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Abstract

In offline reinforcement learning (RL), we seek to

utilize offline data to evaluate (or learn) policies

in scenarios where the data are collected from

a distribution that substantially differs from that

of the target policy to be evaluated. Recent the-

oretical advances have shown that such sample-

efficient offline RL is indeed possible provided

certain strong representational conditions hold,

else there are lower bounds exhibiting exponen-

tial error amplification (in the problem horizon)

unless the data collection distribution has only a

mild distribution shift relative to the target policy.

This work studies these issues from an empirical

perspective to gauge how stable offline RL meth-

ods are. In particular, our methodology explores

these ideas when using features from pre-trained

neural networks, in the hope that these represen-

tations are powerful enough to permit sample effi-

cient offline RL. Through extensive experiments

on a range of tasks, we see that substantial error

amplification does occur even when using such

pre-trained representations (trained on the same

task itself); we find offline RL is stable only under

extremely mild distribution shift. The implica-

tions of these results, both from a theoretical and

an empirical perspective, are that successful of-

fline RL (where we seek to go beyond the low

distribution shift regime) requires substantially

stronger conditions beyond those which suffice

for successful supervised learning.

1. Introduction

Offline reinforcement learning (RL) seeks to utilize offline

data to alleviate the sample complexity burden in chal-

lenging sequential decision making settings where sample-

efficiency is crucial (Mandel et al., 2014; Gottesman et al.,
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2018; Wang et al., 2018; Yu et al., 2019); it is seeing much

recent interest due to the large amounts of offline data al-

ready available in numerous scientific and engineering do-

mains. The goal is to efficiently evaluate (or learn) policies,

in scenarios where the data are collected from a distribution

that (potentially) substantially differs from that of the target

policy to be evaluated. Broadly, an important question here

is to better understand the practical challenges we face in

offline RL problems and how to address them.

Let us start by considering when we expect offline RL to

be successful from a theoretical perspective (Munos, 2003;

Szepesvári and Munos, 2005; Antos et al., 2008; Munos

and Szepesvári, 2008; Tosatto et al., 2017; Chen and Jiang,

2019; Duan et al., 2020). For the purpose of evaluating

a given target policy, Duan et al. (2020) showed that un-

der a (somewhat stringent) policy completeness assumption

with regards to a linear feature mapping 1 along with data

coverage assumption, then Fitted-Q iteration (FQI) (Gor-

don, 1999) — a classical offline Bellman backup based

method — can provably evaluate a policy with low sam-

ple complexity (in the dimension of the feature mapping).

While the coverage assumptions here are mild, the repre-

sentational conditions for such settings to be successful are

more concerning; they go well beyond simple realizability

assumptions, which only requires the representation to be

able to approximate the state-value function of the given

target policy.

Recent theoretical advances (Wang et al., 2021) show that

without such a strong representation condition, there are

lower bounds exhibiting exponential error amplification (in

the problem horizon) unless the data collection distribution

has only a mild distribution shift relative to the target policy.
2 It is worthwhile to emphasize that this “low distribution

condition” is a problematic restriction, since in offline RL,

we seek to utilize diverse data collection distributions. As an

intuitive example to contrast the issue of distribution shift vs.

coverage, consider offline RL for spatial navigation tasks

(e.g. (Chang et al., 2020)): coverage in our offline dataset

would seek that our dataset has example transitions from a

1A linear feature mapping is said to be complete if Bellman
backup of a linear function remains in the span of the given features.
See Assumption 2 for a formal definition.

2We discuss these issues in more depth in Section 4, where we
give a characterization of FQI in the discounted setting
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diverse set of spatial locations, while a low distribution shift

condition would seek that our dataset closely resembles that

of the target policy itself for which we desire to evaluate.

From a practical point of view, it is natural to ask to what

extent these worst-case characterizations are reflective of

the scenarios that arise in practical applications because, in

fact, modern deep learning methods often produce represen-

tations that are extremely effective, say for transfer learning

(computer vision (Yosinski et al., 2014) and NLP (Peters

et al., 2018; Devlin et al., 2018; Radford et al., 2018) have

both witnessed remarkable successes using pre-trained fea-

tures on downstreams tasks of interest). Furthermore, there

are number of offline RL methods with promising perfor-

mance on certain benchmark tasks (Laroche et al., 2019;

Fujimoto et al., 2019; Jaques et al., 2020; Kumar et al., 2019;

Agarwal et al., 2020; Wu et al., 2020; Kidambi et al., 2020;

Ross and Bagnell, 2012). There are (at least) two reasons

which support further empirical investigations over these

current works: (i) the extent to which these data collection

distributions are diverse has not been carefully controlled
3 and (ii) the hyperparameter tuning in these approaches

are done in an interactive manner tuned on how the policy

actually behaves in the world as opposed to being tuned

on the offline data itself (thus limiting the scope of these

methods).

In this work we provide a careful empirical investigation to

further understand how sensitive offline RL methods are to

distribution shift. Along this line of inquiry, One specific

question to answer is to what extent we should be concerned

about the error amplification effects as suggested by worst-

case theoretical considerations.

Our Contributions. We study these questions on a range

of standard tasks (6 tasks from the OpenAI gym bench-

mark suite), using offline datasets with features from pre-

trained neural networks trained on the task itself. Our offline

datasets are a mixture of trajectories from the target policy

itself, along the data from other policies (random or lower

performance policies). Note that this is favorable setting in

that we would not expect realistic offline datasets to have a

large number of trajectories from the target policy itself.

The motivation for using pre-trained features are both con-

ceptual and technical. First, we may hope that such features

are powerful enough to permit sample-efficient offline RL

because they were learned in an online manner on the task

itself. Also, practically, while we are not able to verify if

certain theoretical assumptions hold, we may optimistically

hope that such pre-trained features will perform well un-

der distribution shift (indeed, as discussed earlier, using

3The data collection in many benchmarks tasks are often taken
from the data obtain when training an online policy, say with deep
Q-learning or policy gradient methods.

Figure 1. We show the performance of FQI on Walker-2d v2 when

applied to policy evaluation. Here the x-axis is the number of

rounds we run FQI, and the y-axis is the square root of the mean

squared error of the predicted values (smaller is better). The blue

line corresponds to performance when the dataset is generated

by the target policy itself with 1 million samples, and other lines

correspond to the performance when adding more data induced by

random trajectories. E.g., the orange line corresponds to the case

where we add 2x more data (i.e., 2 million extra samples) induced

by random trajectories. As shown here, with more data induced by

random trajectories added, the performance of FQI degrades.

pre-trained features has had remarkable successes in other

domains). Second, using pre-trained features allows us to

decouple practical representational learning questions from

the offline RL question, where we can focus on offline RL

with a given representation. We provide further discussion

on our methodologies in the appendix. We also utilize ran-

dom Fourier features (Rahimi et al., 2007) as a point of

comparison.

The main conclusion of this work, through extensive experi-

ments on a number of tasks, is that: we do in fact observe

substantial error amplification, even when using pre-trained

representations, even we tune hyper-parameters, regardless

of what the distribution was shifted to; furthermore, this

amplification even occurs under relatively mild distribution

shift. As an example, Figure 1 shows the performance of

FQI on Walker-2d v2 when our offline dataset has 1 millions

samples generated by the target policy itself, with additional

samples from random policies.

These experiments also complement the recent hardness

results in Wang et al. (2021) showing the issue of error am-

plification is a real practical concern. From a practical point

of view, our experiments demonstrate that the definition of a

good representation is more subtle than in supervised learn-

ing. These results also raise a number of concerns about

empirical practices employed in a number of benchmarks,

and they also have a number of implications for moving

forward (see Section 6 with regards to these two points).

Finally, it is worth emphasizing that our findings are not sug-
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gesting that offline RL is not possible. Nor does it suggest

that there are no offline RL successes, as there have been

some successes in realistic domains (e.g. (Mandel et al.,

2014; Chang et al., 2020)). Instead, our emphasis is that the

conditions for success in offline RL, both from a theoretical

and an empirical perspective, are substantially stronger than

those in supervised learning settings.

2. Related Work

Theoretical Understanding. Offline RL is closely re-

lated to the theory of Approximate Dynamic Program-

ming (Bertsekas and Tsitsiklis, 1995). Existing theoretical

work (Munos, 2003; Szepesvári and Munos, 2005; Antos

et al., 2008; Munos and Szepesvári, 2008; Tosatto et al.,

2017; Duan et al., 2020) usually makes strong representa-

tion conditions. In offline RL, the most natural assump-

tion would be realizability, which only assumes the value

function of the policy to be evaluated lies in the function

class, and existing theoretical work usually make assump-

tions stronger than realizability. For example, Szepesvári

and Munos (2005); Duan et al. (2020); Wang et al. (2021)

assume (approximate) closedness under Bellman updates,

which is much stronger than realizability. Polynomial sam-

ple complexity results are also obtained under the realizabil-

ity assumption, albeit under coverage conditions (Xie and

Jiang, 2020) or stringent distribution shift conditions (Wang

et al., 2021). Technically, our characterization of FQI

(in Section 4) is similar to the characterization of LSPE

by Wang et al. (2021), although we work in the more prac-

tical discounted case while Wang et al. (2021) work in the

finite-horizon setting.

Error amplification induced by distribution shift is a known

issue in the theoretical analysis of RL algorithms. See (Gor-

don, 1995; 1996; Munos and Moore, 1999; Ormoneit and

Sen, 2002; Kakade, 2003; Zanette et al., 2019) for discus-

sion on this topic. Recently, Wang et al. (2021) show that

in the finite-horizon setting, without a strong representation

condition, there are lower bounds exhibiting exponential

error amplification unless the data collection distribution

has only a mild distribution shift relative to the target policy.

Such lower bound was later generalized to the discounted

setting by Amortila et al. (2020). Similar hardness results

are also obtained by Zanette (2020), showing that offline

RL could be exponentially harder than online RL.

Empirical Work. Error amplification in offline RL has

been observed in empirical work (Fujimoto et al., 2019;

Kumar et al., 2019) and was called “extrapolation error” in

these work. For example, it has been observed in (Fujimoto

et al., 2019) that DDPG (Lillicrap et al., 2015) trained on the

replay buffer of online RL methods performs significantly

worse than the behavioral agent. Compared to previous

empirical study on the error amplification issue, in this work,

we use pre-trained features which allow us to decouple

practical representational learning questions from the offline

RL question, where we can focus on offline RL with a given

representation. We also carefully control the data collection

distributions, with different styles of shifted distributions

(those induced by random trajectories or induced by lower

performance policies) and different levels of noise.

To mitigate the issue of error amplification, prior empirical

work usually constrains the learned policy to be closer to

the behavioral policy (Fujimoto et al., 2019; Kumar et al.,

2019; Wu et al., 2020; Jaques et al., 2020; Nachum et al.,

2019b; Peng et al., 2019; Siegel et al., 2020; Kumar et al.,

2020; Yu et al., 2021) and utilizes uncertainty quantifica-

tion (Agarwal et al., 2019; Yu et al., 2020; Kidambi et al.,

2020; Rafailov et al., 2020). We refer interested readers to

the survey by Levine et al. (2020) for recent developments

on this topic.

3. Background

Discounted Markov Decision Process. Let M =
(S,A, P,R, �, µinit) be a discounted Markov Decision Pro-

cess (DMDP, or MDP for short) where S is the state space,

A is the action space, P : S ⇥A ! ∆ (S) is the transition

operator, R : S ⇥ A ! ∆ (R) is the reward distribution,

� < 1 is the discount factor and µinit 2 ∆(S) is the initial

state distritbution. A policy ⇡ : S ! ∆ (A) chooses an ac-

tion a based on the state s. The policy ⇡ induces a trajectory

s0, a0, r0, s1, a1, r1, . . ., where s0 ⇠ µinit, a0 ⇠ ⇡(s0),
r0 ⇠ R(s0, a0), s1 ⇠ P (s0, a0), a1 ⇠ ⇡(s1), etc. For the

theoretical analysis, we assume rh 2 [0, 1].

Value Function. Given a policy ⇡ and (s, a) 2 S ⇥ A,

define

Q⇡(s, a) = E

"

1
X

h=0

�hrh0 | s0 = s, a0 = a,⇡

#

and

V ⇡(s) = E

"

1
X

h=0

�hrh | s0 = s,⇡

#

.

For a policy ⇡, we define V ⇡ = Es0⇠µinit
[V ⇡(s0)] to be the

expected value of ⇡ from the initial state distribution µinit.

Offline Reinforcement Learning. This paper is con-

cerned with the offline RL setting. In this setting, the agent

does not have direct access to the MDP and instead is given

access to a data distribution µ 2 ∆(S ⇥ A). The inputs

of the agent is a datasets D, consisting of i.i.d. samples of

the form (s, a, r, s0) 2 S ⇥A⇥ R⇥ S, where (s, a) ⇠ µ,

r ⇠ r(s, a), s0 ⇠ P (s, a). We primarily focus on the

offline policy evaluation problem: given a target policy
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⇡ : S ! ∆ (A), the goal is to output an accurate esti-

mate of the value of ⇡ (i.e., V ⇡) approximately, using the

collected dataset D, with as few samples as possible.

Linear Function Approximation. In this paper, we fo-

cus on offline RL with linear function approximation. When

applying linear function approximation schemes, the agent

is given a feature extractor � : S ⇥A ! R
d which can ei-

ther be hand-crafted or a pre-trained neural network, which

transforms a state-action pair to a d-dimensional embedding,

and it is commonly assumed that Q-functions can be pre-

dicted by linear functions of the features. For our theoretical

analysis, we assume k�(s, a)k2  1 for all (s, a) 2 S ⇥A.

For the theoretical analysis, we are interested in the offline

policy evaluation problem, under the following assumption.

Assumption 1 (Realizability). For the policy ⇡ : S !
∆(A) to evaluated, there exists ✓⇤ 2 R

d with k✓⇤k2 p
d/(1� �) 4, such that for all (s, a) 2 S ⇥A, Q⇡(s, a) =

(✓⇤)
>
�(s, a). Here ⇡ is the target policy to be evaluated.

Notation. For a vector x 2 R
d and a positive semidefinite

matrix A 2 R
d⇥d, we use kxk2 to denote its `2 norm, kxkA

to denote
p
x>Ax, kAk2 to denote its operator norm, and

�min(A) to denote its smallest eigenvalue. For two positive

semidefinite matrices A and B, we write A ⌫ B if and only

if A�B is positive semidefinite.

4. An Analysis of Fitted Q-Iteration in the

Discounted Setting

In order to illustrate the error amplification issue and dis-

cuss conditions that permit sample-efficient offline RL, in

this section, we analyze Fitted Q-Iteration (FQI) (Gordon,

1999) when applied to the offline policy evaluation problem

under the realizability assumption. Here we focus on FQI

since it is the prototype of many practical algorithms. For

example, when DQN (Mnih et al., 2015) is run on off-policy

data, and the target network is updated slowly, it can be

viewed as an analog of FQI, with neural networks being

the function approximator. We give a description of FQI

in Algorithm 1. We also perform experiments on tempo-

ral difference methods in our experiments (Section 5). For

simplicity, we assume a deterministic target policy ⇡.

We remark that the issue of error amplification discussed

here is similar to that in Wang et al. (2021), which shows

that if one just assumes realizability, geometric error ampli-

fication is inherent in offline RL in the finite-horizon setting.

Here we focus on the discounted case which exhibit some

subtle differences (see, e.g., Amortila et al. (2020)).

4Without loss of generality, we assume that we work in a coor-

dinate system such that kθ⇤k2 
p
d/(1�γ) and kφ(s, a)k2  1.

Algorithm 1 Fitted Q-Iteration (FQI)

1: Input: policy ⇡ to be evaluated, number of samples N ,

regularization parameter � > 0, number of rounds T
2: Take samples (si, ai) ⇠ µ, ri ⇠ r(si, ai) and si ⇠

P (si, ai) for each i 2 [N ]
3: Λ̂ = 1

N

P

i2[N ] �(si, ai)�(si, ai)
> + �I

4: Q0(·, ·) = 0 and V0(·) = 0
5: for t = 1, 2, . . . , T do

6: ✓̂t = Λ̂
�1( 1

N

PN
i=1 �(si, ai) · (ri + �V̂t�1(si)))

7: Q̂t(·, ·) = �(·, ·)>✓̂t and V̂t(·) = Q̂t(·,⇡(·))
8: end for

9: return Q̂T (·, ·)

Notation. We define Φ to be a N ⇥ d matrix, whose i-
th row is �(si, ai), and define Φ to be another N ⇥ d
matrix whose i-th row is �(si,⇡(si)) (see Algorithm 1

for the definition of si). For each i 2 [N ], define ⇣i =
ri + V (si) � Q(si, ai). Clearly, E[⇣i] = 0. We use

⇣ 2 R
N to denote a vector whose i-th entry is ⇣i. We

use Λ = E(s,a)⇠µE[�(s, a)�(s, a)
>] to denote the feature

covariance matrix of the data distribution, and use

Λ = E(s,a)⇠µ,s0⇠P (s,a)E[�(s
0,⇡(s0))�(s0,⇡(s0))>]

to denote the feature covariance matrix of the one-step

lookahead distribution induced by µ and ⇡. We also use

Λinit = Es⇠µinit
[�(s,⇡(s))�(s,⇡(s))>] to denote the fea-

ture covariance matrix induced by the initial state distribu-

tion.

Now we present a general lemma that characterizes the

estimation error of Algorithm 1 by an equality. Later, we

apply this general lemma to special cases.

Lemma 4.1. Under Assumption 1,

✓T�✓⇤ =

T
X

t=1

(�L)
t�1

(
�

N
Λ̂
�1

Φ
>⇣��Λ̂�1✓⇤)+(�L)

T
✓⇤

where L = Λ̂
�1

Φ
>
Φ/N .

By Lemma 4.1, to achieve a bounded error, the matrix

L = Λ̂
�1

Φ
>
Φ/N should satisfy certain non-expansive

properties. Otherwise, the estimation error grows expo-

nentially as t increases, and geometric error amplification

occurs. Now we discuss two cases when geometric error

amplification does not occur, in which case the estimation

error can be bounded with a polynomial number of samples.

Policy Completeness. The policy completeness assump-

tion (Szepesvári and Munos, 2005; Duan et al., 2020) as-

sumes the feature mapping is complete under bellman up-

dates.
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Assumption 2 (Policy Completeness). For any ✓ 2 R
d,

there exists ✓0 2 R
d, such that for any (s, a) 2 S ⇥A,

�(s, a)>✓0 = Er⇠R(s,a),s0⇠P (s,a)[r + ��(s0,⇡(s0))>✓].

Now we show that under Assumption 2, FQI achieves

bounded error with polynomial number of samples.

Lemma 4.2. Suppose N � poly(d, 1/", 1/(1 �
�), 1/�min(Λ)), by taking T � C log (d/("(1� �))) /(1�
�) for some constant C > 0, we have

|Q̂T (s, a)�Q⇡(s, a)|  "

for all (s, a) 2 S ⇥A.

Proof Sketch. By Lemma 4.1, it suffices to show the non-

expansiveness of L = Λ̂
�1

Φ
>
Φ/N . For intuition, let us

consider the case where N ! 1 and � ! 0. Let Φall 2
R

|S||A|⇥d denote a matrix whose row indexed by (s, a) 2
S ⇥ A is �(s, a) 2 R

d. Let Dµ 2 R
|S||A|⇥|S||A| denote

a diagonal matrix whose diagonal entry indexed by (s, a)
is µ(s, a). We use P⇡ 2 R

|S||A|⇥|S||A| to denote a matrix

where

P⇡((s, a), (s0, a0)) =

(

P (s0 | s, a) a0 = ⇡(s)

0 otherwise
.

When N ! 1 and � ! 0, we have Λ̂ = Φ
>
allD

µ
Φall and

Φ
>
Φ

N = Φ
>
allD

µP⇡
Φall. By Assumption 2, for any x 2 R

d,

there exists x0 such that P⇡
Φallx = Φallx

0. Thus,

ΦallΛ̂
�1Φ

>
Φ

N
x = Φall(Φ

>
allD

µ
Φall)

�1
Φ

>
allD

µP⇡
Φallx

=Φallx
0 = P⇡

Φallx.

Therefore, the magnitude of entries in Φx will not

be amplified after applying Λ̂
�1

Φ
>
Φ/N onto x since

kP⇡
Φallxk1  kΦallxk1.

In the formal proof, we combine the above with standard

concentration arguments to obtain a finite-sample rate.

We remark that variants of Lemma 4.2 have been known

in the literature (see, e.g., (Duan et al., 2020) for a simi-

lar analysis in the finite-horizon setting). Here we present

Lemma 4.2 mainly to illustrate the versatility of Lemma 4.1.

Low Distribution Shift. Now we focus on the case where

the distribution shift between the data distributions and the

distribution induced by the target policy is low. Here, our

low distribution shift condition is similar to that in Wang

et al. (2021), though we focus on the discounted case while

Wang et al. (2021) focus on the finite-horizon case.

To measure the distribution shift, our main assumption is as

follows.

Assumption 3 (Low Distribution Shift). There exists

Cpolicy < 1/�2 such that Λ � CpolicyΛ and Λinit � CinitΛ

Assumption 3 assumes that the data distribution dominates

both the one-step lookahead distribution and the initial state

distribution, in a spectral sense. For example, when the

data distribution µ is induced by the target policy ⇡ itself,

and ⇡ induces the same data distribution for all timesteps

t � 0, Assumption 3 holds with Cpolicy = Ceval = 1. In

general, Cpolicy characterizes the difference between the

data distribution and the one-step lookahead distribution

induced by the data distribution and the target policy.

Now we show that under Assumption 3, FQI achieves

bounded error with polynomial number of samples. The

proof can be found in the appendix.

Lemma 4.3. Suppose N � poly(d, 1/", 1/(1 �
C

1/2
policy�), 1/Cinit). By taking T � C log(d · Cinit/("(1�

C
1/2
policy�)))/(1�C

1/2
policy�) for some C > 0, under Assump-

tion 1 and 3, we have Es⇠µinit
[(V ⇡(s)� V̂T (s))

2]  ".

4.1. Simulation Results

We now provide simulation results on a synethic environ-

ment to better illustrate the issue of error amplification and

the tightness of our characterization of FQI in Lemma 4.1.

Simulation Settings. In our construction, the number of

data points is |D| = N , where N = 100 or N = 200. The

feature dimension is fixed to be d = 100 and the discount

factor � = 0.99. We draw ✓⇤ from N (0, Id). The data

distribution, the transition operator and the rewards are all

deterministic in this environment. For each (si, ai, ri, s
0
i) 2

D, �(si, ai) and �(s0i,⇡(s
0
i)) are independently drawn from

N (0, Id), and ri = �(s, a)>✓⇤ � ��(s0,⇡(s0))>✓⇤ so that

Assumption 1 holds. We then run FQI in Algorithm 1, by

setting T = 100 and � = 10�4 or 10�3. In Figure 2,

we plot the estimation error k✓t � ✓⇤k2 and the Frobenius

norm of (Λ̂�1
Φ

>
Φ)t, for t = 1, 2, . . . , 100. We repeat the

experiment for 100 times and report the mean estimation

error and the mean Frobenius norm of (Λ̂�1
Φ

>
Φ)t.

We remark that our dataset D has sufficient coverage over

the feature space, both when N = 100 and N = 200. This

is because the feature covariance matrix has lower bounded

eigenvalue with high probability in both cases, according to

standard random matrix theory (Chen and Dongarra, 2005).

Results. For deterministic environments, by Lemma 4.1,

the estimation error is dominated by (Λ̂�1
Φ

>
Φ)t✓⇤. As

shown in Figure 2, geometric error amplification does occur,

and the norm of (Λ̂�1
Φ

>
Φ)t grows exponentially as t in-

creases. Moreover, the norm of (Λ̂�1
Φ

>
Φ)t has almost the

same growth trend as k✓t � ✓⇤k2. E.g., when N = 200, the

estimation error k✓t � ✓⇤k2 grows exponentially, although
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(b) N = 200

Figure 2. In this figure we report the results of the simulation when N = 100 and N = 200. The x-axis is the number of rounds t we run

FQI, while the y-axis is the estimation error kθt � θ⇤k2 or the the Frobenius norm of (Λ̂�1
Φ

>
Φ)t, taking average over 100 repetitions.

much slower than the case when N = 100. In that case,

the norm of (Λ̂�1
Φ

>
Φ)t also increases much slower than

the case when N = 200. Our simulation results show that

the issue of error amplification could occur even in simple

environments, and our theoretical result in Lemma 4.1 gives

a tight characterization of the estimation error.

5. Experiments

The goal of our experimental evaluation is to understand

whether offline RL methods are sensitive to distribution

shift in practical tasks, given a good representation (fea-

tures extracted from pre-trained neural networks or ran-

dom features). Our experiments are performed on a range

of challenging tasks from the OpenAI gym benchmark

suite (Brockman et al., 2016), including two environments

with discrete action space (MountainCar-v0, CartPole-v0)

and four environments with continuous action space (Ant-

v2, HalfCheetah-v2, Hopper-v2, Walker2d-v2). We also

provide further discussion on our methodologies in the ap-

pendix.

5.1. Experimental Methodology

Our methodology proceeds according to the following steps:

1. We decide on a (target) policy to be evaluated, along

with a good feature mapping for this policy.

2. Collect offline data using trajectories that are a mix-

ture of the target policy along with another distribution.

3. Run offline RL methods to evaluate the target policy

using the feature mapping found in Step 1 and the

offline data obtained in Step 2.

We now give a detailed description for each step.

Step 1: Determine the Target Policy. To find a policy to

be evaluated together with a good representation, we run

classical online RL methods. For environments with discrete

action space (MountainCar-v0, CartPole-v0), we run Deep

Q-learning (DQN) (Mnih et al., 2015), while for environ-

ments with continuous action space (Ant-v2, HalfCheetah-

v2, Hopper-v2, Walker2d-v2), we run Twin Delayed Deep

Deterministic policy gradient (TD3) (Fujimoto et al., 2018).

The hyperparameters used can be found in Section C. The

target policy is set to be the final policy output by DQN or

TD3. We also set the feature mapping to be the output of

the last hidden layer of the learned value function networks,

extracted in the final stage of the online RL methods. Since

the target policy is set to be the final policy output by the on-

line RL methods, such feature mapping contains sufficient

information to represent the value functions of the target

policy. We also perform experiments using random Fourier

features (Rahimi et al., 2007).

Step 2: Collect Offline Data. We consider two styles of

shifted distributions: distributions induced by random poli-

cies and by lower performance policies. When the data

collection policy is the same as the target policy, we will

see that offline methods achieve low estimation error, as

expected. In our experiments, we use the target policy to

generate a dataset D? with 1 million samples. We then

consider two types of datasets induced by shifted distri-

butions: adding random trajectories into D?, and adding

samples induced by lower performance policies into D?.

In both cases, the amount of data from the target policy

remains unaltered (fixed to be 1 million). For the first type

of dataset, we add 0.5 million, 1 million, or 2 million sam-

ples from random trajectories into D?. For the second type

of dataset, we manually pick four lower performance poli-

cies ⇡1
sub,⇡

2
sub,⇡

3
sub,⇡

4
sub with V ⇡

1

sub > V ⇡
2

sub > V ⇡
3

sub >

V ⇡
4

sub , and use each of them to collect 1 million samples.

We call these four datasets (each with 1 million samples)
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D1
sub, D

2
sub, D

3
sub, D

4
sub, and we run offline RL methods on

D? [Di
sub for each i 2 {1, 2, 3, 4}.

Step 3: Run Offline RL Methods. With the collected

offline data and the target policy (together with a good rep-

resentation), we can now run offline RL methods to evaluate

the (discounted) value of the target policy. In our exper-

iments, we run FQI (described in Section 4) and Least-

Squares Temporal Difference 5 (LSTD, a temporal differ-

ence offline RL method) (Bradtke and Barto, 1996). For

both algorithms, the only hyperparameter is the regulariza-

tion parameter � (cf. Algorithm 1), which we choose from

{10�1, 10�2, 10�3, 10�4, 10�8}. In our experiments, we

report the performance of the best-performing � (measured

in terms of the square root of the mean squared estimation

error in the final stage of the algorithm, taking average over

all repetitions of the experiment); such favorable hyperpa-

rameter tuning is clearly not possible in practice (unless we

have interactive access to the environment). See Section 5.2

for more discussion on hyperparameter tuning.

In our experiments, we repeat this whole process 5 times.

For each FQI round, we report the square root of the mean

squared evaluation error, taking average over 100 randomly

chosen states. We also report the values (V ⇡(s)) of those

randomly chosen states in Table 1. We note that in our

experiments, the randomness combines both from the fea-

ture generation process (representation uncertainty, Step 1)

and the dataset (Step 2). Even though we draw millions of

samples in Step 2, the estimation of FQI could still have

high variance. Note that this is consistent with our theory

in Lemma 4.1, which shows that the variance can also be

exponentially amplified without strong representation con-

ditions and low distribution shift conditions. We provide

more discussion regarding this point in the appendix.

Environment Discounted Value

CartPole-v0 90.17± 20.61
Hopper-v2 321.42± 30.26
Walker2d-v2 336.64± 49.80

Table 1. Values of Randomly Chosen States. Mean value of the

100 randomly chosen states (used for evaluating the estimations),

± standard deviation.

5.2. Results and Analysis

Due to space limitations, we present experiment results on

Walker2d-v2, Hopper-v2 and CartPole-v0. Other experi-

mental results are provided in the appendix. We also defer

results on policy comparison to the appendix.

5See the Section C for a description of LSTD.

Distributions Induced by Random Policies. We first

present the performance of FQI with features from pre-

trained neural networks and distributions induced by random

policies. The results are reported in Figure 3. Perhaps sur-

prisingly, compared to the result on D?, adding more data

(from random trajectories) into the dataset generally hurts

the performance. With more data added into the dataset,

the performance generally becomes worse. Thus, even with

features from pre-trained neural networks, the performance

of offline RL methods is still sensitive to data distribution.

Distributions Induced by Lower Performance Polices.

Now we present the performance of FQI with features from

pre-trained neural networks and datasets with samples from

lower performance policies. The results are reported in Fig-

ure 4. Similar to Figure 3, adding more data into the dataset

could hurt performance, and the performance of FQI is sen-

sitive to the quality of the policy used to generate samples.

Moreover, the estimation error increases exponentially in

some cases (see, e.g., the error curve of D? [D2
sub in Fig-

ure 4(a)), showing that geometric error amplification is not

only a theoretical consideration, but could occur in practical

tasks when given a good representation as well.

Random Fourier Features. Now we present the perfor-

mance of FQI with random Fourier features and distributions

induced by random policies. The results are reported in Fig-

ure 5. Here we tune the hyperparameters of the random

Fourier features so that FQI achieves reasonable perfor-

mance on D?. Again, with more data from random tra-

jectories added into the dataset, the performance generally

becomes worse. This implies our observations above hold

not only for features from pre-trained neural networks, but

also for random features. On the other hand, it is known

random features achieve reasonable performance in policy

gradient methods (Rajeswaran et al., 2017) in the online

setting. This suggests that the representation condition re-

quired by offline policy evaluation could be stronger than

that of policy gradient methods in online setting.

Sensitivity to Hyperparameters. In previous experi-

ments, we tune the regularization parameter � and report the

performance of the best-performing �. However, we remark

that in practice, without access to online samples, hyperpa-

rameter tuning is hard in offline RL. Here we investigate

how sensitive FQI is to different regularization parameters �.

The results are reported in Figure 5. Here we fix the environ-

ment to be Walker2d-v2 and vary the number of additional

samples from random trajectories and the regularization pa-

rameter �. As observed in experiments, the regularization

parameter � significantly affects the performance of FQI, as

long as there are random trajectories added into the dataset.
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Dataset D? D? + 0.5x random D? + 1x random D?+ 2x random

Hopper-v2 2.18± 1.14 9.38± 3.84 13.18± 2.77 16.86± 2.84
Walker2d-v2 13.88± 11.22 32.73± 11.05 45.61± 17.06 67.78± 24.77

Table 2. Performance of LSTD. Performance of LSTDwith features from pre-trained neural networks and distributions induced by random

policies. Each number of is the square root of the mean squared error of the estimation, taking average over 5 repetitions, ± standard

deviation.

Performance of LSTD. Finally, we present the perfor-

mance of LSTD with features from pre-trained neural net-

works and distributions induced by random policies. The

results are reported in Table 2. With more data from random

trajectories added into the dataset, the performance of LSTD

becomes worse. This means the sensitivity to distribution

shift is not specific to FQI, but also holds for LSTD.

6. Discussion and Implications

The main conclusion of this work, through extensive experi-

ments on a number of tasks, is that we observe substantial

error amplification, even when using pre-trained represen-

tations, even we (unrealistically) tune hyper-parameters,

regardless of what the distribution was shifted to. Further-

more, this amplification even occurs under relatively mild

distribution shift. Our experiments complement the recent

hardness results in Wang et al. (2021) showing the issue of

error amplification is a real practical concern.

The implications of these results, both from a theoretical

and an empirical perspective, are that successful offline RL

(where we seek to go beyond the constraining, low distribu-

tion shift regime) requires substantially stronger conditions

beyond those which suffice for successful supervised learn-

ing. These results also raise a number of concerns about

empirical practices employed in a number of benchmarks.

We now discuss these two points further.

Representation Learning in Offline RL. Our experi-

ments demonstrate that the definition of a good representa-

tion in offline RL is more subtle than in supervised learning,

since features extracted from pre-trained neural networks

are usually extremely effective in supervised learning. Cer-

tainly, features extracted from pre-trained neural networks

and random features satisfy the realizability assumption

(Assumption 1) approximately. However, from our empir-

ical findings, these features do not seem to satisfy strong

representation conditions (e.g. Assumption 2) that permits

sample-efficient offline RL. This suggests that better rep-

resentation learning process (feature learning methods that

differs from those used in supervised learning) could be a

route for achieving better performance in offline RL.

Implications for Empirical Practices and Benchmarks.

Our empirical findings suggests a closer inspection of cer-

tain empirical practices used in the evaluation of offline RL

algorithms.

• Offline Data Collection. Many empirical settings cre-

ate an offline dataset under a distribution which con-

tains a large fraction from the target policy itself (e.g.

creating the dataset using an online RL algorithm).

This may substantially limit the methodology to only

testing algorithms in a low distribution shift regime;

our results suggests this may not be reflective of what

would occur with more realistic and diverse datasets.

• Hyperparameter Tuning in Offline RL. A number

of methodologies tune hyperparameters using interac-

tive access to the environment, a practice that is clearly

not possible with the given offline dataset (e.g. see

(Paine et al., 2020) for further discussion). The insta-

bility of hyperparameter tuning, as observed in our

experiments, suggests that hyperparameter tuning in

offline RL may be a substantial hurdle.

Finally, we should remark that the broader motivation of

our results (and this discussion) is to help with advancing

the field of offline RL through better linking our theoretical

understanding with the empirical practices. It is also worth

noting that there are notable empirical successes in more

realistic settings, e.g. (Mandel et al., 2014; Chang et al.,

2020).
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(a) Walker2d-v2 (b) Hopper-v2 (c) CartPole-v0

Figure 3. Performance of FQI with features from pre-trained neural networks and datasets induced by random policies. See Figure 9 in

Section D for results on other environments.

(a) Walker2d-v2 (b) Hopper-v2 (c) CartPole-v0

Figure 4. Performance of FQI with features from pre-trained neural networks and datasets induced by lower performance policies. See

Figure 10 in Section D for results on other environments.

(a) Walker2d-v2 (b) Hopper-v2 (c) CartPole-v0

Figure 5. Performance of FQI with random Fourier features and datasets induced by random policies. See Figure 11 in Section D for

results on other environments.

(a) D? (b) D? + 1x random (c) D?+ 2x random

Figure 6. Performance of FQI on Walker2d-v2, with features from pre-trained neural networks, datasets induced by random policies, and

different regularization parameter λ. See Figure 12 to Figure 17 in Section D for results on other environments.
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