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ABSTRACT

We derive an integral equation governing an instability due to ion

temperature gradients. In the presence of magnetic shear, localized non-

convective normal modes of instabiliiy are shown to exist if the relative

temperature gradient is larger than that of density, unless the shear is

exceedingly strong, i. e., the field shears through a large angle in the

distance in which the temperature drops. Quasi-modes which are less

localized in the direction of the gradient can be constructed from these

normal modes and a large thermal diffusion may be expected. Conversely

the mass diffusion is shown to be rather slow so that it is reasonable to

assume that an effective "divertor" should keep the actual heat loss quite

small.
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INSTABILITIES DUE TO TEMPERATURE GRADIENTS IN COMPLEX
MAGNETIC FIELD CONFIGURATIONS

I. INTRODUCTION

The effects of drift instabilities due to temperature gradients

transverse to the magnetic field lines in complex magnetic field configur-

ations, such as in the presence of shear, have recently become a subject

of interest. The reason is that relevant modes are not stabilized by ion

Landau damping. In the present work we show that the introduction of mag-

netic shear in the equilibrium actually gives rise to unstable normal modes
2

which are non-convective, and may be strongly localized in space. These

modes are expected to arise in the neighbourhood of the plasma container

wall where the temperature gradient is higher than the density gradient, and

may seriously contribute to diffusion of and thermal leakage from the con-

tained plasma.

H. MODEL

We consider a one-dimensional configuration having low £$ with

density and temperature depending on x . The main magnetic field is

assumed to be along the z direction. The magnetic shear is represented

by a small component along the y direction, so that 6 «• Bo (̂ ~ 2 + x/t-s £»)•

No electric field exists in the equilibrium so tha t the equilibrium distribut-

ion function can be taken as of the form

0 U )
h0

Here n and T are assumed functions of X. + ̂ k/ft , ^ being the gyro-

frequency. Then we consider electrostatic perturbations so that E = - %/<r

with normal mode solutions of the form <£ = 6̂(x) exp(u*->t^fy+-ikz*)

We use the Vlasov equation, integrating the perturbed linearized form of it

along particle orbits. In particular we shall be interested in the case
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Therefore,

< * £ _ = __j.£_ - _ v - _ , - _ _ _ -r - ^ -^^ p v a n c i

f = _

x1 and t' referring to equilibrium particle trajectories. The x and y
components of these are in fact

j

y1 =

Introducing the space Fourier transform <̂ (x) — « = r \ t

we have, referring to the ion perturbed density

2TT)

» e

More specifically, we can write the quantity on which <y dx operates as
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~5T

If we carry out integration over v,, f x - — sin T , and Vi neglecting

terms of order t»y .U in comparison with 1 , we have

k k Vff

Since we are interested in perturbations having phase velocity along the

magnetic field less than the electron thermal velocity and on which the

electron Landau damping is not important (see Section HI) we take

e

( )
. Then introducing the dimensionless units t = t1 a ,

PT 1 1
k = / -Q- k = -r=- a^k t â  being the ion Larmor radius, and

v̂  representing the ion diamagnetic velocity, we are led to consider the

integral equation.
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Itl

* rrl

(3)

w h e r e K* — V o + v?*4

I / 1>* « \ IA //i/jiM*

and

We have derived this equation in view of studying the localized modes due

to temperature gradient, which are found in Section III in the fluid approx-

imation for T ' / T » n ' / n (strong temperature gradient) and Lg » rT

(relatively weak shear). In particular we are interested in the critical
4

value of rT /L s at which stability occurs. We know that the instability

disappears when n ' /n>T' /T . On the other hand for T' /T>n t /n we

shall see in Section III that stability cannot be achieved as long as L^ » r r .

To determine the exact critical value for L s /rT will require a numerical

solution of Eq. (3) which will be undertaken.in a later work. We note here

only that for L5/rx ^ 1 no unstable eigenvalue may be found as the real

part of the right-hand side becomes very small for all unstable Si and

cannot balance the left-hand side.
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in. THE FLUID APPROXIMATION

The most immediate limit in which Eq. (3) can be solved cor-

responds to wavelengths longer than the ion Larmor radius so that k < 1

and b < 1 f and to neglecting the effects of ion Landau damping so that

(4)

Then we have in lowest order

_ I I* Ls J&

H lJ
where 5" = k' - k .

Carrying out the J|_ integration we have



(6)

By comparing the last two terms on the right-hand side we see that we have

to choose rT / r h < 1 for consistency with b + k*" < 1. Now if we introduce

the transformation

with- 2 (i-o;c|.'CK; + Kt^+.^j<a oo — o

a

we have

j -h Ll- *> & -

(7)

We have verified a posteriori that in the limit of small rT / L s , in com-

parison with 1 , the first and the last term on the right-hand side of

Eq. (7) are the ones of lowest order in r T /L 3 . Then Eq. (7) can be

further simplified and if we retransform it to the x space we have

We notice that Eq. (8) can be derived more simply taking the Fourier trans-

form of Eq, (3) and considering the limit where k^ â_ ~ a£ —-^ « 1 and
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v^. < w/kM < ' v ^ with k,, = k̂  x/L5 . This is in fact the fluid approx-

imation so that moment equations can also be used for it. Therefore, a

simple fluid derivation will be given at the end of this section.

Looking for solutions of the form HK(k)exp -%L%j2 , where Hh indicate

Hermite polynomials and k = cr k , we obtain, in the limit indicated

above,

_ b = - i

(9)

and

(t rn '

(10)

recalling that b = £k .̂ a.\ .
o

For the solution to be bounded in space and for consistency with the assump-

tion of long wavelengths, k < 1 , we require Re (f > 1 , and then 25 \p? <•

Assuming T̂  /T^ — 1 , we obtain

Therefore

1) in the limit where Mf- zr~ T~ ] ^f-3- -J)| we obtain a

purely growing mode with growth rate

du) = Jk
Z - ••' v u-'^ t , - b r . / v /j2)

- 8 -



2) , . in the limit j. ^ 3_L Ix] f> f̂ V _ L\ ... we have

(13)

Furthermore, in correspondence with Eq. (8) we have

5= «

(14)

Now we notice that the expansion given in Eq. (4) is justified if

4 - ( * - * ' ) j£l =r A £̂ ~£Z < 1 and that, considering Eq. (5), we

have J_ ^ —j- -JL . From Eqs. (10) and (11) we then obtain, for

as the corresponding condition.

In conclusion we see that in the limit of relatively small shear and large

temperature gradient no stabilizing influence is found. In this case the

shear has only the effect of introducing strongly localized modes. A

criterion for stability can only be obtained in the regime where the fuU

integral equation is valid and for Ls /rT ^ 1 .

In order to show the derivation of Eq. (8) from moment equations

we choose the case where shear is absent and kn = kg . In addition we

consider the limit of long wavelengths where k,, â  ^ kn v t u fcJ . Then

the linearized equation of motion for ions along the lines of force is

and the mass conservation equation is
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On the other hand the equation of state for ions gives

where we have assumed Y= 3 treating a one-dimensional case, and taken

zero electric field in the equilibrium. Now, for perturbations with phase

velocity less than the electron thermal velocity w/k,, « V ^ , the

electrons have a Boltzmann distribution so that

where E = - V
From these equations we derive the dispersion relation

(16)

with «T » &LL v^ T / T .

Now we recall that in a uniform plasma we have ion waves along B with

for 11 = 3 and ^ (electrons) = 1 . The term on the right-hand side of

Eq. (16) represents an additional pumping of temperature in the ion waves

due to transversal transport of heat in a non-uniform plasma (see last term

inEq.{15)).

For co < coT we have an unstable root from

which is the same dispersion relation as that derived in Ref. 5. [Note that

this is in agreement with Eq. (8) if we set ^- = 'k „• , sr- = 0 .]

This unstable root corresponds to the possibility of always having the

additional pumping due to E«/B o dT/dx in phase with the growing temper

ature for the ion sound waves.

We note also that as this is primarily^an ion instability

we would not expect significant finite ^ modifications until ^ ^ 1 ; in

-10-
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contrast with the densiiy gradient instability which can change character for

» m/M .

IV QUA,SI-MODES

To show the physical relevance of the modes found above, we

can construct a perturbation which is localized along the magnetic field '

out of a superposition of modes centered around successive values xo of

x and propagating at each point perpendicularly to the magnetic field so

that k* B(xe) = 0 . We suppose that all points x0 lie within an interval

where T , and hence W , have a relatively small variation. Then we

can obtain perturbations of the form

cjb ( x . j ,Z , t ) =V/(*>^ (l,t) £ t

where w(x) is a weighting function expressing an x-dependence milder

than that of the elementary modes, and 1= z + xy/L5 is a co-ordinate

following a magnetic field line. The function ^ (£,t) is given by the

Fourier transform of the elementary mode !f(x) so that, for t a 0 ,
7

1 - k^L^/k , and k,,. is the Fourier variable.

In particular, if we consider, for simplicity, the n = 0 mode

with the space dependence exp (-icx2^) , we obtain, for GO (XO) ^ o (x) +

(xo - x) oV + x (x o - x)2- (J'

These types of perturbation behave as modes for all times such that k l / L 3

> dtO/dxt and cr > i d £j/dxlt , giving rise to convective cells elongated

over the magnetic field and spread in the x-direction over a region larger

than the width of localization of the single modes. The width Z± of local-

ization along J, can be computed as A~* =^1/2 (k/Ls)
z Re ( l / c ) so that

in the limit where the growth rate is given by Eq. (tl) we have
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A

We notice that since we have made;from the start, the "local" approx-

imation treating n(x) and dn/dx as constants, we cannot compute correct-

ly dcj/dx and d^co/dx from our dispersion relations.

V. QUASI-LINEAR ESTIMATES

Since the temperature gradient instability is hard to stabilize by

shear* it is very important to be able to anticipate the non-linear con-

sequences of such linear instability. In order to do this we shall apply the

conventional method of the quasi-linear theory in non-uniform plasma,

developed previously for the investigation of the density gradient universal
Q

instability. We shall restrict ourselves to consideration of cases with

not very strong shear and wavelength greater than ion Larmor radius. In

this case the relevant modes are not strongly localized in x and we can

neglect terms of order of k^ a i or higher. As usual, we shall represent

the distribution function in the form of a sum of slowly and rapidly varying

parts f = f + f̂  , where f̂  satisfies the linear equation while, in the

equation for the slowly varying function f, we shall take into account the

averaged quadratic terms, describing the influence of rapidly varying

processes. Since we consider the case of long waves we can use the drift

approximation of the kinetic equation:

which for the slowly varying part f will have a form

* We expect that other topological methods of stabilization, {e.g., "rippling" of the field) are also quite
ineffective.
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Taking into account that E ~ - b^ and using the Fourier transform

Substituting-.^ =2* 1"KCV, X) £ where fk satisfies the

linear equation

M

(19)

into Eq. (18) we shall have the final quasi-linear equation in the form

(20)

Only the imaginary part remains, of course, after summing over fwk and

Knowing the spectrum of electric field fluctuations | Vy, | one

can describe the time evolution of plasma behaviour, but the problem of

finding the spectrum involves mode-mode coupling phenomena, which we

expect for the temperature gradient instability, would lead to strong plasma'

turbulence case. However, we can derive some important conclusions

using only the quasi-linear apprxomation. Firstly, it is interesting to

know the relationship between the turbulent diffusion and the thermal con-

ductivity coefficients.
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In order to estimate diffusion we have to take the 1 x d v moment

of Eq. (20)

TF =\ I t V ~ Tn»

Now we see that the integral from the right-hand side of Eq. (4)

is exactly the ions' density contribution in the linear dispersion equation of

temperature gradient instability. Due to quasi-neutrality this is equal to

the electron contribution

<^V r ur \ * , 1 L ^ (23)

For CD«, k,, v ^ we can describe the electron density perturbation as

Boltzmannian. The integral of (23) in that approximation obviously does

not have an imaginary part. Therefore, the first non-vanishing contri-

bution to the diffusion equation comes from the next order expansion in

( «J /(kt, v£) ) in the integral of (23). For the fastest growing waves

£j/kM VH) ~ 1 and therefore we expect w/(k,t v ^ ^ /m/M*.

Now for thermal diffusion we can take the \ v l dv - moment of

the quasi-linear Eq. (22)
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It

(24)

The second integral in Eq. (24), describing the heat conductivity, does not

cancel in the first approximation in 6̂ /(kM v^J . Thus, we can expect the

thermal conductivity coefficient to be (yfi kt^cj.«y /M/m times greater

than the diffusion coefficient.

In order to make a very crude quantitative estimate and repro-
l

duce Kadomtsev's result of the thermal diffusion coefficient,we see from

Eq. (24) that fj-^ ^ lmC^>/ujl , We may guess that for limiting

turbulence v£ = v* = v̂ * where v̂  " a - / ^ v ^ is the original velocity

drift due to the temperature gradient. Moreover, from Eq. (16), Im OJ>

Re co ?i k,, v^. s» (ku 3̂ /Lf y«. ^ k v^ . Hence the scale of turbulence

we expect will be given by k ^ kx ^ 1/x ^r- /L5 I/a, . Estimating cJ

from this we infer

(25)

As noted above we expect the mass diffusion to be smaller than given in

Eq. (25) by a factor /m/M .

This leads to the speculation that this type of loss may be

radically cut down by a good divertor. We assume that such a divertor

would be capable of reducing the particle density at the wall to a small

fraction of the density at the centre. On the other hand, even the best

possible divertor may still have some small density of cold particles near

the wall so that T'/T is indeed much greater than n'/n and this in-

stability will result near the wall. What is important,however, is that the

heat loss is proportional to n and hence will be quite low in this region

in spite of the high thermal conductivity. Moreover, as we have shown,

the actual density diffusion is low so that a density profile which is low
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near the wall will not be strongly affected by this instability, thereby keeping

the heat loss small, i. e., proportional to the plasma density near the divert -

or.

r

Thus a density temperature profile as indicated in Fig. 1 would result in a

relatively small heat loss as n
w a U is small, and could be stably main-

tained since particle diffusion is slow.

VI. CONCLUSION

We have derived an integral equation governing an instability

due to ion temperature gradients. We show that,in the presence of shear,

localized non-convective normal modes of instability exist if T / T ft/V > 1

unless the shear is exceedingly strong, i. e., the field shears through a

large angle in the distance in which the temperature drops. Quasi-modes

can be constructed from these normal modes and one may expect a large

thermal diffusion. On the other hand, mass diffusion is rather slow which

affords a good hope that an effective divertor could keep the actual heat

loss quite small.
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