—Shaw flow, we
1.50, 2.15, and 2.50. Recall that a point on the domaimave developed a systematic procedure for generating equa-
boundary {\|=1) with b<3 has a single touchdown, while tions of motion valid for asymptotically thin layers. This
for b> 3 there are two. The boundary point with=3 is  asymptotic limit is more tractable and retains many of the
shown as a solid dot. Fd8=1.05, the unstable manifold to important features of the full problem, such as its conserva-
(0,0 is very flat across the phase domain, and its terminugion laws, linear stability properties, and variational struc-
lies on the domain boundary with very slightly positive tyre.

(b~0.008). As for them=1 case, intersection with the do- We have focused on a dynamic that is intrinsically un-
main boundary gives a singularity in the evolution of thestable, and thus for which a topological transition would ap-
ordinary differential equation. It appears that any initial con-pear to be inevitable. This Rayleigh—Taylor problem, with
dition within the phase domain that is not upon the stablgts simple competition between buoyancy and surface ten-
manifold will intersect the domain boundary within a finite sjon, has an underlying variational principle that allows us to
time. Orbits are attracted strongly onto the unstable maniprove that interface pinching must occur, at least in infinite
fold, in accordance with our slaving picture; the unstabletime. The adjustable parameter that controls the instability
manifold is clearly the organizing structure of the phase(the bond numbeérmay be tuned so that the unstable mode
flow. evolves arbitrarily slowly compared to all others. With this

As B is increased further, the unstable manifold bendsseparation of time scales, and an associated partitioning of
upwards, and its terminus on the domain boundary alsenodes into “active” and “slaved”, a systematic perturba-
moves to larger values df. At B=B~2.1, this terminus tion theory can be developed that leads to explicit expres-
crossesh= 3, and there is a bifurcation to two touchdowns. sions for the time evolution of all modes. Most importantly,
Figure 24 shows the motion of orbits af, (solid) andA,  these results constitute an approximate solution to the initial
(dashed when off the real axiwithin the unitA-circle. For  value problem. They predict quite accurately the singularity
small B (B=1.05,1.5) the unstable manifold maps com-time observed in numerical studies of the full equation of
pletely onto the reak-axis—i.e., the manifold lies entirely motion. This partitioning of the modes can be generalized
beneath the lower boundary of the ellipse. The two real zerothrough the introduction of suitable projection operators, and
then evolve along the real axis, and one of these zeros movean be recast naturally as the dynamics of zeros in the com-
out and collides with the unit circle, producing again a singleplex plane, a picture of singularity formation found in other
touchdown. FoB> B, the unstable manifold crosses into the systems as wef>*® Another natural question is whether
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such techniques might be extended to the unfordgd @) Y=Y+ ey 4 242 4 ... (A3)
case, such as studied by Almgrenal,? for which there is . . _ .
no apparent division of scales. This requires the calculation of expressions of the type

Many important unanswered questions remain for this 1 fx p(x)dx’
class of problems, perhaps the most notable being how to |,—|,=— f —
prove that there is indeed finite-time pinching in the 2wl J—w (X=X')+ieh,
Rayleigh—Taylor problem. As well one would like a more 1 co y(x)dX
rigorous understanding of the slaving analysis, perhaps using -—— f
the techniques developed for proving the existence of inertial 2m
manifolds for dissipative PDEs. All of the results we ha"ewherem:h(x)ih(x’).
discussed pertain to finite systems in two dimensions, for ¢ the two integrald, and|,, the former is the more

which the spectrum of modes is discrete. One very naturgliicy i, The evaluation of , involves geometric expansions
issue is whether the slaving approximations developed hergs e integrand, together with integrations by parts, and is
can be generalized to infinite systems with a continuouiossime because the quantith(p)—h(qg))/(p—q) is
spectrum. Likewise, the extension of these ideas to MOrg, nded for smooth. The unboundedness of the quantity
complicated free-surface flows remains an open prOble”[-h(p)+h(q))/(p—q) as p—q—0 renders the integral,
Examples include pattern formation through the nonlineagq jis kindred more difficult. The coefficients of their Tay-

development of the Saffman—Taylor instability of an ex-|o expansions are instead obtained through a limiting proce-
panding gas bubble, and the Rayleigh instability of a fluidy, e of the form

column or a soap filni? Finally, and on a more general level,

we do not have a good understanding of how smooth large- ) . dly(e)
scale flows induced by instabilities connect up with scaling ~ 1(€)=1im li(e)+e lim ——
solutions near singularities. This aspect appears to be central <0 <0

to the determination of singularity exponents in the scalingThis procedure amounts to an application of the Plemelj for-
forms. mulas, and generates both local and nonlocal terms. After

considerable algebra, we obtain
ACKNOWLEDGMENTS

We thank A. Bertozzi, R. Kohn, and most especially M. 1l y1= 1l y]=Uly1=VEy), (A6)
Pugh for helpful discussions. This work was supported inwhere
part by NSF PFF grant DMR93-50227 and DMR96-96257 " o om om
and the A.P. Sloan FoundatidiREG), by NSF PYI grant Uly]= Z (-7 d ( (X,)th)| ,
DMS-9396403, grant DMS-9404554, DOE grant DE-FGO02- YT & 2(2m)!  dx’2m Y X=X
88ER25053, and by the Exxon Educational Foundation "

MJIS). (_1)m62m+l d2m+1 ,
( ) +m2:0 2(2m+ 1)] T dX/2m+1 {Y(X )A2m+l} ’

—w (X=X")+ieh_’ (A4)

+eee (Ab)

APPENDIX A: THE LUBRICATION EXPANSIONS (A7)

Here we show some of the technical details involved in
the expansions of the vortex sheet integrals that lead to th&¥here
lubrication equations of motion. This uses an asymptotic A2M+1_p2ml_ p2mi1 (A8)
technique developed in Baker and Shélfdpr studying thin i ’
vortex layergMoore™® used a matched asymptotics approachand
for this same problein Generalizing the expression for the

o

fluid velocity (6) to the case of two interfaces located at == (—1)me?mtt gamel (y(x')h2™+1))
positionsz; andz,, the equation of motion for either is Y “o 2(2m+1)1 dx 21t + X'=x

iz} 1 e y1(P") w

] 1 __1\m_2m 2m
— (pH)=5—= Pf f—— (=1)"e ,
it PV 2w P 2 £ 3 S A g (0OAT . (A9)
+— pfﬂcd ! L), (A1) Noting that R¢(d,2,)Q*}=U+Veh, in Eq. (A2), and
2mi ) zj(p) —z2(p") substituting from(A3) we obtain

where P means the principal value integral of the self-

~1.(0) 1 (1) o (0) 201,(2)
interaction term. Now leQ* (zj) =z} /t. By the assumed U+Veh=3zy"+ ey + 7y "hid) + €52y

symmetry of the interfaces, the vortex sheet strengths are + 7YV} = d(hde(hy @) +--- .
equal in magnitude and opposite in sign and satisfy (A10)
v+2A, Re[z,Q*(2)}=dy(k+Bd(2)). (A2)
# ) P P ) The right-hand side ofA2) has also an expansion &
The two interfaces are located at-ieh(x), and we
seek expansions ia of the vortex sheet strength I(k+Bp(2,))=P O+ ePD 4 2P ... (A11)
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whose coefficient®(™ depend only on the functioh, its To solve foré!, the Fredholm Alternative must be sat-
spatial derivatives, and the parameBeiThen order by order isfied. There are three independent solutions“gy=0:
in € (A2) becomes Y1=1, yp,=cosx, yz=sinx. Thus, to find a solution to Eq.
P(°)=(1+Aﬂ) O (B6), it must be that
T2yl ={ T2, o) ={T8,3) =0, B7
P(l): (1+A#) 7(1)+ ZAM'/\’Z/[{'}’(O)h}X], (AlZ) < l;bl> < ‘/’2) < ¢3> ( )
) ) L are satisfied, where,-) is the usual.?[0,27r] inner product.
PP =(1+A,) y?+2A, 7[{yVh},] The first two are trivially satisfied, the last is not. One veri-
—2A, 0 (hay(hy)) fies by direct integration that the last condition reproduces
pEETTX ' the equation of motion for the amplitudg ) found in Eq.
Solving this order by order im yields the functionsy(™ (94).
1 As mentioned above, this has further implicationsgbr
0= PO Applying the solvability condition, that is, the ODE feax,
1+A, gives
1 2A 1 _ _ a2
(1) = W_ P oripo) , (1-vl-a“+2acosx _
Y= P J{PPh}], (A13) R
1+A 1+A, " /=3 1+a cosx sinx. B8)
and so on. _ _ _ Integration of this equation faf* gives the expression found
Finally, the equation of motion for the interface takes thegq, qin Eqg.(10). Asa—1", the right-hand-side acquires a
general form pole singularity ak=7r. The local behavior of£;£* can be
he=— {h(y'?+ ey D+ €292 + €40 71 h,] rewritten in a scaling form
+ 70 (YV),]— €2y O (hh)+- )} (A14) 1 X—m

,%/151: (Bg)

n
e A=
APPENDIX B: A PERTURBATIVE APPROACH TO o . 1
TOUCHDOWN SINGULARITIES This implies thaté,, diverges asr— 7,.
In our second example, we apply this asymptotic ap-

In this Appendix, we present two examples of a pertur-proach to a thin layer of liquid pinching under a slow outflux
bative approach to understanding touchdown singularities. laf fluid. We consider the lubrication equation with surface
each case, we again exploit the existence of a slow timeesnsion alone
scale. The first example is the Rayleigh—Taylor problem,

with B=1+ € for e<1. Rescaling time as in Eq73), the hi=—dx(hhy, (B10)
lubrication equation reads but with the modified boundary conditions
eh, == (h(Z1h+ ehy)). B1) h(1D=1, he(1h=e<1, (B11)
We assume that can be expanded iaas with h even abouk=0. The mass flux ifih,,,, and so these
h=¢&04 el . (B2)  boundary conditions at=1 correspond to an imposed, slow
o ) outflux of liquid from the layer.
At O(1) in this expansion, we have We expandh as in Eq.(B2), and again rescale time as
—0,(£7,£%=0. (B3) 7= €t. At first order we find
It is straightforward to show that with periodic boundary — (€262 =0, (B12)
conditions

with the boundary conditions

0_
&=1+a(t)cosx. (B4) O1,n=1, & (1,7)=0, (B13)
While sinx is also in the null space of7, it can be sub- 0 _ L
sumed into the above form through a phase shift. As beforeé,mdg even abouk=0. This yields
the time dependence mis determined by a solvability con- Ox,t)=1+a(7)(x>—1), (B14)
dition that allows a continuation of the asymptotic expan- . )
sion. At the next order we have the shallow-water form  Wherea(r) is determined at next order. A(¢) we have

E=— (&£ E+ &) (B5) a,(x*=1)= = dx(£°Ex0)s (B15)

Again, if £2—0 then &' must develop a singularity. This With £' even abouk=0 and

equation can be integrated up once, and written as a differ-

egtial equation for! ’ P £(1m)=0, &u(1m)=1. (B16)
Integrating up once, and using evenesg=al, gives

S
Fagt=— ?_ E=7. (B6) a(P—x)=— §0§>1<x><' B17)
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Where before we applied a solvability condition to determine (¢ d1 ren 5 )
a(7), we now use boundary conditions. Applying the bound- ¢ 71pl= di 2 fo dx(px—Bp?)
ary conditions ak=1 on £%%, we find

2 2
a(r)=3%r+a,, (B18) =—f dxp %) <0, (C3
0
which gives a timer,=(3)(1—a,) when the zeroth-order
. . P . d ) d 2
solution pinches. As before, this has consequences for the — o[p]=— _j dxf(x)In f(x)
next order correctiog. Namely, Eq.(B15) becomes dt dt 0
1 (2=
3 Ix3—x _ - f dx(p2.— Bp?
L == X(Pxx—BP), (CH
So” T3 Tra(n(—1)" 19 hJo T
. : wheref=p/p, andy,=p;.
and at the pinch time Beginning with the energy, we have
, __35%-1 4 o [Taxyzap=— [Tdxyr, c5
o= "5 T (B20) at” =, VZep=— | dxy m gy (CH)
vyhich has a.pole singularity at= 0.. Onpe againtL, is loga- _ ZWdeX: B dexp y 2. (C6)
rithmically divergent at the pinching time. 0 p p
The first line of equalities are obvious. The last line follows
from the fact that for anya e P™, and smooth, periodib
APPENDIX C: PROPERTIES OF DECOUPLED ) 5
SLAVING APPROXIMATION dxab=J dX&( 7t O
0

In this section, we prove several properties of the alter-

native slaving systen85 2m ]
g systends) = | "dxaz,p. (C7)
0
_ oY _
P=Yx: Zm P zp. The identity for the entropy follows in a similar fashion.
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