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Abstract

Biological soft tissues exhibit elastic properties which can be dra-
matically different from rubber-type materials (elastomers). To gain
a better understanding of the role of constitutive relationships in de-
termining material responses under loads we compare three different
types of instabilities (two in compression, one in extension) in hyper-
elasticity for various forms of strain energy functions typically used
for elastomers and for soft tissues. Surprisingly, we find that the
strain-hardening property of soft tissues does not always stabilize the
material. In particular we show that the stability analyses for a com-
pressed half-space and for a compressed spherical thick shell can lead
to opposite conclusions: a soft tissue material is more stable than an
elastomer in the former case and less stable in the latter case.

1 Introduction

Elastic materials under external loads may exhibit various responses depend-
ing on their geometry, loads, and elastic properties. For large deformations
or for inhomogeneous and anisotropic materials as found in biological tissues,
these responses are best described in the theory of finite deformations [1]. In
hyperelasticity, material properties are specified by a strain-energy function
and there is to date a large literature on the derivation and/or fitting of
various forms of strain-energy functions [2, 3] for rubber-type materials (re-
ferred to as elastomers). The corresponding theory for biological soft tissues
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is more recent and is not as well established. Nevertheless, there are a few
standard forms of strain-energy functions used to model the elastic responses
of soft tissues. It has long been emphasized by various authors that soft tis-
sues with their dramatic properties under extension behave differently than
elastomers and that in many physiological systems (such as heart, arteries,
skin, scalp, etc.) these properties are tuned to achieve specific mechanical
goals vital for normal function and regulation [4]. A particularly revealing
way to understand the differences between elastomers and soft tissues is to
push the material to its extreme by bringing it to a point where a given
configuration becomes unstable, and to compare various instabilities for dif-
ferent geometries. Here, we consider three prototype instabilities generated
by external loads in an incompressible isotropic elastic body made out of
either an elastomer or a biological soft tissue material.

We look in turn at the instabilities generated when a half-space is com-
pressed (Section 3.1), when a spherical membrane shell is inflated (Section
3.2), and when a spherical shell with arbitrary thickness is compressed (Sec-
tion 3.3). These and other types of instabilities of nonlinear elasticity have
been reviewed in an article by Gent [5] where background literature can be
found. For the purpose of comparison, we adopt four different strain energy
functions which are popular in literature on elastomers and on soft tissues
namely, the Mooney-Rivlin model, the Fung model, the Gent model, and the
one-term Ogden model. We find that soft tissues behave differently from elas-
tomers when it comes to stability analysis. For instance half-spaces made of
soft tissues are stable in compression, whereas half-spaces made of elastomers
always possess a critical stretch beyond which surface instabilities develop.
Similar conclusions are drawn for inflation instabilities of spherical mem-
brane shells. However, thick-walled spherical shells are found more unstable
in compression when made of soft tissues than when made of elastomers.
The notion of a material being more or less stable than another one used
in this paper is in terms of the critical strains where the material becomes
unstable and not in terms of critical stresses or external loads. The general
conclusion is that caution must be exercised when choosing an appropriate
model for an elastomer or for a soft tissue, because their behaviours with
respect to instabilities are not interchangeable. The next Section recalls the
basic underlying equations, see Ogden [1], for instance.
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2 General set-up

2.1 Static equilibrium

The deformation of the material body is given by x = χ(X) where X and
x describe the material coordinates of a point in the reference configuration
and in the current configuration, respectively. Let F = ∂x/∂X be the de-
formation gradient. We consider a hyperelastic incompressible body, so that
there exists a strain-energy function W = W (F) such that the Cauchy stress

tensor T, specifying the stress in the body after deformation, is related to
the deformation by

T = F
∂W

∂F
− p1, (1)

where p is a Lagrange multiplier associated with the internal constraint of
incompressibility. The equation for mechanical equilibrium in the absence of
body forces is

div T = 0, (2)

where div denotes the divergence operator in the current configuration.
Equation (2) provides, through the constitutive relationship (1), a system
of three equations for the deformation x = χ(X). The boundary conditions
are imposed by prescribing the tractions Tn at the boundary, where n is the
outward unit vector normal to the boundary.

2.2 Strain-energy functions

Many different general functional forms have been proposed or derived to
model the response of elastic materials under loads [2, 3, 6]. Here, for com-
parison purposes, we choose some typical functions that have been proposed
to model either elastomers or soft tissues. Since we focus on the role of the
strain energy functions in instability and not on the role of possible inhomo-
geneities or anisotropies, we restrict our attention to homogeneous isotropic
materials. We write the energy either in terms of the principal stretches
λ1, λ2, λ3 (the square roots of the principal values of FFT) or, equivalently
for incompressible solids, in terms of the first two principal invariants of the
Cauchy-Green strain tensors, given by

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

2λ
2
3 + λ2

3λ
2
1 + λ2

1λ
2
2. (3)
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Here, we limit our investigation to a few key models that capture specific
features and are widely used (See Table 1). The main feature of interest
for comparison is the strain-stiffening property exhibited by many biological
soft tissues. This can be modelled either by algebraic power dependence
(one-term Ogden model), by exponential behaviour (as in the popular Fung
model), or by limited chain extensibility (Gent model [7, 8, 9]). We write
these three models with a single parameter (ν, α, β, respectively) such that
the classical neo-Hookean model is obtained in the limits ν → 2, α → 0, or
β → 0. Additionally, we also use the classical Mooney-Rivlin strain-energy
density, often used to model elastomers; however, experimental values for the
material parameter µ vary widely in the literature and no typical range of
values was found.

Name Definition soft tissues elastomers Ref.

neo-Hookean Wnh = 1
2
(I1 − 3)

Mooney-Rivlin Wmr =
(I1 − 3) + µ(I2 − 3)

2(1 + µ)

1-term Ogden Wog =
2

ν2
(λν

1 + λν

2 + λν

3 − 3) ν ≥ 9 ν ≈ 3 [10, 11]

Fung Wfu =
1

2α
[eα(I1−3) − 1] 3 < α < 20 [12, 13]

Gent Wge = −
1

2β
ln[1− β(I1 − 3)] 0.4 < β <3 0.005 < β < 0.05 [5, 7, 14, 15]

Table 1: A list of strain-energy functions. Note that the materials share the
same infinitesimal shear modulus, which without loss of generality was taken
equal to one. The limits µ → 0, α → 0, β → 0, ν → 2 all lead to the
neo-Hookean strain-energy.

3 Instability

We focus on two types of instabilities. One type is related to the notion
of limit-point instability, which typically occurs when a balloon is inflated.
At first, the balloon is difficult to inflate, and then it may happen that its
radius increases dramatically and rapidly, with little or no effort to produce.
Here balloons made of elastomers behave completely differently from balloons
made of biological soft tissues, as Osborne [16] first observed in 1909, com-
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paring “children’s toys balloons” to “hollow viscera” (dog bladders). This
instability is investigated in Section 3.2.

The second type of instability considered in this paper is related to the
notion of bifurcation. Bifurcation occurs at values of the material and defor-
mation parameters for which there exist solutions to the incremental equa-
tions of equilibrium in the neighbourhood of a finite solution. In other words,
the onset of instability is indicated by the existence of adjacent equilibria un-
der the same loading. To investigate that type of instabilities, we consider
first a finite deformation χ

(0)(X) and then superimpose an incremental [17]
deformation χ

(1)(x) as follows

χ = χ
(0) + ǫχ(1), (4)

where ǫ is a small parameter. It follows that the deformation gradient is now

F = ∂χ/∂X =
(
1+ ǫF(1)

)
F(0), (5)

where F(1) = ∂χ(1)/∂x is expressed in the current configuration. Accordingly,
we expand the Cauchy stress tensor in ǫ as

T = T(0) + ǫT(1) +O(ǫ2), (6)

say, and the constitutive relationship to obtain to zeroth and first orders,

T(0) = F(0) ∂W

∂F(0)
− p(0)1, T(1) = LF(1) + F(1)F(0) ∂W

∂F(0)
− p(1)1, (7)

where p = p(0) + ǫp(1), L is the fourth-order tensor of instantaneous elastic

moduli, defined by

LF(1) = F(0) ∂2W

∂F(0)∂F(0)
F(1)F(0), (8)

and the derivatives ofW are evaluated on F(0); see Ogden [1] for details. Then
the stability analysis proceeds by expanding the equation for mechanical
equilibrium (2) to first order in ǫ, that is

div T(1) = 0. (9)

In some cases, the geometry of the problem and the deformations considered
are simple enough so that the condition for instability related to the existence
of solutions for Equation (9) can be written in terms of W and the λi.

We now consider different geometries and our four different strain energy
functions, to study three prototype instabilities.
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3.1 The half-space in compression

The simplest type of bifurcation is obtained by considering an incompressible
hyperelastic half-space with a free surface, under pure homogeneous static
deformation with principal stretch ratios λ1, λ2, λ3 [17, 18]. The correspond-
ing instability is then assumed to correspond to the appearance of wrinkles
on the free surface, once a critical compressive stretch ratio is reached.

Let λ2 be the stretch ratio in the direction normal to the free surface.
A plane pre-strain is associated with deformations such that λ3 = 1 (axial
compression), whereas equi-biaxial pre-strains are obtained for either λ1 = λ3

(tangential compression) or for λ2 = λ3 (normal compression). It follows from
the incompressibility condition that λ1λ2λ3 = 1 and therefore we have

λ2 = λn
1





n = −1/2 normal compression,
n = −1 axial compression,
n = −2 tangential compression.

(10)

Now, the half-space is occupied with an incompressible hyperelastic ma-
terial characterized by W = W (λ1, λ2, λ3). It becomes unstable and develops
surface instability for critical principal stretch ratios such that [19, 20]

λ2

[
W1 + (2− λ2

λ1
)W2

]
+ λ2

1W11 − 2λ1λ2W12 + λ2
2W22 = 0, (11)

where Wi = ∂W/∂λi, Wij = ∂2W/(∂λi∂λj).
We start with the classical elastomer modelled by the Mooney-Rivlin

energy Wmr from Table 1. Application of the previous criterion in this case
leads to a universal condition (independent of µ) [20]:

λn+2
1 + 3λ2n+1

1 − λ3n
1 + λ3

1 = 0. (12)

Depending on n, we obtain the classical values for the critical compression
ratio of instability, for a half-space made of a material with the Mooney-Rivlin
(or of course, the neo-Hookean) strain energy function. Green and Zerna [18]
found (λ1)cr = 0.66614 under tangential compression (n = −2); Biot found
(λ1)cr = 0.54369 under axial compression (n = −1) and (λ1)cr = 0.44375
under normal (n = −1/2) compression.

Next we turn to the popular Fung strain energy for biological soft tis-
sues. We take W = Wfu in (11) and obtain after simplification the following
bifurcation condition:

λn+2
1 + 3λ2n+1

1 − λ3n
1 + λ3

1 + 2α(λ5
1 − 2λ3+2n

1 + λ4n+1
1 ) = 0. (13)
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Figure 1: Critical values of the stretch ratio λ1 for the instability of a Fung
elastic half-space characterized by a stiffness-hardening parameter α.

For n = −1 or n = −2, there is a corresponding critical value α−1 = 1/2,
or α−2 ≈ 0.1644, respectively, after which the bifurcation criterion has no
positive real root, see Fig. 1. We conclude that a semi-infinite solid made
of a Fung material, under either axial or tangential compression, is always

stable for realistic physiological values of the parameters (say α > 1/2). For
n = −1/2 (normal biaxial compression), the criterion has a positive real root
for all α, which however decreases rapidly toward zero, see Fig. 1; hence
for α > 3, the half-space can be compressed by more than 97 % before the
bifurcation criterion is met.

Next, we consider the Gent strain energy, originally proposed for rubber
[7] but most successfully transposed to the modelling of strain-hardening
soft tissues. We take W = Wge in (11) and obtain after simplification the
following bifurcation condition,

λn−1
1 + 3λ2n−2

1 − λ3n−3
1 + 1

+β(3λn−1
1 −2λn+1

1 −11λ2n
1 −λ4n−2

1 +9λ2n−2
1 +λ5n−3

1 +λ3n−1
1 −3λ3n−3

1 +3) = 0.
(14)

For n = −1, n = −2, and n = −1/2, there is a critical value β−1 ≈ 0.122,
β−2 ≈ 0.06, and β−1/2 ≈ 0.170 after which the bifurcation criterion has no
positive real root, see Fig. 2. We conclude that a Gent elastic half-space
under axial, tangential, or normal compression can become unstable for the
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parameters values used for elastomers (0.005 < β < 0.05) but is always stable
for realistic physiological values of soft tissue parameters (0.4 < β < 3).

Figure 2: Critical values of the stretch ratio λ1 for the surface instability of
a Gent material characterized by a stiffness-hardening parameter β.

Finally we use the one-term Ogden model, for which the bifurcation con-
dition reads

λ1
n+ν + λ1

nν+1 − λ1
n(1+ν) − λ1

1+ν + ν
(
λ1

1+ν + λ1
nν+1

)
= 0. (15)

The left hand-side of this equation is equal to −1 for λ1 = 0 and to 2ν for
λ1 = 1. Therefore, it admits a real root for all positive values of ν and for all
values of n. Fig. 3 shows the dependence of the critical compressive stretch
ratios on the material parameter ν.

3.2 The thin shell in extension

Here we consider a spherical shell subject to an internal pressure P . Let A,
B, R denote the inner radius, the outer radius, and the radial position of a
material surface in the reference configuration, respectively. Let a, b, r be the
positions of the corresponding material points in the current configuration. In
the case of thin shells, we look for a limit-point instability, that is conditions
under which the curve P = P (λa) has a maximum. When the shell is close to
that point, a small increase in pressure can result in a large, sudden increase
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Figure 3: Critical values of the stretch ratio λ1 for the instability of an Ogden
elastic half-space characterized by a stiffness-hardening parameter ν.
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in radius; this phenomenon is familiar to those who have blown up party
balloons.

Before we study the case of thin shells, we consider the radial deformation
of a shell under uniform hydrostatic pressure (applied inside or outside). We
use spherical coordinates, in which the radial deformation is simply r = r(R),
with deformation gradient

F = diag(r′, r/R, r/R), (16)

where the prime denotes differentiation with respect to R. Since the material
is incompressible its volume is preserved and

R3 − A3 = r3 − a3, R3 − B3 = r3 − b3, (17)

which leads to

1− λ3
a =

R3

A3
(1− λ3) =

B3

A3
(1− λ3

b), (18)

where λ = r/R, λa = a/A, λb = b/B. We denote the non-vanishing com-
ponents of T by t1 = T11 (radial stress), and t2 = T22 = T33 (hoop stress).
Then the stress-strain relation (1) reads

t1 = λ1W1 − p, t2 = λ2W2 − p. (19)

The only non-vanishing equation for mechanical equilibrium (2) in the cur-
rent configuration is

∂t1
∂r

+
2

r
(t1 − t2) = 0, (20)

and a closed equation for t1 is obtained by introducing the auxiliary function
Ŵ (λ) = W (λ−2, λ, λ):

∂t1
∂r

=
λ

r
Ŵ ′(λ). (21)

As a function of the circumferential stretch λ, we have

∂t1
∂λ

=
Ŵ ′(λ)

1− λ3
. (22)

For a shell under internal pressure P , the boundary conditions are given by
t1(λa) = −P and t1(λb) = 0. Integrating (22), we find [21]

t1(λ) =

∫ λ

λb

Ŵ ′(λ)

1− λ3
dλ, and P =

∫ λb

λa

Ŵ ′(λ)

1− λ3
dλ. (23)
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Recall that by (18), λb depends on λa, so that this latter equation is a relation
for P as a function of λa; it can be inverted to give the displacement r = r(R)
through (18).

Now, a limit-point instability [22, 23, 24, 25, 26, 27] occurs when there is
a loss of monotonicity of the function t1(λb) as a function of λa, that is when
the pressure-stretch curve has a a local maximum.

For thin shells, the analysis proceeds by considering the stress to first
order in the small parameter δ = (B −A)/A, measuring the thickness of the
shell (see for instance Haughton and Ogden [21] or Beatty [28]). Before we
proceed with the analysis of thin shells, it is of interest to understand the
effect of shell thickness on the instability. To do so, we use the mean-value
theorem and the connections (18) to expand (23) to second order in δ. We
find

t1(λ) = δ
Ŵ ′(λ)

λ2
+

δ2

2λ4

[
λ3 − 2

λ
Ŵ ′(λ)− (λ3 − 1)Ŵ ′′(λ)

]
+ O(δ3), (24)

where λ is the position of the inner radius (see Ogden [1, p.285] for the
first-order expansion). Since the shell wall-thickness is assumed small, this
relation also describes the stress field at every point in the shell.

A limit-point instability occurs for λcr such that t′1(λcr) = 0. Thus we
first differentiate (24) with respect to λ. Then writing t′1 = 0 at order O(δ),
we recover the classical critical circumferential stretch for thin shells [21]: it
is λ0 (say), the smallest solution larger than one of

Ŵ ′′(λ0)λ0 − 2Ŵ ′(λ0) = 0. (25)

Next, to explore the dependence of the critical stretch with thickness, we
expand λcr to first order in δ as λcr = λ0 + λ

(1)
cr δ +O(δ2), say. Then writing

t′1 = 0 at order O(δ2), and making use of (25), we find that λ
(1)
cr is given by

the surprisingly simple equation: λ3
0 − 2λ

(1)
cr λ2

0 − 1 = 0. It follows that

λcr = λ0 +
λ3
0 − 1

2λ2
0

δ +O(δ2). (26)

The first order correction (26) shows that universally (independently of the
constitutive relation), the critical stretch of limit-point instability increases
with thickness for thin shells. In other words, making a spherical membrane
slightly thicker always makes it more stable in inflation, whatever it is made
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of. Higher-order corrections depend explicitly on the choice of W and no
universal result is available. From now on, we focus on membrane shells and
neglect the corrections due to δ (hence, λcr is now identified with λ0 given
by (25)).

The limit-point instability is readily found for a neo-Hookean thin shell,
for which Ŵ (λ) = 2λ2 + λ−4 − 3, as [28] λcr = 71/6 (the neo-Hookean curve
t1(λ) is shown as the limiting case in Fig. 4). Past this critical value, the
membrane continues stretching with reduced pressure. For certain materials,
the pressure-stretch curve may present a maximum, followed by a minimum;
in that case, once the maximum is reached, and the pressure is increased,
the stretch will “jump” to a significantly higher value. This phenomenon is
illustrated on Fig. 4 by the horizontal dotted line; it is called an inflation

jump. Note that first, a limit-point instability is of course necessary for an
inflation jump to occur.

We can now investigate the existence of limit-point instability and of in-
flation jump in strain-hardening materials. This analysis has been performed
by various authors who noted that the limit-point instability disappears as
the strain-hardening parameter is increased [1, 10, 28, 29]. Here, we review
and expand such results and compute the exact values of the parameters
where such instabilities disappear.

We start with a Mooney-Rivlin material and observe that as µ increases to
µcr the limit-point disappears and the curve t1(λ) becomes strictly increasing.
This critical point is found by solving t′1 = t′′1 = 0, which gives

µcr =
2
√
11− 3

5(19 + 6
√
11)1/3

≃ 0.21446, λcr = (19 + 6
√
11)1/6 ≃ 1.84073. (27)

The situation is similar for Fung materials (see Fig. 4), where we can
readily identify the critical values of the parameters:

αcr =
1

48

(
92 + 12

√
65
)2/3 (

3 +
√
65
)

57 + 7
√
65

≃ 0.06685, (28)

λcr =
1√
2
(92 + 12

√
65)1/6 ≃ 1.69355. (29)

Hence when α > 0.067, as is the case for soft biological tissues, there are no
limit-point instabilities [28], in accordance with Osborne’s early observations
[16].
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For Gent materials, we find that the limit-point instabilities disappear
when β > βcr, given by

βcr =
1

3

(
10 +

√
93
)2/3 (

3 +
√
93
)

315 + 33
√
93−

(
10 +

√
93
)2/3 (

3 +
√
93
) ≃ 0.05669, (30)

and the corresponding circumferential stretch is

λcr = (10 +
√
93)1/6 ≃ 1.64262. (31)

For instance, Gent [26] found limit-point instabilities (and inflation jumps)
for inflated rubber shells with β = 0.01 and β = 0.03. On the other hand,
Horgan and Saccomandi [15] estimated that β ≈ 0.44 for the aorta of a 21-
year-old male and that β ≈ 2.4 for the (stiffer) aorta of a 70-year-old male,
and clearly, there are no limit-point instabilities in those cases (Note that the
pressure-stretch curves for Gent materials are almost identical to the ones
shown for the Fung energy and are not shown here.)

The behaviour for an Ogden material is slightly different (Fig. 5). Here
again, the limit-point instability disappears rapidly (at νc = 3, below any
realistic physiological values). The asymptotic limits for t1(λ) as λ → ∞ are
however different (0, 2, and ∞ for 0 < ν < 3, ν = 3, and ν > 3 respectively).
Note finally that there is no inflation jump for any value of ν.

We conclude that for soft biological tissues, the critical parameter values
are far below any typical range of physiological values and the limit-point
instability is unlikely to be observed. As noted repeatedly by Humphrey and
co-workers [29, 30, 31], this observation should be kept in mind when a strain
energy function is chosen in numerical simulations of soft tissues, and when
designing artificial soft tissues for experiments. The choice of a rubber-like
strain energy in the former case, or of an elastomer in the latter case, might
lead to instabilities which do not actually exist in the prototype soft tissue.

3.3 The shell under compression

Finally we consider the case of a shell of arbitrary thickness under compres-
sion, and analyse its stability with respect to axisymmetric perturbations in
the usual (r, θ, ϕ) spherical coordinates. The stressed state χ

(0) is found ex-
plicitly from the computation of the strains and stresses in a spherical shell
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Figure 4: Pressure-stretch curve for a Fung material. The limit α = 0 is
the neo-Hookean material. When 0 < α < αcr, the system exhibits a limit-
point instability and an inflation jump (see dotted line when α = αcr/2). For
α > αcr, the limit-point instability disappears.
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Figure 5: Pressure-stretch curve for a one-term Ogden material. The neo-
Hookean material corresponds to ν = 2. For 2 ≤ ν < 3, the system exhibits
a limit-point instability, and t1(λ) → 0 as λ → ∞. For α = 3, t1(λ) → 2
as λ → ∞. For ν > 3, t1(λ) → ∞ with λ and the limit-point instability
disappears.
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done in the previous Section. Once this radial stressed state is known we
introduce an axisymmetric perturbation χ

(1) which reads

χ
(1) = [u(r, θ), v(r, θ), 0]T , (32)

where u, v are independent of ϕ. The gradient F(1) can be explicitly com-
puted and the condition (9) further simplified by first using the incompress-
ibility constraint and then expanding u, v in Legendre polynomials as

u(r, θ) =
∑

n

Un(r)Pn(cos θ), v(r, θ) =
∑

n

Vn(r)
d

dθ
Pn(cos θ), (33)

where Pn(cos θ) are the Legendre polynomials, see [33] for details. After fur-
ther simplification, a single fourth-order linear ordinary differential equation
for Un can be derived

d

dr

(
C3

d3Un

dr3
+ C2

d2Un

dr2
+ C1

dUn

dr

)
+ C0Un = 0, (34)

where

C3 = r4L1212,

C2 = r4
d

dr
L1212 + 4r3L1212,

C1 = r3
(
2
d

dr
L1212 + t1

)
+ r2

[
(2n2 + 2n− 1)L1221 + 2n(n+ 1)L1122

− n(n + 1)L1111 − (n2 + n− 1)L2222 − L2233 −L2121

]
,

C0 = (n+ 2)(n− 1)

[
r2

d2

dr2
L1212

+ r
d

dr
(2L1212 + L1221 −L2121 −L2222 + L2233)

+ (n2 + n + 1)L2121 − L1221 − 2L1212 + L2222 −L2233

]
.

(35)

The boundary conditions

T(1)n = 0 on r = a, T(1)n = −P (1)n on r = b, (36)
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read explicitly

d3Un

dr3
+D2

d2Un

dr2
+D1

dUn

dr
+D0Un = 0,

d2Un

dr2
+
2

r

dUn

dr
+
(n2+n−2)

r2
U = 0,

(37)
where

D2 =
d

dr
L1212 +

6

r
L1212,

D1 =
1

r2
[
−(n + n2 + 4)L1212 + n(n + 1)L1111 − 2n(n + 1)L1122 + L2233

+(n+ n2 − 1)L2222 − 2
d

dr
L1212r + 2n(n+ 1)λ1W1 − λ2W2

]
,

D0 = − 1

r3
(n+ 2)(n− 1)

[
L2233 + 2L1212 − L2222 +

d

dr
L1212r − λ2W2

]
.

(38)

The integration of Equation (34) takes place between r = a and r = b for
an initial thickness A/B and the problem is to find the value of a such that
the boundary conditions are satisfied (the outer radius b is a function of a).

For this problem we use numerical techniques introduced by Haughton
and Ogden [21] and later refined by Fu [32] and by Ben Amar and Goriely [33],
among others. For a Fung (exponential) strain energy, we plot the first ten
modes at α = 0 (neo-Hookean), 1, 5, and 10 (strong strain-hardening effect),
see Fig. 7. The first graph (α = 0) corresponds to Fig. 6 and has already
been obtained and commented upon in [32, 33] where analytical expansions
were derived for the high-number regime and for the thin-walled shell limit.
In particular, it was shown in [33] that in the limit B/A → 1 the bifurcation
curve for the mode n tends to the first positive root of

(n+ 2)(n− 1)µ12 + 2(n2 + n+ 7)µ6 − 3n(1 + n) = 0. (39)

The first few roots µn are shown in Fig. 6.
Before we consider the effect of strain-hardening it is of importance to

further comment on the neo-Hookean shell. The present graph provides
additional information. First, it shows that the most unstable mode for thick-
walled neo-Hookean shells is mode number 10. Second, the graph makes it
clear that at mode 10, the critical stretch tends to a value which is higher
than 0.66614 (the compressed half-space critical stretch value, see Section
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3.1) as A/B → 0. How is this analysis compatible with the analysis of
the neo-Hookean half-space? We expect that in the limit B → ∞ with
A constant, the shell should be equivalent to a half-space in tangential bi-
axial compression and that we should recover the instability discussed in
Section 3.1. In fact, going from a thick-walled spherical shell to a half-space
requires a double limit: not only must the shell become infinitely thick (and
so A/B → 0), but also the wavelength of the incremental deformation must
be infinitesimally small compared to the thickness and radius of the sphere
(and so n → ∞); we checked that indeed, λcr → 0.66614 in these limits.

This last observation turns out to be crucial to interpret correctly the
stability of a compressed Fung shell when α 6= 0. First, the graphs in Fig. 7
show clearly that compressed spherical shells made of a Fung material are

always less stable than shells made of a neo-Hookean material. This trend
is further established analytically by determining the exact value for each
mode in the limit A/B → 1 which is given by the first positive root of

4α2µ20 + 2α(n2 + n + 1)µ18 + (n+ 2)(n− 1)µ16 − 16α2µ14

− 2α(3n2 + 3n− 2)µ12 + 2(n2 + n + 7)µ10 + 20α2µ8

+ 6α(n2 + n− 1)µ6 − 3n(n+ 1)µ4 − 8α2µ2 − 2nα(n+ 1) = 0. (40)

The analysis of these roots reveals that for thin shells the critical bifurcation
value for each mode n increases strictly with α. In the limit of thick materials
we see that Fung shells become unstable at stretch ratios lower than λcr1 =
0.75 for α = 1, λcr5 = 0.85 for α = 5, λcr10 = 0.91 for α = 10. This result
might seem counter-intuitive in light of the analysis conducted in Section 3.1
(see also [28]) for surface stability in compression (a neo-Hookean half-space
is unstable when λ1 < 0.66614 and a Fung half-space is always stable for
α > 0.1644.) However, those lower bounds λcr1, λcr5, λcr10 correspond to
low-mode numbers (n = 3, 2, 2 at α = 1, 5, 10, respectively), and not to the
high-mode numbers limit necessary to reach the half-space idealization. We
further checked that, as α increases, higher modes (say n > 15) cannot be
excited in the limit A/B → 0.

We also conducted numerical investigations (not reproduced here) for the
behaviour of shells made of other materials. The results for the Gent and
for the one-term Ogden strain energy functions are close to those for Fung
materials that is, a shell made of either a Gent or a one-term Ogden material
is less stable than a thick shell made of a neo-Hookean material. Again, this
is not contradictory with the fact that the Gent and Ogden half-spaces are
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more stable than the neo-Hookean half-space. The analysis of the half-space
is only relevant for high modes.

Finally, we found that a compressed spherical shell made of a Mooney-
Rivlin material is slightly more stable than a compressed spherical shell made
of a neo-Hookean material (with the same asymptotic limit (39) when A/B →
1. Recall that the Fung, Gent, and Mooney-Rivlin materials are all stiffer in
extension (strain-hardening effect) than the neo-Hookean material.

4 Discussion

One cannot help but remark that stability analysis results are difficult to
predict in nonlinear elasticity. For instance it is by now well established that
thin-walled spherical shells made of Fung materials are extremely stable in
inflation. This has been proved in several contexts by Humphrey and his
co-workers (see [30] and references therein to earlier work) to refute the hy-
pothesis of an inflation jump instability for the development and rupture of
intracranial aneurysms. It might also be commonly accepted that Fung ma-
terials are extremely stable in compression, because the half-space stability
analysis points clearly in that direction, see Section 3.1. However we demon-
strated here that the opposite conclusion is reached for thick spherical shells
in compression. Whereas generic strain energy functions may be suitable
to describe some properties of materials under loads, special care should be
taken when trying to describe instabilities in nonlinear elastic materials.
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Figure 6: A neo-Hookean shell of inner and outer radii A and B becomes
unstable with a critical strain λa, the largest possible values of λ

(n)
a (modes

n = 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 50 are shown). The critical mode
is the first excited mode. For instance at A/B = 0.85 (vertical arrow), the
critical mode is n = 4. Examples of shell deformations after the bifurcation
are shown for n = 2, 3, 10, 15. Note that the amplitude of the mode has
been chosen to show the structure of the solution and is not related to the
mechanical problem at hand (the stability analysis is linear and there is no
information on the mode amplitude or its sign.)
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Figure 7: A shell made of a Fung material of inner and outer radii A and B
becomes unstable with a critical strain λa, the largest possible values of λ

(n)
a

(modes n = 2 to 10 are shown).
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