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M
any physical systems exhibit behaviour associated with 
the emergence of high-amplitude events that occur with 
low probability but that have dramatic impact. Perhaps the 

most widely known examples of such processes are the giant oce-
anic ‘rogue waves’ that emerge unexpectedly from the sea with great 
destructive power1. �ere is general agreement that the physics 
behind the generation of giant waves is di�erent from that of usual 
ocean waves, although there is a general consensus that one unique 
causative mechanism is unlikely. Indeed, oceanic rogue waves have 
been shown to arise in many di�erent ways: from linear e�ects such 
as directional focusing or the random superposition of independ-
ent wave trains, to nonlinear e�ects associated with the growth of 
surface noise to form localized wave structures1,2.

�e analogous physics of nonlinear wave propagation in optics 
and hydrodynamics has been known for decades, and the focusing 
nonlinear Schrödinger equation (NLSE) applies to both systems 
in certain limits (Box 1). However, the description of instabilities 
in optics as rogue waves was �rst used in 2007 when Solli et al. 
reported long-tailed histograms in measurements of intensity �uc-
tuations at long wavelengths in �bre supercontinuum (SC) spectra3. 
An analogy between this optical instability and oceanic rogue waves 
was suggested for two reasons. First, highly skewed distributions 
are o�en considered to de�ne extreme processes, as they predict 
that high-amplitude events far from the median are still observed 
with non-negligible probability4. Second, the particular regime of 
SC generation being studied developed from modulation instability 
(MI), a nonlinear process associated with the exponential ampli�ca-
tion of noise that had previously been proposed as a mechanism for 
generating ocean rogue waves2. 

�ese pioneering results not only enabled a quantitative analy-
sis of �uctuations at the spectral edge of a broadband SC, but also 
motivated many subsequent studies into how large-amplitude 
structures could emerge in optical systems. �ese studies attracted 
broad interest and essentially opened up a new �eld of ‘optical rogue 
wave physics’. Although most research since has focused on wave 
propagation in optical �bres — particularly in regimes analogous to 
hydro dynamics — the term ‘optical rogue wave’ has now been gen-
eralized to describe other noisy processes in optics with long-tailed 
probability distributions, regardless of whether they are observed in 
systems with a possible oceanic analogy. Moreover, particular ana-
lytic solutions of the NLSE that describe solitons on a �nite back-
ground — o�en called ‘breathers’ — are now also widely referred 
to as rogue wave solutions, even when studied outside a statistical 
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context for mathematical interest, or when generated experimentally 
from controlled initial conditions. �ese wider de�nitions have 
become well-established, but can unfortunately lead to di�culty for 
the non-specialist. 

Our aim here is to remove any possible confusion by present-
ing a synthetic review of the �eld, not in terms of its chronological 
development, which has been discussed elsewhere5,6, but rather by 
classifying rogue waves in terms of their generating physical mecha-
nisms. We begin by discussing rogue waves in the regime of NLSE 
�bre propagation where MI and breather evolution dominate the 
dynamics, and then discuss how the e�ects of perturbations to the 
NLSE can lead to the emergence of background-free solitons. �is 
provides a natural lead-in to a discussion of the physics and meas-
urement techniques of rogue solitons in �bre SC generation. Finally, 
we describe the techniques used to control the dynamics of rogue 
waves in �bre systems, followed by a survey of the results achieved 
in other systems: lasers and ampli�ers, in which dissipative e�ects 
are central to the dynamics, and spatial systems, in which both non-
linear and linear dynamics can play a role. 

Rogue waves and statistics
Before considering speci�c examples of optical rogue waves, we �rst 
brie�y review how rogue wave events are manifested in the statistics 
of the particular system under study. 

In optics, statistical properties are de�ning features of light 
sources. For example, the random intensity �uctuations of polarized 
thermal light follow an exponential probability distribution, and the 
intensity �uctuations of a laser above threshold follow a Gaussian 
probability distribution7. It was the experimental observation of 
‘L-shaped’ long-tailed distributions3 that �rst linked nonlinear 
optics with the wider theory of extreme events. In a sense, the pres-
ence of long-tailed distributions in optics should not be a surprise, 
as it is well-known that a nonlinear transfer function will modify 
the probability distribution of an input signal. Indeed, an expo-
nential probability distribution in intensity is transformed under 
exponential gain to a power-law Pareto distribution. �ere are other 
cases, however, in which the functional nonlinear transformation 
of an input �eld cannot be identi�ed, because the emergence of 
high-amplitude events arises from more complex dynamics. Optical 
rogue waves and long-tailed statistics have been observed in systems 
that exhibit both types of behaviour. 

Rogue waves in optics have been identi�ed in a number of 
di�erent ways. One approach uses the idea from probability 
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theory that associates rogue events with particular extreme-value 
probability distributions, and such functions have provided good 
�ts to the tails of optical intensity �uctuation histograms8–10. 
Another approach adapts the oceanographic de�nition of a rogue 
wave, whose trough-to-crest height HRW satis�es HRW ≳ 2H1/3, where 
H1/3 is the signi�cant wave height, the mean height of the highest 
third of waves11. In optics, however, the accessible data is not the 
�eld amplitude but rather the intensity, and such data can take a 
variety of forms: an intensity time series; the levels of a two-dimen-
sional camera image; or the space–time intensity evolution of an 
optical �eld. From this data, the intensity peaks are analysed statis-
tically to compute a histogram, and the oceanographic de�nition 
is modi�ed to de�ne a threshold IRW ≳ 2I1/3, where the ‘signi�cant 
intensity’ I1/3 is the mean intensity of the highest third of events. 
�is de�nition, although somewhat arbitrary, has been applied in 
several studies12–15. 

From a general perspective, the most interesting question is 
whether events in the distribution tail for a particular system arise 
from the same physics as those of events closer to the distribution 

median. �is is also relevant in a practical context, as the ability to 
identify the conditions that cause extreme events is crucial to their 
prediction and control. 

Modulation instability and breather dynamics
Modulation instability is a fundamental property of many non linear 
dispersive systems that is associated with the growth of periodic per-
turbations on a continuous-wave (CW) background16. In the initial 
evolution of MI, the spectral sidebands associated with the insta-
bility experience exponential ampli�cation at the expense of the 
pump, but the subsequent dynamics are more complex and display 
cyclic energy exchange between multiple spectral modes. In optics, 
MI seeded from noise results in a series of high-contrast peaks of 
random intensity17,18, and it is these localized peaks that have been 
compared with similar structures seen in studies of ocean rogue 
waves2,19,20. Signi�cantly, the growth and decay dynamics of MI in 
the NLSE have exact solutions in the form of various types of breath-
ers or ‘solitons on �nite background’ (SFB)21, allowing analytic stud-
ies into the conditions that favour the emergence of rogue waves. 

Figure box inset 2mm on either side of tint Box. Figure sized to sit 
centred on white background.

�e analogy between the dynamics of ocean waves and pulse 
propagation in optical �bres arises from the central role of the 
NLSE in both systems. Figure B1 gives the governing equations 
and illustrates characteristic soliton solutions for both cases. In 
optics, the NLSE describes the evolution of a light pulse enve-
lope modulating an electric �eld, whereas for deep water it 
describes the evolution of a group envelope modulating surface 
waves. It is important not to oversimplify or exaggerate this anal-
ogy. For example, the deep-water NLSE in oceanography does 
not describe the shape of individual wave cycles but only their 
modulating envelope. �us, speci�c envelope solutions of the 
deep water NLSE cannot be considered physically as individ-
ual rogue waves; within the narrowband approximation of the 

NLSE, there will always be multiple surface waves underneath 
this envelope. 

Recent studies into optical rogue waves in the MI and breather 
regime have motivated similar water-wave experiments112,113, even 
to the extent of testing the resistance of scale models of maritime 
vessels to particular NLSE breather solutions114. Interestingly, 
higher-order e�ects described by an extended NLSE can also be 
present in deep water115–117, and wave-tank experiments have even 
shown a form of hydrodynamic SC and soliton �ssion118. Note, 
however, that although a clear analogy between ocean wave and 
optical propagation exists in the unperturbed NLSE regime, there 
is no such rigorous analogy for the extended NLSE because the 
physical forms of the higher-order perturbations are very di�erent. 

Box 1 | The optical–ocean analogy.

Soliton on zero background

t

t

Time (s)

u
 (

m
) 0

0

T

T
Time (s)

Time (s)

T
Time (s)

Time (s)

A

3

0

9

6

0

1

T

u
 (

m
)

Deep water wave group envelope Light pulse envelope in fibre

Soliton on finite background Soliton on finite background

a b

u

Time (s)

A
 (

W
1/

2
)

3
2
1

1

0

0

−1

−1

−2
−3

Soliton on zero background

A
 (

W
1/

2
)

i − − |u|  u = 0
∂u

∂z ∂t 2ω2
0

2∂  u2k0 k
0

+ |A|  A = 0
∂T 2

2∂  A2

γi +
∂A
∂z 2

1
|β  

2
|

|A
|2

  (
W

)
|A

|2
  (

W
)

3

Figure B1 | The NLSE describes wave evolution in di�erent physical systems. a, Wave group envelope u on deep water. b, Light pulse envelope A in 

an optical fibre with anomalous group velocity dispersion. The figure illustrates solitons on finite background (top) and solitons on zero background 

(bottom). Note that for the ocean wave case, there is always deep water underneath u(z, t). For the water wave NLSE, k0 is the wavenumber and ω0 is 

the carrier frequency; for the fibre NLSE, β2 < 0 is the group velocity dispersion and γ is the nonlinear coe�cient. The usual NLSE for water waves in fact 

has time and space interchanged, but in this case the coe�cients must be adapted2. 
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SFBs constitute a class of NLSE solutions whose real and imaginary 
parts are linearly related.  SFB solutions include Akhmediev breath-
ers (ABs), Kuznetsov-Ma (KM) solitons, the Peregrine soliton (PS), 
and even more generally the bi-periodic solutions of the NLSE 
described by Jacobi elliptic functions21–23. Many of these solutions 
have been labelled as ‘rogue waves’24, although this interpretation 
must be made with great care; as we will see below, the statistical 
criterion for rogue waves in an MI �eld seeded by noise is generally 
only satis�ed by particular higher-order SFB solutions (sometimes 
referred to as multi-rogue waves or higher-order rogue waves)25–28.

Before discussing noise-seeded MI in detail, we �rst describe these 
SFBs and breather solutions by referring to the dimensionless NLSE:

 i + +|ψ|  ψ = 0
∂ψ

∂ξ
1

2

∂  ψ

∂τ2

2
2

 (1)

�e envelope ψ(ξ, τ) is a function of propagation distance (ξ) and 
co-moving time (τ). Equation (1) can be related to the dimensional 
�bre-optic NLSE in Fig. B1 by de�ning a timescale T0 = (|β2| LNL)

1/2 
and a nonlinear length LNL = (γP0)

–1, where β2 is the group velocity 
dispersion, γ is the nonlinear coe�cient and P0 is the optical back-
ground power. �e dimensional �eld A(z, T) is A = (P0)

1/2ψ, where 
dimensional time is T = τT0 and dimensional distance is z = ξLNL. 
Analytic solutions of MI dynamics have been obtained by several 

authors20–23,29–31, with the relevance to optics �rst pointed out by 
Akhmediev and Korneev30. �e particular solution that describes 
MI growth and decay is21,30:

 ψ(ξ, τ) = e 1 + 2(1 − 2a)cosh(bξ) + ibsinh(bξ)
√2a cos(ωτ) − cosh(bξ)]iξ ] (2)

�e properties of this solution are determined by the positive 
parameter a (a  ≠  0.5) through arguments b  =  [8a(1  −  2a)]1/2 and 
ω = 2(1 − 2a)1/2. �is solution is the AB when 0 < a < 0.5; we observe 
evolution from the trivial plane wave (a = 0) to a train of localized 
pulses with temporal period Δτ  =  π/(1  −  2a)1/2 (ref.  30). �e AB 
solution provides an analytic framework for MI, where the real 
parameter ω corresponds to the modulation frequency and the real 
parameter b gives the parametric gain coe�cient32.

Figure 1a plots solutions for di�erent values of a, and it is the 
spatial and temporal localization properties of these solutions that 
have led to their association with rogue waves. �e MI instability 
growth rate is maximal at a = 0.25, but increasing a actually leads 
to stronger localization in both dimensions until the limit a → 0.5, 
which gives the PS23. 

�e PS, given by ψ(ξ, τ) = eiξ[1 − 4(1 + 2iξ)/(1 + 4τ2 + 4ξ2)], cor-
responds to a single pulse with localization in time (τ) as well as 
along the propagation direction (ξ) as shown, and it has maximal 

Figure 1 | SFB solutions of the NLSE. a, Analytical SFB solutions of equation (2) for varying parameter a. AB collision and the second-order rational 

soliton (or second-order PS) are also shown. b-d, Experimental results. b, Temporal PS properties asymptotically approached for a = 0.42 (ref. 39). 

c, KM dynamics along the propagation direction for a = 1 (ref. 42). Experiments, simulations and theory are compared in b and c. Here zp = 5.3 km, 

which corresponds to one period of the KM cycle. d, Comparison of experiments and simulations of a second-order solution for the collision of two ABs 

(a = 0.14 and a’ = 0.34)35. AB, Akhmediev breathers; KM, Kuznetsov-Ma; PS, Peregrine soliton.
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intensity among the AB solutions with |ψPS|
2 = 9. When a > 0.5, the 

parameters ω and b become imaginary, and the solution exhibits 
localization in the temporal dimension τ but periodicity along the 
propagation direction ξ. �is is the KM soliton22,29, which is shown 
in Fig. 1a for a = 0.7. In this regard, we note that the KM result of 
ref. 22 was the �rst reported mathematical SFB solution to the NLSE.

Each of the solutions described by equation (2) is a special case 
of a more general family of solutions that exhibit periodicity in both 
transverse time τ and longitudinal propagation direction ξ (ref. 21). 
More complex higher-order solutions also exist with even stronger 
localization and higher intensities than the PS21, such as higher-
order rational solitons25–28,33 and AB collisions34. Figure  1a shows 
examples of both types of solutions25,35,36.

�e analytical results above have been used to design experi-
ments with controlled initial conditions to excite particular SFB 
dynamics in �bre optics. �e use of optical �bres provides an espe-
cially convenient experimental platform because the dispersion 
and nonlinearity parameters can be conveniently matched to avail-
able optical sources, thus yielding a propagation regime in which 
the NLSE is a valid model for the dynamics. Experiments typically 
involve the injection of a multi-frequency �eld into a nonlinear 
�bre — similar to the method developed for coherent pulse-train 
generation in telecommunications37,38. Figure  1b–d shows a selec-
tion of results obtained using this technique. �e �rst experiments 
in 2010 used frequency-resolved optical gating to show localiza-
tion in the PS regime39, with measured intensity and phase agree-
ing well with numerical and analytical predictions (Fig. 1b). Later 
experiments examined in more detail the growth and decay of 
spectral amplitudes during AB evolution40. As pointed out by 
Van Simaeys et al., the reversible dynamics of MI is a clear manifes-
tation of Fermi–Pasta–Ulam recurrence in optics41.

Experiments that excite KM-like evolution along the propagation 
direction have also been realized; Fig. 1c illustrates the growth and 
decay of the peak temporal intensity42. In another experiment, 
spectral shaping of an optical frequency comb synthesized initial 
conditions to excite the collision of two ABs35. Figure 1d shows an 
example of the results obtained, comparing the measured collision 
pro�le at the �bre output with numerical simulation. �ese results 
are signi�cant because they highlight how collisions can yield sig-
ni�cantly larger intensities than the elementary ABs alone, even 
exceeding the PS limit. Note that excited AB collision dynamics can 
be considered to be a particular case of higher-order MI, wherein 
the simultaneous excitation of multiple instability modes within 
the MI gain bandwidth gives rise to the nonlinear superposition 
of ABs21,43–45.

�e use of a modulated input �eld in these experiments means 
that the initial conditions correspond to a truncated Taylor series 
expansion of the analytic AB or PS far from the point of maximum 
localization, or an approximation to the ideal KM pro�le at the 
point of minimal intensity in its evolution cycle. �e use of non-
ideal initial conditions induces di�erences compared with the ideal 
dynamics (for example, the occurrence of multiple Fermi–Pasta–
Ulam recurrence cycles for an AB), but simulations have shown 
that the spatiotemporal localization and �eld properties at the point 
of highest intensity remain well-described by the corresponding 
analytic SFB solution46.

�e experiments above give insight into how appropriate initial 
conditions can excite a range of analytic SFB structures in an NLSE 
system. �ese results are important in the study of rogue waves 
because structures very similar to those described by equation (2) 
(and their higher-order extensions) also appear in chaotic �elds 
when MI develops from noise33,34,47,48. We illustrate this in Fig.  2 
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in the dynamics as indicated. b, Line profiles extracted from the regions of the chaotic field indicated by white dashed rectangles in a, compared with 

analytical NLSE solutions (red solid line). c, Peak-intensity statistics using an eight-connected neighbourhood regional maximum search to identify two-

dimensional peaks from a wider simulation window. The maximum of the probability density corresponds to AB-like solutions at the peak of the MI gain, 

whereas the most extreme outliers arise from collisions of ABs. The bottom subfigures show the evolution of two events from di�erent regions of the 

histogram (i) and (ii) as indicated. The initial amplitude of the field ψ(ξ, τ) = 1.
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using numerical simulations of the dimensionless NLSE, where 
clear signatures of the SFB solutions (periodicity in τ or along ξ, 
τ–ξ localization, the peak intensity value) can be identi�ed when 
MI is triggered from a broadband noise background. Figure 2a plots 
a density map of the evolution as a function of distance ξ, showing 
emergence of an irregular series of temporal peaks around ξ ~ 10. 
Note that the average temporal periodicity here is Δτ ~ 21/2π, which 
corresponds to the reciprocal of the frequency of maximum MI 
gain. A�er the initial emergence of these localized peaks, we see 
more complex periodic growth and decay behaviour along ξ.

Examining particular features of the evolution map reveals sig-
natures of the analytic KM, AB and PS solutions described above, 
as plotted in Fig. 2b. For the KM region, a line pro�le of the evolu-
tion along ξ agrees well with the analytic result expected for a KM 
soliton; in the AB and PS regions, the temporal localization charac-
teristics also agree well with corresponding analytic predictions. Of 
course, observing ideal analytic SFB structures is not expected given 
the random initial conditions, but it is remarkable how the analytic 
solutions can be mapped closely to the noise-generated structures. 
In this context, we remark that recent results have also considered 
di�erent initial forms of small perturbations to the CW background 
and found similar signatures of AB structures50.

�ese results con�rm that SFB solutions can provide analytical 
insight into structures emerging from noise-seeded MI, but 

understanding their signi�cance to the physics of rogue waves 
requires an analysis of the associated statistics33,34. To this end, Fig. 2c 
plots a histogram of the intensities of the localized peaks in a larger 
computational window (around 106 peaks in the τ–ξ plane). First, 
we note that the histogram maximum corresponds to an intensity of 
|ψ|2 = 5.6, which is close to the AB intensity at maximal gain when 
a = 0.25. �e fact that these structures appear more frequently than 
others in the chaotic regime is also consistent with experiments 
studying the spectral characteristics of spontaneous MI18.

Second, we note an exponential tail (linear on a semi-logarith-
mic scale) for higher-intensities; the dashed line indicates the point 
in the tail that corresponds to the rogue wave intensity threshold 
IRW ~ 13. It is interesting to remark here that the elementary AB and 
PS structures (with an intensity less than IPS =  |ψPS|

2 = 9) actually 
have intensities below the intensity IRW, which suggests caution in 
the description of these solutions as rogue waves24,39. Approximately 
2.5% of the total peaks have an intensity that exceeds the PS limit of 
IPS = 9, and these events correspond to AB collisions arising physi-
cally from the continuous range of frequencies ampli�ed by MI33,34. 
In our simulations, the largest among them (which make up only 
0.1% of the total) have intensities exceeding the rogue wave thresh-
old IRW and would thus clearly be described as rogue wave events 
according to any criteria used2,51. Note that the �gures below the 
histogram in Fig.  2c show simulation results for (i) a typical AB 
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solution and (ii) a three-breather collision from the distribution 
tail. Finally, we note that these results were obtained with a noise 
background of one photon per mode, although the exact fraction of 
highest-intensity events in the distribution tails may be expected to 
vary with the noise level used to seed MI33,34. 

Supercontinuum generation and solitons
�e studies above show how SFB dynamics during �bre propaga-
tion can lead to strongly localized structures with rogue wave sta-
tistics. Interestingly, however, the �rst observations of rogue waves 
in optics were not made in the regime of SFB dynamics at all, but 
in ‘long-pulse’ SC generation. In this regime, higher-order e�ects 
beyond the basic NLSE played an important role3, and although 
approximate SFB solutions can exist even under these conditions52, 
the �rst observed rogue wave characteristics arose instead from the 
dynamics of background-free hyperbolic secant solitons.

Noise-seeded MI dynamics dominate the initial stages of long-
pulse and CW SC generation, but the dynamics are signi�cantly 
modi�ed with propagation by higher-order dispersion and stimu-
lated Raman scattering32,49. It is this perturbed dynamical evolution 
that drives the emergence of the rogue soliton characteristics of 
SC generation. Speci�cally, a�er initial evolution, which is statisti-
cally dominated by the AB with maximum gain (Fig. 2), perturba-
tions cause the associated temporal peaks to reshape with further 
propagation into fundamental background-free hyperbolic secant 
solitons18,53. �ese sech-solitons then experience the additional 
dynamics of dispersive wave generation54 and a continuous shi� to 
longer wavelengths through the Raman e�ect55. Because the soli-
tons emerge from a stochastic �eld of breather-like structures, their 
durations, amplitudes and wavelengths show considerable statistical 
variation. �e strong dependence of the Raman self-frequency shi� 
on duration55, coupled with the e�ects of group velocity dispersion, 
therefore induces complex evolution involving multiple (stochastic) 
collisions and energy exchange between the solitons56–59. 

It has been known for many years56 that such chaotic soliton 
dynamics could cause signi�cant shot-to-shot noise in the SC 
spectrum, but it was the real-time measurement of these �uctua-
tions3 that �rst highlighted links to the �eld of extreme events. In 
this work, Solli et al. used a long-pass wavelength �lter to select the 
portion of the SC spectrum in which they expected strong soliton 
intensity variations to occur, and then used dispersive Fourier 
transformation60,61 to perform shot-to-shot measurements of the 
associated spectral �uctuations. �e peaks in the resulting intensity 
time-series showed striking long-tailed statistics. Figure 3a shows 
the experimental set-up and a selection of recorded histograms at 
three di�erent pump levels. �e main conclusion drawn from these 
experiments was that the largest events in the tails of the histograms 
corresponded to a small number of ‘rogue solitons’ — solitons whose 
central wavelength had been Raman-shi�ed completely within the 
�lter transmission band — which appeared as high-intensity events 
in the time series. More recently it has become possible to meas-
ure the full-bandwidth shot-to-shot SC spectra62, and these experi-
ments (Fig. 3b) have highlighted more directly the small number of 
extremely red-shi�ed rogue solitons.

Subsequent modelling and experiments examined in detail the 
dynamics that lead to such extreme frequency shi�s, thereby clari-
fying the central role of soliton collisions8,12,63–68. Figure  3c shows 
numerical simulations that highlight the frequency- and time-
domain properties of a particular rogue soliton event69. In the fre-
quency domain, we see the transition from initial MI dynamics, 
with symmetric growth of noise-driven sidebands, to a regime in 
which distinct sech-soliton structures appear in the spectrum. A 
rogue soliton emerges at a distance of z ~ 9 m, and the snapshot 
of the time-domain evolution plot clearly illustrates a two-soliton 
collision at this point. �e collision is associated with signi�cant 
energy exchange (mediated by stimulated Raman scattering) to 

yield one higher-energy soliton (which then experiences a much 
greater Raman self-frequency shi�) as well as a lower-amplitude 
residual pulse12,63,69,70.

Note that although stimulated Raman scattering plays a central 
role for wave propagation in optical �bres, any perturbation that 
breaks NLSE integrability can cause a homogeneous initial state to 
self-organize into a large-scale, coherent rogue soliton as a result 
of multiple interactions with other solitons and dispersive waves71. 
Indeed, numerical studies have shown that higher-order dispersive 
perturbations alone can give rise to rogue solitons59,68, provided that 
the incoherence in the system is not too large48,72. Although it may 
seem surprising, energy exchange between colliding solitons can 
occur even in this case, owing to resonant coupling between the 
solitons and radiation emitted during the collision73.

Other numerical studies have investigated the statistical prop-
erties of SC rogue solitons in more detail. Several authors have 
considered the variation in local intensity along the propagation 
dimension, thereby showing that the intensity of colliding solitons 
at the point of collision can in fact be much higher than that of the 
rogue soliton at the �bre output12,63,67. Figure 3d shows this for the 
case of CW SC generation67, where it is clear that the maximum 
intensity at certain points in the �bre is much higher than at the 
output. �is suggests that signi�cant di�erences may be observed 
between the statistical properties measured over the full �eld at all 
points of propagation and those measured at the �bre output. A 
detailed study of these di�erences has been reported, including a 
discussion of the e�ect of spectral �ltering on the statistics12. We 
also note recent experimental work that uses dispersive Fourier 
transformation to examine the intensity correlation properties of 
both MI and SC, which has yielded further insights into the under-
lying dynamics61,62,74. Finally, we remark that although most studies 
in optics have focused on perturbation-induced collisions as a pri-
mary mechanism for generating extreme-frequency-shi�ing rogue 
solitons, the random emergence of coherent structures has been 
seen in numerical simulations of a basic NLSE model during the 
evolution of multimode CW �elds with initial random phases75. 

Controlling rogue waves in fibre systems
�e fact that SC rogue solitons have their origin in MI suggests 
the possibility to control their propagation using a dual-frequency 
input �eld such that the instability develops from a coherent modu-
lation on the input envelope rather than from noise32. �is approach 
is similar to that used to excite SFBs under controlled conditions. 

�e potential for seeding to stabilize the dynamics of rogue wave 
was �rst demonstrated experimentally by controlling picosecond 
SC generation with a frequency-shi�ed replica derived from the 
pump pulses76. �e seed pulses, although only 0.01% as intense as 
the pump, caused a dramatic improvement in SC stability. Related 
numerical studies showed how an appropriate choice of seed fre-
quency could signi�cantly decrease the rogue soliton wavelength 
jitter while also increasing the overall SC bandwidth77. �ese results 
not only highlighted the potential of rogue soliton control for 
improving the performance of practical SC sources8,77–79, but also 
stimulated ideas for enhancing spectral broadening in silicon wave-
guides80. Other experiments considered how seeding can improve 
the spectral properties of spontaneous MI, and remarkable spec-
tral control has been demonstrated using CW seeding at only the 
10–6 level81. One bene�t of this technique is that it does not rely on 
the time-delay tuning required for picosecond seed pulses82,83. 

As well as controlling input conditions, other studies have shown 
that longitudinal variation in a �bre’s dispersive and nonlinear 
properties can modify intensity �uctuations in both SC genera-
tion84 and the dynamics of an evolving AB85. �is work is signi�cant 
because it shows how a modi�ed �bre propagation environment 
can mimic the way in which ocean topography in�uences water 
wave propagation1. 
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Amplifiers and lasers
In addition to the examples in conservative (or weakly dissipative) 
systems discussed above, rogue waves in systems with strong dissi-
pation (gain or loss) have also been observed. Dissipative dynamics 
in optics have been studied for decades, and resonators, ampli�-
ers and multimode lasers are well-known to exhibit a wide range 
of chaotic and self-organization e�ects86. However, the develop-
ment of the �eld of optical rogue waves has now motivated the 
interpretation of these noise characteristics in terms of extreme-
value processes.

Although dissipative systems do not generally have NLSE-
governed hydrodynamic counterparts, exploring regimes of long-
tailed statistics in such systems has nonetheless provided new 
insights into the underlying physical processes. �e �rst observa-
tion of extreme events in a highly dissipative system reported long-
tailed intensity statistics from Raman ampli�cation of a coherent 
signal using an incoherent Raman pump87. �e long-tailed statistics 
were attributed to the transfer of pump intensity �uctuations onto 
the coherent signal owing to the exponential dependence of Raman 
gain on pump intensity. Similar nonlinear noise transfer under-
lies the emergence of extreme-value statistics in �bre parametric 
ampli�ers88 and silicon waveguide Raman ampli�ers89,90. Notably, 
Borlaug et al. explicitly calculated the power-law probability distri-
bution function of the ampli�ed signal intensity89. 

�e complex noise characteristics of lasers in systems with exter-
nal injection, mode-locking and delayed feedback is well-known, 
and it is not surprising that laser noise spiking behaviour can exhibit 
long-tailed statistics. Experiments have reported such properties in 
an erbium �bre laser with harmonic pump modulation91, a CW 
Raman �bre laser92, mode-locked Ti:sapphire and �bre lasers14,93,94, 
and passively Q-switched lasers95. In Fig. 4 we illustrate an experi-
mental result in which a sequence of highly localized temporal noise 
bursts was recorded from an erbium-doped mode-locked �bre 
laser; the associated intensity statistics show signi�cant deviation 
from exponentially bounded distributions14. �ese experiments 
con�rmed previous numerical studies that predicted intensity 
spikes in passively mode-locked �bre lasers through chaotic pulse 
bunching13,96. Rogue wave behaviour has also been seen from an 

optically injected semiconductor laser, where it was shown that the 
rogue wave dynamics could be described deterministically, with 
noise in�uencing only the probability of their observation97 (similar 
to noise-seeded MI.)

�ese results are inspiring signi�cant theoretical e�orts to iden-
tify the mechanisms that induce extreme temporal localization13,96 
and to characterize instabilities in real-time14,94,98. However, it 
should be noted that many of the reported features of extreme laser 
�uctuations had probably been seen in earlier experiments without 
being recognized as a separate class of rogue wave instability99,100.

Spatial instabilities
�ere has also been extensive interest in interpreting spatial insta-
bilities in terms of extreme events. �e �rst such study considered 
intensity noise in the output spatial mode of a cavity with non-
linear gain from an optically pumped liquid-crystal light valve101. 
Depending on the system parameters, the cavity exhibited complex 
transverse mode dynamics that, in the high-�nesse limit, exhibited 
highly unstable oscillation behaviour with long-tailed statistics. 
�e optical rogue-wave-like events were attributed to the nonlinear 
feedback and symmetry-breaking in the cavity design.

Optical �lamentation  — a complex process that involves self-
focusing, plasma formation and temporal shaping dynamics — is 
another example of a spatially extended system that exhibits rogue 
wave statistics. Studies into �lamentation have found di�erent sta-
tistical behaviour depending on the particular parameter regime 
investigated. In the single-�lament regime, shot-to-shot spectral 
�uctuations arising from pump noise transfer through self-phase 
modulation have demonstrated long-tailed statistics9,102. In the 
multi�lament regime, where the transverse pro�le of the input 
beam is broken into multiple strands through spatial MI, localized 
structures obeying non-Gaussian statistics have been predicted103. 
Experiments and simulations studying �lamentation in gas have 
revealed that local refractive index variations driven by nonlinearity 
can cause individual �lament strings to merge, thereby giving rise 
to short-lived spatial rogue waves at the gas cell output104. Figure 5a 
shows the experimental set-up of this work, with numerical and 
experimental results shown in Fig. 5b,c.
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Interestingly, long-tailed statistics have also been seen in lin-
ear spatial systems. In one experiment studying emission from a 
gigahertz microwave emitter array, researchers were able to probe 
the emitted electromagnetic �eld as a function of time and spatial 
position across the array105. Although the system contained no 
obvious nonlinear element, long-tailed distributions in the micro-
wave intensity were observed. Another example of a linear system 
that exhibits rogue wave statistics in the transverse spatial plane 
(but here at visible frequencies) was found to be the speckle pat-
tern observed at the output of a strongly multimode �bre106. In this 
system the asymmetry and inhomogeneity in the injected beam 
pro�le (Fig.  5d–f) yielded a sub-exponential intensity distribu-
tion that drove the emergence of rare high-intensity spots in the 
speckle pattern.

Discussion and outlook
�e initial results of Solli et al. in 2007 �rmly embedded the science 
of extreme events in the domain of optics, and we have seen how 
very di�erent optical systems can exhibit strong localization and 
long-tailed statistics. However, a major conclusion of this Review is 
that the mechanisms driving the emergence of rogue wave behav-
iour in optics can be very di�erent depending on the particular sys-
tem studied, and we hope that the categorization provided here will 
assist in structuring future work in this �eld. We also remark that 
great care must be taken when comparing results obtained in di�er-
ent contexts. �e particular example of optical �bre propagation is 
a case in point: the physics driving the excitation of analytical rogue 
wave breather solutions in a regime of propagation governed by 
the basic NLSE is signi�cantly di�erent from the perturbed-NLSE 
dynamics of extreme red-shi�ing rogue solitons in SC generation, 
and it is important to stress this distinction. 

Although there is clearly intrinsic interest in studying extreme 
instabilities in optics, much of the motivation for studying rogue 
waves in optical systems has been to gain insight into the origin 
of their oceanic counterparts. In this regard, however, it is also 
essential to recognize that not all experiments in optics yield direct 
insight into ocean wave propagation. �ere are certain regimes 
of wave propagation on the ocean and in optical �bre that are 

well-described by a basic NLSE model; provided experiments are 
performed in these regimes before the onset of any perturbations, 
insights obtained in the di�erent environments can be shared. In 
other cases, however, although the observation of long-tailed statis-
tics in optics may be linked to the wider theory of extreme events 
in physics, it is simply incorrect to compare such instabilities with 
oceanic wave-shaping processes. Analogies can be powerful tools in 
physics, but they must be used with care107.

�at said, in regimes where the optical–ocean analogy is valid, 
there is of course intense interest in using optical experiments to 
improve our general understanding of rogue waves, and experi-
ments in optics have indeed motivated similar studies in water wave 
tanks (Box 1). Although rogue waves on the ocean may arise in a 
number of di�erent ways, these experiments provide convincing 
evidence that nonlinearities in the ocean can play a role in extreme 
wave emergence and must be included a  priori in any considera-
tion of potential high-amplitude ocean wave-shaping mechanisms. 
A particular advantage of optical systems is that the high repetition 
rate of optical sources allows the generation of large data sets such 
that even events occurring with extremely low probabilities can 
be studied108. 

Even in a strictly optical context, many open directions of 
research still remain. Experiments and modelling of optical rogue 
wave dynamics are providing new insights into how noise drives 
(and/or stabilizes) the dynamics of nonlinear optical systems, how 
energy exchange occurs during soliton interactions, and how novel 
measurement techniques can reveal noise correlations even in the 
very complex case of SC generation. It is interesting to remark in 
closing that there is also signi�cant e�ort in optics to understand 
how e�ects like dispersion and nonlinearity engineering can allow 
optical systems to model di�erent aspects of the ocean environ-
ment109. Indeed, recently developed ‘topographic’ �bres have already 
been shown to be capable of controlling both optical MI and soliton 
dynamics110,111. As research continues to progress in this �eld, it is 
likely that the noise properties across a number of optical systems 
may �nd analogies with areas of physics other than oceanography, 
thereby allowing the use of a convenient optical test bed with which 
to study a wide range of di�erent physical processes. 
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