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INS['ABILITI]ES PATI'ERN FORMATION, AND TURBULENCE IN FLAMES——’ T T T

G.1. Sivashinsky
Department of Mathematics and Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

1. INTRODUCTION

Considerable progress has recently been achieved in the understanding of the
nature and character of spontaneous instabilities in premixed flames. The present sur-

vey is devoted to the latest theoretical results in this area, which have disclosed a deep

— affinity between flames and other nonequilibrium physical systems 'cépable of generat-.

ing regular and intrinsically chaotic structures.

1.1 Premixed flames. | It is well known that the rate of a cherrﬁcal reaction (¥) in a .
gaseous mixture is an increasing function of temperature; usually W ~exp(—FE/RT),
where £ is a constant, specific to the reaction and called its activation energy, and R is
the umvérsal gas constant. The larger £, the stronger the temperature-dependence of
the reaction rate. Under normal conditions (atmospheric pressure, room tempera-
ture), the reaction rate in the majority of combustible mixtures is negligibly smali. At
sufficienﬁly high temperatures, however, the reaction will take place at a substantial
rate. When a combustible mixture is ignited at some point, e.g. by a spark, a rapid
éx'otherrnicv reaction is initiateci; via conduction, this causes the temperature to rise in
the adjacent layer of the mixture, inducing a chemical reaction there, and so on. Thus,
the reaction, once begun, will spread through the mixture, converting it into combus-

tion products. This self-sustaining wave of an exothermic reaction is known as a

.premized flame.

The thermal mechanism of flame propagation just described has been known for a

long timé-(Mallard & LeChatelier 1883), but it was not until the work of Zeldovich and



Frank-Kamenetsky (1938) that a really sound theory was formulated for the problem of
steady plane flame propagation. Typical profiles of temperature (T), concentration
(C). and reaction rate (#) in a one-dimensional combustion wave are shown 1n Fig. 1.
T, is the temperature of the unburned cold mixture, at which the reaction rate is
negligibly small. C, is the initial concentration of. the reactant that is entirely con-
sumed in the reaction (limiting reactant). T, is the temperature of the burned gaLs,
usually 5 to 10 times 7,,. The thermal thickness I, of the flame is defined as Dg,,/ Uy,
where Dy, is the thermal diffusivity of the mixture and U, the propagation speed of the

flame relative to the unburned gas.

As the reaction rate is strongly temperature-dependent (E/ RT, ~ 20), the bulk of
the chemical reaction occurs in a narrow temperature interva.i AT ~ RTZ/ E around
the maximumi temperature 7,. This tempefature region corresponds to a thin layer of
width' ~ (RTy/ E)ly = L., outside which the chemical reaction may be neglected.

The ;;ropagation speed of ‘the flame (U,) is determined by balance between the
quantity of heat liberated during the reaction and the heat requife‘d to preheat- the

fresh mixture:.

Uy ~~NDep W(To) . (1)

For one of ‘the most rapidly burning mixtures (2H,+0;), one has U, ~ 10 m/sec and
lp ~0.0005 cm. For one of the most slowly burning mixtures (6% CHq + air), U, ~5

cm/sec rand Lip ~.0.05cm..

The mathematical theory of'st'eady'pldne flames is now — in principle - complete,
and there are several monographs on- the subject (e.g., Williams 1965, Frank-
Kamenetsky 1969, Kanury 1975, Glassman 1977, Zeldovich ef al. 1980, Buckmaster &
Ludford 1982). The situation is far less satisfactory in regard to non-steady phenomena
in curved flames. In particular, until recently there was a considerable gap between
theoretical and experimental reéults concerning the stability of a premixed flame

front. The marked progress achieved in-this field over the past five years is largely due .



to the asymptotic methods which have penetrated combustion theory from—other;

more classical areas of fluid mechanics.

1.2. Observed 'mstabih‘tieg. For combustion to be actually maintained in the form of a
stéady plane réaction wave, the structure in question must be stable under small dis-
turbances. Many flames are known to beﬁave like one-dimensional reaction waves
under normal laboratory conditions. However, some experiments have shown that
there is a class of flames that prefer a characteristic two- or three-dimensional struc-
ture rather than a plane flame. It has long been kxiown that the flame on a Bunsen
burner may split up into triangular flamelets, which form - instead of the usual cone -
a polyhedral pyramid, sometimes even rotating about its vertical axis (Smithells &

Ingle 1882, Smith & Pickering 1928). Later it was shown (Zeldovich 1944, Markstein

1949) that this manifestation of instability is not unique. In combustion in wide tubes, -

the flame frequently breaks up into separate cells, ~1 cm in size, in a state of constant
subdivision and recombination (Fig. 2). It was noticed that cellular structure tends to
appear when the combustible mixture is deficient in the light reactant (e.g., rich

hydrocarbon-air or lean hydrogen-air mixtures). Later it was pointed out that lean

hydrocarbon-air mixtures are also not absolutely stable. Under the action of external _'

large-scale disturbances, an originally smooth flame may exhibit sharp folds which are
maintained under further deformation and extension of the flame (Fig. 3). Moreover,
recent experimenﬁé on the propagation of lafge-scale flames in unconfined vapor
clouds have shown that cellular instability may also appear in lean hydrocarbon-air
mixtures, wﬂ:h cell size ~10 cm (Lind & Whitson 1977, Ivashchenko & Rumiantsev 1978).
Finally, we should mention cne of the most recent resuits, concerning spinning -propa-
gation of luminous ﬁames (Gololobov et al. 1981). Thus, even freely propagating ﬂamesv

represent an extremely rich physical system.



4

1.3. Fundamental assumptions of the theory. A theoretical description of flame pro-
~ pagation requires simultaneous solution of an equation system including both the
reaction-diffusion equations for each of the species and the equ.ations of motion of the
gaseous mixture. Since the propagation speed of the flame is significantly less than
the speed of sound, effects due to the dynamic compi'essibility of the gas fnay be
neglected. Hence, the dénsity of the gas may be considered a function of temperature.

and concentrations only.

It turns out that the approximation representing the combustion reaction as a
simple scheme:

Fuel + Oxidant -» Products

is sufficient for a qualitative description of the over'whe-lmingA majority of fluid-
mechanical phenomena in premixed flames. It is convenient to consider the reactants
as small additives to some "inert” gas; this justifies use of the independent-diffusion
approximation in calc{llating their diffusion rates. Moreover, this assumption enables
one to coqsider the gas almost homogeneous and thereby to simplify the equation of

state. The "inert"” gas (= dilutant) in experiments is frequently nitrogen.

As the reaction rate is strongly temperature-dependent (£/ RT, > 1), the reac-

tion zone rnay be considered infinitesimally narrow in comparison with the thermal

thickness of the flame (L. << I ). Thus, if one is interested in dimensions of the order

of gy or highef. it may be assumed that the reaction.isconc.entrated on a certain sur-
face - the flame front. The reaction rate (W) may therefore be replaced by a localized
source, the inténsity of which is determined by considering the processes that take
place within the reaction zone. This problem may be solved in the spirit of Zeldovich
and Frank-Kamenétsky (1938). For example, if the mixture is strongly non-
stoichiometric (say, the concentration of the oxidant is much higher than that of the
fuel), then the intensity of the localized reaction rate is proportional to

exp(—-£/2RT,), where T; is'the temperature-on the curved, nonsteady flame front,



which may differ from T, by a quantity of the order of RTZ/ E.

2. THERMO-DIFFUSIVE FLAMF. INSTABILITY

2.1. One-reactant linear theory. As early as 1944, Zeldovich proposed the following
qualitative explanation of the observation that cellular flames tend to form in mixtures
~which are deficient in the light reactant. Consider a curved flame front. It is readiiy
seen that cohduction of heat tends to decrease the curvature of the flame, i.e., it is a
stabilizing influence. Indeed, the parts of the chemical reaction zone which are convex
toward the fresh mixture give out more heat thanin a plané ﬁa.me. The resulting cool-
ing of the reaction zone slows down the forward-rushing parts of the flame. The con-
cave parts, cobversely.g'ive' out less heat than in the .plvane case, én’d so the tempera-
ture increases, and hence also the reaction rate. The concave parts of the flame move
forward at a higher speed than in a plane flamme. Thus the surface of the curved front is

smoothed out.

Diffusion, however, has the opposite effect. The parts of the reaction zone convex
toward the fresh mixture receive more fuel than in a plane flamme. The reaction rate in
the convex parts increases and the front curvature becomes greater. Thus diffusion

has a destabilizing effect.

Hence it is clear that if the molecular diffusivity D, of the limiting reactant is
~ sufficiently. greater than the thermal diffusivity [y, of the mixture, one can expect a

plane flame to be unstable. In the opposite case the flame front should be smooth.

The motion of a curved flame front is invariably accompanied by motion of the gas.
However, it is evident from the foregoing qualitative arguments 'that’hydrodynamic
effects play a m_érely secondary role in the onset of thermo-diffusive instability. For a
theoretical analysis of the phenomenon, therefore, it makes sense to disregard them.

Formally, this may be done by assuming that the derisity of the gas is a constant. In



]

that case thermal disturbances in the flame cannot be transformed into hydrodynamic
disturbances, and so the problem of hydrodynamics is completely divorced from the
.problem of combustion proper. In other words, when studying the motion of the flame

one can consider the hydrodynamic field to be assigned in advance.

~ In the model just described, linear analysis of the stability of a plane flame front to
long-wave - disturbances yields the following dispersion relation (Barenblatt et al.

1962): -
0 = D[ B(1Le) =1 ]E? @

where 8 = E(T, —Tu)/ RTy: Le = Din/ Dmg; is the Lewis number of the limiting reactant,
which is assu’mecﬁ to be strongly deficient; o is the rate of instability parameter; £ is
- the wave vector of the disturbance of the flame front, F ~ ezp(ot +ik-2). Thus, in _
agreement. with the p;evious qualitative analysis, the flame is stable 6nly if the mobility

of the lirx:ﬁting reactant is sﬁﬁiciently low (Le > Le, = 1-2/B). At Le < Le, the flame is

unsta-ble. In a typical flame, 8 ~ 15, and so Le, ~ 0.87.

However, as was pointed out later (Sivashinsky 1977a), a flame, though possibly
unstable to long-wave disturbances, is nevertheless always stable to short-wave distur-
bances. At Le ~ [e;, the dispersiori relation incorporating this relaxation effect of -

short-wave disturbances is
0= Dy [% B(1—Le)~1]k2—4Dy l3k* . ' (3)

Thus, when the flame is unstable (Le < Le.), there is a wavelength A; correspond-

ing to the highest amplification rate of small disturbances (maximum ¢g).

2.2. Nonlinear theory. What happens to the flame front after the development of pro-

- gressive disturbances?

First, it-is- readily seen that the disp,er.'siOn'relat_ion (3) may be expressed as a.

linéar: equation for the disturbance of the flame front:



__Fy + D% B(1=Le)=1]VRF + 4Dy lEVF = 0. (4

This equation obviously yields exponential amplification of long-wave disturbances at
Le < Le;. In reality, this amplification will be checked by effects represented by cer-
tain nonlinear terms not present in Eq. (4). The structure of these terms may be esta-

blished via the following semi-heuristic arguments.

Consider a curved flame front in the constant-density model. If the characteristic
radius of curvature of the flame is significantly greater than its thermal thickness &,
then the propagation speed of the flame relative to the gas may be considered a con- -
stant, equal to 0. In a coordinate system at rest with respect to the undisturbed
plane flame, the front z = F(z.,y.t) of such a curved flame is described by the eikonal
equation: |

Fy = U (1=V1+(VF)?) . g ()
~ Near the stability threshold Ze ~ Le. one expects that (VF)? « 1. Hence

Fo+ % U, (VFR=0. (6)

Comparing this weakly nonlinear equation, which disregards effects due to distortion of
the flame structure, with Eq. (4), in which these effects are included, one reaches the
reasq’nablé conclusion that ¥ U, (VF)? is precisely the nonlinear term missing from Eq.
(4). We f.hus obtain the following equation for the nonlinear evolution of the disturbed

flame front:
Fy + b Uy (VF)2 + Dy [% B(1—Le)—1]VRF + 4Dy lAVAF = 0. (7)

This equation is a rigorous asymptotic relation derived from the constant-density flarme

model, prbvided Le —=Le. is a small parameter (Sivashinsky 1977b).

Thus the main nonlinear effect in the evolution of the disturbed flame front turns
out to be of a purely kinematic nature. Qualitative arguments in favor of such a
mechanism of nonlinear stabilization were put forward in the past by Manton et al.

(1952), Markstein (1952), Petersen & Emmons. (1961), Shchelkin (1965), and Zeldovich



(1966), whose point of departure was the Huygens principle. Eg. (7) may be put in a
nondimensional, parameter-free form which is very convenient for numerical experi-

mentation:
®, + % (V)2 + VG + 470 =0 . (8)

Numerical experiments on this equation have shown that when a plane flame is dis-
turbed it ultimately evolves into a cellular flame, with characteristic cell size somewhat
greater than A;. This structure wasvesse_ntially nonsteady, the calls being in a state of
continual chaotic self-motion (Michelson & Sivashinsky 1977) (Fig. 4). The chaotic
behavior of cellular flames is indeed well kndwn from the classical experimer;ts of
Markstein (1949,1964). This phenomenon was recently reconfirmed in experiments .
peff’orrned by Sabathier et al. (1981) under carefully controlied flow conditions, which -
prevented turbulence in the upstream flow (Figs. 2,3).

Thus, despite its simplicity, the one-reactant constant-density model proved .
sufficiently rich not only to provide an:adequate description of the sensitivity of flame -
stability to the composition of the mixture and to predict the characteristic size of the
cells, but also to describe their chaotic self-motion. Quite likely the model also
describes polyhedfal rotating Bunsen flames (Buckmastei' 1982b) and the apparently
similar phenomenon of traveling waves that sometimes appear in place of chaotically

recombining cells (Markstein 1964, Sabathier et al. 1981).

However, the range of validity of the constant-density theory is limited. The point
is that, according to the theory, the cell size should increase tndeﬁnitely as the Lewis
number goes through its critical value Le,. This is in clear contradiction to experimen-
tal observations, which indicate that the cell size at the stability threshold is finite
(Markstein 1964,1970). As we shall show below (Sec. 3.4), near Le, the effects due to
the thermal expansion of the gas become significant, and this completely alters the -

nature of the instability.



to a strongly nonstoichiometriq mixture, when the depletion of the excess reactant can
be .neglected and its concentration considered constant. The model was extended to
nearly stoichiometric flames by Sivashinsky (1980) and Mitani and Joulin (1981), who
showed that the main fﬁnct.ional relationships of the oﬁe-reactant theory remain intact
provided that Le is interpreted as a suitably weighted average of the Lewis numbers of
the fuel and the oxidant. This yielded an explanation of the interesting observation
that cellular instability is observed in nearly stoichiometric mixtures even when there
is a certain excess of theiight component (Bregeon et al. 1978). A recently published
paper of Mitani and Williams (1980) on nearly stoichiometric hydrogen-air cellular
flames revealed that the predictions of the theory are also in qualitative agreement

with the experimental data on cell size.

2.4. Effects due to acceleration. Since combustion is aécompanied by thermal expan-
sion of the gas, it is clear that buoyancy will exert a stabilizing effect on downward-
propagating flames. As in the Boussinesq theory of natural convection, this effect may
be incorporated through a forcé term, while remaining within the vl.imits of  the
constant-density model (Matkowsky & Sivashinsky 1979). As a resﬁlt, the dispersion
relation (3) is augmented by addition of a stabilizing term g(1—¢)/2U,, where
£ = py/ Py is the thermal expansion coefficient of the gas. The nonlinear equation (8) is

modified to become
&, + % (VD)2 + V2 + 4V*d + GO = 0 . o (9)

Here G is‘ a nondimensional parameter proportional to the reciprocal of the Froud
number. When &G > 1/ 16 combustion is stable; this should be the case in sufficiently
- slow flames (Markstein & Somers 1953). Near the stability threshold, chaotic fluctua-
tions disapp.eaf and the flame takes on a steady, almost regular, cellular.struéture with

cell size A (Fig. 5)."

2’3._Sta.bilityﬁot.nearly;stoichiometric_ﬂames._"ﬂheﬁcaseﬁdiscussed~above7cor:r:esponds»fr ———
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2.5. Effects due to heat loss. It is known that inirich hydrocarbon-air mixtures cellular
stability is ljkély to be observed near the flame propagation limit. Thus, one might
expect that inclusion of heat loss should expand the range of unstable Lewis numbers.
Analysis of flame stability in the case of volumetric heat loss has fully corroborated this
conjecture (Joulin & Clavin 1979, Sivashinsky & Matkowsky 1981). With heat loss

included,.the dispersion relation (3) becomes .

4+?Ln et
Y(1+2iny)

oo
o= Dy |BBU=te) =12y Le 0

1+2Iiny J (10)

where v is the ratio of the propagation speed of the nonadiabatic flame to that of the
adiabatic flame (U,). As one approaches the flame propagation limit (y»1/Ve ), Le.
tends to unity, i.e., the instability regioﬁ expands.' Simultaneously one observes a
sharp increase in the instability rate o. Thus, for example, a downward-propagating

adiabatically stable flame may become unstable when heat loss is taken into account.

2.8. Effects due to stretching. In practical situations the flame is frequently situated
in a nonuniform flow field and is thenefore subjected to large-scale flame stretch (Kar-
lovitz et al. 1953). Recently, Law et al. (1981), Ishizuka et al. (1982), and Ishizuka and
Law (1982) have systematicaﬂy investigated the extinction and stability limits of
propéne—air flames in stagnation-point flow, which impdses a well-characterized sfra.in
rate on the bulk flame. Their results-show that, while lean flames are absolutely stable,
in-rich mixtures flame-front instability of various configurations may appear, depend-
ing on the strain rate. When the flow rate is so slow that the flame is situated in the
nearly one-dimensional flow field close to the burner surface, the ihst-ability is exhi-
bited in the form of a cellular flame. If one increases the flow rate, and thereby the
stfetch. the flame recedes from the burner surﬁacé and moves further into the stagna-
tion flow. It becomes star-shaped, with diametrically oriented ridges. Finally, with

sufficiently strong.blowing,. all- instabilitiesare: suppressed, and.the .flame-becomes
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smooth. Thus stagnation-point flow stabilizes the flame. . -

The mathematical problem of stability turns oﬁt to be quite unusual, in that the
classical stability’ analysis appears somewhat misleading. For example, in the two-
dimensional version of the problem the stagnation-pcint flow is ¥ = (~qz,qy), where ¢
is the flow rate parameter. The one-dimensional version of Eq. (8) for the disturbance

of a plane flame is modified to become (Sivashinsky et al. 1982) )
b, + %32 + by + 48y, + a(nd), =0 (11)
where a is a nondimensional parameter proportional to g. |
The solution of the linearized equation (11) may be expressed as a combination of
" functions of the type |
| $ = A(T)ezp (ikne ")

- where ' ' ‘ . (12)

A, = (k2 —2T—4kte 42T _q) 4 .

In the initial instant of time 'there‘ are growing modés- if a<1/186. Howéver, as
T+ the amplitude of the disturbance vanishes for any positive a. This is because with
elapsing time any harrﬁonic disturbance is stretched, while a disturbance of infinitely
long wavelength (k = 0) is damped out as ezp(—a7). Thus the flame front would seem
-to be absolutely stable for any positive a. However, this does not agree with the cellu-

lar flame structure observed at small flow rates (i.e., small a).

The apparent contradiction is resolved by observing that the neglected nonlinear
term represents. mode interaction, which continua.ll}" generates short-wave distur-
bances whose amplitudes may increase during certain time intervals. Hence, within
the framework of the original nonlinear theory, one can expect a permanently excited |
state of the flame front if « is sufficiently small. Numerical experiinents with the nbn-
linear equat.ion: (11) have confirmed that the flame front is cellularly unstable at

a < 0.01 and stable at a = 0.02.
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The nonlinear instability mechanism just described also oceurs, in the case of an
expanding spherical or cylindrical flame. In the latter case, for example, the evolution
equation is (Sivashinsky 1979):

: 4
U+ U+ e + S ¥ose = 0 N (13)

where ¥ is the disturbance of the expanding cylindrical front and ¥ is a suitably scaled
polar angle. Normalizing ¥ by the growing flame radius (\Il_= 78; Istratov & Librovich
1969) and introducing cartesian coordinates on the flame surface (79 =7), one can

bring Eq. (13) to the following form:
B, + B + By + 4By + -(08), = 0. (14)

The last term in this expansioﬁ can be. interpreted as a' stretch generated by the
vexpanding flame. Bécause of this stretch, linear analysis implies that the flame is abso-
lutely stable; hence it is inadequate. The difficulty may obviously be resolved by a dev-
ice similar to that employed for the stagnation-point flarne.

To conclude this section, we note that if Le is varied continuously with the flame

stretch held fixed, the cell size remains finite at the stability threshold.

2.7. Oscillatory and spmmng flammes. Analysis of the full dispersion relation for the
constant-density flame model shows that if % f(Le —1) >'5 the real part of the instability
rate g is positive, and so the flame may be unstable also at fairly large Lewis numbers
(Sivashinsky 1977a). Since the imaginary part of o does not vanish when the stability
threshold is crossed, the new propagation mode inducéd by instability of a plane flame

may consist of oscillations, traveling waves or even spinning.

In real adiabatic gaseous flames, the instability region is not likely to be reached.
However, as shown by Joulin and Clavin (1979), if there is volumetric heat loss the ins-

tability region is considerably expanded, and a real flame may well become oscillatorily
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unstable. The first announcement of spinning : flame propagation was made recently -by——% -

“Gololobov et al. (1981) in connection With an investigation of the acetylene decomposi-
tion flames. Since such com-busf.ion is accompanied by high radiation heat loss (due to
inf.ensive sooting), .t.he eflfect observed may well be ﬁhe first corroboration of the
theoretical possibility discussed above. Earlier., oscillatory and spinf:ing ﬁémes had
been observed only in gasless combustion of condensed systems (Merzhanov et al.
1973). In these systems, the diffusivity of the fuel is zero (Le = =) and the instability
region is easily reached. The pertinent theoretical analysis was presented in Matkofv-
sky and Sivashinsky (1978) and in Sivashinsky (1981). |

Qualitatively new modes of oscillatory insf.ability were discovered in investigation
of flames stabilized on flat porous flame-holders. A steady theory of such burners was
developed by Carrier and Fendell (1978), Ferguson and Keck (1979), and Clafke‘ and
Melntosh (-1980). It was observed (Margolis 1980,1981; Matkowsky & Olag_unju“ 1981;
Buckmaster 1982) that. conductive heat loss to the burner may be sufficient to bring on
oscillatory instability even for relatively small Lewis numbers. As shown recently by
Joulin (1981,1982), flame oscillation is described by a delayed nonlinear differential

equation of Hutchinson type:

$,+ % Bil—exzp[—d(T-R) =0 (15)
where ¢ is the displacement of the flame front relative to its equilibrium position, and
B is a number defined by the physico-chemical parameters of the system."

If B > n/2, the equilibrium state (& = 0) becomes unstable and the system begins
to perform saw-tooth oscillations. This o’s'cillatorymode is in agreement with earlier

numerical studies and certain experimental observations (Margolis 1980, 1981).
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3. HYDRODYNAMIC FLAME INSTABILITY

3.1. Linear theory. In our discussion of thermo-diffusive flame instability, we ignored
the effect of thermal expansion of the gas and, by the same token, the interaction of
the flame with the hydrodynamic disturbances that it generates. It was Darrieus
(1938) and Landau (1944) who made the first analysis of flame stability, assuming that
the flame is a density jump propagating at a.constant speed in an incompressible, non-
viscous, nonconducting fluid. This approach. is -quite legitimate if one is interested in
disturbances of wavelength that considerably exceed the thermal thickness &, of the
flame. Since the Darrieus-Landau model dbes not include any characteristic length, it
is clear that the instability rate o must depend on the flame speed U, and the distur-

bance wavevector £ as follows:
oc=0gUk , k =|E| (16)

where () is a nondimensional function of the parameter &€ = pp/ py, — the ratio of densi-
ties of the burned and unburned gas. Qg(e) = (Ve+e2—€3 — £)/ (1+¢) is positive, for all
€ < 1, that is, the flame is unstable to disturbances of all wavelengths. However, this is
in conflict with experiment. Under normal laboratory conditions, one often observes

smooth steady flames stabilized in quite wide tubes (diameter ~15 cm).

According to Eq. (16), short-wave disturbances should increase at a higher rate
than long-wave disturbances. But it is.precisely for short-wave disturbances that the
Darrieus-Landau model breaks down, since they induce distortion of the flame front
structure and are liable to alter its propagation speed. For this reason, later work on
bhydrodynamic flame instability was aimed at correcting the Darrieus-Landau solution
(16) in the region of short-wave disturbances. The first important work in this diréc-
tion was due to Markstein (1951). Markstein suggested that one characterize the effect
of the distortions of flame structure by a certain phenomenological constant, having
the dimension of length, relating the flame propagation speed to the curvature of the

front. The result was that a plane.flame is-stable-to short-wave:disturbances .and
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unstable to long-wave disturbances. This would mean that a plane flame rriéy' be
observed only when combustion takes place between walls that prevent the appearance

of long-wave disturbances.

Markstein's model was then generalized by Eckhaus (1961), who showed that the
speed of a curved flame also depends on the gradient of the tangential component of

the gas velocity along the front (i.e., the flame-stretch).

The Markstein theory yields stabilization of short-wave disturbances only when the
phenomenological constant has a certain sign. However, it may also have the opposite
sign, due, say, to the possibility of thermo-diffusive instability. In that case short-wave
disturbances would provide an additional destabilizing factor.

The _uncertainties inherent in the Markstein theory stimulate& new research, in
which ﬂame‘instabih'ty was investigated taking the flame structure into consideration,
i.e., effects due to heaﬁ cond,uc,;tion. diffusion, viscositf. and chemical kinetics. How-
ever, the difficulties encountered in the process were so great that the investigators .
were forced to make various arbitrary assumptions concerning the structure of the
disturbeﬂd.ﬂame front, in order to avoid insurmountable mathematical problems. As a
consequence, the results obtained were in conflict not only quantitatively but even
qualitatively. For example, until recently it was unclear whether viscosity is a stabiiiz-
ing or déstabilizing- factor in lames (Markstein 1964).

Istratov and Librovich (1966) were the first to realize that the determination of
corrections to the Darrieus-Landau solution is a singular perturbation problem. The
point is that long-wave disturbances of the flame front create hydrodynamic distur-
bances, extending on both sides of the front for a distance of the same order as the
wavelength of the di_sturbanée (2n/ k). Thus, the structure of the disturbed flame has
at least two. characteristic lengths, 4, and 2n/k (> l;). As there was then no sys-
tematic technique for- the solutiop of such problems, a mathematically consistent

implevmentation of this idea was achieved only recently by Frankel and Sivashinsky
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(1982) and Pelce and Clavin (1982). They obtained the following two-term expansion of

the rate of instability parameter o:
o= QoUbk - QID”JCZ v ) (17)
where

g(1—€)?—¢clne (2o +1+¢) _ e(1+Q)(+Q0)B(1~Le) 1-1/¢ In(1+£)d¢
2(1-)[e+(1+£)Q0] 2(1-¢)[e+{1+£)Q] { ¢ '

Ql'-'-

The correction to the Darrieus-Landau solution turned out to be independent of the
Prandtl number. Thus, unlike the effects of heat conduction and diffusion, viscosity
exerts a secondary effect on flame stability, which manifests itself, apparently, in
higher-order terms of the expansion in powers of kls. These terms may, however, be
significant when (; < 0, when hydrodynamic flame instability combines with thermo-
diffusive instability, and also if {;, when positive, is also small.

It should be noted that when £ = 0.2, , is negative if f(1—Le) > 2.66. Thus, in
comparison with the constant-density model, inclusion of thermal expansion of the gas

somewhat narrows down the thermo-diffusive instability region.

When Q, > 0, rEq. (17) implies ‘the existence of a wavelength A, correspondiﬁg to
max1mum amplification rate of small disturbances. If one assumes that the nonlinear
~ evolution ultimately produces a. structure with this characteristic length (Rayleigh,
principle) then, for example, for a typical slow flame (¢ = 0.2, 8 = 15, Le = 1.2, lg, =02
mm), one obtains A, ~ 100, ~2icm). Structures with this characteristic cell size
should have been observed in the combustion of lean hydrocarbon-air mixtures in wide
tubes (~ 10 cm). However, as is well known, this is not the case. The nature of the
onset of hydrodynamic instability is clarified only after nonlinear effects have been

incorporated.
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3.2. Nonlinear theory. Arguments analogous to those.employed in the theory of
thermo-diffusive instability (see Sec. 2.2) yield the following evolution equation for the
flame front: |

Fy + % Up(VF)2 = O\ Dy VBF + QoUy IF} : (18)

where
1 °|* R(2-2) gr( g
= —— [k *@-2) (2 t)dkdz" .
1Py = e [IEeBer )

When the thermal expansion of the gas is low (i.e., weak hydrodynamic instability), Eq.
(18) is a rigorous asymptotic expanéion,_ which can be derived from the full hydro-
dynamic equation system of the ﬂéme (Sivashinsky 1.9v7'?b),3 |

Contrary to the predictions of the linear theory, nume’r-iéal experiments onithe
‘one-dimensional version of Eq (18) in an interval of width 10 A; have shown that, during
nonlinear evolution, there appear on the flame front surface only one or two steady
folds, strongly poifnte.d: toward the burned gas (Michelson & Sivashinsky 1977). If the
folds lie at the ends of the interval, the flame will obviously p‘resent a smooth surface,
convex toward the fresh mixture. Thus, hydrodynamic instability alpne is sufficient to
ensure that a flame in a wide tube will be curved (Uberoi 1959). A curved flame gen-
erates a gradi'ent in the tangential component of the gas velocity along the front (i.é.,
stretch), and this is apparently what gives this configuration its remarkable stability
(Zeldovich et al. 1980.'-1981. see also Sec. 2.8). '

Figure 6 shows the results of numerical solution of Eq. (18) in a squa.x"e S5hg XBA, .
Such folds are fféquently formed when the flame crosses various kinds of obstacles,
such as electrodes or a widely-spaced wire grid (Markstein 1964, Palm-Leis & Strehlow
1969) (Fig. 3). In view of the stability of these folds (which are maintained even when

the flame is stretéhéd). it v}asvsuspected in- the past'that they are yet another variety

3n the limiting case of low thermal expansion, the gas flow is irrotational both ahead of the flame front
and behind it. Thus, contrary to a periodically expressed opinion, the eflect of vorticity generation on flame
stability is not decisive,
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of spontaneous flame instability (Markstein 1964,1970).

The effects of diffusion and heat conduction are obviously most significant in the
zone of the cusp, where the curvature of the front is extremely large. Outside this
region the flame may be described perfectly well by the following truncated equation,

corresponding to the Darrieus-Landau model:
Fe + % Up(VFR = QoUp ILFY . | (19)

Sinice the Darrieus-Landau model does not involve any characteristic length, Eq. (19)
permits the existence of.ﬂames. in which the distances between consecutive folds are
arbitrarily 1afge. Arecent anaiysis of this equation by McConnaughey (1982) has shown
that VF' has a logarithmic singularity at the cﬁsps of the folds. Thus, the flame front is
infinitely sharp at the cusps and, cb'nsequently, the structure of such flames is essen-

tially different from that of a Bunsen wedge.

3.3. Thermal expansion induced cellular lames. If the distance between the folds is
increased indefinitely, the stabilizing effects of stré'tching and curvature are weakened
and one expects new folds to appear. Thus, in order to investigate the fully developed
~hydrodynmnic instability one must consider sufficiently large-scale flames. Experi?
ments of this type were recently carried out, in connection with the investigation of
accidental industrial explosions, by Lind and Whitson (197‘?). and Ivashchenko and
Rumiahtsev (1978). Lind and Whitson experimented with lean hydrocarbon-air mix-
tures in 0.05 mm thick polyethylene film hemispheres of 5 m and 10 m radius. Ivash-
chenko and Rumiantsev carried out similar experiments in 0.05 to 0.08 mm thick
rubber‘ spherical shells of 2.5 m radius. It was noticed that, as the flame expanded, it
became rough, with a "pebbled” appearance. This structure increased in size to about
0.4 to 1.0 m, with finer structure éuperimposed. It was observed that for systems with
markedly different burning velocities the measured space velocity was.1.8 to 1.8 times

the: expected value, calculated from the normal burning:velocity measured in:the.
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laboratory (Lind & Whitson 1977).

Ivashchenko and Rumia_.ni’.sev~also noted that when the sphere radius reached ~5
cm the flame became cellular, with cells about 1 to 2 cm in size. As the flame sphere
grew the cell size increased, reaching ~6 to 10 cm for sphere radius ~0.3 to 0.5 m. The

maximum speed was 1.5 to 2 times the speed of the undisturbed spherical flame.

Stimulated by these expgrimental observations, Michelson and Sivashinsky (1982)
undertook new numerical experiments on Eq. (18), considering a wider interval (40 A;):
They found that, alongside the deep folds on the flame, there indeed appeared a fine
stfucture with a well-defined cell size (~5 A.). In the example cited previously, this
implies: a cell size of ~10 cm. Here the deep foldé méy evidently be associated with the
large-scale structures 6bsérved by Lind and Whitson. The numerical experiments_ also
indicate that the fine structure is nonéteady. The cells continually and chaotically
recombine, as occurs in thermo-diffusive instabiii_ty. |

Of the earlier experimental observations 6f hydrodynamic instability in flames, wé
would like to mention the work of Simon and Wong (1953), studying flames in a rich
methane-air mixture filling a soap bubble of initial radius ~5 cm. When the flame
radius was ~1.5 cm, the initially smooth flame front took on a cellular appearance, and
sim'ultaiieously the lame was seen to accelerate-. However, the relatively small volume
of the n:u'xFure did not permit a suﬁiciently developed cellular instability and the wrin-

kled flame did not reach the uniform propagation mode.

'3.4. Cellular flames near the thermo-diffusive instability threshold If Q, is small (ie.,
Le is near Le.), higher-order terms of the expansion in powers of ki, become impor- -
tant.v This _para.rnef.er range merits close atterition.-s'mce it is here that the thermo-
diffusive model of a cellular flame breaks down (see Seé. R.2). Moreover, almost any
mixture may be brought to this range if the ratio of the re‘acta.nt. concentrations is

suitably adjusted. However, computation of higher-order terms for the dispersion
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relation (17) is an extremely cumbersome task. Up to the present, this has been done
only in the case of low thermal expansion, when one actually obtains a linear combina-
tion of the dispersion relation (16) and the relation (3) of the thermo-diﬁusive. theary
(Sivashinsky 1977b). Numerical.. experiments on the corresponding fourth-order
integrodifferential equation (Michelson & Sivashinsky 1977) have shown that, if O, = 0
(i.e., Le = Le;), one obtains a chaotically recombining cellular structure with finite cell
size ;')f the order of A;. The cells, remaining finite, disappear for small positive Q,. ie.,
when Le becomes greater than le,. Thus, near Le; the dominating factor responsible
for cellular instability may be of a purely hydrodynamic nature. We emphasize that,
regardless of whether , is positive, the characteristic cell size in this case, as in the
case of purely thermo-diffusive instability, is determined by the fourth-order terms.
iMoreover, sincé Le, < 1, the temperature variation along the front is quite similar here
to that in purely thérrno-diffusive cells (Sec. 2). This is one of the essential differences
between near-Le; thermal-expansion induced cells and the large-scale cells discussed

1

in Sec. 3.8.

3.5. Effects due to acceleration. Hydrodynamic instability of downward-propagating
flames becomes weaker and may even be completely suppressed by buoyancy effects
(see also Sec. 2.4). These effects were discussed in detail by Markstein (1964) in his
phenomenological theory. The problem was recently reconsidered by Pelce and Clavin
(1982), within the framework of a complete hydrodynamic flame model, consistently
incorporating the effects of transport and chemical kinetics. In contradistinction to a
freely propagating flame, a flame propagating in the presence of a stabilizing accelera-
tion is stable to long-wave disturbances. Near the st‘ibuity thr’.eshold. the unstable
modes are concentrated near A, - the wavelength cor’responding to maximum
amplification rate of ¢. Consequently, hydrodynamic instability should here be mani-

fested as cells of size ~A;. This structure-has indeed been observed in flames situated
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in a periodically varying acceleration field induced by vibrations of the gas flow (Mark--—— ———

stein 1964,1970). We emphasize that cells of size ~1 cm appear here even in flames in

lean hydrocarbon-air mixtures, which do not exhibit cellular instability under normal

conditions.

* A similar type of fixed-size structure may also be induced by- Sscﬂlatio'ns of the
flame-holder (Petersen & Emmons 1961) or by large-scale fluctuations of turbulent gas

-

flow (Palm-Leis & Strehiow 1969).
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FIGURE CAPTIONS

Profiles of temperature, concentration, and reaction rate in a one-
dimensional combustion wave.

Rich propane-air cellular flame in state of chaotic self-motion. (Courtesy of
P. Clavin, University of Provence,Marseille. Originally in F. Sabathier et al.

- (1981).)

Free flame balls obtained in a low-speed laminar flow by spark ignition. (a) .
Cellularly stable lean butane-air flame. (b) Cellularly unstable lean
hydrogen-air flame. (Courtesy of R.A. Strehlow, University of Illinois, Urbana,
Illinois. Originally in R.A. Strehlow (1969).)

Cellular flame in a state of chaotic self-motion. Numerical solution of Eq. (8)
in SA; X5A¢ square with periodic boundary conditions.

One of the level curves of a steady, nearly regular flame near the stability
threshold. Numerical solution of Eq. (9) in 10A,x10A, square with periodic
boundary conditions; &G=2/ 33. '

Thermal-expansion induced steady folds: Numerical solution of Eq. (18) in
S5A¢ X5A; square with periodic boundary conditions.
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Figure 2
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Figure 3
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