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Abstract Stable relativistic stars in uniform rotation form a two-parameter family,
parametrized by mass and angular velocity. Limits on each of these quantities are
associated with relativistic instabilities. A radial instability to gravitational collapse
or explosion sets upper and lower limits on their mass, and an instability driven by
gravitational waves may set an upper limit on their spin. Our summary of relativistic
stability theory given here is based on and includes excerpts from the book Rotating
Relativistic Stars, by the present authors.

1 Introduction

A neutron star in equilibrium is accurately approximated by a stationary self-
gravitating perfect fluid. 1 The character of its oscillations and their stability, how-
ever, depend on bulk and shear viscosity, on the superfluid nature of its interior, and
– for modes near the surface – on the properties of the crust and the strength of its
magnetic field.
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1 Departures from the local isotropy of a perfect fluid are associated with the crust; with magnetic
fields that are thought to be confined to flux tubes in the superfluid interior; and with a velocity field
whose vorticity is similarly confined to vortex tubes. Departures from perfect fluid equilibrium due
to a solid crust are expected to be smaller than one part in ∼ 10−3, corresponding to the maximum
strain that an electromagnetic lattice can support. The vortex tubes are closely spaced; but the
velocity field averaged over meter scales is that of a uniformly rotating configuration. Finally, the
magnetic field contributes negligibly to the pressure support of the star, even in magnetars with
fields of 1015 G.
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The stability of a rotating star is governed by the sign of the energy of its pertur-
bations; and the amplitude of an oscillation that is damped or driven by gravitational
radiation is governed by the rate at which its energy and angular momentum are radi-
ated. Noether’s theorem relates the stationarity and axisymmetry of the equilibrium
star to conserved currents constructed from the perturbed metric and fluid variables.
Their integrals, the canonical energy and angular momentum on a hypersurface can
each be written as a functional quadratic in the perturbation, and the conservation
laws express their change in terms of the flux of gravitational waves radiated to null
infinity.

We begin with an action for perturbations of a rotating star from which these
conserved quantities are obtained [1, 2, 3, 4, 5, 6]. We next review local stability
to convection and to differential rotation. A spherical star that is stable against con-
vection is stable to all nonradial perturbations: Only the radial instability to collapse
(or explosion) can remain. Instability to collapse sets upper and lower limits on the
masses of stable relativistic stars, the analog for neutron stars of the Chandrasekhar
limit. A turning-point criterion governs this axisymmetric instability of spherical
stars against collapse and provides a sufficient condition for instability of rotating
stars. Finally, we consider the additional instabilities of rotating stars. These are
nonaxisymmetric instabilities that radiate gravitational waves. They may set an up-
per limit on the spin of old neutron stars spun up by accretion and on nascent stars
that form with rapid enough rotation.

2 Action and canonical energy

The equations governing a perfect fluid are the Einstein equation and the equation
of motion of the fluid,

Gαβ = 8πTαβ , ∇β T αβ = 0, (1)

together with an equation of state. We denote by p,ε,ρ and uα the fluid’s pressure,
energy density, rest-mass density and 4-velocity, respectively, and define a tensor

qα
β = δ α

β +uα uβ (2)

that is the spatial projection operator, the projection orthogonal to uα . The stress-
energy tensor then has the form

T αβ = εuα uβ + pqαβ .

Because the spatial projection qα
γ ∇β T βγ = 0 is the relativistic Euler equation,

uβ ∇β uα =−
qαβ ∇β p

ε + p
, (3)
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we call Eqs. (1) the Einstein-Euler equations.
One can obtain an action for stellar perturbations by introducing a Lagrangian

displacement ξ α joining each unperturbed fluid trajectory (the unperturbed world-
line of a fluid element) to the corresponding trajectory of the perturbed fluid, as
shown in Fig. 1

Fig. 1 For small s, a Lagrangian displacement ξ α can be regarded as a vector for which sξ α joins
the position x of a fluid element in an initial fluid flow to its position χs(x) in the perturbed fluid
flow.

The perturbative description is made precise by introducing a family of (time
dependent) solutions

Q(λ ) = {gαβ (λ ),uα(λ ),ρ(λ ),s(λ )}, (4)

and comparing to first order in λ the perturbed variables Q(λ ) with their equilibrium
values Q(0). Eulerian and Lagrangian changes in the fluid variables are defined by

δQ :=
d

dλ
Q(λ )

∣∣∣∣
λ=0

, ∆Q = (δ +Lξξξ )Q, (5)

with Lξξξ the Lie derivative along ξ α .
Because oscillations of a neutron star proceed on a dynamical timescale, a

timescale faster than that of heat flow, one requires that the Lagrangian change ∆s
in the entropy per unit rest mass vanishes. With this condition, ξ α and hαβ := δgαβ
completely specify a perturbation of a perfect-fluid spacetime with an equation of
state of the form ε = ε(ρ,s), p = p(ρ,s). Perturbations of uα ,ρ and ε are given by

∆uα =
1
2

uα uβ uγ ∆gβγ , ∆ρ =−1
2

ρqαβ ∆gαβ , ∆ε =−1
2
(ε + p)qαβ ∆gαβ ,

(6)
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with ∆gαβ = hαβ +∇α ξβ +∇β ξα . Our restriction to adiabatic perturbations means
that the Lagrangian change in the pressure is given by

∆ p
p

= Γ1
∆ρ
ρ

=−1
2

Γ1 qαβ ∆gαβ , (7)

where the adiabatic index Γ1 is defined by

Γ1 =
∂ log p(ρ,s)

∂ logρ
=

ε + p
p

∂ p(ε,s)
∂ε

. (8)

The perturbed Einstein-Euler equations,

δ (Gαβ −8π T αβ ) = 0, δ (∇β T αβ ) = 0, (9)

are self-adjoint in a weak and 4-dimensional sense that they are a symmetric sys-
tem up to a total divergence: For any pairs (ξ α ,hαβ ) and (ξ̂ α , ĥαβ ), the symmetry
relation has the form

ξ̂β δ (∇γ T βγ√|g|)+ 1
16π

ĥβγ δ
[
(Gβγ −8πT βγ)

√
|g|

]
=−2L (ξ̂ , ĥ;ξ ,h)+∇βΘ β ,

(10)
where L is symmetric under the interchange of (ξ ,h) and (ξ̂ , ĥ). A symmetry re-
lation of the form (10) implies that L (2)(ξ ,h) := 1

2L (ξ ,h;ξ ,h) is a Lagrangian
density and

I(2) =
∫

d4xL (2) (11)

is an action for the perturbed system.
The conserved canonical energy associated with the timelike Killing vector is the

Hamiltonian of the perturbation, expressed in terms of configuration space variables,

Ec =
∫

S
d3x(Π αLtξα +παβ Lthαβ −L (2)), (12)

where Π α and παβ are the momenta conjugate to ξ α and hαβ . On a spacelike
hypersurface with future pointing unit normal nα =−α∇α t (where α is the lapse),
the canonical momenta conjugate to ξ α and hαβ are given by

Π α = Π γα ∇γ t, παβ = πγαβ ∇γ t. (13)

with

Π αβ =
1
2

∂L (ξ ,h;ξ ,h)
∂∇α ξβ

, (14)

παβγ =
1
2

∂L (ξ ,h;ξ ,h)
∂∇α hβγ

. (15)

The corresponding canonical momentum has the form
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Jc =−
∫

S
d3x(Π αLϕϕϕ ξα +παβ Lϕϕϕ hαβ ). (16)

If one foliates the background spacetime by a family of spacelike but asymp-
totically null hypersurfaces, the difference E2 −E1 in Ec from one hypersurface to
another to its future is the energy radiated in gravitational waves to future null infin-
ity. Because this energy is positive definite, Ec can only decrease. This suggests that
a condition for stability is that Ec be positive for all initial data.

This is, in fact, an appopriate stability criterion, but there is a subtlety, associated
with a gauge freedom in choosing a Lagrangian displacement: There is a class of
trivial displacements, for which the Eulerian changes in all fluid variables vanish.
For a one (two) parameter equation of state, these correspond to rearranging fluid
elements with the same value of ρ (and s). 2 For a trivial displacement ηα , the same
physical perturbation is described by the pairs hαβ ,ξ α and hαβ ,ξ α +ηα , but, for
nonaxisymmetric perturbations, the canonical energy is not invariant under addition
of a trivial displacement, and its sign depends on this kind of gauge freedom. There
is, however, a preferred class of canonical displacements, the displacements ξ α that
are orthogonal to all trivial displacements, with respect to the symplectic product of
two perturbations,

W (ξ̂ , ĥ;ξ ,h) :=
∫

Σ
(Π̂α ξ α + π̂αβ hαβ −Πα ξ̂ a −παβ ĥαβ )d

3x. (17)

The criterion for stability can then be phrased as follows:

1. If Ec < 0 for some canonical data on Σ , then the configuration is unstable or
marginally stable: There exist perturbations on a family of asymptotically null
hypersurfaces Σu that do not die away in time.

2. If Ec > 0 for all canonical data on Σ , the magnitude of Ec is bounded in time
and only finite energy can be radiated.

The trivial displacements are relabelings of fluid elements with the same baryon
density and entropy per baryon. They are Noether-related to conservation of circu-
lation in surfaces of constant entropy per baryon [7, 8, 9], and canonical displace-
ments are displacements that preserve the circulation of each fluid ring – for which
the Lagrangian change in the circulation vanishes.

For perturbations that are not spherical, stable perturbations have positive energy
and die away in time; unstable perturbations have negative canonical energy and
radiate negative energy to infinity, implying that Ec becomes increasingly negative.
One would like to show that when Ec < 0 a perfect-fluid configuration is strictly
unstable, that within the linearized theory the time-evolved data radiates infinite
energy and that |Ec| becomes infinite along a family Σu of asymptotically null hy-
persurfaces. There is no proof of this conjecture, but it is easy to see that if Ec < 0,
the time derivatives ξ̇ α and ḣαβ must remain finitely large. Thus a configuration

2 This is not the gauge freedom associated with infinitesimal diffeos of the metric and matter, but
a redundancy in the Lagrangian- displacement description of perturbations that is already present
in a Newtonian context.
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with Ec < 0 will be strictly unstable unless it admits perturbations that are time
dependent but nonradiative.

For spherical stars, radial perturbations have this property, but in that case, the
relativistic Euler equation has the form of a Sturm-Liouville equation, and pertur-
bations with Ec < 0 are in fact strictly unstable.

The symplectic form provides an alternate form of the canonical energy, used
in Wald’s article in this volume. Because of the quadratic structure of the second-
order Lagrangian, when the field equations are satisfied, Eq. (12) is equivalent to the
expression

Ec =
1
2

W (Ltttξ α ,Lttthαβ ,ξ α ,hαβ )

=
1
2

∫
Σ
(ΠαLtttξ α +παβ Lttthαβ −LtttΠα ξ α −Ltttπαβ hαβ )d

3x, (18)

From this relation and Eq. (16), one has an immediate relation between Jc and Ec
for a real-frequency mode with behavior ei(mϕ+ωt):

Jc =−m
ω

Ec. (19)

3 Local stability

3.1 Convective instability

The criterion for the stability of a spherical star against convection is easy to un-
derstand. When a fluid element is displaced upward, if its density decreases more
rapidly than the density of the surrounding fluid, then the element will be buoyed
upward and the star will be unstable. If, on the other hand, the fluid element expands
less than its surroundings it will fall back, and the star will be stable to convection.

As this argument suggests, criteria for convective stability are local, involving
perturbations restricted to an arbitrarily small region of the star or, for axisymmet-
ric perturbations, to an arbitrarily thin ring. For local perturbations, the Cowling
approximation is valid: The change in the gravitational field can be ignored. The ar-
gument is this: A perturbation in density of order δε/ε that is restricted to a region
of volume V ≪ R3 can be regarded as adding or subtracting from the source a mass
δm of order δεV . Then

δm
M

∼ V
R3

δε
ε

≪ δε
ε
. (20)

The change in the metric is then also smaller than δε/ε by a factor V/R3, arbi-
trarily small when the support of the matter perturbation is arbitrarily small. Note
that, because the metric perturbation is gauge-dependent, this statement about the
smallness of the perturbed metric is also gauge-dependent. A more precise way of
stating this property of a local perturbation is that a gauge can be chosen in which
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the metric perturbation is smaller than the density perturbation by a factor of order
V/R3.

Convective instability of spherical relativistic stars was discussed by Thorne [10]
and subsequently, with greater rigor, by Kovetz [11] and Schutz [12]. An initial
heuristic treatment by Bardeen [13] of convective instability of differentially rotat-
ing stars was made more precise and extended to models with heat flow and viscosity
by Seguin [14].

Consider a fluid element displaced radially outward from an initial position with
radial coordinate r to r + ξ . The fluid element expands (or, if displaced inward,
contracts), with its pressure adjusting immediately – in sound travel time across the
fluid element – to the pressure outside:

∆ p = ξξξ ·∇p =
d p
dr

ξ . (21)

Heat diffuses more slowly, and the analysis assumes that the motion is faster than the
time for heat to flow into or out of the fluid element: The perturbation is adiabatic:

∆ε =

(
∂ε
∂ p

)
s
∆ p

=

(
∂ε
∂ p

)
s

d p
dr

ξ = Γ1
ε + p

p
d p
dr

ξ , (22)

where we have used the adiabatic conditions (6) and (7).
The difference ∆⋆ε in the density of the surrounding star between r and r+ξ is

given by

∆⋆ε = ξ
dε
dr

. (23)

The displaced fluid element falls back if |∆ε |< |∆⋆ε| – if, that is, the fluid element’s
density decreases more slowly than the star’s density:(

∂ε
∂ p

)
s

∣∣∣∣ξ d p
dr

∣∣∣∣< ∣∣∣∣ξ dε
dr

∣∣∣∣ . (24)

The star is then stable against convection if the inequality,(
d p
dε

)
⋆

:=
d p/dr
dε/dr

<

(
∂ p
∂ε

)
s

(25)

is satisfied, unstable if the inequality is in the opposite direction.
In particular, in a homentropic star with no composition gradient, the adiabatic

value of d p/dε coincides with its value in the equilibrium star,(
∂ε
∂ p

)
s
=

(
d p
dε

)
⋆

, (26)

implying that the star is marginally unstable.
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For spherical stars Detweiler and Ipser [15] (generalizing a Newtonian result due
to Lebovitz [16]), argue that, apart from local instability to convection, one need
only consider radial perturbations: If a nonrotating star is stable to radial oscilla-
tions and stable against convection, the star is stable. The Detweiler-Ipser argu-
ment, however, relies on completeness of normal modes and the assumption that all
modes are continuously joined to modes of a nearly Newtonian star, for which the
Lebovitz result should imply that all modes are stable. Although the result is almost
certainly true, the assumptions are not: There are outgoing modes – the w-modes –
analogous to the outgoing modes of black holoes, that have no Newtonian counter-
parts.
Research Problem. Prove that perturbations of spherical stars are stable if they are
stable against convection and against radial perturbations.
This can be done by showing that, with reasonable assumptions about the EOS, the
canonical energy of a nonradial perturbation is negative only if the Schwarzschild
criterion is violated. The result may follow from an integral inequality (associated
with Eq. (42) of [15]), that is central to the Detweiler-Ipser argument.

Within minutes after their birth, neutron stars cool to a temperature below the
Fermi energy per nucleon, below 1012 K. Their neutrons are then degenerate, with a
nearly isentropic equation of state: Convectively stable, but with convective modes
having frequencies below 100 Hz, much lower than the kHz frequencies of the f -
and p-modes.

3.2 Convective instability due to differential rotation: the Solberg
[17] criterion

Differentially rotating stars have one additional kind of convective (local) instability.
If the angular momentum per unit rest mass, j = huα ϕ α , decreases outward from
the axis of symmetry, the star is unstable to perturbations that change the differential
rotation law.

The criterion is easy to understand in a Newtonian context. Consider a ring of
fluid in the star’s equatorial plane that is displaced outward from r to r+ξ , conserv-
ing angular momentum and mass. Again the displaced ring immediately adjusts its
pressure to that of the surrounding star. If the ring’s centripetal acceleration is larger
that the net restoring force from gravity and the surrounding pressure gradient, it
will continue to move outward. Now in the unperturbed star, the centripetal accel-
eration is equal to the restoring force. As in the discussion of convective instability,
the displaced fluid element encounters the pressure gradient and gravitational field
of the uperturbed star at its new position, and the restoring force is the restoring
force on a fluid element at r+ξ in the unperturbed star. Thus, if the displaced fluid
ring has the same value of v2/r as the surrounding fluid it will be in equilibrium,
and the star will be marginally stable. If a displaced fluid ring has larger v2/r than
its surrounding fluid the star will be unstable.
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The difference in acceleration for the background star is ∆⋆(v2/r) = ξ r d
dr

(v2/r),
and stability then requires

ξ r d
dr

(
v2

r

)
−∆

v2

r
> 0, (27)

for ξ r > 0.
Because ∆ j = 0 and v( j,r) = j(r)/r, we have

∆
v2

r
= ∆

j2

r3 = j2ξ r d
dr

1
r3 , (28)

while

∆⋆
v2

r
= ξ r d

dr
j2

r3 , (29)

implying

∆⋆
v2

r
−∆

v2

r
= ξ r 1

r3
d j2

dr
; (30)

and the star is stable only if
d j
dr

> 0 in the equatorial plane (for j > 0), or, equiva-

lently, only if ∂ϖ (ϖ2Ω)> 0.
Bardeen [13] gives a heuristic argument for a restricted version of this criterion,

and a subsequent comprehensive and more precise treatment, including heat flow
and viscosity, is due to Seguin [14]. Abramowicz [18] gives the relativistic version
of the Newtonian argument summarized above; a presentation in [19] corrects some
misprints and also relates the criterion to the sign of the canonical energy.

Here, for the relativistic case, we present Bardeen’s simple argument. The rela-

tivistic angular momentum per unit rest mass is j =
ε + p

ρ
uα ϕ a, with ϕ α the rota-

tional Killing vector. The first law of thermodynamics for relativistic stars has the
form

δM =
∫

Σ

(
T
ut ∆dS+

g
ut ∆dM0 +Ω∆dJ

)
, (31)

where dM0 = ρdV and dJ = jdM0. If, in a homentropic, differentially rotating star,
j has an extremum as a function of radius in the the equatorial plane, then there are
perturbations that conserve baryon number and that lower the energy of the system –
for which δM < 0. The argument, for a homentropic star, is this: On opposite sides
of the extremum, there are two rings, 1 and 2, with the same value of j and with
Ω2 > Ω1. A perturbation that transfers matter with baryon mass δM0 from ring 2
to ring 1 then gives δM = (Ω1 −Ω2) j δM0 < 0. That is, unless j is a monotonic
function, one can always find a perturbation with negative energy.

This is a simplest example of the turning-point criterion governing axisymmet-
ric stability: A point of marginal stability along a sequence of circular orbits of a
particle is a point at whichg j is an extremum. The turning-point condition can be
rephrased in terms of the particle’s energy. For a particle of fixed rest mass, the
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difference in energy of adjacent orbits is related to the difference in its angular mo-
mentum by

δE = ΩδJ.

Then a point of marginal stability along a sequence of circular orbits of a particle of
fixed baryon mass is a point at which its energy is an extremum.

4 Axisymmetric instability and turning points

For spherical stars in Newtonian gravity, instability sets in when the matter becomes
relativistic, when the adiabatic index Γ1 (more precisely, its pressure-weighted aver-
age Γ̄1) reaches the value 4/3 characteristic of zero rest-mass particles. This can be
seen from the Newtonian limit of the canonical energy,

Ec =
∫ {

1
2

ρξ̇ 2 +
2
r

p′ξ 2 +
Γ1 p
2r4

[
(r2ξ )′

]2
}

dV. (32)

Choosing as initial data ξ = r, ξ̇ = 0, gives

Ec =
∫ (

2rp′+
9
2

Γ1 pr2
)

dV =
9
2

∫ (
Γ1 −

4
3

)
pdV, (33)

implying instability for Γ̄1 < 4/3. This shows only that Γ1 < 4/3 is a sufficient con-
dition for instability, but spherical Newtonian polytropes with Γ1 > 4/3 are stable.

By, in effect, deriving the relativistic canonical energy,

Ec =
∫ R

0

1
2

eλ+ν
{[

4
r

p′− p′2

ε + p
+8π p(ε + p)

]
ξ 2

+
e3λ−ν

r4 Γ1 p
[
(e−ν r2ξ )′

]2
}

r2dr, (34)

Chandrasekhar [20, 21] showed that the stronger gravity of general relativity implies
an earlier onset of instability: Even models with the stiffest equation of state must
be unstable to collapse for some value of compactness M/R < 9/8, the value for the
most compact uniform density model. The more stringent relativistic constraint on
Γ1 for a star to be stable against radial perturbations has the form

Γ1 <
4
3
+K

M
R
, (35)

where K is positive and of order unity [20]. Because a gas of photons has Γ1 = 4/3
and massive stars are radiation dominated, the instability can be important for stars
with M/R ≪ 1.
Turning point instability
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The best-known instability result in general relativity is the statement that insta-
bility to collapse sets in at a point of maximum mass, along a sequence of spherical
barotropic models. The configuration with maximum mass is called a turning point
along the sequence, and it is also the configuration with maximum baryon mass. A
similar result holds for uniformly rotating stars [22]: Instability to collapse is im-
plied by a point of maximum mass and maximum baryon mass, along a sequence
of uniformly rotating barotropic models with fixed angular momentum. As in the
spherical case, stars with higher central density than that of the maximum-mass
configuration are unstable. For rotating stars, however, the turning point is a suf-
ficient but not a necessary condition for instability: The onset of instability is at a
configuration with slightly lower central density (for fixed angular momentum) than
that of the maximum-mass star. A formal symmetry in the way baryon mass and an-
gular momentum occur in the first law implies that the line of turning points is also
the line of extrema of angular momentum along sequences of fixed baryon mass.

For dynamical oscillations of neutron stars the adiabatic index does not coincide

with the polytropic index, Γ1 ̸= Γ :=
d log p(r)/dr

d logρ/dr
, and the turning point criterion

implies secular instability — an instability whose growth time is long compared to
the typical dynamical time of stellar oscillations. For spherical stars, the turning-
point instability proceeds on a time scale slow enough to accommodate the nuclear
reactions and energy transfer that accompany the change to a nearby equilibrium.
For rotating stars, the time scale must also be long enough to accommodate a trans-
fer of angular momentum from one fluid ring to another. That is, the growth rate of
the instability is limited by the time required for viscosity to redistribute the star’s
angular momentum. For neutron stars, this is expected to be short, probably com-
parable to the spin-up time following a glitch, and certainly short compared to the
lifetime of a pulsar or an accreting neutron star. For this reason, it is the secular in-
stability, that sets the upper and lower limits on the mass of spherical and uniformly
rotating neutron stars.

One can easily understand why the instability sets in at an extremum of the mass
by looking at a radial mode of oscillation of a nonrotating star with an equation
of state p = p(ρ),ε = ε(ρ). Along the sequence of spherical equilibria, a radial
mode changes from stability to instability when its frequency σ changes from real
to imaginary, with σ = 0 at the point of marginal stability. Now a zero-frequency
mode is just a time-independent solution to the linearized Einstein-Euler equations
- a perturbation from one equilibrium configuration to a nearby equilibrium with the
same baryon number. From the first law of thermodynamics (31), a perturbation that
keeps the star in equilibrium satisfies

δM =
g
ut δM0, (36)

with g the specific Gibbs free energy. The relation implies that, for a zero frequency
perturbation involving no change in baryon number, the change δM in mass must
vanish. This is the requirement that the mass is an extremum along the sequence of
equilibria. Models on the high-density side of the maximum-mass instability point
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are unstable: Because the turning point is a star with maximum baryon number as
well as maximum mass, there are models on opposite sides of the turning point with
the same baryon number. Because g/ut is a decreasing function of central density,
the model on the high-density side of the turning point has greater mass than the
corresponding model with smaller central density.

At the minimum mass, it is the low-density side that is unstable: Because the
mass is a minimum, the model on the low-density side of the turning point has
greater mass than the corresponding model with the same baryon number on the
high-density side.

The precise statement of the turning-point criterion is the following result:

Theorem 9.1 (Friedman, Ipser, Sorkin [22]): Consider a continuous sequence of
uniformly rotating stellar models based on an equation of state of the form p= p(ε).
Let λ be the sequence parameter and denote the derivative d/dλ along the sequence
by (˙).
(i) Suppose that the total angular momentum is constant along the sequence and that
there is a point λ0 where Ṁ = 0 and where E > 0, (Ė Ṁ)̇ ̸= 0. Then the part of the
sequence for which Ė Ṁ > 0 is unstable for λ near λ0.
(ii) Suppose that the total baryon mass M0 is constant along the sequence and that
there is a point λ0 where Ṁ = 0 and where Ω > 0, (Ω̇Ṁ)̇ ̸= 0. Then the part of the
sequence for which Ω̇Ṁ > 0 is unstable for λ near λ0.

In form (ii) of the theorem, the first law implies that the turning point is an ex-
tremum of angular momentum J along a sequence of constant rest mass. Ref. [22]
points out the symmetry between M0 and J that implies this maximum-J form of
the theorem, and Cook, Shapiro and Teukolsky [23] first use the theorem in this
form. For rotating stars, the turning point criterion is a sufficient condition for sec-
ular instability to collapse. In general, however, collapse can be expected to involve
differential rotation, and the turning point identifies only nearby uniformly rotating
configurations with lower energy. Rotating stars are therefore likely to be secularly
unstable to collapse at densities slightly lower than the turning point density. The
onset of secular instability to collapse is at or before the onset of dynamical in-
stability along a sequence of uniformly rotating stars of fixed angular momentum,
and recent work by Katami, Rezzolla and Yoshida [24] appears to show that rapidly
rotating stars can also be dynamically unstable to collapse just prior to the turning
point.

As illustrated in Fig. 2), they find a dynamical instability line that coincides with
the turning-point line for spherical stars and that, for rapid uniform rotation, has
a central density about 5% below that of the turning point. This result somewhat
overstates the difference between the two lines, because it ignores the difference
Γ −Γ1 between the indices governing dynamical oscillations and the equilibrium
equation of state. The actual dynamical instability line begins at a spherical star
with higher density than the marginally unstable turning point star and probably
crosses the turning-point line to lower density at some angular velocity less than
ΩK .
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Fig. 2 Stability lines in a (ρc,M) diagram. The two solid black lines mark sequences with either
zero (lower line) or mass-shedding angular momentum (upper line), with the filled symbols mark-
ing the corresponding maximum masses. The solid grey line is the neutral-stability line, “thick-
ened” by the error bar (dot-dashed lines). The grey dashed line is instead the turning-point criterion
for secular stability. Marked with empty or filled circles are representative models with constant
angular velocity O1, O2, O3, or constant initial central rest-mass density R1, R2, R3. (Figure from
Takami et al. [24]. Reproduced by permission of John Wiley and Sons.)

The greater significance of the Takami et al. result, however, is that stars along
the line determined by using the equilibrium equation of state are guaranteed to be
secularly unstable, because the diagnosed instability guarantees that the configu-
rations have lower energy than equilibria with the same baryon mass and angular
momentum. This means that the line of secular instability runs through rapidly ro-
tating configurations with central densities more than 5% below those along the line
of turning points.
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5 Nonaxisymmetric instabilities

Rapidly rotating stars and drops of water are unstable to a bar mode that leads to
fission in the water droplets; and a similar nonaxisymmetric instability is likely to be
the reason most stars in the universe are in close binary systems. Galactic disks are
unstable to nonaxisymmetric perturbations that lead to bars and to spiral structure.
And a related instability of a variety of nonaxisymmetric modes, driven by gravi-
tational waves, the Chandrasekhar-Friedman-Schutz (CFS) instability [25, 8]), may
limit the rotation of neutron stars. The existence of the CFS-instability in rotating
stars was first found by Chandrasekhar [25] in the case of the l = 2 mode in uni-
formly rotating, uniform density Maclaurin spheroids. Subsequently, Friedman and
Schutz [26, 8] showed that this instability also appears in compressible stars and
that all rotating, self-gravitating perfect fluid configurations are generically unsta-
ble to the emission of gravitational waves. We have seen that, along a sequence of
stellar models, a mode changes from stable to unstable when its frequency vanishes.
The generic-instability result means that zero-frequency nonaxisymmetric modes of
rotating perfect-fluid stellar models are marginally stable.

Whereas axisymmetric instability to collapse sets in at points that are nearly in-
dependent of the magnitude of viscosity or the strength of gravitational waves, the
opposite is true for the nonaxisymmetric case. Gravitational radiation drives a non-
axisymmetric instability that, if no other dissipation is present, makes every rotating
star unstable. Viscosity can drive a nonaxisymmetric instability in rapidly rotat-
ing stars for which gravitational radiation is negligible. For slowly rotating stars,
however (and nearly all neutron stars rotate slowly compared to the Kepler limit),
viscosity simply damps out the gravitational-wave driven instability. That is, for
slow rotation, we will see that the timescale of the CFS instability is longer than the
timescale for viscous damping. On the other hand, for rapidly rotating neutron stars,
the instability’s timescale may be short enough that it limits the rotation of young
neutron stars and of old neutron stars spun up by accretion.

This review begins with a discussion of the CFS instability for perfect-fluid mod-
els and then outlines the work that has been done to decide whether the instability
is present in young neutron stars and in old neutron stars spun up by accretion. For
very rapid rotation and for slower but highly differential rotation, nonaxisymmetric
modes can be dynamically unstable, with growth times comparable to the period
of a star’s fundamental modes, and the review ends with a brief discussion of these
related dynamical instabilities.

To understand the way the CFS instability arises, consider first a stable spherical
star. All its modes have positive energy, and the sign of a mode’s angular momen-
tum Jc about an axis depends on whether the mode moves clockwise or counter-
clockwise around the star. That is, a mode with angular and time dependence of
the form cos(mϕ +ω0t)e−α0t , has positive angular momentum Jc about the z-axis

if and only if the mode moves in a positive direction: The pattern speed, −ω0

m
, is

positive. Because the wave moves in a positive direction relative to an observer at
infinity, the star radiates positive angular momentum to infinity, and the mode is
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damped. Similarly, a mode with negative angular momentum has negative pattern
speed, −ω0

m
< 0, and radiates negative angular momentum to infinity; and the mode

is again damped.
Now consider a slowly rotating star with a backward-moving mode, a mode that

moves in a direction opposite to the star’s rotation. Because a short-wavelength fluid
mode (a mode with a Newtonian counterpart, not a w-mode) is essentially a wave in
the fluid, the wave moves with nearly the same speed relative to a rotating observer
that it had in the spherical star. That means that an observer at infinity sees the mode
dragged forward by the fluid. The real part ωr of the frequency seen in a rotating
frame is the frequency associated with the ϕ coordinate ϕr = ϕ −Ω t of a rotating
observer. Then

mϕ +ωt = mϕr +(ω +mΩ)t = mϕr +ωrt,

implying that the frequency seen by the rotating observer is

ωr = ω +mΩ . (37)

For a slowly rotating star, ωr ≈ ω0. When the star rotates with an angular velocity
greater than |ωr/m|, the backward-going mode is dragged forward relative to an
observer at infinity, and ωr and ω have opposite signs:

ωrω < 0. (38)

Because the pattern speed is now positive, the mode radiates positive angular
momentum to infinity. But the canonical angular momentum is still negative, be-
cause the mode is moving backward relative to the fluid: The angular momentum
of the perturbed star is smaller than the angular momentum of the star without the
backward-going mode. As the star radiates positive angular momentum to infinity,
Jc becomes increasingly negative, implying that the amplitude of the mode grows in
time: Gravitational radiation now drives the mode instead of damping it.

For large m or small ω0, the pattern speed will be positive when Ω ≈ |ω0/m|.
This relation suggests two classes of modes that are unstable for arbitrarily slow
rotation: Backward-moving modes with large values of m and modes with any m
whose frequency is zero in a spherical star. Both classes of perturbations exist. The
usual p-modes and g-modes have finite frequencies for a spherical star and are un-
stable for Ω ≳ |ω0|/m; and r-modes, which have zero frequency for a non-rotating
barotropic star, are unstable for all values of m and Ω (that is, those r-modes are
unstable that are backward-moving in the rotating frame of a slowly rotating star).

We have so far not mentioned the canonical energy, but our key criterion for the
onset of instability is a negative Ec. If we ignore the imaginary part of the frequency,
the change in the sign of Ec follows immediately from the relation (19), Jc =−m

ω Ec.
To take the imaginary part Imσ = α ̸= 0 of the frequency into account, we need to
use the fact that energy is lost at a rate Ėc ∝

...
Q2 ∝ σ6 for quadrupole radiation, with

Ėc proportional to higher powers of σ for radiation into higher multipoles. Because
Ec is quadratic in the perturbation, it is proportional to e−2αt , implying α ∝ σ6.
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Thus α/σ → 0 as σ → 0, implying that for a normal mode Ec changes sign when
ω changes sign.

Although the argument we have given so far is heuristic, there is a precise form
of the statement that a stable, backward-moving mode becomes unstable when it is
dragged forward relative to an inertial observer (see Friedman & Schultz [26] and
Friedman & Stergioulas [19]).

Theorem. Consider an outgoing mode (hαβ (λ ),ξ α(λ )), that varies smoothly
along a family of uniformly rotating perfect-fluid equilibria, labeled by λ . Assume
that it has t and ϕ dependence of the form ei(mϕ+σt), that ω =Re{σ} satisfies ω/m+
Ω > 0 for all λ , and that the sign of ω/m is positive for λ < λ0 and negative for
λ > λ0. Then in a neighborhood of λ0, α := Im{σ} ≤ 0; and if the mode has at
least one nonzero asymptotic multipole moment with l ≥ 2 at future null infinity,
the mode is unstable (α < 0) for λ > λ0.

A corresponding result that does not rely on existence or completeness of normal
modes is the statement that one can always choose canonical initial data to make
Ec < 0 [8, 19].

The growth time τGR of the instability of a perfect fluid star is governed by the

rate
dE
dt

∣∣∣∣
GR

at which energy is radiated in gravitational waves:

1
τGR

=− 1
2Ec

dE
dt

∣∣∣∣
GR

, (39)

where (Thorne 1980)

dE
dt

=− ∑
l≥m

ω2l+2
i Nl

(
|δDlm|2 + |δJlm|2

)
. (40)

Here Dlm and Jlm are the asymptotically defined mass and current multipole mo-

ments of the perturbation and Nl =
4π(l +1)(l +2)

l(l −1)[(2l +1)!!]2
is, for low l, a constant of

order unity. In the Newtonian limit,

δDlm =
∫

δρ rlYlmd3x. (41)

For a star to be unstable, the growth time τGR must be shorter than the viscous
damping time τviscosity of the mode, and the implications of this are discussed below.
In particular because the growth time is longer for larger l, only low multipoles can
be unstable in neutron stars.
Modes with polar and axial parity
The spherical symmetry of a nonrotating star and its spacetime implies that per-
turbations can be labeled by fixed values l,m labeling an angular harmonic: The
quantities hαβ ,ξ α ,δρ ,δε ,δ p,δ s that describe a perturbation are all proportional
to scalar, vector and tensor spherical harmonics constructed from Ylm, and pertur-
bations with different l,m values decouple. Similarly, because spherical stars are
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invariant under parity (a map of each point P of spacetime to the diametrically op-
posite point on the symmetry sphere through P), perturbations with different parity
decouple, the parity of a perturbation is conserved, and normal modes have definite
parity. Perturbations associated with an l,m angular harmonic are said to have polar
parity if they have the same parity as the function Ylm, (−1)l . Perturbations having
parity (−1)l+1, opposite to that of Ylm have axial parity. In the Newtonian literature,
modes of a rotating star that are continuously related to polar modes of a spherical
star are commonly called spheroidal; while modes whose spherical limit is axial are
called toroidal.

Every rotational scalar — ε, p,ρ , and the components in the t-r subspace of the
perturbed metric hαβ and the perturbed fluid velocity δuα — can be expressed as
a superposition of scalar spherical harmonics Yℓm. As a result, modes of spherical
stars that involve changes in any scalar are polar. On the other hand, the angular
components of velocity perturbations can have either polar parity, with

δv = f (r)∇Ylm (42)

or axial parity, with Newtonian form

δv = f (r)r×∇Ylm, (43)

and the relativistic form δuα ∝ εαβγδ ∇β t∇γ r∇δYlm.
There are two families of polar modes of perfect-fluid Newtonian stars, p-modes

(pressure modes) and g-modes (gravity modes). For short wavelengths, the p-modes
are sound waves, with pressure providing the restoring force and frequencies

σ = csk, (44)

where k is the wavenumber and cs is the speed of sound. The short-wavelength g-
modes are modes whose restoring force is buoyancy, and their frequencies are pro-
portional to the Brunt-Väisälä frequency, related to the difference between d p/dε
in the star and c2

s = ∂ p(ε,s)/∂ε . The fundamental modes of oscillation of a star
( f -modes), with no radial nodes, can be regarded as a bridge between g-modes and
p-modes.

Because axial perturbations of a spherical star involve no change in density or
pressure, there is no restoring force in the linearized Euler equation, and the linear
perturbation is a time-independent velocity field – a zero-frequency mode. 3 In a
rotating star, the axial modes acquire a nonzero frequency proportional to the star’s
angular velocity Ω , a frequency whose Newtonian limit has the simple form

σ =− (l −1)(l +2)
l(l +1)

mΩ , (45)

3 Axial perturbations of the spacetime of a spherical star include both axial perturbations of the
fluid and gravitational waves with axial parity. The axial-parity waves do not couple to the fluid
perturbation, which is stationary in the sense that ∂t δuα = 0.
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where the harmonic time and angular dependence of the mode is ei(mϕ−σt). These
modes are called r-modes, their name derived from the Rossby waves of oceans and
planetary atmospheres. The term r-mode can be usefully regarded as a mnemonic
for a rotationally restored mode. Eq. (37) implies that the r-mode associated with
every nonaxisymmetric multipole obeys the instability condition for every value of
Ω : It is forward moving in an inertial frame and backwards moving relative to a
rotating observer:

σr =
2m

l(l +1)
Ω , (46)

with sign opposite to that of σ . Because the rate at which energy is radiated is great-
est for the l = m = 2 r-mode, that is the mode whose instability grows most quickly
and which determines whether an axial-parity instability can outpace viscous damp-
ing.

The instability of low-multipole r-modes for arbitrarily slow rotation is strikingly
different from the behavior of the low-multipole f - and p-modes, which are unstable
only for large values of Ω . The reason is that the frequencies of f - and p-modes are
high, and, from Eq. (38), a correspondingly high angular velocity is needed before
a mode that moves backward relative to the star is dragged forward relative to an
inertial observer at infinity. Of the polar modes, f -modes with l = m have the fastest
growth rates; their instability points for uniformly rotating relativistic stars, found
by Stergioulas & Friedman [27], are shown in Figure 3. (Work on these stability
points of relativistic stars is also reported in [28, 29, 30, 31].)
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Fig. 3 Critical angular velocity Ω/ΩK vs. the dimensionless central energy density ε̄c for the
m = 2, 3, 4 and 5 neutral modes of N = 1.0 polytropes. The filled circles on the vertical axis are
the Newtonian values of the neutral points for each mode. (Reproduced from [27].)

The figure shows that, for uniform rotation, the l = m = 2 f -mode is unstable
only for stars with relatively high central density or high mass. For tabulated EOSs,
this practically applies to all neutron stars with masses greater than 1.3 M⊙ and
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T/|W |> 0.06 [32]. Because neutron stars, rotate differentially at birth, and the l = 2
mode, as well as higher modes, could be initially unstable for a larger range of
parameters.
Implications of the instability
The nonaxisymmetric instability may limit the rotation of nascent neutron stars and
of old neutron stars spun up by accretion; and the gravitational waves emitted by
unstable modes may be observable by gravitational wave detectors. Whether a limit
on spin is in fact enforced depends on whether the instability of perfect-fluid models
implies an instability of neutron stars; and the observability of gravitational waves
also requires a minimum amplitude and persistence of an unstable mode. We briefly
review observational support for an instability-enforced upper limit on spin and then
turn to the open theoretical issues.

Evidence for an upper limit on neutron-star spin smaller than the Keplerian fre-
quency ΩK comes from nearly 30 years of observations of neutron stars with mil-
lisecond periods, seen as pulsars and as X-ray binaries. The observations reveal
rotational frequencies ranging upward to 716 Hz and densely populating a range of
frequencies below that. Selection biases against detection of the fastest millisecond
radio pulsars have made conclusions about an upper limit on spin uncertain, but
Chakrabarty argues that the class of sources whose pulses are seen in nuclear bursts
(nuclear powered accreting millisecond X-ray pulsars) constite a sample without
significant bias [33]. Their distribution of spins, together with the spins of other
millisecond pulsars, is shown in Fig. 4

Fig. 4 Highest observed neutron-star spin frequencies.
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A magnetic field of order 108 G can limit the spin of an accreting millisecond
pulsar. Because matter within the magnetosphere corotates with the star, only matter
that accretes from outside the magnetosphere can spin up the star, leading to an
equilibrium period given approximately by Ghosh & Lamb [34] 4

Peq ∼ 2×10−3s
(

B
108G

)6/7( Ṁ
10−10M⊙yr−1

)−3/7

. (47)

Because this period depends on the magnetic field, a sharp cutoff in the frequency
of accreting stars is not an obvious prediction of magnetically limited spins. For a
magnetically set maximum rotation rate of order 700-800 Hz the range of magnetic
fields would need to have a corresponding minimum cutoff value of about 108 G;
and the highest observed spin rates should correspond to the lowest magnetic fields.
The required cutoff and a fairly narrow range of observed frequencies has made
gravitational-wave limited spin a competitive possibility for accreting neutron stars.
Arguments for and against this based on available observations are given by White
and Zhang [36] and by Patruno et al. [37], respectively.

Under what circumstances the CFS instability could limit the spin of recycled
pulsars has now been studied in a large number of papers. References to this work
can be found in the treatment in FS, on which the present review is based and in
comprehensive earlier discussions by Stergioulas [38], by Andersson and Kokkotas
[39], and by Kokkotas and Ruoff [40], while briefer reviews of more recent work
are given in [41, 42]. References in the present review are generally limited to initial
work and to a late paper that contains intervening references.

Whether the instability survives the complex physics of a real neutron star has
been the focus of most recent work, but it remains an open question. Studies have
focused on:

• Dissipation from bulk and shear viscosity and mutual friction in a superfluid
interior;

• magnetic field wind-up;
• nonlinear evolution and the saturation amplitude; and
• the possiblity that a continuous spectrum replaces r-modes in relativistic stars.

We discuss these in turn and then summarize their implications for nascent, rapidly
rotating stars and for old stars spun up by accretions.
Viscosity

When viscosity is included, the growth-time or damping time τ of an oscillation
has the form

1
τ
=

1
τGR

+
1
τb

+
1
τs
, (48)

with τb and τs the damping times due to bulk and shear viscosity. Bulk viscosity
is large at high temperatures, shear viscosity at low temperatures. This leaves a

4 Shapiro and Teukolsky [35] give a clear, simplified version, and Eq. (47) is their Eq. (15.2.22),
with M = 1.4M⊙, R = 10 km, and a ratio ωs of the angular velocity to ΩK at the inner edge of the
disk set to 1.
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window of opportunity in which a star with large enough angular velocity can be
unstable. The window for the l = m = 2 r-mode is shown in Fig. 5, for a repre-
sentative computation of viscosity. The highest solid curves on left and right mark
the critical angular velocity Ωc above which the l = m = 2 r-mode is unstable. The
curves on the left, show the effect of shear viscosity at low temperature, allowing
instability when Ω < ΩK only for T > 106K; the curve on the right shows the cor-
responding effect of bulk viscosity, cutting off the instability at temperatures above
about 4×1010K.
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Fig. 5 Critical angular velocity for the onset of the r-mode instability as a function of temperature
(for a 1.5 M⊙ neutron star model). The solid line corresponds to the O(Ω 2) result using electron-
electron shear viscosity, and modified URCA bulk viscosity. The dashed line corresponds to the
case of neutron-neutron shear viscosity. Dotted lines are O(Ω) approximations. (Reproduced from
[43].)

There is substantial uncertainty in the positions of both of these curves.
Bulk viscosity arises from nuclear reactions driven by the changing density of

an oscillating fluid element, with neutrons decaying, n → p+ e+ ν̄e, as the fluid
element expands and protons capturing electrons, p+e→ n+νe, as it contracts. The
neutrinos leave the star, draining energy from the mode. The rates of these URCA
reactions increase rapidly with temperature and are fast enough to be important
above about 109K, with an expected damping time τb given by

1
τb

=
1

2Ec

∫
ζ (δθ)2d3x, (49)
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where θ = ∇α uα is the divergence of the fluid velocity and the coefficient of bulk
viscosity ζ is given by [44]

ζ = 6×1025ρ2
15T 6

9

( ωr

1Hz

)−2
g cm−1 s−1, (50)

where T9 = T/(109K). With these values, bulk viscosity suppresses the instability in
all modes above a few times 1010K (see also Ipser & Lindblom [45, 46] and Yoshida
& Eriguchi [47]). 5

These equations and Fig. 5 assume that only modified URCA reactions can occur,
that the URCA reactions require a collision to conserve four-momentum, and this
will be true when the proton fraction is less than about 1/9. Should the equation of
state be unexpectedly soft (and if the mass is large enough), direct URCA reactions
would be allowed, suppressing the instability for uniformly rotating stars at roughly
109K [51]. A soft equation of state would also more likely lead to stars with hyper-
ons in their core with an additional set of nuclear reactions that dissipate energy and
increase the bulk viscosity [52, 53, 54, 55, 56] or quarks [57, 58, 59, 60, 61]. How-
ever, the observation of a 2 M⊙ pulsar makes the existence of hyperons or quarks in
the core of 1.4 M⊙ neutron stars less probable.

In contrast to bulk viscosity, shear viscosity increases as the temperature drops. In
terms of the shear tensor σαβ =(δ γ

α +uα uγ)(δ δ
β +uβ uδ )(∇γ uδ +∇δ uγ − 2

3 gγδ ∇ε uε ),
the damping time is given by

1
τs

=
1
Ec

∫
ηδσ αβ δσαβ d3x, (51)

where η is the coefficient of shear viscosity. For nascent neutron stars hotter than
the superfluid transition temperature (about 109K), a first estimate of the neutron-
neutron shear viscosity coefficient is [62]

ηn = 2×1018ρ9/4
15 T−2

9 g cm−1 s−1, (52)

where ρ15 = ρ/(1015g cm−3). Below the superfluid transition temperature, electron-
electron scattering determines the shear viscosity in the superfluid core, giving [63]

ηe = 2.5×1018
( xp

0.1
ρ15

)2
T−5/3

9 g cm−1 s−1. (53)

Shear viscosity may be greatly enhanced after formation of the crust in a bound-
ary layer (Ekman layer) between crust and core [64, 65, 66, 67, 68]. The en-
hancement depends on the extent to which the core participates in the oscillation,
parametrized by the slippage at the boundary. The uncertainty in this slippage ap-
pears to be the greatest current uncertainty in dissipation of the mode by shear vis-

5 At temperatures above roughly 1010K, another complication appears: neutrino absorption in-
creases with increasing temperature [48, 49]), and the modified URCA bulk viscosity no longer
rises, but is reduced by an order of magnitude between 1010 K and 1011K, allowing the instability
to operate in very hot proto-neutron stars [50].
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cosity, and it significantly affects the critical angular velocity of the r-mode insta-
bility in accreting neutron stars.

For f -modes, the part of the instability window in Fig. 5 to the left of 109 K is
thought to be removed by another dissipative mechanism that comes into play below
the superfluid transition temperature. Called mutual friction, it arises from the scat-
tering of electrons off magnetized neutron vortices. Work by Lindblom and Mendell
[69] shows that mutual friction in the superfluid core completely suppresses f - and
p-mode instabilities below the transition temperature. For the r-mode instability,
subsequent work by the same authors [70] finds that the mutual friction is much
smaller, with a damping time of order 104 s, too long to be important.

In a recent paper, Gaertig et al. [31] point out the possibility of an interaction
between vortices and quantized flux tubes that would result in a much smaller value
for the mutual friction. They argue that the resulting uncertainty is great enough that
shear viscosity could be the dominant dissipative mechanism for f -modes as well
as r-modes.
Magnetic field windup
At second-order in the perturbation, the nonlinear evolution of an unstable mode
includes an axisymmetric part that describes a growing differential rotation. Because
differential rotation will wind up magnetic field lines, the mode’s energy could be
transferred to the star’s magnetic field [71, 72, 73, 74, 75]. Again there is large
uncertainty about the strength of a toroidal magnetic field that will be generated by
the differential rotation, what magnetic instabilities will arise, and what the effective
dissipation will be. Apart from the studies cited here (all of which deal with r-
modes) nearly all the remaining work on the evolution of unstable modes ignores
magnetic fields.
Relativistic r-modes and a possible continuous spectrum
Relativistic r-modes have been computed by a number of authors [76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 40, 86, 87] Where the Newtonian approximation has purely
axial l = m r-modes for barotropic stars at lowest order in Ω , in the full theory all
rotationally restored modes include a polar part. The change in the structure of the
computed r-modes are small, but that may not be the end of the story.

For non-barotropic stars Kojima found a single second-order eigenvalue equation
for the frequency, to lowest nonvanishing order in Ω . The coefficient of the highest
derivative term in that equation vanishes at some value of the radial coordinate r, for
typical candidate neutron-star equations of state, and that singular behavior gives a
continuous spectrum. Lockitch, Andersson & Watts [82] consider the question of
the continuous spectrum and the existence of r-modes in some detail. They argue
that the singularity in the Kojima equation is an artifact of the slow-rotation approx-
imation and is not present if one includes terms of order Ω 2. Their work is a strong
argument for the existence of r-modes in non-barotropic models.

Showing the existence of the mode, however, does not decide the question of
whether a continuous spectrum is also present or whether the existence of a con-
tinuous or nearly continuous spectrum significantly alters the evolution of an initial
perturbation.
Nonlinear evolution
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Linear perturbation theory is valid only for small-amplitude oscillations; as the am-
plitude of an unstable mode grows, couplings to other modes become increasingly
important, and the mode ultimately reaches a saturation amplitude or is disrupted,
losing coherence. The first nonlinear studies of the r-mode instability involved fully
nonlinear 3+1 evolutions by Stergioulas & Font [88], in which the r-mode was set
at a large initial amplitude or Newtonian evolutions by Lindblom, Tohline & Val-
lisneri [89, 90] in which the r-mode was driven to large amplitude by an artificially
large gravitational-radiation reaction term. On a few tens of dynamical timescales,
saturation was seen only at an amplitude of order unity. Subsequently, simulations
on longer timescales showed a coupling to daughter modes [91, 92], suggesting that
the actual saturation amplitude of the r-mode is smaller than the amplitude at which
gravitational-radiation reaction was switched off in the short-timescale simulations.

The grid resolution of 3+1 simulations, however, is currently too low to see cou-
plings to short-wavelength modes, and they cannot run for a time long enough to
see the growth from a realistic radiation-reaction term. The alternative is to exam-
ine the nonlinear evolution in the context of higher-order perturbation theory. To
do this, the Cornell group (initially with S. Morsink) [93, 94, 95] constructed a
second-order perturbation theory for rotating Newtonian stars, and then used the
formalism to study the nonlinear evolution of an unstable r-mode. Their series of
papers leaves little doubt that nonlinear couplings sharply limit the amplitude of an
unstable r-mode, with a possible range of 10−1-10−5 (see Bondarescu, Teukolsky
& Wasserman [96, 97] and references therein).

The nonlinear development of the f -mode instability has been modeled in three-
dimensional, hydrodynamical simulations (in a Newtonian framework) by Ou,
Tohline & Lindblom [98] and by Shibata & Karino [99], essentially confirming pre-
vious approximate results obtained by Lai & Shapiro [48]. Kastaun, Willburger &
Kokkotas [100] report an initial nonlinear study of f -modes in general relativity. In
the framework of a 3+1 simulation in a Cowling approximation (a fixed background
metric of the unperturbed rotating star), they find limits on the amplitude of less than
0.1, set by wave-breaking and by coupling to inertial modes. This can be regarded as
an upper limit on the amplitude, with second-order perturbative computations still
to be done.
Instability scenarios in nascent neutron stars and in old accreting stars
Both r-modes and f -modes may be unstable in nascent neutron stars that are rapidly
rotating at birth. Recent work on f -modes in relativistic models [101, 31] finds
growth times substantially shorter than previously computed Newtonian values. In
a particular model (where the l = m = 2 mode becomes unstable only very near
the mass-shedding limit), the l = m = 3 and l = m = 4 f -modes have growth times
of 103-105 s for Ω near ΩK . In a typical scenario, a star with rotation near the
Kepler limit becomes unstable within a minute of formation, when the temperature
has dropped below 1011K. As the temperature drops further, the instability grows to
saturation amplitude in days or weeks. Loss of angular momentum to gravitational
waves spins down the star until the critical angular velocity is reached below which
the star is stable, at or before the time at which the core becomes a superfluid. The
l =m= 3 mode (or the l =m= 2 mode in models with different masses or equations
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of state than the one studied above) could be a source of observable gravitational
waves for supernovae in or near the Galaxy (but with an uncertain event rate).

The time over which the instability is active depends on the saturation amplitude,
the cooling rate, and the superfluid transition temperature, and all of these have large
uncertainties. The time at which a superfluid transition occurs could be shorter than
a year, but recent analyses of the cooling of a neutron star in Cassiopeia A [102, 103]
suggest a superfluid transition time for that star of order 100 years.

The scenario for the l = m = 2 r-mode instability of a nascent star is similar.
The r-mode instability itself was pointed out by Andersson [77], with a mode-
independent proof for relativistic stars given by Friedman and Morsink [104]. First
computations of the growth and evolution were reported by Lindblom, Owen &
Morsink [105] and by Andersson, Kokkotas & Schutz [106], with effects of a crust
discussed by Lindblom, Owen & Ushomirsky [65]. Intervening work is referred
to by Bondarescu, Teukolsky & Wasserman [97]; the simulations reported by Bon-
darescu et al. include nonlinear couplings that saturate the amplitude and the alterna-
tive possibilities for viscosity that we have discussed above. The r-mode’s saturation
amplitude is likely to be lower than that of the f -modes, and it is likely to persist
longer because of its low mutual friction.

As mentioned above, the r-mode instability of neutron stars spun up by accre-
tion has been more intensively studied in connection with the observed spins of
LMXBs. Papaloizou & Pringle [107] suggested the possibility of accretion spinning
up a star until it becomes unstable to the emission of gravitational waves and reaches
a steady state, with the angular momentum gained by accretion equal to the angular
momentum lost to gravitational waves. Following the discovery of the first millisec-
ond pulsar, Wagoner examined the mechanism in detail for CFS unstable f -modes
[108]. Although mutual friction appears to rule out the steady-state picture for f -
modes, it remains a possibility for r-modes [109, 110, 66, 111]. Levin [112] and
(independently) Spruit [71], however, pointed out that viscous heating of the neu-
tron star by its unstable oscillations will lower the shear viscosity and so increase
the mode’s growth rate, leading to a runaway instability. The resulting scenario is a
cycle in which a cold, stable neutron star is spun up over a few million years until
it becomes unstable; the star then heats up, the instability grows, and the star spins
down until it is again stable, all within a few months; the star then cools, and the
cycle repeats.

This scenario would rule out r-modes in LMXBs as a source of detectable grav-
itational waves because the stars would radiate for only a small fraction of the cy-
cle. A small saturation amplitude, however, lengthens the time spent in the cycle,
possibly allowing observability [113]. The steady state itself remains a possible al-
ternative in stars whose core contains hyperons or free quarks (or if the “neutron
stars” are really strange quark stars) [59, 53, 111, 114, 55, 56]. Heating the core in-
creases the bulk viscosity, and with an exotic core, this growth in the bulk viscosity
is large enough to prevent the thermal runaway and allow a steady state. In Bon-
darescu et al. [96] the nonlinear evolutions (restricted to 3 coupled modes) include
neutrino cooling, shear viscosity, hyperon bulk viscosity and dissipation at the core-
crust boundary layer, with parameters to span a range of uncertainty in these various
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quantities. They display the regions of parameter space associated with the alterna-
tive scenarios just outlined – steady state, cycle, and fast and slow runaways. In all
cases, the r-mode amplitude remains very small (∼ 10−5), but because of the long
duration of the instability, such systems are still good candidates for gravitational
wave detection by advanced LIGO class interferometers [96, 115, 42].
Dynamical nonaxisymmetric instability

Work on dynamical nonaxisymmetric instabilities is largely outside the scope
of this review. They are most likely to be relevant to protoneutron stars and to the
short-lived hypermassive neutron stars that form in the merger of a double neutron
star system. Unless the star has unusually high differential rotation, instability re-
quires a large value of the ratio T/|W | of rotational kinetic energy to gravitational
binding energy: comparable to the value T/|W | = 0.27 that marks the dynamical
instability of the l = m = 2 mode of uniformly rotating uniform density Newtonian
models (the Maclauring spheroids). This bar instability, if present, will emit strong
gravitational waves with frequencies in the kHz regime. The development of the in-
stability and the resulting waveform have been computed numerically in the context
of both Newtonian gravity and in full general relativity (see [116, 117, 118, 119] for
representative studies).

Uniformly rotating neutron stars have maximum values of T/|W | smaller than
0.14, apparently precluding dynamical nonaxisymmetric instability. For highly dif-
ferential rotation, however, Centrella et al. [120] found a one-armed (m= 1) instabil-
ity for smaller rotation, for T/|W | ∼ 0.14, but for a polytropic index of N = 3 which
is not representative for neutron stars. Remarkably, Shibata, Karino & Eriguchi
[121, 122] then found found an m = 2 instability for T/|W | as low as 0.01, for
models with polytropic index N = 1, representing a stiffness appropriate to neutron
stars. These instabilities appear to be related to the existence of corotation points,
where the pattern speed of the mode matches the star’s angular velocity [123, 124];
Ou and Tohline [125] tie the growth of the instability to a resonant cavity associated
with a minimum in the vorticity to density ratio (the so-called vortensity) . Collaps-
ing cores in supernovae are differentially rotating, and these instabilities of proto-
neutron stars arise in simulations of rotating core collapse [126, 127]. Because they
can radiate more energy in gravitational waves than the post-bounce burst signal
itself, interest in these dynamical instabilities is strong.
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