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The study of advanced artificial electro-magneto-elastic (EME) materials recently
connects the material science with the electrodynamics. In particular, EME mate-
rials established a new research direction, which provides the fruitful ideas for the
advanced engineering and medical field applications. In the present paper, we intro-
duce a continuum mechanics-based method to analyze an electro-magneto-mechanical
instability (EMMI) phenomenon of a smart actuator made of an EME material.
The proposed method is based on the nonlinear theory of electro-magneto-elasticity
followed by the second law of thermodynamics. We develop an analytical EMMI
model for a smart actuator through a new amended energy function. This amended
energy function accounts the electro-magnetostriction phenomenon for a class of
an incompressible isotropic EME material. Additionally, the amended energy func-
tion successfully resolves the physical interpretation issue of the Maxwell stress
tensor in large deformation. The formulated continuum mechanics-based EMMI
model is also compared and validated with an energy-based EMMI model exist-
ing in the literature. © 2018 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5055793

I. INTRODUCTION

Electro-magneto-elastic (EME) materials which are mechanically flexible, bendable, and stretch-
able, may able to provide a quick response in the presence of an electromagnetic field. By filling the
electro-active and magneto-active particles in a rubber-like matrix, an electro-magneto-mechanical
field coupling may be achieved in the soft materials. EME materials are also known as smart materials,
which have attracted a significant interest due to their potential use in engineering and medical field
applications. Engineering applications include human-like robots, stretchable electronics, actuators,
and energy harvesting devices etc.1,2 Similarly, medical applications include detection of various
physiological activities, health-care monitoring, human motion detection, and diagnosis etc.3,4

In the literature, a well-known artificial electromagnetic material was discovered in the 1940s,
that may able to produce magnetoelectricity5 with a field application. Liu and Sharma6 studied an
electromagnetic coupling phenomenon in soft material. They6 found that a very few material sup-
port the electromagnetic coupling due to the stringent symmetry and diametric electronic structure
of the ferromagnets and the ferroelectrics. But, the magnetoelectricity connects the electromagnetic
degrees of freedom through a third order parameter known as the mechanical deformation. In the
parallel work, Alameh et al.7 and Krichen et al.8 proposed a new mechanism to develop an arti-
ficial soft electromagnetic material. An extensive theoretical, as well as experimental works9–11

related to electro-mechanical instability (EMI) in smart actuators, are presented in the literature.
To the best of our knowledge, only Alameh et al.12 analyzed an EMMI phenomenon of a smart
actuator. Alameh et al.12 studied EMMI phenomenon of smart material within the framework of
an energy-based approach. Additionally, they12 also proposed the design of the wireless energy
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harvesting process due to the remotely applied magnetic fields. An EME material shows an EMI
phenomenon in the absence of the magnetic field. In the same way, an EME material may also be
considered as a hyperelastic material in the absence of the electromagnetic field. It is assumed that
the material is homogeneous, incompressible, and isotropic. With an application of the electromag-
netic field, the complete deformation and the stress fields may be obtained from a single energy
density function. This necessitates for proposing a new energy density function, which incorporates
the corresponding energy contributions of the EME materials.

Large deformation and instability in the soft matter are the two factors, which are interrelated
strongly with each other. As the deformation range increases, the requirement of the instability
controlling efforts to overcome the failure also increases. These efforts may fall into the category of
theoretical advancement or experimental improvements for the instability analysis of smart materials.
In line with the theoretical advancement, the modeling methods play a vital role in the analysis of an
EME deformation of a continua. Therefore, the primary goal of the present study is to present a new
method to analyze an EMMI phenomenon of a smart actuator within the framework of the second
law of thermodynamics.

Herein, we present the second law of thermodynamics-based deformation approach in EMMI
phenomenon of an EME material through an amended energy function. Incorporation of the second
law of thermodynamics-based method is our one of the major contribution in this work. Addition-
ally, we also made an effort to describe the combined electro-magneto-elasticity with least material
parameters for a class of an incompressible isotropic EME material. The amended energy function
also successfully resolves the difficulty in the physical interpretation of the Maxwell stress tensor
existing in the literature.13 In contrast to the conventional energy harvesting method, the interaction
of an additional magnetic field provides an opportunity to enhance the energy harvesting power from
the soft dielectrics.

To fulfill our objectives the present work is organized as follows. In section II, an electro-magneto-
elastic deformation theory is presented with a new amended form of energy function. In section III,
an electro-magneto-mechanical-instability (EMMI) model is developed for a smart actuator within
the framework of the second law of thermodynamics. Next, in Section IV, the effect of the controlling
parameters, namely, pre-stretch, electric field, and magnetic field on an EMMI phenomenon of the
smart actuator are discussed in comparison with the continuum mechanics-based and an existing
energy-based method. Finally, Section V explains some concluding remarks.

II. NONLINEAR ELECTRO-MAGNETO-ELASTICITY

In this section, a brief overview of the fundamental field equations of physics and the constitutive
theory related to an EME material deformation14 are developed.

A. Kinematics

Consider a stress-free configuration of an EME material in the material space β0. The material
point is represented by the position vector X, with respect to an arbitrarily chosen origin in refer-
ence configuration β0. During deformation, the material point X deforms with an application of the
electro-magneto-mechanical loading. Now, the same material point X may be represented with a new
position vector x = κ(X); in the current configuration β, wherein κ denotes a one-to-one deformation
mapping. Therefore, the deformation gradient tensor F for an incompressible isotropic material and
its determinant J may be defined as follows

F=Gradκ =
∂x
∂X

, J = detF= 1, (1)

wherein Grad represents the gradient operator with respect to the position vector X in the reference
configuration β0.

B. Electromagnetic field balance equations
1. Eularian form

The electric field variables for an EME deformation in the current configuration β are denoted
by E, D, and P; the electric field vector, the electric induction or electric displacement vector, and the
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polarization density, respectively. Similarly, the magnetic field variables are denoted by H, B, and M;
the magnetic field vector, magnetic induction vector, and magnetization density vector, respectively.
Now, for the condensed matter, these electromagnetic field variables are related as follows

D= ε0E + P, B= µ0[H + M], (2)

wherein ε0, µ0 are the electric permittivity and the magnetic permeability of free space. The widely
used form of the equation (2) in an isotropic media may be represented as follows

D= ε0ε rE, B= µ0µrH, (3)

wherein ε r , µr are the dielectric and the diamagnetic constants. Now, considering the quasi-static
case in the absence of free currents and the free electric charge, the electric field E and the electric
displacement D satisfy Maxwell’s equations15 as follows

curlE= 0, divD= 0,

curlH= 0, divB= 0,
(4)

wherein curl and div represent the curl and divergence operators, with respect to the position vector
x in the current configuration β.

2. Lagrangian form

In the preceding sub-section, the relations are formulated in the Eulerian form with the operators
div and curl. Now, we reformulate the same relations in the reference configuration β0, and the new
operators Div, Curl are connected with respect to the independent spatial variable X. The electric field
variables in the Lagrangian form may be represented as El, Dl, and Pl. Similarly, the magnetic field
variables in the Lagrangian form may be represented as Hl, Bl, and Ml. The relationships between
these electromagnetic field variables may be obtained as follows

El =FT E, Dl =F−1D,

Hl =FT H, Bl =F−1B.
(5)

These above relations (5) ensure that the equation (4) is equivalent to

CurlEl = 0, DivDl = 0,

CurlHl = 0, DivBl = 0.
(6)

C. Constitutive relations

The constitutive relations for an incompressible isotropic EME material are formulated through
the independent electromagnetic field variables F, E, and H. In an isothermal condition, the free
energy density function for an incompressible isotropic EME material depends on these independent
field variables as follows

ϕ= ϕ(F, E, H). (7)

The inter-relations between these electromagnetic field variables in Lagrangian form may be
represented as follows

El =FT E, Dl =F−1D, Pl =F−1P,

Hl =FT H, Bl =F−1B.
(8)

In Lagrangian form, we consider F, El, and Hl as the independent field variables for an EME
deformation of a continua, and the free energy function φ(F, El, Hl) may be defined with the relations
(8) as follows

φ(F, El, Hl)= ϕ(F, F−T El, F−T Hl). (9)

Following the previous studies,16–18 the total stress tensor T based on the concept of Maxwell stress
for an EME material deformation may be obtained as follows

T=S + P ⊗ E + ε0[E ⊗ E −
1
2

(E.E)I] + µ−1
0 [B ⊗ B −

1
2

(B.B)I], (10)

wherein S represents the Cauchy stress tensor. This direct approach for obtaining the total stress
tensor through superposition of stresses may lead to a conceptual inaccuracy, especially in large
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deformation of a continua.19,20 Additionally, the stress superposition is physically irrelevant in terms
of the definition of stress. There is an issue related to the physical interpretation of the Maxwell
stress tensor in large deformation as well. The deformation dependency on the electric permittivity
and the magnetic permeability plays a vital role at large deformation condition.21 Therefore, a new
amended form of energy density function Ω = Ω(F, El, Hl), which incorporates the Maxwell stress
contribution for the EME materials may be defined as follows

Ω(F, El, Hl)= ρφ(F, El, Hl) −
1
2
ε0El.(b−1El) +

1
2
µ−1

0 Bl.(bBl), (11)

wherein b = FFT represents the left Cauchy green deformation tensor. In addition, the above
amended energy function (11) represents a general form of the combination of electrical energy,
magnetic energy, and the interaction energy. In other words, this shows the representation of super-
position of the possible forms of energies contributed through individual as well as interaction
aspects. Unlike the superposition of stress contributions from the mechanical and the electromagnetic
domains as described in (10), we prefer the superposition of energy. This amended energy function
Ω(F, El, Hl) also successfully overcomes the hurdle of the physical interpretation of the Maxwell
stress in smart material in large deformation.11 For the detail discussions on this issues related to the
physical objectivity of the Maxwell stress, we refer to the previous studies19,20 and the references
therein. The thermodynamically consistent constitutive relations for an incompressible isotropic EME
material may be obtained from the Clausius-Duhem inequality. Assuming an isothermal conditions,
the inequality may be written in terms of the amended energy density function Ω(F, El, Hl) as(

T − F
∂Ω

∂F

)
: Ḟ −

(
Dl +

∂Ω

∂E

)
: Ė −

(
Bl +

∂Ω

∂H

)
: Ḣ ≥ 0. (12)

Now, the set of constitutive laws for an incompressible isotropic EME material may be obtained as
follows

T=−pI + F
∂Ω

∂F
, Dl =−

∂Ω

∂El
, Bl =−

∂Ω

∂Hl
, (13)

wherein p is the indeterminate hydrostatic pressure, equivalent to the Lagrange multiplier associated
with the incompressibility constraint.

The amended energy density functionΩ for an incompressible isotropic EME material may also
be represented in the invariant form Ω(I1, I2. . ..I9) as well. These invariants may be obtained from

the three isotropic tensors namely the left Cauchy green deformation tensor b = FFT , El ⊗ E
l
, and

Hl ⊗ H
l

as follows

I1 = trb, I2 =
1
2

[(trb)2 − tr(b2)], I3 = detb= 1,

I4 = [El ⊗ El] : I, I5 = [El ⊗ El] : b−1,

I6 = [El ⊗ El] : b−2, I7 = [Hl ⊗ Hl] : I,

I8 = [Hl ⊗ Hl] : b−1, I9 = [Hl ⊗ Hl] : b−2.

(14)

From the relations (11), (13) and the definitions of invariants in (14), explicit form of T, D, and B
may be obtained as follows

T=−pI + 2Ω1b + 2Ω2[I1b − b2] − 2Ω5E ⊗ E − 2Ω6
[
b−1E ⊗ E

+ E ⊗ b−1E
]

+ 2Ω8bH ⊗ bH + 2Ω9[bH ⊗ b2H + b2H ⊗ bH],

D=−2[Ω4b +Ω5I +Ω6b−1]E,

B=−2[Ω7b +Ω8b2 +Ω9b3]H,

(15)

wherein notationΩi denotesΩi =
∂Ω

∂Ii
, i = 1, 2, 3..., 9. The above equation (15) represents the standard

constitutive relations for an incompressible isotropic EME material.
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III. ELECTRO-MAGNETO-MECHANICAL INSTABILITY (EMMI) MODEL FOR AN EME
MATERIAL BASED SMART ACTUATOR

A. Geometry and deformation

Consider a smart actuator made of an EME material with the coordinate systems (X1, X2, X3)
for the reference configuration β0, and (x1, x2, x3) for the current configuration β. The compliant
electrodes cover the top and bottom of the actuator plates as shown in the FIG. 1. The smart actuator
deforms with an electromagnetic field application by switching on the voltage and the magnetic poles
intensity in X1 direction. The original shape is free from any electro-magneto-mechanical load in
the reference configuration. However, the current configuration is subjected to an electro-magneto-
mechanical load applied through the voltage with a magnetic field source. The domain occupied by
an EME material actuator as shown in the FIG. 1, may be represented as follows

β0 = {X ∈<3 :−H ≤ X1 ≤H,−L1 ≤ X2 ≤ L1,−L2 ≤ X3 ≤ L2},

β = {x ∈<3 :−h ≤ x1 ≤ h,−l1 ≤ x2 ≤ l1, l2 ≤ x3 ≤ l2},
(16)

wherein (H, L1, L2) and (h, l1, l2) are the geometrical dimensions of a smart actuator in the reference
and current configuration, respectively.

Further, consider the smart material deforms homogeneously, and assumed to be incompressible
and isotropic. Then, the stretch in the principal directions may be defined as follows

λ1 =
h
H

, λ2 =
l1
L1

, λ3 =
l2
L2

. (17)

The deformation gradient tensor F, the electric field vector E, and the magnetic field vector H for an
above electro-magneto-elastic deformation may be obtained as follows

F= λ1e11 + λ2e22 + λ3e33, E=E0e1, H=H0e1. (18)

FIG. 1. Actuation of a smart actuator made of EME material under electro-magneto-elastic deformation condition.
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Now, the associated invariants of the given electro-magneto-elastic deformation (16) in terms of
principal stretches may be obtained from the relations (14) and (18) as follows

I1 = λ
2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ
−2
1 + λ−2

2 + λ2
1λ

2
2,

I3 = λ1λ2λ3 = 1, I4 = λ
2
1E2

0 ,

I5 =E0
2, I6 = λ

−2
1 E2

0 ,

I7 = λ
2
1H2

0 , I8 =H0
2, I9 = λ

−2
1 H2

0 .

(19)

The stress components in the principal directions may also be obtained from the relation (15)1 as
follows

T11 =−p + 2Ω1λ
2
1 + 2Ω2(λ2

1λ
2
2 + λ2

1λ
2
3) − 2Ω5E2

0 − 4Ω6λ
−2
1 E2

0 + 2Ω8λ
4
1H2

0 − 4Ω9λ
6
1H2

0 ,

T22 =−p + 2Ω1λ
2
2 + 2Ω2(λ2

1λ
2
2 + λ2

2λ
2
3),

T33 =−p + 2Ω1λ
2
3 + 2Ω2(λ2

1λ
2
3 + λ2

2λ
2
3).

(20)

B. A new electro-magneto-elastic energy density function

We recall the general expression of the nine invariants (14) related to an amended energy function,
and we may discard I3 = 1 (incompressibility constraint) essentially. Thus, the generalized energy
density function will have the eight such independent invariants. However, our target is to propose
a new material model with least material constants for a class of an incompressible isotropic EME
material. Therefore, a Mooney-Rivlin type EME material model for an incompressible, isotropic
EME material may be generalized through the concept of an amended energy function (11). Our
effort is to propose an amended energy function with least material parameters for an isotropic EME
material. The energy density function which includes elastic, electric and magnetic contributions is
proposed as follows

Ω=C1(I1 − 3) + C2(I2 − 3) −
ε0

2
(C3I4 + C4I5) −

µ0

2
(C5I7 + C6I8), (21)

wherein C1, C2, . . .., C6 are the material parameters. The elastic, electric and magnetic contributions
may also be extended together with the coupled electro-elastic, magneto-elastic, electro-magneto, and
EME contributions. These extended coupled contributions may use eight or more material parameters
depending on the coupling extensions. It is expected that with the use of eight material parameters,
we may represent the coupling phenomenon very effectively. However, the proposed EME material
model (21) is the simplest possible form of energy density functions with least material parameters.
We have neglected the I6 and I9 invariant effect in the proposed energy function. The physical electro-
elastic and magneto-elastic interaction represented by these I6 and I9 invariants, respectively have
already been adopted with the I5 and I6 invariants.

It is customary to mention that in the absence of an electromagnetic field, the proposed energy
function (21) represents the classical Mooney-Rivlin type strain energy density function, and C2 = 0
retains the Neo-Hookean energy form. The proposed EME material model also successfully fulfills
all the fundamental restrictions on the form of energy density function presented by Darrijani et al.22

The above energy function is only one of the various possible forms of the energy density function
(21) for an isotropic EME materials. These possible forms of energy density functions provide a
direct road-map for the analytical advancement of the smart material deformation.

C. Classical continuum mechanics-based EMMI model

The EMMI model expression for a pre-stretched smart material actuator in equi-biaxial defor-
mation (λ2 = λ3 = λ, T22 = T33 = Tp, and T11 = 0) may be obtained from the relations (20) and (21)
as follows

T22 =T33 = 2C1(λ2 − λ−4) + 2C2(λ4 − λ−2) − C4ε0E2
0 + C6µ0H2

0 λ
−8, (22)
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wherein T22 = T33 = Tp at E0 = H0 = 0 represent the pre-stretching effect in the above EMMI model
(22). For the sake of convenience, we introduce the following non-dimensional variables as follows

T ∗p =
Tp

C1
, E∗ = Ê

√
C4ε0

C1
, H∗ = Ĥ

√
C6µ0

C1
, (23)

wherein Ê = λ1E0 and Ĥ = λ1H0 are the nominal electric and magnetic fields, respectively. Now, the
above expression (22) with (23) in non-dimensional form may be rewritten as follows

2(λ2 − λ−4) + 2C2/C1(λ4 − λ−2) − E∗2λ4 + H∗2λ−4 − T ∗p = 0. (24)

The above non-dimensional expression (24) represents an EMMI model for a pre-stretched smart
material actuator in an equi-biaxial deformation condition. This EMMI model (24) relates three
controlling parameters, namely, non-dimensional mechanical load T ∗p , non-dimensional electric field
E
∗

, and non-dimensional magnetic field H
∗

. The critical value of deformation λ may also be obtained
for their corresponding values of controlling parameters, namely, T ∗p , E

∗

, and H
∗

.

IV. CONTROLLING PARAMETER EFFECTS ON ELECTRO-MAGNETO-MECHANICAL
INSTABILITY (EMMI) PHENOMENON

In this section, the effects of different controlling parameters, namely, pre-stretch, electric field,
and magnetic field are discussed on an EMMI and an EMI phenomena of a smart actuator made of an
EME material. A comparison of the continuum mechanics-based and the energy-based approaches
is presented. These effects are found remarkable on an EMMI and an EMI phenomena as shown in
the upcoming discussions.

A. In the absence of external magnetic field

In line with the previous works on the dielectric elastomers, we first study our EMMI model
(24) in the absence of the magnetic field. For H0 = 0, our EMMI model (24) represents the
Electro-mechanical instability (EMI) phenomenon for a pre-stretched smart material actuator in
an equi-biaxial deformation condition existing in the literature.9–12 We remark that an electric dis-
placement D may also be used as an independent field variable, instead of an electric field E for an
electro-elastic deformation of dielectric elastomers.23,24 In this case, the amended energy function
Ω=Ω(F, El, Hl) takes another formΩ=Ω(F, Dl) for an EMI phenomenon of the dielectric elastomers.
The same state variables (λ, D) were also used in the previous energy-based EMI works.9–12

In order to analyze the EMI phenomenon from the formulated EMMI model (24) with
H0 = 0, the non-dimensional electric field versus stretch curves are plotted in comparison with an
energy-based EMI model12 in the FIG 2. From the stress-stretch and electric permittivity-stretch plots
available in the literature25,26 for VHB 4910 dielectric elastomer, we obtained the material parameters
C1 = 28 kPa, C2 = 0.00026 kPa, and C4 = 3.36 corresponding to an amended energy function (21).
The different curves with material parameters C1, C2, and C4 in the FIG. 2 represent the theoretical
EMI model for an equi-biaxial deformation at different values of the pre-stretching effects. These
pre-stretching values for each curve can be read from the intersection between the curve and the
horizontal axis. The solid lines in the FIG 2 represent the proposed EMMI model (24), and the dotted
lines represent an energy-based Alameh et al.12 EMMI model with H0 = 0 for a pre-stretched smart
actuator.

FIG 2 clearly indicates the comparison between the proposed EMMI model (24) and an energy-
based Alameh et al.12 EMMI model with H0 = 0 in an equi-biaxial deformation condition. The
proposed EMMI model (24) is formulated through a new amended form of energy function (21), which
accounts the electro-magnetostriction phenomenon. On the other hand, Alameh et al.12 EMMI model
is formulated through an extended Neo-hookean type energy function. It is customary to mention that
energy-based EMI model does not account electro-magnetostriction phenomenon accurately unlike
the proposed EMMI model (24).

B. Effect of pre-stretch on the EMI phenomenon

Further, in the FIG 2, for a fixed mechanical load, the actuator deforms in a succession of the states
of equilibrium, as the electrical field varies. A particular pre-stretch value may have single or multiple
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FIG. 2. Comparison of a classical continuum mechanics-based EMMI model (24) with an existing energy-based EMMI model
at H0 = 0 for EMI phenomenon.

states of the equilibrium.27 At low pre-stretch, the curves are initially going up and after that coming
down. However, when the pre-stretch is large, the curves become monotonic. These two types of
electro-mechanical responses we get due to pull-in instability phenomena at small pre-stretches, and
the membrane becomes more thinner with a higher electric field at the larger pre-stretches. Both of the
continuum mechanics and energy-based methods are showing the similar results on the pre-stretching
effects as shown in the FIG 2. Both of the methods conclude that the EMI limit can be suppressed
or specifically saying can be eliminated as we increase the pre-stretching conditions. Therefore, we
may conclude that a classical continuum mechanics-based method may also be considered as an
alternative method for the EMI analysis of a pre-stretched DE actuator.

C. Effect of the magnetic field on the EMI phenomenon

In order to analyze an EMMI phenomenon by controlling the parameter H
∗

at dead load
(Tp = 0) condition, the non-dimensional electric field versus stretch curves are plotted in comparison
with an energy-based EMMI model in the FIG 3. In another way, the non-dimensional electric field
versus lateral stretch curves are also plotted in comparison with an energy-based EMMI model in the
FIG 4. Both of the continuum mechanics-based and energy-based methods are showing the similar
results by controlling the magnetic field effects. Both of the methods in the FIGs 3 and 4 assert that
the non-dimensional magnetic field H

∗

enhances the critical value of the non-dimensional electric
field E

∗

.
The effect of the magnetic field on the EMI phenomenon may also be clearly explained through a

simple system design shown schematically in the FIG. 5. This system represents a wireless actuation
and energy harvesting process proposed by Alameh et al.12 The system contains the fixed charge on
the top and the bottom layers of an EME material film. Initially, film thinning and area expansion
with an electric field application result in a large capacitance and a low voltage state. However, with
an application of the magnetic field, we may observe increment in the thickness and decrement in the
area of the film. These effects result in a lower capacitance with a larger voltage state. A new higher
power state is obtained with an application of the magnetic field. That may provide more power to
the same connected device as compared to the previous lower power state.

D. Effect of the electric field on the EMMI phenomenon

In order to analyze an EMMI phenomenon by controlling the parameter E
∗

at dead load
(Tp = 0) condition, the non-dimensional magnetic field versus stretch curves are plotted in the FIG 6.
In line with an existing energy-based EMMI model given by Alameh et al.,12 we plot a continuum
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FIG. 3. Comparison of a classical continuum mechanics-based EMMI model (24) with an existing energy-based EMMI model
at different magnetic fields for an EMI phenomenon.

mechanics-based EMMI model (24) for an equi-biaxial deformation condition as shown in the FIG 6.
Herein, the proposed continuum mechanics-based method is agreeing well with an existing energy-
based method12 on the control of the magnetic field effects. In addition, we may clearly note that
the non-dimensional magnetic field versus stretch curves are symmetric about the horizontal axis.
The nature of these curves may be expected mathematically due to the quadratic term presents in the
EMMI model (24). The non-dimensional magnetic field versus stretch curves are also showing two
different types of the natures for the different values of E

∗

.
Firstly, in an existing energy-based EMMI model,12 the equilibrium curves are separated on the

left and right sides for a E
∗

parameter below the critical value between 0.5 to 0.75. However, through
our continuum mechanics-based EMMI model (24), the equilibrium curves are separated on the left

FIG. 4. Comparison of a classical continuum mechanics-based EMMI model (24) with an existing energy-based EMMI model
at different magnetic fields for an EMI phenomenon.
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FIG. 5. Schematic diagram of a wireless actuation and energy harvesting system.

and right sides for the same E
∗

parameter below the critical values between 0.75 to 1 as shown in
the FIG 6. Secondly, in both of the continuum mechanics-based (24) and an existing energy-based12

EMMI models, the equilibrium curves are separated on the top and bottom sides with respect to the
horizontal axis for a E

∗

parameter greater than the critical value.
Finally, in both of the works based on an existing energy-based EMMI model given by Alameh

et al.12 and a new alternative work shown in FIG 6, each curve is having its own turning point. The
turning points in the top and bottom curves represent the minimum and maximum magnetic field
values, respectively. Similarly, the turning points in the left and right curves represent the maximum
and minimum stretch values, respectively.

E. Effect of the magnetic field on the stability

In order to analyze the stability of the actuator by controlling the magnetic field parameter at
various dead load conditions, the non-dimensional critical electric field versus dead load curves are

FIG. 6. A classical continuum mechanics-based EMMI model (24) at different electric fields.
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FIG. 7. Stable and Unstable regions through a continuum mechanics-based and an energy-based methods at different magnetic
fields.

plotted in the FIG 7. For the sake of convenience, we exclude the electrical breakdown effect. The
different stability and instability regions are presented for a film of the smart material subjected to an
uni-axial tension with an applied electric field under various external magnetic fields. In the FIG 7,
the solid line curves represent the proposed model (24), which is formulated within the framework
of the second law of thermodynamic-based continuum mechanics approach. On the other hand, the
dotted line curves represent the Alameh et al.12 model, which is formulated within the framework
of the first law of thermodynamics-based energy approach. Additionally, we may clearly notice that
an applied magnetic field enhances the electro-magneto-mechanical stability of the system. A higher
value of the magnetic field provides a larger stability region. Now, we may conclude that an applied
magnetic field allows the film to sustain a higher electric field.

V. CONCLUDING REMARKS

In the present paper, we present a new method to analyze the electro-magneto-mechanical-
instability (EMMI) phenomenon of a smart actuator made of an electro-magneto-elastic (EME)
material. In line with that, an EME deformation theory is formulated based on the continuum mechan-
ics approach through a new amended energy function for an incompressible isotropic EME material.
A new amended energy function (21) with least material parameters is proposed for an electro-
magnetostriction phenomenon of an EME material. An analytical EMMI model of a smart actuator
under an equi-biaxial deformation condition is developed followed by the second law of thermody-
namics. The effect of the controlling parameters, namely, pre-stretch, electric field, and magnetic field
on the EMMI phenomenon are also discussed in comparison with the continuum mechanics-based
and an energy-based method.

Incorporation of the second law of thermodynamics-based deformation approach in an EMMI
phenomenon through a new amended energy function, is one of the major contribution of this work.
Additionally, a new amended energy function (21) with least material parameters is also proposed
for a class of an incompressible isotropic EME material. The amended energy function successfully
overcomes the difficulty in the physical representation of the Maxwell stress tensor in large defor-
mation. Further, the presence of an external magnetic field provides a significant control variable to
enhance the energy harvesting power from the smart materials. An immediate extension of the present
study also lies to study the post-bifurcation analysis of EMMI phenomenon, that will be presented
in our future work.
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