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Instabilities of Kerr-AdS5 × S5 Spacetime
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We study gravitational perturbations of the Kerr-AdS5×S5 spacetime with equal angular
momenta. In this spacetime, we found the two types of classical instability, superradiant
and Gregory-Laflamme. The superradiant instability is caused by the wave amplification via
superradiance and by wave reflection due to the potential barrier of the AdS spacetime. The
Gregory-Laflamme instability appears in Kaluza-Klein modes of the internal space S5 and
breaks the symmetry SO(6). By taking into account these instabilities, the phase structure
of Kerr-AdS5 × S5 spacetime is revealed. The implication for the AdS/CFT correspondence
is also discussed.

Subject Index: 451

§1. Introduction and summary

Recently, AdS black holes in S5 compactified type IIB supergravity have at-
tracted much interest because they describe strongly coupled N = 4 thermal super
Yang-Mills theory via AdS/CFT correspondence.1)–4) In particular, phase transitions
of dual gauge theory are identified with instabilities of AdS black holes, and under-
standing the stability of AdS black holes is important to reveal the strongly coupled
gauge theory.

The stability of Schwarzschild-AdS black holes has been shown in Refs. 5)–9).
However, in the case of Kerr-AdS black holes, we can expect an instability called
superradiant instability. The perturbation of Kerr-AdS black holes can be amplified
by superradiance at the horizon. On the other hand, at infinity, the amplified pertur-
bation will be reflected by the potential barrier of the AdS spacetime. This will be
amplified at the horizon again. By repeating this mechanism, the initial perturbation
can grow exponentially and Kerr-AdS black holes become unstable. The superradiant
instability is physically reasonable, but, practically, it is difficult to find the instabil-
ity by gravitational perturbation because of the difficulty in separating perturbation
equations. Nevertheless, in some special cases, there are several works on the stabil-
ity of Kerr-AdS black holes. In the case of four-dimensional Kerr-AdS spacetime, the
superradiant instability has been found.10),11) In D = 7, 9, 11, · · · , the same instabil-
ity of Kerr-AdS black holes with equal angular momenta has been shown to exist.12)

In the case of (D ≥ 7)-dimensional Kerr-AdS black hole with one rotating axis, it
has been shown that the superradiant instability appears in the tensor-type pertur-
bation.13),14),∗∗) However, there is no stability analysis of five-dimensional Kerr-AdS

∗) E-mail: murata@tap.scphys.kyoto-u.ac.jp
∗∗) In Refs. 12) and 13), the metric perturbation is decomposed by the tensor harmonics on

(D − 3)- and (D − 4)-dimensional base spaces, respectively. For D = 5, there is no tensor mode in
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black holes (except for a massless Kerr-AdS black holes15) or a scalar field perturba-
tion16)). To obtain relevant results for the AdS5/CFT4 correspondence, we need to
study the instability of five-dimensional Kerr-AdS black holes. It is difficult to study
the stability of the general Kerr-AdS5 spacetime. However, for the equal angular
momenta case, the spacetime symmetry of Kerr-AdS5 black hole is enhanced and the
separation of gravitational perturbation equations can be possible.17)–20) One of our
purposes is to find the superradiant instability of five-dimensional Kerr-AdS black
holes with equal angular momenta.

The superradiant instability is caused by a property of rotating AdS black holes,
and information on the internal space S5 is not so important for superradiant insta-
bility. However, if the internal space S5 is taken into account, we can find another
type of instability, called Gregory-Laflamme instability. Originally, the Gregory-
Laflamme instability has been found in the black brane solution,21)–24) but in the
Schwarzschild-AdS5 × S5 spacetime, the situation can be similar to the black brane
system. If the horizon radius is much smaller than the radius of S5, the internal
space may be considered as R5. Then, we can consider Sch-AdS5 × S5 spacetime
as a black brane, and the Gregory-Laflamme instability may appear in Kaluza-Klein
modes. The Gregory-Laflamme instability of Schwarzschild-AdS5 ×S5 spacetime has
already been found in Ref. 25). In this paper, extending their work, we study the
Gregory-Laflamme instability of Kerr-AdS5 × S5 spacetime.

We will take into account Gregory-Laflamme and superradiant instabilities and
reveal the phase structure of Kerr-AdS5 × S5 spacetime. There are two types of
instability in the Kerr-AdS5×S5 spacetime. Thus, we can expect that this spacetime
has a rich phase structure and it will be useful to find evidence of the AdS/CFT
correspondence.

The organization and summary of this paper are as follows. In §2, we introduce
Kerr-AdS5×S5 spacetimes with equal angular momenta. In particular, the spacetime
symmetry is studied. We shall see that the symmetry is Rt× SU(2)×U(1)×SO(6)
in the case of equal angular momenta. In §3, we study the gravitational perturbation
of Kerr-AdS5 spacetime neglecting the Kaluza-Klein modes of the internal space S5.
We can obtain the master equations that are relevant to the superradiant instabil-
ity. These equations are solved numerically and we find the onset of superradiant
instabilities given by ΩHL = 1, where ΩH is angular velocity of horizon and L is
curvature scale of AdS spacetime. In §4, we study Gregory-Laflamme instability of
Kerr-AdS5 × S5 spacetime. We consider the gravitational perturbation including
Kaluza-Klein modes in order to see the Gregory-Laflamme instability and obtain the
ordinary differential equations in which three variables are coupled. These equa-
tions are solved numerically and we find the Gregory-Laflamme instability. In §5, we
reveal the phase structure of Kerr-AdS5 × S5 spacetime taking into account super-
radiant and Gregory-Laflamme instabilities. The result is in Fig. 1; ΩH and T are
angular velocity and temperature of Kerr-AdS5 black holes, respectively. In Fig. 1,
ΩH and T are normalized using the curvature scale of the AdS spacetime, L. The

these base spaces and, thus, these formalisms are not applicable to the five-dimensional Kerr-AdS
black hole.
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Fig. 1. This is the phase diagram of a small Kerr-AdS5 × S5 black hole, respectively. The values
ΩH and T are angular velocity and temperature of Kerr-AdS5 black holes. These are normalized
using the curvature scale of the AdS spacetime, L. In the “Stable” region, Kerr-AdS black holes
are stable. In the “SR” and “GL” regions, black holes are unstable against superradiant and
Gregory-Laflamme instabilities, respectively. In the “SR&GL” region, black holes are unstable
against both of instabilities. In the “No Black Holes” region, there is no black hole solution.

solid and dashed lines are onset of the Gregory-Laflamme and superradiant insta-
bilities, respectively. These lines cross each other and we can see five phases in this
diagram. In the “Stable” region, Kerr-AdS black holes are stable. In the “SR” and
“GL” regions, black holes are unstable against superradiant and Gregory-Laflamme
instabilities, respectively. In the “SR&GL” region, black holes are unstable against
both of instabilities. In the “No Black Holes” region, there is no black hole solution.
The final section is devoted to the conclusion.

§2. Kerr-AdS5 black hole in type IIB supergravity

2.1. Kerr-AdS5 × S5 spacetime with equal angular momenta

In this section, we introduce Kerr-AdS5 spacetime as a solution of type IIB
supergravity. The equations of motion of type IIB supergravity are given by

RMN =
1
48
FMP2P3P4P5FN

P2P3P4P5 − 1
480

gMNFP1P2P3P4P5F
P1P2P3P4P5 , (2.1)

∇P1F
P1P2P3P4P5 = 0 , (2.2)

where M,N, · · · = 0, 1, · · · , 9. The form FM1M2M3M4M5 is RR 5-form satisfying dF =
0 and ∗F = F . We concentrate on the metric and RR 5-form field in type IIB
supergravity, while other components, such as dilaton, NSNS 3-form, RR 1-form,
and 3-form, have been set to zero. We will consider Kerr-AdS5 × S5 spacetime,
which is a solution of (2.1) and (2.2). The Kerr-AdS5 spacetime can generally have
two independent angular momenta, but for simplicity, we will consider the case of two
equal angular momenta. Then, the spacetime symmetry is enhanced and stability
analysis will be possible. The metric of Kerr-AdS5×S5 spacetime with equal angular
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momenta is given by∗)

ds2 = −
(

1 +
r2

L2

)
dt2 +

dr2

G(r)
+
r2

4
{(σ1)2 + (σ2)2 + (σ3)2}

+
2μ
r2

(
dt+

a

2
σ3

)2
+ L2dΩ2

5 , (2.3)

where G(r) is defined as

G(r) = 1 +
r2

L2
− 2μ(1 − a2/L2)

r2
+

2μa2

r4
. (2.4)

Then, RR 5-form is
F = 23/2L−1(εAdS5 + εS5) , (2.5)

where εS5 is the volume form of L2dΩ2
5 and εAdS5 is the volume form of the AdS5

part of (2.3). Because of the relation, ∗εS5 = εAdS5 , the form F satisfies the self-dual
condition. In (2.3), we have defined the invariant forms σa (a = 1, 2, 3) of SU(2) as

σ1 = − sinψdθ + cosψ sin θdφ ,

σ2 = cosψdθ + sinψ sin θdφ ,

σ3 = dψ + cos θdφ , (2.6)

where 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π. It is easy to check the relation
dσa = 1/2εabcσb ∧ σc. The dual vectors of σa are given by

e1 = − sinψ∂θ +
cosψ
sin θ

∂φ − cot θ cosψ∂ψ ,

e2 = cosψ∂θ +
sinψ
sin θ

∂φ − cot θ sinψ∂ψ ,

e3 = ∂ψ , (2.7)

and, by the definition, they satisfy σai e
i
b = δab .

The horizon radius r = r+ can be determined as G(r+) = 0. The angular velocity
of Kerr-AdS back hole is given by

ΩH =
2μa

r4+ + 2μa2
. (2.8)

For the existence of horizon, the angular velocity has the upper boundary,

ΩH ≤
(

1
2r2+

+
1
L2

)1/2

≡ Ωmax
H . (2.9)

In terms of r+ and ΩH , the two parameters (a, μ) in the metric (2.3) can be rewritten
as

a =
r2+ΩH

1 + r2+/L
2
, μ =

1
2

r2+(1 + r2+/L
2)2

1 − (Ω2
HL

2 − 1)r2+/L2
. (2.10)

We will mainly use parameters (r+, ΩH).
∗) To obtain this metric from Kerr-AdS5 spacetime given in Refs. 26)–29), we need some coor-

dinate transformation and redefinition of a parameter. These are summarized in Appendix A.
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2.2. Spacetime symmetry

Now, we study the symmetry of (2.3). It will be important for separating vari-
ables of the gravitational perturbation equations in §§3 and 4. Clearly, the met-
ric (2.3) has the time translation symmetry Rt, and the SO(6) symmetry comes
from the S5 part of (2.3). Additionally, the spacetime has the SU(2) symmetry
characterized by the Killing vectors ξα , (α = x, y, z):

ξx = cosφ∂θ +
sinφ
sin θ

∂ψ − cot θ sinφ∂φ ,

ξy = − sinφ∂θ +
cosφ
sin θ

∂ψ − cot θ cosφ∂φ ,

ξz = ∂φ . (2.11)

The symmetry can be explicitly shown using the relation Lξασa = 0, where Lξα is a
Lie derivative along the curve generated by the vector field ξα.

From the metric (2.3), we can also read off the additional U(1) symmetry, which
retains the part of the metric, (σ1)2 + (σ2)2 and is generated by e3. The U(1)
generator e3 satisfies Le3σ1 = −σ2 and Le3σ2 = σ1 and, thus, Le3 [(σ1)2 +(σ2)2] = 0.
Therefore, the symmetry of Kerr-AdS5 × S5 spacetime with equal angular momenta
becomes Rt × SU(2) × U(1) × SO(6).

For later calculations, it is convenient to define the new invariant forms

σ± =
1
2
(σ1 ∓ iσ2) . (2.12)

Then, the dual vectors for σ± are

e± = e1 ± ie2 . (2.13)

By making use of these forms, the metric (2.3) can be rewritten as

ds2 = −
(

1 +
r2

L2

)
dt2 +

dr2

G(r)
+
r2

4
{4σ+σ− + (σ3)2}

+
2μ
r2

(
dt+

a

2
σ3

)2
+ L2dΩ2

5 . (2.14)

We will use this expression in the following sections.

§3. Superradiant instability of Kerr-AdS black holes

In the following sections, we will study the stability of Kerr-AdS5×S5 spacetime
with equal angular momenta (2.3). In this spacetime, we can expect two types of
instability. One is the superradiant instability that is caused by the wave amplifi-
cation via superradiance and by wave reflection due to the potential barrier of the
AdS spacetime. This instability should be observed, even if Kaluza-Klein modes are
neglected. The other instability is the Gregory-Laflamme instability, which is the
instability of the internal space S5, that is, the Gregory-Laflamme instability is the
instability of Kaluza-Klein modes. First, we shall see the superradiant instability of
Kerr-AdS5 spacetime in this section.
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3.1. Perturbation equations and separability

To see the superradiant instability, we can neglect Kaluza-Klein modes of S5. In
addition, we will consider only metric fluctuation on the AdS5 part of the spacetime,
that is,

g′MNdx
MdxN = gMNdx

MdxN + hμν(xμ)dxμdxν ,

F ′ = 23/2L−1(ε′AdS5
+ εS5), (3.1)

where μ, ν, · · · are indexes on AdS5 and ε′AdS5
is volume form of g′μν = gμν +hμν . For

the perturbations, (2.2) is trivially satisfied and (2.1) becomes

δGμν − 6
L2
hμν = 0 , (3.2)

where δGμν is perturbation of the Einstein tensor of five-dimensional metric gμν ,
which is defined as

δGμν =
1
2
[∇ρ∇μhνρ + ∇ρ∇νhμρ −∇2hμν −∇μ∇νh

− gμν(∇ρ∇σhρσ −∇2h−Rρσhρσ) −Rhμν ] , (3.3)

where ∇μ denotes the covariant derivative with respect to gμν and h = gμνhμν .
Tensors Rρσ and R are Ricci tensor and Ricci scalar of gμν , respectively. We take the
AdS5 part of (2.14) as a background metric gμν . Equation (3.2) is nothing but the
perturbation of five-dimensional Einstein equations with the negative cosmological
constant.

The perturbation equation (3.2) is a partial differential equation of hμν(t, r, θ, φ, ψ).
However, in previous works,17),18),20),30) it was shown that the perturbation equa-
tions can be reduced to ordinary differential equations by focusing on the symmetry
of the background spacetime, Rt × SU(2) × U(1). Here, we will briefly review these
works.

Let us define the two types of angular momentum operator,

Lα = iξα , Wa = iea , (3.4)

where α, β, · · · = x, y, z and a, b, · · · = 1, 2, 3. They satisfy commutation relations

[Lα, Lβ] = iεαβγLγ , [Wa,Wb] = −iεabcWc , [Lα,Wa] = 0 , (3.5)

where εαβγ and εabc are antisymmetric tensors that satisfy ε123 = εxyz = 1. The
Casimir operators constructed using Lα and Wa are identical and we define L2 ≡
L2
α = W 2

a . The symmetry group, SU(2)×U(1) is generated using Lα and W3. Here,
we should note the following facts:

LW3σ
± = ±σ± , LW3σ

3 = 0 . (3.6)

It means that σ± and σ3 have U(1) charges ±1 and 0. Since operators L2, Lz, and
W3 commute each other, these are simultaneously diagonalizable. The eigenfunctions
are called Wigner functions DJ

KM (θ, φ, ψ) defined as

L2DJ
KM = J(J + 1)DJ

KM , LzD
J
KM = MDJ

KM , W3D
J
KM = KDJ

KM , (3.7)
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where the indexes J,K and M are defined as J = 0, 1/2, 1, · · · and K,M = −J,−J+
1, · · ·J . The following relations are useful for later calculations:

W+D
J
KM = iεKD

J
K−1,M , W−DJ

KM = −iεK+1D
J
K+1,M , W3D

J
KM = KDJ

KM ,
(3.8)

where we have defined W± = W1 ± iW2 and εK =
√

(J +K)(J −K + 1). From this
relation, we obtain the differential rule of the Wigner function as

∂+D
J
KM = εKD

J
K−1,M , ∂−DJ

KM = −εK+1D
J
K+1,M , ∂3D

J
KM = −iKDJ

KM ,
(3.9)

where we have defined ∂± ≡ ei±∂i and ∂3 ≡ ei3∂i.
Now, we consider the mode expansion of hμν . The metric perturbations can

be classified into three parts, hAB, hAi, hij , where A,B = t, r and i, j = θ, φ, ψ.
They behave as scalar, vector, and tensor for coordinate transformation of θ, φ, ψ,
respectively. The scalar hAB can be expanded using Wigner functions immediately
as

hAB =
∑
K

hKAB(xA)DK(xi) . (3.10)

Here, we have omitted the indexes J,M because the differential rule of Wigner func-
tion (3.9) cannot shift J,M and therefore the modes with different eigenvalues J,M
are trivially decoupled in the perturbation equations.

To expand the vector part hAi, we need a device. First, we change the basis {∂i}
to {ea}, that is, hAi = hAaσ

a
i where a = ±, 3. Then, because hAa is scalar, we can

expand it using the Wigner function as

hAi(xμ) = hA+(xμ)σ+
i + hA−(xμ)σ−i + hA3(xμ)σ3

i

=
∑
K

[
hKA+(xA)σ+

i DK−1 + hKA−(xA)σ−i DK+1 + hKA3(x
A)σ3

iDK

]
. (3.11)

In the expansion of hA+, hA−, and hA3, we have shifted the index K of Wigner
functions, for example, hA+ has been expanded as

∑
K h

K
A+DK−1. The reason is as

follows. The invariant forms σ± and σ3 have the U(1) charges ±1 and 0, respec-
tively (see Eq. (3.6)), while the Wigner function DK has the U(1) charge K (see
Eq. (3.7)). Therefore, by shifting the index K, we can assign the same U(1) charge
K to σ+

i DK−1, σ−i DK+1, and σ3
iDK in Eq. (3.11).

The expansion of tensor part hij can be carried out in a similar manner as

hij(xμ) =
∑
K

[
hK++σ

+
i σ

+
j DK−2 + 2hK+−σ

+
i σ

−
j DK + 2hK+3σ

+
i σ

3
jDK−1

+hK−−σ
−
i σ

−
j DK+2 + 2hK−3σ

−
i σ

3
jDK+1 + hK33σ

3
i σ

3
jDK

]
. (3.12)

To assign the same U(1) charge K to each term, we have shifted the index K of
Wigner functions.

Substituting Eqs. (3.10)–(3.12) into the perturbation equations (3.2), we obtain
the equations for each mode labelled by J , M , K. Because of SU(2)×U(1) symmetry,
different eigenmodes cannot appear in the same equation.
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It is interesting that we can find master variables from the above information.
First, we should note that coefficients of the expansion have different indexes K and,
therefore, coefficients of components hKAB, hKAa and hKab are restricted as follows:

h++ hA+, h+3 hAB, hA3, h+−, h33 hA−, h−3 h−−
|K − 2| ≤ J |K − 1| ≤ J |K| ≤ J |K + 1| ≤ J |K + 2| ≤ J

From this table, we can see that, in K = ±(J + 2) mode, there is only one variable
h±±, respectively. Therefore, the (J,M,K = ±(J + 2)) modes always reduce to a
single master equation. We will study the stability of these modes. In fact, (J =
0,M = 0,K = 0,±1) modes also reduce to a single master equation. The stabilities
of (J = 0,M = 0,K = 0,±1) modes are described in Appendix B and we will see
that these modes are irrelevant to see the onset of the superradiant instability.

3.2. Master equations

We will derive the master equation for (J,M,K = ±(J + 2)) modes. Because of
the relation h++ = h∗−−, we will consider (J,M,K = J + 2) modes only. Then, we
can set hμν as

hμν(xμ)dxμdxν = h++(r)e−iωtDJ(xi)σ+σ+ , (3.13)

where DJ ≡ DJ
K=J,M . This h++ field is gauge-invariant. We substitute Eq. (3.13)

into Eq. (3.2) and use the differential rule of Wigner functions (3.9). Then, ++
component of (3.2) is given by

1
2r10G(r)

[
− r10G(r)2h′′++ − r5G(r)(6μr2λa2 − 10μa2 + 6μr2 − λr6 − r4)h′++

− { − 4λ2r12 + (4λ(3 + 3J + J2) + ω2)r10 − 4(J + 1)(J + 2)r8

− 2μ(−4 + 16λa2 + 4Jλa2 − 12J − 4J2 + 4a(J + 2)ω − a2ω2)r6

+ 8μ(2μ+ 2μλ2a4 + 4μa2λ+ Ja2 + 4a2)r4

− 48a2μ2(1 + λa2)r2 + 32μ2a4
}
h++

]
e−iωtDJ(θ, φ, ψ) = 0 . (3.14)

This equation can be rewritten as

−d
2Φ

dr2∗
+ V (r)Φ = [ω − 2(J + 2)Ω(r)]2Φ , (3.15)

where we have introduced the new variable,

Φ =
(r4 + 2μa2)1/4

r3/2
h++ , (3.16)

and the tortoise coordinate,

dr∗ =
(r4 + 2μa2)1/2

r2G(r)
dr . (3.17)



Instabilities of Kerr-AdS5 × S5 Spacetime 1107

The function Ω(r) and potential V (r) are given by

Ω(r) =
2μa

r4 + 2μa2
, (3.18)

and

V (r) =
G(r)

4r2(r4 + 2μa2)3
[
15r14/L2 + (4J + 7)(4J + 5)r12 + 6μ(3 + 11a2/L2)r10

+ 2μa2(16J2 + 32J + 5)r8 − 4μ2a2(10 − 17a2/L2)r6

− 4μ2a4(16J + 35)r4 + 8μ3a4(1 − a2/L2)r2 − 40μ3a6
]
. (3.19)

We can obtain the asymptotic form of Ω(r) and V (r) as

Ω(r) → ΩH (r → r+) , Ω(r) → 0 (r → ∞) , (3.20)

and

V (r) → 0 (r → r+) , V (r) → 15r2

4L4
(r → ∞) , (3.21)

where ΩH is the angular velocity of the horizon, which is defined in Eq. (2.8). There-
fore, the asymptotic form of the solution of master equation (3.15) becomes

Φ→ e±i{ω−2(J+2)ΩH}r∗ (r → r+) , Φ→ r−1/2±2 (r → ∞) . (3.22)

We will solve (3.15) numerically and show the superradiant instability.

3.3. Stability analysis

3.3.1. A method of studying the stability
We will find the instability by the shooting method. Then, since the master

equation (3.15) is not a self-adjoint form, we should put ω = ωR + iωI (ωR, ωI ∈ R)
and there are two shooting parameters, ωR and ωI . However, if the purpose is to
find the onset of instability, the number of shooting parameters can be reduced to
one.12),20),31)

We have separated the time dependence as hμν ∝ e−iωt in (3.13). Therefore, the
unstable mode satisfies Imω > 0. Thus, the boundary condition for regularity at the
horizon becomes

Φ→ e−i{ω−2(J+2)ΩH}r∗ . (r → r+) (3.23)

Then, the general form of wave function at infinity becomes

Φ→ Z1r
−5/2 + Z2r

3/2, (r → ∞) (3.24)

where Z1 and Z2 are constants. For regularity at infinity, the condition Z2 = 0 must
be satisfied. Therefore, the boundary conditions that the unstable mode satisfies are

Φ→ e−i{ω−2(J+2)ΩH}r∗ (r → r+) , Φ→ Z1r
−5/2 (r → ∞) . (3.25)

To study the stability, we start from the assumption that, for sufficiently small
angular velocity ΩH , Kerr-AdS5 black holes are stable. This is a natural assumption
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because higher dimensional Schwarzschild-AdS5 black hole is stable.6) From this as-
sumption, for small ΩH , wave functions with the boundary condition (3.25) must be
Imω < 0, that is, quasinormal modes. If there is the instability, for large ΩH , some
mode becomes Imω > 0 as ΩH becomes large. It indicates that one of the quasinor-
mal modes must cross the real axis in the complex ω plane for some ΩH . Therefore,
if the black hole is unstable for large ΩH , there is some critical value ΩH = Ωcrit

H such
that there exists a mode with Imω = 0. We will look for such Ωcrit

H . For the purpose
of searching Ωcrit

H , we can assume that Imω = 0. In this case of ω ∈ R, Wronskian
of ΦK is conserved, that is,

Im
[
Φ∗ d

dr∗
Φ

]r=r2
r=r1

= 0 , (3.26)

for any r1 and r2. We take r1 = r+ and r2 = ∞. Then, from Eq. (3.26), we can get
the relation,

2(J + 2)ΩH − ω = −4L−2 Im(Z1Z
∗
2 ) . (3.27)

where we have used the asymptotic form of (3.23) and (3.24). To avoid divergence
at infinity, Z2 = 0 must be satisfied. Then, we can get

ω = 2(J + 2)ΩH . (3.28)

Therefore, the equation that we should solve is

−d
2Φ

dr2∗
+ V̂ (r)Φ = 0 , (3.29)

where
V̂ (r) ≡ V (r) − 4(J + 2)2(ΩH −Ω(r))2 . (3.30)

The boundary condition can be obtained by substituting Φ = Φ(r+)+Φ′(r+)(r−r+)
into (3.30) and it is given by

Φ′(r+)
Φ(r+)

=
r4+ + 2μa2

r4+

V ′(r+)
G′(r+)2

. (3.31)

For fixed r+, there is only one shooting parameter, ΩH , in (3.29).

3.3.2. Limit of small Kerr-AdS black holes
Before the numerical calculation, it is important to solve the master equation (3.29)

analytically in some limit.32) It may be useful to check the numerical calculation. We
consider Kerr-AdS black holes in the limit of r+ → 0. Then, the master equa-
tion (3.15) can be solved accurately. The solution that approaches zero at infinity
is

Φ =
(r/L)7/2+2J

(1 + r2/L2)J+3
F

(
(J + 2)ΩHL+ J + 3,−(J + 2)ΩHL+ J + 3; 3;

1
1 + r2/L2

)
,

(3.32)
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where F (α, β; γ; z) is Gauss hypergeometric function. Then, the asymptotic form of
r → 0 becomes

Φ =
2(2J + 2)!

Γ [(J + 2)ΩHL+ J + 3]Γ [−(J + 2)ΩHL+ J + 3]

( r
L

)−2J−5/2

− 4(−1)2J+3

(2J + 3)!Γ [(J + 2)ΩHL− J ]Γ [−(J + 2)ΩHL− J ]

( r
L

)2J+7/2
ln

( r
L

)
. (3.33)

For the regularity at horizon, the first term of (3.33) must vanish. Thus, we can get
ΩHL = (J + 3 + p)/(J + 2) where p = 0, 1, 2, · · · . This calculation is to see the onset
of the instability and the lowest value of ΩH is important. The lowest value of ΩH
is given by

ΩHL =
J + 3
J + 2

. (3.34)

The numerical result must approach this value in the limit of r+ → 0.

3.3.3. Onset of superradiant instability
Now, we shall solve (3.29) numerically. Using the Lunge-Kutta algorithm, we

integrate Eq. (3.29) from the horizon to infinity with various ΩH . The boundary
conditions at the horizon are given by (3.31). Then, the general form of the wave
function at infinity is given by (3.24). We can see that, at some value of ΩH , Z2 flips
the sign. It means that Z2 = 0 mode exists. We will search such ΩH numerically
and plot the result in ΩH-r+ diagram. The result is shown in Fig. 2. The curves
represent the borderline of stability and instability of each mode, that is, each mode
is stable below the curve, while they are unstable above the curve. From this figure,
we can read off that, in the limit of r+ → 0, these curves for each mode approach
ΩH = (J + 3)/(J + 2). This result is consistent for analytical calculation in §3.3.2.
We can also see that, for higher J mode, the instability occurs at a lower angular
velocity. These curves seem to approach ΩHL = 1 for large J . These properties are
the same for D = 7, 9, 11, · · · cases.12)

It is surprising that these results have already been seen in dual gauge the-
ory.33),34) In Ref. 34), the effective mass term for scalar fields of dual gauge theory
has been obtained as

m2
eff = (2J + 1)2L−2 − 4Ω2

HK
2 . (3.35)

Because of |K| ≤ J , if ΩHL < 1 is satisfied, m2
eff is positive for any J and K.

However, if ΩHL > 1, m2
eff can be negative for large J and K modes. Thus, we see

that, for ΩHL > 1, the dual gauge theory is unstable and higher J mode becomes
tachyonic first asΩH increases. These results are the same for superradiant instability
of Kerr-AdS5 black holes.

§4. Gregory-Laflamme instability of Kerr-AdS5 × S5 spacetimes

4.1. Perturbation equation

In the previous section, we have seen the superradiant instability of Kerr-AdS5×
S5 spacetime. The superradiant instability breaks the symmetry of Kerr-AdS5. In
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Fig. 2. The onset of superradiant instability is depicted in ΩH-r+ diagram. We plot onset lines for
J = 0, 1/2, 1, 2, 5, 30 modes using solid lines. At the above dashed line, the Kerr-AdS5 black
holes become extreme and, in the upper-right region, there is no black hole solution. The dashed
line below is ΩHL = 1. We can see that onset line of higher J modes appears at lower ΩH and
these lines approach ΩHL = 1 for J → ∞.

this section, we will consider the Gregory-Laflamme instability of Kerr-AdS5 × S5

spacetimes. This instability breaks the symmetry of S5. Thus, we must see the
Kaluza-Klein modes of the perturbations that have been neglected in the previous
section.

We will consider only the metric fluctuations on the AdS5 part of the spacetime,
that is,

g′MNdx
MdxN = gMNdx

MdxN + hμν(xμ)Y�(Ω5)dxμdxν ,

F ′ = 23/2L−1(ε′AdS5
+ εS5) , (4.1)

where Y�(Ω5) is spherical harmonics on S5 that satisfy

∇2
S5Y� = −�(�+ 4)Y� , (4.2)

here, ∇2
S5 is the Laplacian of S5 and � = 0, 1, 2, · · · . The ε′AdS5

in (4.1) is the volume
form of g′μν = gμν+hμν(xμ)Y�(Ω5). Since, in the case of Schwarzschild-AdS5×S5, the
Gregory-Laflamme instability has been found in these fluctuations,25) the instability
of Kerr-AdS5 ×S5 must also appear in these fluctuations. Here, we should note that,
in (4.1), hμν depends on the coordinates on S5. It is essential to see the Gregory-
Laflamme instability. Then, from (2.1), we can obtain the perturbation equations
as

δGμν =
6
L2
hμν − ε

L2

(
hμν − 1

2
h

)
, (4.3)

where ε = �(�+ 4)/2 and δGμν is defined in (3.3). From (2.2), we can get

h(xμ)∂aY�(Ω5) = 0 , (4.4)
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where a is index on S5. In the case � = 0, (4.4) is trivially satisfied and (4.3) reduces
to (3.2). For � ≥ 1, (4.4) implies h(xμ) = 0. Then, as a constraint equation of (4.3),
we can get the transverse condition of hμν as shown in Appendix C. Thus, even for
Kaluza-Klein modes, we can use transverse traceless conditions,

∇νhμν = gμνhμν = 0 . (4.5)

To separate variables of Eqs. (4.3) and (4.5), we will use the formalism in §3.1 again.
We can expand hμν using the Wigner function DJ

KM and obtain ordinary differential
equations labeled by (J,K,M). We will not study the stability of all the modes, but
we will consider only the J = M = K = 0 mode. The Gregory-Laflamme instability
of Schwarzschild-AdS5 ×S5 spacetime was found in the s-wave of AdS5

25) and, thus,
we can expect that, in the Kerr-AdS5 × S5 spacetime, the instability appears in the
most symmetric mode, J = M = K = 0. The metric perturbation for this mode is
given by

hμν(xμ)dxμdxν = htt(r)dt2 + 2htr(r)dtdr + hrr(r)dr2 + 2ht3(r)dtσ3

+ 2hr3(r)drσ3 + 2h+−(r)σ+σ− + h33(r)σ3σ3 , (4.6)

where we assume that the metric perturbation hμν does not depend on t, in order to
observe the onset of Gregory-Laflamme instability. The stability of � = 0 mode of
this perturbation is shown in Appendix B.1 and, thus, we will consider � = 1, 2, 3, · · · .
We substitute (4.6) into (4.3). Then, from tr and r3 components of the perturbation
equation, we can obtain

htr = hr3 = 0 . (4.7)

Now, we introduce dimensionless variables, α, β, δ, η, and ζ, as

htt = −
(

1 +
r2

L2
− 2μ
r2

)
α , hrr =

β

G(r)
, h+− =

r2

4
δ,

h33 =
r2

4

(
1 +

2μa2

r4

)
η , ht3 =

2μa
r2

ζ . (4.8)

Hereafter, we put L = 1 to simplify the expressions. Then, the traceless condition
h = 0 can be written as

(r4 + r2 − 2μ)(r4 + 2μa2)α+ r6G(r)β + r6G(r)δ

+ (r4 + r2 − 2μ)(r4 + 2μa2)η + 16μ2a2ζ = 0 , (4.9)

and the r-component of transverse condition ∇νhμν = 0 is

− (r4 + r2 − 2μ){r8 + 2μ(1 + 2a2)r4 − 4μ2a2(1 + a2)}α
+ r9G(r)2β′ + r4G(r){4r6 + 3r4 − 4μ(1 − a2)r2 + 2μa2}β + r8G(r)2δ

− (r4 + 2μa2){r8 + 2r6 − (2μa2 + 4μ− 1)r4 − 4μ(a2 + 1)r2 + 2μ(2μ+ 2μa2 + a2)}η
− 16μ2a2{3r4 + 2r2 − 2μ(1 − a2)}ζ = 0 , (4.10)
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where ′ ≡ d/dr. We can see that, using (4.9) and (4.10), α and ζ can be eliminated.∗)
Then, rr,+− and 33 components of (4.3) are given by

− r6G(r)β′′ − r{13r6 + 9r4 − 10μ(1 − a2)r2 + 2μa2}β′

− 2{(16 − ε)r6 + 6r4 − 4μa2}β + 4(r4 − 2μa2)δ + 4(r4 + 2μa2)η = 0 , (4.11)

4r5G(r)β′ + 8(2r6 + r4 − 2μa2)β − r6G(r)δ′′

− r{5r6 + 3r4 − 2μ(1 − a2)r2 − 2μa2}δ′ + 2(εr6 + 8μa2)δ − 8(r4 + 2μa2)η = 0 ,
(4.12)

2r5G(r)(r4 + 2μa2)β′′ + 2(r4 + 2μa2){11r6 + 7r4 − 6μ(1 − a2)r2 − 2μa2}β′

+ 16r3(3r2 + 1)(r4 + 2μa2)β − 2(r8 − 4μr6 + 4μa2r4 + 4μ2a4)δ′ − 8r3(r4 + 2μa2)δ

− r5G(r)(r4 + 2μa2)η′′ − r4G(r)(5r4 − 6μa2)η′ + 2εr5(r4 + 2μa2)η = 0 . (4.13)

We can check that the other components of (4.3) are derived from (4.11), (4.12), and
(4.13). There are three degrees of freedom in J = M = K = 0 mode.∗∗)

4.2. Onset of the Gregory-Laflamme instability

We will solve Eqs.(4.11), (4.12), and (4.13) numerically and see the onset of
the Gregory-Laflamme instability. First, we derive the boundary conditions at the
horizon. We substitute the asymptotic forms at the horizon of the variables,

β = b0 + b1(r − r+) , δ = d0 + d1(r − r+) , η = e0 + e1(r − r+) , (4.14)

into (4.11), (4.12) and (4.13). For these asymptotic forms at the horizon (4.14),
the perturbation (4.8) does not exceed the background metric and we adopt these
asymptotic forms. Then, we obtain

b1 =
(εr6+ − 16r6+ + r4+ε− 24r4+ − 8r2+ − 4μ)b0 + 4(r4+ + r2+ − 2μ)d0

4r+(r6+ + 2r4+ + r2+ − μ)
,

d1 =
8(r6+ + 2r4+ + r2+ + μ)b0 + (εr6+ + εr4+ − 4r4+ + 16μ− 4r2+)d0

2r+(r6+ + 2r4+ + r2+ − μ)
,

e0 = −2b0 − d0 . (4.15)

Free parameters b0, d0, e1 remain. However, we can set e1 = 1 by the rescale of β, δ, η.
Hence, the parameters that we should set at horizon are b0, d0. On the other hand,
at r → ∞, the growing mode of β, δ, η becomes

δ  C1 r
� , η  C2 r

� , β  C1 + C2

�+ 3
r�−2 + C3r

�−4 . (4.16)

∗) We can eliminate other variables, such as (α, δ), (δ, η). However, if we eliminate these vari-
ables, the singular point will appear at r+ < r < ∞ in the resultant equations.25) The variables
(α, ζ) are the best variables for elimination as far as we can see.

∗∗) In the case of � = 0, the gauge freedom is restored and the degree of freedom becomes one as
explained in Appendix B.1.
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Thus, for large r, we can get the coefficients of the growing modes approximately as

C1 = δ/r� , C2 = η/r� , C3 =
(
β − C1 + C2

�+ 3
r�−2

)
/r�−4 . (4.17)

These C1, C2, C3 must be zero at infinity.∗)
Now, we can start the numerical integration. We solve (4.11), (4.12), (4.13) from

r1 = r+ + 1.0 × 10−5L to r2 = 1.0 × 104L using the Runge-Kutta algorithm. Input
parameters are r+, ΩH , b0, d0 and we can get Ci = Ci(r+, ΩH , b0, d0) (i = 1, 2, 3) at
r = r2. For fixed r+, we look for b0, d0, ΩH , which satisfy Ci = 0 by the Newton-
Raphson method. We repeat this procedure with various r+. The result is given in
Fig. 3. These lines have a maximum value and approach ΩHL = 1 for r+ → ∞.
We can see that the higher � mode becomes unstable for smaller r+ in the region of
ΩHL < 1, and the � = 1 mode is relevant for the onset of the Gregory-Laflamme
instability.

In the case of ΩHL < 1, the condition for the Gregory-Laflamme instability is
roughly given by r+/L < O(1). This result is the same as the black string solution.21)

However, in the case of ΩHL > 1, the Kerr-AdS5 × S5 spacetime is unstable for
not only r+/L < O(1), but also r+/L > (some large numerical value). This is an
interesting property that appears in the ultraspinning Kerr-AdS5 × S5 spacetime.

It is remarkable that the onset lines of Gregory-Laflamme and superradiant insta-
bilities intersect each other. Thus, both instabilities can appear in Kerr-AdS5 × S5

spacetimes. In the limit of ΩH → 0, we can read off the onset of the instability
as r+/L = 0.4402(� = 1), 0.3238(� = 2), 0.2570(� = 3). It is consistent with the
instability of Schwarzschild-AdS5 × S5 spacetimes.25)

§5. Phase structure

In this section, taking into account superradiant and Gregory-Laflamme instabil-
ities, the phase structure of the Kerr-AdS5 ×S5 spacetime is revealed. Here, we need
some comments on the stability analyses performed in §§3 and 4. We studied some
specific modes and found instabilities. However, we did not study all the modes of
perturbations and, strictly speaking, onsets of superradiant and Gregory-Laflamme
instabilities can be changed by the analysis of all modes. To ensure that the onset of
instabilities that we derived gives a true onset of instability, we studied the stability
of (J,M,K = J + 2), � �= 0 modes in Appendix B.3. As a result, we found the insta-
bility whose onset is given by ΩHL  (J+3+�/2)/(J+2). This result suggests that
the mass term of graviton lifts up the onset of instability and these are not relevant
to see the onset of superradiant instability. The result of Appendix B.3 also suggests
that the Gregory-Laflamme instability is not found in higher modes in the AdS5 part
of spacetime. Because of the above reason, we regard the result derived in §§3 and
4 as a true onset of instabilities and reveal the phase structure of Kerr-AdS5 × S5

spacetimes.
Until the previous section, we have been using parameters (r+, ΩH). However,

∗) For � = 1, 2, 3, 4, β is not singular even if C3 �= 0, but for the regularity of ζ, we need C3 = 0.
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Fig. 3. The onset lines of Gregory-Laflamme instability are depicted. We depicted them for � =

1, 2, 3 using solid lines. In the regions above each line, Kerr-AdS5 is unstable against the Gregory-
Laflamme instabilities of each mode. These lines have a maximum value and approach ΩHL = 1

for r+ → ∞. At the above dashed line, the Kerr-AdS5 black holes become extreme and, in the
upper-right region, there are no black hole solutions. The dashed line below is ΩHL = 1, which
is the onset of the superradiant instability.

for comparison with the gauge theory, the horizon radius r+ is not a good parameter
because r+ is not defined in the gauge theory. Therefore, we see the phase diagram
using thermodynamical parameters, the temperature T and angular velocity ΩH .
The temperature is defined as

T =
2(1 −Ω2

HL
2)r2+/L

2 + 1
2πr+

√
1 + r2+/L

2

(1 −Ω2
HL

2)r2+/L2 + 1
. (5.1)

Using this equation, we can map Fig. 3 onto the T -ΩH diagram. The result is given
in Fig. 1. The solid and dashed lines indicate the onsets of Gregory-Laflamme and
superradiant instabilities, respectively. These lines cross each other and we can see
five phases in this diagram. In the “Stable” region, Kerr-AdS black holes are stable.
In the “SR” and “GL” regions, black holes are unstable against superradiant and
Gregory-Laflamme instabilities, respectively. In the “SR&GL” region, black holes are
unstable against both of them. In the “No Black Holes” region, there is no black hole
solution.

To get this phase diagram, we need some following attentions. In Fig. 4, we plot
the temperature as a function of r+. In the case of ΩHL < 1, there are two r+ giving
the same temperature. We will call these phases small and large black hole phases.
There is no one-to-one correspondence for r+ and T . Since the Gregory-Laflamme
instability appears in the small black hole phase, we chose the small black hole phase
to depict the phase diagram. We can also see that the temperature has minimal value
Tmin(ΩH) > 0. The “No Black Holes” phase in Fig. 1 comes from this minimum value
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Fig. 4. We plot the temperature of Kerr-AdS5 black holes as a function of r+ for ΩHL = 0.5, 1, 1.1.
For ΩHL < 1, there are two r+ giving the same temperature, and the temperature T has
a minimal value. For ΩHL = 1, the temperature monotonically decreases and approaches
TL = 1/(2π). For ΩH > 1, the temperature becomes zero at some value of r+.

of T . In the case of ΩHL = 1, the temperature T has no minimal value, but it is
bounded by T > 1/(2π). For ΩHL > 1, T becomes zero at some value of r+. Thus,
the “No Black Holes” phase is vanishing for ΩHL > 1 in Fig. 1. The ΩH = Ωmax

H line
in Fig. 3, has been mapped onto a ray of T = 0 and ΩH > 1.

§6. Conclusions and discussion

We have studied gravitational perturbations of Kerr-AdS5 × S5 spacetimes with
equal angular momenta. First, we studied the stability of Kerr-AdS5 neglecting
Kaluza-Klein modes and found the superradiant instability. We could see that the
onset is given by ΩHL = 1. We also studied the stability including Kaluza-Klein
modes of S5 and found the Gregory-Laflamme instability. From these results, we
derived the phase diagram of Kerr-AdS5 × S5 spacetime in Fig. 1 and found five
phases in this diagram.

It is surprising that superradiant and Gregory-Laflamme instabilities can be un-
derstood on the basis of the dual gauge theory. In the dual gauge theory, the angular
velocity of the horizon ΩH is regarded as a chemical potential.26),33),34) It has been
shown that, for ΩHL > 1, the gauge theory is unstable and the higher J mode be-
comes tachyonic first as ΩH increases.34) In the gravity theory, we found the same
property, that is, we can see that, from Fig. 2, higher J mode becomes unstable first
as ΩH increases. This remarkable coincidence of gravity and gauge theories provides
a strong evidence for the AdS/CFT correspondence.

There are also several works on the Gregory-Laflamme instability from the gauge
theory point of view.35)–38) In particular, in Ref. 38), N = 4 SYM on S3, which is dual
to the Schwarzschild-AdS5 × S5 spacetime, is studied with weak ’t Hooft coupling.
In their work, at high temperature, they found a new saddle point in which SO(6)
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R-symmetry is spontaneously broken and SO(5) symmetry remains. The SO(6) R-
symmetry in the gauge theory corresponds to the symmetry of internal space S5 in
the dual gravity theory and, thus, this appearance of the new saddle point was related
to the Gregory-Laflamme instability. For the Kerr-AdS5 × S5 spacetime, our result
in Fig. 1 gives a prediction for the phase structure of the gauge theory. However,
unfortunately, there is no work concerning the Gregory-Laflamme instability in view
of the gauge theory for the rotating black hole. It is interesting to extend the work
described in Ref. 38) to Kerr-AdS5 × S5 spacetime and compare with our result in
Fig. 1.

In the dual gauge theory, we can still introduce R-symmetry chemical potentials.
This theory corresponds to the R-charged black hole solution obtained in Ref. 39).
For highly R-charged black holes, thermodynamical instability was found34),39),40)

and this instability can be understood on the basis of the dual gauge theory.34),40)

However, no dynamical instability is found through gravitational perturbations. In
the gauge theory, this instability is described from the appearance of a tachyonic
mode of scalar fields and, thus, this instability breaks the R-symmetry, SO(6). On
the other hand, in gravity theory, SO(6) symmetry comes from internal space S5 and,
therefore, we can expect that this instability appears in Kaluza-Klein modes of S5.
The Kaluza-Klein modes can be regarded as a charged field in the effective theory
in AdS5. In the system of a charged black hole and charged field, superradiance
occurs and superradiant instability is caused in the AdS spacetime. It is challenging
to study the stability of R-charged black hole, while taking into account the Kaluza-
Klein modes of S5.

In this paper, because of practical reasons, we could not discuss the stability of
Kerr-AdS5 spacetimes with independent angular momenta. However, for Kerr-AdS5

with one rotation, we may be able to find a new type of instability. In the case
of asymptotically flat spacetimes, it was suggested that there is a phase transition
between the five-dimensional Kerr black hole and black ring solutions.41) For asymp-
totically AdS spacetimes, a perturbative solution of black ring has been found42) and
there may be a transition between the Kerr-AdS5 black hole and the AdS black ring.
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Appendix A
Kerr-AdS Black Hole with Independent Angular Momenta

The Kerr-AdS5 spacetime with independent angular momenta is given by26)–29)

ds2 =− Δ

ρ2

(
dt+

a1 sin2 θ1
Ξ1

dφ1+
a2 cos2 θ1

Ξ2
dφ2

)2

+
Δθ sin2 θ1

ρ2

(
a1dt+

(r̄2 + a2
1)

Ξ1
dφ1

)2

+
Δθ1 cos2 θ1

ρ2

(
a2dt+

(r̄2 + a2
2)

Ξ2
dφ2

)2

+
ρ2

Δ
dr̄2 +

ρ2

Δθ1

dθ2
1

+
(1 + r̄2/L2)

r̄2ρ2

(
a1a2dt+

a2(r̄2 + a2
1) sin2 θ1

Ξ1
dφ1 +

a1(r̄2 + a2
2) cos2 θ1

Ξ2
dφ2

)2

,

(A.1)

where

Δ =
1
r̄2

(r̄2 + a2
1)(r̄

2 + a2
2)(1 + r̄2/L2) − 2m ,

Δθ = 1 − a2
1L

−2 cos2 θ1 − a2
2L

−2 sin2 θ1 ,

ρ2 = r̄2 + a2
1 cos2 θ1 + a2

2 sin2 θ1 ,

Ξi = 1 − a2
i /L

2 . (i = 1, 2) (A.2)

This spacetime has symmetry Rt × U(1)2 generated by ∂t, ∂φ1 , and ∂φ2 . Now,
we consider Kerr-AdS spacetime with equal angular momenta, a1 = a2 ≡ a. We
introduce new coordinates and parameters,

θ = 2θ1 , φ = φ2 − φ1 , ψ = φ1 + φ2 − 2at ,

r2 = (r̄2 + a2)/(1 − a2) , μ = m/(1 − a2)3 . (A.3)

As a result, we can get the AdS part of (2.3).

Appendix B
Stability Analysis for Other Modes

In §§3 and 4, we studied specific modes and found superradiant and Gregory-
Laflamme instabilities. However, Gregory-Laflamme instabilities may be changed by
the analysis of all modes. In this appendix, we will study the stability of other modes
that can be reduced to a single master equation. These are (J = 0,M = 0,K = 0, 1)
with � = 0 modes and (J,M,K = J + 2) with any � mode. As the result of stability
analysis, we can see some evidence that the onset of instabilities derived in §3 and
§4 gives a true onset of instability.

B.1. (J = 0,M = 0,K = 0) with � = 0 mode

In the perturbation equation (3.2), (J = 0,M = 0,K = 0, 1) and (J,M,K =
J+2) modes can be reduced to a single master equation. The stabilities of (J,M,K =
J+2) modes are studied in §3. Here, we shall consider (J = 0,M = 0,K = 0) mode.∗)

∗) This mode has already been studied using another formalism.43)
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As we have seen in §3.1, there exist htt, htr, hrr, ht3, hr3, h+−, h33 fields in this
mode. We set hμν as

hμνdx
μdxν = e−iωt

[
htt(r)dt2 + 2htr(r)dtdr + hrr(r)dr2 + 2ht3(r)dtσ3

+ 2hr3(r)drσ3 + 2h+−(r)σ+σ− + h33(r)σ3σ3
]
. (B.1)

With the gauge parameters

ξA(xμ) = ξA(r)e−iωt , ξi(xμ) = ξ3(r)e−iωtσ3
i , (B.2)

the gauge transformations δhμν = ∇μξν + ∇νξμ for these components are given by

δhtt = −2iωξt − 4μG(r)
r3

ξr , δhtr = ξ′t −
4μ

r3G(r)
ξt − iωξr +

8μ
r5G(r)

ξ3 ,

δht3 = −2G(r)μa
r3

ξr − iωξ3 , δhrr = 2ξ′r +
4μ(r2 − 2a2)
r5G(r)

ξr ,

δhr3 = − 4μa
r3G(r)

ξt + ξ′3 −
2(r4 − 2μr2 − 2μa2)

r5G(r)
ξ′3 ,

δh+− = rG(r)ξr , δh33 =
G(r)(r4 − 2μa2)

2r3
ξr . (B.3)

Our gauge choices are
htt = ht3 = h33 = 0 . (B.4)

One can check that these are complete gauge fixings from (B.3). After the gauge
fixing, four fields htr, hrr, hr3, h+− remain. However, all of them do not have degree of
freedom. Substituting Eqs. (B.1) and (B.4) into Eq. (3.2), we can get three constraint
equations, and one degree of freedom remains. Therefore, we can get a single master
equation. The equation can be written in the Schrödinger form as∗)

−d
2Φ0

dr2∗
+ V0(r)Φ0 = ω2Φ0 , (B.5)

where

Φ0 ≡ (r4 − 2μa2)(r4 + 2μa2)1/4

r3/2(3r4 + 2μa2)
h+− , (B.6)

and the tortoise coordinate r∗ is defined in (3.17). The potential V0(r) is determined
as

V0(r) =
G(r)

4(3r4 + 2μa2)2(r4 + 2μa2)3r2

×[
135r22/L2 + 315r20 + 18μ(9 + 43a2/L2)r18 + 2430μa2r16

+ 8μ2a2(174 + 55a2/L2)r14 + 5400μ2a4r12 + 16μ3a4(363 − 193a2/L2)r10

+ 2608μ3a6r8 + 80μ4a6(76 − 49a2/L2)r6 − 2064μ4a8r4

+ 32μ5a8(1 − a2/L2)r2 − 160μ5a10
]
. (B.7)

∗) The detailed calculations are very similar to those in Ref. 20) and we have omitted most of
them.
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We consider the stability of this J = M = K = 0 mode. In this mode, the master
equation (B.5) is in the Schrödinger form. Therefore, the positivity of V0 indicates
the stability of this mode. The typical profile of V0 is shown in Fig. 5. We can see
the positivity of this potential from this figure. In fact, the positivity can be checked
from the expression (B.7). From Eqs. (2.9) and (2.10), we obtain

a2 ≤ r4+
(1 + r2+/L

2)2

(
1

2r2+
+

1
L2

)
. (B.8)

The right-hand side is an increasing function of r+, which approaches L2 in the limit
of r+ → ∞. Thus, we can get the inequality a2 ≤ L2. Therefore, the negative terms
in the large brackets of Eq. (B.7) are r4 and r0 terms. To see the positivity of V0(r),
we focus on r6, r4 and r0 terms in the large bracket of Eq. (B.7). After dividing them
by 16μ4a6, these terms become

f(r) = 5(76 − 49a2/L2)r6 − 129a2r4 − 10μa4 . (B.9)

If f(r) is positive, V0(r) is also positive. Now, we substitute Eq. (2.10) into Eq. (B.9).
Because of Ω ≤ Ωmax

H and r ≥ r+, we can put ΩH = s2/(1 + s2)Ωmax
H for s ≥ 0 and

r2 = x2 + r2+. Then, we can obtain

f(r) =
L6

2(1 + s2)2α2

[{760α2 + 1520α2s2 + (760 + 1275β + 270β2)s4}x6

+ β{2280α2 + 4560α2s2 + 3(717 + 1189β + 270β2)s4}x4

+ β2{2280α2 + 4560α2s2 + 3(674 + 1103β + 270β2)s4}x2

+ β3γ{1520α3 + 6080α3s2 + 2α(4051 + 7477β + 3310β2)s4

+ 4α(1011 + 1397β + 270β2)s6 + (626 + 997β + 250β2)s8}] , (B.10)

where α = 1 + r2+/L
2, β = r2+/L

2 and γ = 1/(2α+ 4s2α+ s4). We can see f(r) ≥ 0
explicitly. It indicates the stability of the J = M = K = 0 mode.

B.2. (J = 0,M = 0,K = 1) with � = 0 mode

In (J = 0,M = 0,K = 1) mode, there are ht+, hr+, h+3 fields. We set hμν as

hμνdx
μdxν = e−iωt

[
2ht+(r)dt σ+ + 2hr+(r)dr σ+ + 2h+3(r)σ+σ3

]
. (B.11)

With the gauge parameter ξi(xμ) = e−iωtξ+(r)σ+
i , the gauge transformations for

these components are given by

δht+ = −iωξ+ +
4iμa
r4

ξ+ , δhr+ = ξ′+ − 2
r
ξ+ , δh+3 =

2iμa2

r4
ξ+ . (B.12)

Our gauge choice is
h+3 = 0 . (B.13)

This condition fixes the gauge completely. After the gauge fixing, two fields ht+ and
hr+ remain. However, because one constraint exists in this mode, the physical degree
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Fig. 5. Typical profiles for the potential V0 are depicted. We put r+ = 1.0L. From top to bottom,
each curve represents the potential for ΩH/Ωmax

H = 0.1, 0.7, 0.9, 0.99. We see the positivities of
these potentials.

of freedom becomes one. Therefore, we can get one master equation. Substituting
Eq. (B.11) and Eq. (B.13) into Eq. (3.2), we can get the master equation for this
mode,

−d
2Φ1

dr2∗
+ V1(r)Φ1 = [ω − 2Ω1(r)]2Φ1 , (B.14)

where we have defined a new variable,∗)

Φ1 =
r5/2(r4 + 2μa2)5/4

(r10 + 2μa2r6 + μ2a6)1/2

[(
−iω +

4iμa
r4 + 2μa2

)
hr+
r2

−
(
ht+
r2

)′]
(B.15)

and the functions Ω1 and V1 are given by

Ω1(r) =
2μa

r4 + 2μa2

(
1 − a2r4(5r4 + 6μa2)G

4(r10 + 2μa2r6 + μ2a6)

)
, (B.16)

and

V1(r) =
G(r)

4r2(2μa2 + r4)3(r10 + 2μa2r6 + μ2a6)2

× [15r34/L2 + 35r32 + 18μ(1 + 7a2/L2)r30 + 310μa2r28

+ 8a2μ2(20 + 57a2/L2)r26 + 2μ2a4(596 − 75a2/L2)r24

+ 2μ2a4(152μ+ 456μa2/L2 − 75a2)r22 + 4μ3a6(767 − 240a2/L2)r20

− 16μ3a6(8μ− 63μa2/L2 + 60a2)r18 + 24μ4a8(217 − 94a2/L2)r16

− μ4a8(−480μa2/L2 − 35a4/L2 + 480μ+ 2128a2)r14

+ 3μ4a10(1424μ− 768μa2/L2 + 5a2)r12 − 2μ5a12(827 − 77a2/L2)r10

+ 2μ5a12(432μ− 432μa2/L2 + 25a2)r8 − 12μ6a14(14 − 15a2/L2)r6

∗) This choice of master variable is important. If we use an other master variable, the ω3, ω4, · · ·
terms may appear in the resultant master equation. The good master variable (B.15) can be found
by moving into the Hamiltonian formalism as explained in Ref. 20).
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Fig. 6. The onset line of the superradiant instability for the (J = 0, M = 0, K = 1) mode is
depicted. The solid line is the onset of the instability. In the upper-right region, there is no
black hole solution.

+ 68μ6a16r4 − 24μ7a16(1 − a2/L2)r2 + 56μ7a18] . (B.17)

We have used the tortoise coordinate defined in Eq. (3.17).
We can get the asymptotic form of Ω1(r) and V1(r) as

Ω1(r) → 0 (r → ∞) , Ω1(r) → ΩH (r → r+) , (B.18)

and

V1(r) → 0 (r → r+) , V1(r) → 15r2

4L4
(r → ∞) . (B.19)

Therefore, the asymptotic form of the solution of the master equation (B.14) becomes

Φ1 → e±i{ω−2ΩH}r∗ (r → r+) , Φ1 → r−1/2±2 (r → ∞) . (B.20)

We can study the onset of superradiant instability of this mode by the same
method as that in §3.3. The result is depicted in Fig. 6. We see that the onset of
the instability is ΩHL  3. On the other hand, in §3.3, it was shown that the onset
is ΩHL = 1 for (J,M,K = J + 2) modes. Thus, the (J = 0,M = 0,K = 1) mode is
irrelevant for the onset of the instability.

B.3. (J,M,K = J + 2) with � > 0 modes

To see the effect of Kaluza-Klein modes for superradiant instability, we study
the stability of (J,M,K = J + 2) with � > 0 modes. The metric perturbations for
these modes are given by

hMN (xM )dxMdxN = h++(r)e−iωtDJ(xi)Y�(Ω5)σ+σ+ , (B.21)

where DJ(xi) ≡ DJ
K=J,M (xi) and Y�(Ω5) is spherical harmonics on S5 defined us-

ing (4.2). We define a new variable as

Φ =
(r4 + 2μa2)1/4

r3/2
h++ . (B.22)
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Fig. 7. The onset lines of the superradiant instability for the (J = 0, M = 0, K = 2) and � = 0, 1, 2

modes are depicted. The solid line is the onset of instability of each mode. In the upper-right
region, there is no black hole solution.

Then, using (4.3), we can obtain the equation for these modes as

−d
2Φ

dr2∗
+ V (r)Φ = [ω − 2(J + 2)Ω(r)]2Φ , (B.23)

where the functions Ω(r) and V (r) are determined as

Ω(r) =
2μa

r4 + 2μa2
, (B.24)

and

V (r) =
G(r)

4r2(r4 + 2μa2)3
[
(15 + 8ε)r14/L2 + (4J + 5)(4J + 7)r12

+ 2μ(9 + 33a2/L2 + 16εa2/L2)r10 + 2(16J2 + 32J + 5)μa2r8

+ (−40 + 32εa2/L2 + 68a2/L2)μ2a2r6 − 4μ2a4(16J + 35)r4

+ 8(1 − a2/L2)μ3a4r2 − 40μ3a6
]
. (B.25)

Equation (B.23) return to (3.15) for � = 0. By a similar method to that in §3.3.2, we
can see that, for small black holes, the onset of superradiant instability is given by
ΩHL = (J + 3 + �/2)/(J + 2). For any value of r+, we solve (B.23) numerically by
the same method as that in §3.3.3 and obtain Fig. 7. We plot the onset of instability
for (J = 0,M = 0,K = 2) and � = 0, 1, 2 modes. From this result, we can see that
the superradiant instability of Kaluza-Klein modes appears at ΩH higher than that
in zero mode. Thus, this result suggests that Kaluza-Klein modes are not relevant
to see the onset of superradiant instability.

Appendix C
Transverse Traceless Condition for Kaluza-Klein Graviton

In this appendix, we prove that we can impose the transverse traceless condi-
tion (4.5) in (4.3).
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From the Bianchi identity, we can get

0 = δ(gρσ∇ρGσμ)

= −hρσ∇ρGσμ + gρσ(−δΓ λρσGλμ − δΓ λρμGλσ) + gρσ∇ρδGσμ ,
(C.1)

where δΓ ρμν is perturbation of the Christoffel symbol defined as

δΓ ρμν =
1
2
gρσ(∇μhνσ + ∇νhσμ −∇σhμν) . (C.2)

The background equation is given by Gμν = 6L−2gμν and, thus, we can get ∇ρGσμ =
0. Therefore, the first term in the second line of (C.1) vanishes and we can get

gρσ∇ρδGσμ = 6L−2(gρσgλμδΓ λρσ + δΓ ρρμ) = 6L−2∇ρhρμ , (C.3)

where we have used the expression (C.2) at the last equality. Hence, from the diver-
gence of the perturbation equation (4.3),

∇ρ(hρμ − 1
2
gρμh) = −ε−1L2∇ρ(δGρμ − 6L−2hμν) = 0 . (C.4)

It is the constraint equation of (4.3).
Now, we consider the trace of (4.3). The trace of perturbation of the Einstein

tensor is given by

gρσδGρσ = −3
2
∇ρ∇σ(hρσ − gρσh) +

5
2
hρσ

(
Rρσ − 1

5
gρσR

)
. (C.5)

Because of Rμν = −4L−2gμν and R = −20L−2, Ricci tensor and Ricci scalar terms
in (C.5) cancel each other. Thus, by making use of the constraint equation (C.4),
(C.5) becomes

gρσδGρσ =
3
4
∇2h . (C.6)

Thus, from the trace of (4.3), we can get the equation for the trace part of hμν as

∇2h = 2(ε+ 2)L2h . (C.7)

Therefore, the trace part of hμν is decoupled from other components of hμν and we
can put h = 0 consistently. Then, the constraint equation becomes ∇ρhρμ = 0.
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