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INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO
NONLINEAR WAVE EQUATIONS OF THE FORM

Pu„ = -Au + <5(u)

BY
HOWARD A. LEVINE (1)

ABSTRACT. For the equation in the title, let P and A be positive semidefinite operators
(with P strictly positive) defined on a dense subdomain D Q H, a Hilbert space. Let fl be
equipped with a Hilbert space norm and let the imbedding be continuous.

Let 'S: fl -» H be a continuously differentiable gradient operator with associated
potential function 8. Assume that (x,9(x)) > 2(2ot + \)@(x) for all x e fl and some
o>0.

Let £(0) = l[(uo,Au<,) + (v0,Pv0)] where u„ = «(0), v0 — «,(0) and u: [0, T) -» fl be a
solution to the equation in the title. The following statements hold:

If 8(uo) > £(0), then hm,^T-(u,Pu) = +oo for some T< oo. If (uo,Pva) > 0, 0
< £(0) - g(«o) < a(ua,Pva)1/M.2a + l)(«,,PUb) and if « exists on [0, oo), then (u,Pu)
grows at least exponentially. If (uo,Pv0) > 0 and a(uo,Pi<0)74(2a + \)(uo,Put,) < £(0)
- S(«o) < {(u^.Pv^f/^Pu^) and if the solution exists on [0, oo), then (u,Pu) grows at
least as fast as t2.
A number of examples are given.

I. Introduction. A number of authors (Jörgens [7], Keller [9], Sattinger [14])
have shown that solutions to the initial value problem or to initial-boundary
value problems for classical nonlinear wave equations in one, two or three
dimensions are not stable in time for arbitrary initial data and arbitrary
nonlinearities. Their proofs of these results are based upon a comparison
principle together with a Huyghens principle coupled with solving an initial value
problem for an associated ordinary differential equation in time. The size of the
nonlinearity generally determines the escape time in their proofs.

It is the purpose of this paper to prove similar nonexistence and instability
theorems for a wide class of initial and initial-boundary value problems which
take the form

(1-1)   PdAu/dt1 = -A(t)u + 9(u),      t e [0, T), «(0) = u,, «,(0) = v0,

where « is a Hilbert space valued function of /, A(i) is a symmetric linear operator
defined and nonnegative for each t > 0, P is a strictly positive symmetric
operator and fis a given nonlinearity.
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2 H. A. LEVINE

Our result says roughly this. Let u be a twice strongly continuously differentia-
ble function satisfying (1-1) on [0, T). Suppose % has a symmetric Fréchet
derivative % so that the scalar valued function

S(*)-/0V(p*),*Vp
is an appropriate corresponding "potential" for 9. Suppose further that there is a
constant a > 0 such that (x,f(x)) > 2(2a + IM*) for all x in the appropriate
domain. Then, whenever

S(«b) > !i("o^(0)"o) + (v0,Pv0)] m E(0),

the interval of existence of u is bounded and, for some T < oo,

UmMt),Pu(t)) = +00.

That is to say, if the initial potential energy of the nonlinearity is larger than the
total initial energy of the linear problem, then (1-1) cannot have global solutions. If
@("o) < ^(0)tnen ^ stability and global existence questions are open. Theo-
rems III and IV provide a partial answer, however.

In addition to providing a more unified approach to the "negative" theorems
°f [7]> [9] and [14], this approach is of interest because:

(1) The special properties of the classical wave equation (finite speed of
propagation, Huyghen's principles) are not invoked. In fact there may not be
such principles for general (1-1).

(2) It is not necessary to obtain a first integral of any "space variable"
independent version of the wave equation. (This may not be possible as we shall
see in one of the examples.)

(3) The results are applicable to higher order equations, systems of equations,
equations for which "densities" may have zero lines and surfaces and to various
kinds of initial and initial-boundary value problems for which P can be
unbounded. (See the examples.)

(4) The nonlinearity can be very "mild". In addition to "polynomials" in the
solution, it is even possible to have nonlinear integral operators as nonlinearities.
(See Example II.)

(5) The results have a pleasant geometric interpretation (Theorems II and V).
Strauss [15] points out that "There are a few examples of solutions which 'blow

up', that is, which do not exist in the large. In general, however, there is a definite
lack of counterexamples which can be used as guides to the theory." It is hoped
that this work can provide some such guides as it shows how one may obtain a
wide class of examples for which one has unstable solutions.

In [14], Sattinger remarks that large (space) domains seem to be more unstable
than small space domains. One of our side results will make more precise his
heuristic arguments to that effect (Example III).
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 3

In the next section we state and prove some abstract results about (1-1) and in
§111 we give some examples, commenting on the literature as we go. In §IV we
briefly examine the damped equation

dzu/dt2 + adu/dt = -Au + <$(u)

where a is a constant (> 0).
Physically, of course, all our results say the same thing. If you start with "large

enough" displacements, and the "energy" is not a definite functional, then your
solutions (transverse vibrations, displacement vectors, etc.) cannot exist for all
time. The point is that they give sufficient conditions on % Uq and v0 in order to
have unbounded solutions to (1-1) in finite time so that our results tell one where
not to look in the data space for choices of initial vectors which yield stable
solutions. The question of "where to look" in order to get global existence and
stability is to a large extent open when the "energy" is indefinite and $ is
"nonlinear". If the energy is positive definite, then in many problems (mostly
concerned with the nonlinear wave equation) there is a wide literature on such
questions. (See [7], [14] and [15] and the references cited therein.)

II. The abstract theorems. Let H be a Hilbert space, which, for convenience of
notation, we take to be real. Let D Q H be a dense linear subspace. Let ( , )
denote the scalar product on H and let || || denote the corresponding norm.
Suppose that for each t > 0:

(A-I) A(t): D -» H is a symmetric linear operator.
(A-II) (x,A(t)x) > 0 if x G D. (Thus A(t) has a selfadjoint extension but we

do not use this fact.)
(A-III) If v. [0, oo) -» H is strongly continuously differentiable and if, for all

t > 0, v(i) and dv(t)/dt G D, then (v(t),A(t)v(i)) is continuously differentiable
and, for all í > 0,

QÁ{v,v)(t) m (d/dt)(v(i),A(t)v(t)) - 2(dv(t)/dt,A(i)v(t)) < 0.

Assume that
(P-I) P is a symmetric linear operator, P: DP^> H and that D Q DP Q H.
(P-II) (x, Px) > 0 for all x G Dp, x * 0.
Suppose further that D is a Hilbert space under a scalar product (,)/>.

Assume that the injection from D into H is continuous as a mapping of Hilbert
spaces. That is, there is a constant c > 0 such that ||x|| < c||jc||fl for all x G D.
Then we assume that

(F-I) ?F: D -» H is continuously differentiable as a function from D (equipped
with || ||fl) into H, that the Frechet derivative ̂  is a symmetric, bounded linear
operator on H and that x -* % is a strongly continuous map from D into £(//).

(F-II) Let @(x) = So (<$(px),x)dp denote the potential associated with 9. That
is, §: D -» R is the (unique up to a constant) scalar valued function whose
Fréchet derivative Qx can be shown to act as follows:
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4 H. A. LEVINE

Sx V = (9(x),y)

for ail x,y El D. Assume that for some a > 0,

(*) (*,^M) > 2(2a + Vß(x)

for ail x e. D.
The rigorous verification of the action of §x can be carried out directly from

the definition. The details, not being germane to this paper, are omitted.
A formula which will be useful in the sequel is the following, valid for

v: [0, T)-* D with a strongly continuous derivative v, likewise taking values in
D:

(••) §(v(t)) - @(v(0)) = £ ($(v(-n)\ vn(i,)) dr,.

(The strong continuity of v and v, are taken in the sense of the norm on D.) This
follows directly from the chain rule and the action of §x. The following formal
proof is nevertheless instructive. Suppressing the t argument,

jt§(v(t))=J0' wm»,,v) + mpvU)]dp

=£ ^w(pvU)]dp
= (f(v(t)),v,(t)),

where we have used the symmetry of % in the second line.
Definition. We say that u: [0, T) -» H is a solution to Pu„ = -A(t)u + %(u) if,

for each r, u(t) and u,(t) belong to D (u, being the strong derivative of m in the
norm || \\D on D), u„ exists and is strongly continuous in the sense of the norm
on H and takes values in Dp, and the differential equation is satisfied in the
classical sense.

We have

Theorem I. Consider the initial value problem

Pd2u/dt2 = -A(t)u(t) + $(u(t)\      t E [0, T),
(II-l)

«(0) - «0, «,(0) = tvi2)

(2) It is not necessary for solutions to (II-l) to be unique. If, however, (x,Px) > \(x,x) for all
x E D and some X > 0 and if Çis such that the difference w of two solutions satisfies ||w„ + A(t)w\\
< K(t)(w,Pw)V2 where K(t) is a locally bounded function on [0, T) depending upon u and v, then
w(0) = w,(0) = 0 implies w = 0. For details see [11] for example.
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 5

Let u: [0, T) -> H be a solution to this problem in the above sense. (3) Let P, 5 and
A(-) satisfy the preceding hypotheses. Then, each of the following statements holds:

(A)//

(d, ) ß0 m 2{S(«0) - tt(u0,A(0)u0) + (v0, Pv0)]} > 0,

then the solution can only exist on a bounded interval [0, T) and

hm (u(t),Pu(t)) = +00

where

T<Th^ a-'ilßo^Puo) + (u0,Pv0)2]V2 + (u0, Pi/o)}"1 («o, Puq).

(B)//

(d',) §(uo) = li[(u0,A(0)u0) + (vQ, Pv0)],

(d2) (u0,Pv0)/(u0,Pu0) = \>0,

then the solution can only exist on a bounded interval [0, T) and lim,^r-(M(i), Pu(i))
= +00 where T < (2aX)~l.

It is clear from Theorem I that if w0 satisfies

(do) S("o) > K"o.^(OH).
then there exist v0's such that the corresponding solutions are unstable in finite
time.

Corollary 1-1. Let $(sx) = s1+if (x) for some 5 > 0 and all x6D. Let
(x0,'»(x0)) > 0 for some x0 G D. Then there are infinitely many vectors u0 such
that (do) holds.

Proof of Corollary 1-1. Choose s so large that

s*§(x0) = j»JT' (W(px0),x0)dp > J(jcb,i4(0)xb)

(s > s0 say). Then for any u0 = sx0 with s > s0

S(«o) = sM§(x0) > \(u0,A(0)u0).

In most applications 5 and a are related by fi = 4a.
Proof of Theorem I. Let

(II-2) F(t) = (u(t),Pu(t)) + Q2 + ß(t + t)2

where Q, ß and t are nonnegative constants which we shall leave undefined for

(3) We shall always assume the existence of a solution to (II-1) near t — 0.
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6 H. A. LEVTNE

the moment. Then, suppressing the t argument on the right and using the
symmetry of P,

F'(t) = 2(u„ Pu) + 2ß(t + t)       (u, = du/dt)
and

F"(t) = 2(ul,Pul) + 2(u,Pu„) + 2ß.

It follows that

(II 3)    FF  ~ (a + 1)(F)2 = ^ + 1)S2 + 4(a+ 1)ß2[(""/>"') + ß]

+2F{(u,Pu„) - (2a + l)[(u„Pu,) + ß]}

where

S2 = [(u,Pu) + ß(t + T)2][(u„Put) + ß\- [(u,Pu.) + ß(u + t)]2 > 0.

Now suppose we could show that FF" - (a + \)(F')2 > 0. Then since (F-")"
= -aF-"-2[FF" - (a + \)(F')2] whenever F(t) ¥= 0, it would follow that F"a
would be concave. Thus, if F(0) ¥= 0, we would have, for all í for which u(i)
exists, F~"(t) < F~a(0) - atF'(0)F-"-l(Q), since the graph of a concave func-
tion must he below any tangent line. Hence,

(II-4) Fa(t) > F*+l(0)[F(0) - a/F'(0)]-'

and therefore as r -* T (< F(0)/aF'(Q)) from below (if F'(0) > 0), we see that
F(t) -> +00. This is the crux of the concavity argument ([10], [12]).

Returning to (II-3), define

(II 5) HW = ("'PU,,) ~{2a+ mU"Pu,) + ß]
= -(u,Au) - (2a + l)[(u„Pu,) + ß] + (u,$(u)).

Thus

H'(i) = ~[Qa(u,u) + 2(u„Au) + 2(2a + l)(u„Pu„)] + d(u,<5(u))/dt

= -QaM + 4a(u,,Au) + d(u,$(u))/dt - 2(2a + l)(u,,9(u)).
Therefore

H'(t) = -(2a + l)QA(u,u) + 2ad(u,Au)/dt

+ d(uMu))/dt - 2(2a + l)(u„<s(u))
so that, using (i), (ii), the positive semidefiniteness of A(t), (*) and (**),

H(t) = H(0) + 2a(u,Au) - 2a(u0,A(0)u0) - (2a + 1)£ QA(u,u)dr,

("-6) + (u, 9(u)) - (uoMuo)) - 2(2a + l)[§(u) - S(«o)]

> 2(2a + 1){§(«o) - M(«o^(OK) + (t-o.^o) + ß]}-
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 7

Now suppose (d,) holds, then with Q2 = 0 and ß = ß0 we find that H(i) > 0
and hence (F~°)"(t) < 0. Also, F'(0) = 2(u0,Pv0) + 20ot >0iftis sufficiently
large. Thus, the interval of existence cannot, in this case, exceed 3^
■ F(0)/aF'(0) in length. That is

(u0,PuQ) + ß0T2 M
-2a((«o,Pi;o) + /3oT)2     /W

One finds thatX'r) has a minimum on the interval (-(«0. PvQ)/ß0, +oo) at

t = ßöl{-(uo,Pv0) + [(«o.Pi'o)2 + Ä>("o>-P"o)]l/2}

and this minimum is (aß0)~l {—(uq, Pv0) + [(uo,Pv0)2 + A)(m0,Pk0)]1/2} so that

T<Tßo = ct-l{[ß0(uo,Pu0) + (uo,Pv0)2]y2 + (u0, Pvo)}~1 (u0, Puo).

If (d',) and (àÇ) hold, the proof is easier. Let Q2 = 0 and ß = 0 so that
[F~"(t)]" < 0 where F(t) = (u(t),Pu(t)) and linwXi), Pu(/)) = +oo where
T < F(0)/aF'(0) = («o,PMo)/2a(Mo,Pvo) = l/2aA.

The next theorem provides a geometric reformulation of Theorem I and
Corollary 1-2.

Theorem II. Let % P andA(-) be as in Theorem I and u: [0, T) -» H be a solution
to (H-l) in the preceding sense corresponding to «(0) = «o, «,(0) = i>o- Let (do)
hold, i.e.

« > K«o,^(0)«o)
and   let   r(u0) = ^2[Q(u0) - ¡(u0,A(0)uo)f2.   Let   S^ = {v0 G D \ (v0,Pv0)
< r2("o)}> and let, for each T > 0,

ST+ - fa, e Z> I (f0 - Uo/aT,P(v0 - uJaT)) < r2fao)}
denote spheres of radius r(u0) and centers 0 and «o/aT /« D. Let B^ = {v0 G D \
(v0,Pv0) = r2(u0)}. Then statement (A) of Theorem I b equivalent to

(A') //v0 G 5^ then v0 & S^- STju<ifor some T>0andlim^r-(K(f),Pu(t))
=  +00.

Statement (B) is equivalent to:
(B')Ifvo G B^and 0 < cos 9 = (u0,Pv0)/(u0,Puoy/2(v0,Pvoy/2, then for some

T > 0, v0 G S^ - SriBo a/tt/Um^j-(M(0,P«(0) = +oo.

Proof. Note that (d,) is satisfied by v0 if and only if v0 G S^ while (d'i) and (d^
hold if and only if v0 G B^ and (i>0,P«o) > 0. It then follows that the solution
with initial data m0, v0 has some finite escape time T and T satisfies T < T^ in the
first case and T < l/2a\ in the second. However, both of these can easily be seen
to be equivalent to the statement that fa, - «o/or,Pfa0 - Ug/aT)) > r2(u,¡) by
using the definition of T^ and the definition of ß0. The results follow.
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8 H. A. LEVINE

Remark. Theorem II says that if the solution to (II-l) corresponding to initial
data «0, v0 has finite escape time T and if (v0,Pv0) < r2(u0) then v0 lies in the
shaded set depicted in Figure I. Note that as T increases the size of this set
decreases.

Figure I. (h-o = «•%)/(•%. AbJ^K)

Theorem III. Let P, <$ and A(-) be as in Theorem I. Let u: [0, T) -» H be a
solution of (II-l) in the sense of the definition corresponding to u(0) = Uq, u,(0)
— Vn. Suppose that

(di) (u0,Pv0)/(u0,Pu0) = \>0.

Then if

(d3) Ö(«o) < M("o,^(0)«o) + (fo.Pvo)]

and

(¿4)    k[(uo,A(0)uo) + (v0, Pv0)] - S(«o) < ia(i4o, Pv0)2/(2a + l)(«o,¿>«o),

then there is a constant y > 0 such that

lim infe-1"(M(/),Pií(í))>0,
í-»+M

whenever this solution exists on [0,00).

Proof. Suppose (d^), (d3) and (d4) hold. Let, for arbitrary p. > 0,

Q2 = 4,r2(2a + l){i[("o^(0)«o) + ("o,Pv0)] - ®(»o))-
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 9

Then, since F > Q2, we see that from (II-3) and (II-6) (after putting ß = 0) that

(II-7) FF" - (a + 1)(F')2 > -p?Q2F > -p2F2.

For convenience, let G(t) = F~a(t) (G(t) is well defined. Observe that G'(0)
= -aF-"-l(0)F'(0). G'(0) < 0 so that G'(t) < 0 on some interval [0,ij).

From (II-7) we have

(II-8) G" < ap2G

and thus, for t £ [0,ij), we have G'(t)2 - G'(0)2 > ap2(G(t)2 - G(0)2).
Therefore,

(ii 9) (G'W + ̂ a/iG('))(G'(/) " vV?(0)
> (G'(0) + y/apG(0))(G'(0) - y/a¡iG(0)).

Thus, if we can find p. > 0 such that

(11-10) <7'(0) < -vVG(0),
then we see from (11-10) and the tacitly assumed smoothness of u that neither
factor on the left of (II-9) can change sign and thus, for all t for which the
solution exists, G'({) < —^apG(t). Therefore

G(t)expWapt) < G(0)

or

(11-11) F(t) > F(0)exp(p.t/y/a)

and therefore lim^+^inf e~y'(u,Pu) > 0 with y = p/^/a. Now one sees from
(11-10) that such a p exists if and only if there exists p > 0 such that
F'(0) > pF(0)/^a or such that the quadratic polynomial

P(p.) = p2(u0,Pu0) - 2y/a(uQ,PvQ)p
(11-12)

+ 4(2a + l){\[(uo,A(0)u0) + (v0,Pv0)] - ê(u0)}

is somewhere negative. This will be the case if it has two real roots /t+, p_, one of
which, p+, is positive. Then any p G (0,/í+) n (jx_,fi+) will suffice.

Since the coefficient of p in the polynomial is negative and since the content of
((L,) is that the discriminant of P(ji) is positive, the existence of such jn's is assured.

Theorem IV. Let P, 9 and A(-) satisfy the hypotheses of Theorem I. Let
u: [0, r) -» D be a solution to (II-l) corresponding to t/(0) = i/0, m,(0) = v0 in the
sense of the definition. Suppose that condition (àÇ) of Theorem III holds for u0 andv0
but that u0 and v0 satisfy
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10 H. A. LEVTNE

(ds)   \a(2a + l)-i(uQ,Pv0)2/(u0,Pu0)2 < i[(«o,^(0)«o) + (v0,Pv0)] - S(«o),

(ds) è[(«b.^(0K) + fao-^o)] - S("o) < i(«o.^o)7(«o.-P«o)-
Then lim^+a, inf í~2(m(í), Pu(t)) > 0 whenever this solution with u0 and v0 as initial
displacement and velocity exists on [0, oo).

Corollary lY-1. Let «o, v0 satisfy (d¿), (d3) and (dj. Then hm^^u^XPu^))
= +00, ifu(-) exists on (0, oo).

The proof of the corollary is an easy consequence of Theorems III and IV.
Proof of Theorem IV. The argument is very similar to that used in Theorem

III. Let Q2 = ß = 0 in (II-2). From (II-3) and (II-6) we obtain

(11-14) FF" - (a + 1)(F')2 > -2»-2(2a + 1)F

where we have set

v1 = 2{J[(mo,,4(OK) + fao.^o)] - S("o)} > 0.
From (¿2), F'(0) > 0 so that F'(t) > 0 for / G [O.tj), say. Multiplying both sides
of (11-14) by -ct(F-*(t))' F-("+2')(t)" where t G [O.ij) and integrating from 0 to t
we obtain

(11-15) [(F-"(t))']2 - ^VF-^+'K«) > [(F-a(0))']2 - ^VF-^ÍO).

Since F(0) = (Ko,P«o)andF'(0) = 2(uo,Pv0) > 0, the right-hand side of (II-15)
will be positive provided that (dj) holds as we see after a bit of algebra. If we now
factor the left-hand side of (II-15) and argue as was done in passing from (II-9)
to (II-11) we find that (F"°)' < -2avF<a+^) for all / > 0. Hence it follows that

F'(t) > 2vFV2(i)   or   F(t) > (vt + ^Purf2)2

so that F must grow at least as fast as t2.
The next theorem is simply a geometric reformulation of Theorems III and IV.

Theorem V. Let «o satsify (do) and let S^ be as in Theorem II. Let cos 9
= («o, Pv0)/(u0, F«o)1/2fao. Pvo)V1 and let

E^ = fa, G D | [1 - (V(2a + l))cos20]fa,,Pfo) < r2(«o)},

H+ = fa, G D | («o.Pi'o) > 0},
C^ = fa, G D | (i/o,Ffo)sin2f7 < r2(u0)}.

Then Theorem III is equivalent to:
(C) Ifv0GH+r\ (F^ — S^), then any solution to (II-1) corresponding to «o and

v0 which exists on [0, oo) must grow at least as fast as ey'for some y > 0 (in the sense
of Theorem III).
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 11

Theorem IV is equivalent to:
(D) Ifvn E. H+n (C^ - E^), then any solution to (II-l) corresponding to Uq and

v0 which exists on [0, oo) must grow at least as fast as t2 (in the sense of Theorem
IV). (See Figure II.)

Figure IL If ifo e S^ or is on the "arc" Jga", we have unbounded growth in finite time of
(a, Pu). If k0 belongs to region I¡ not including the "arc" Jgf, and excluding the "arc" ^P2P\ we have
at least exponential growth of (u,Pu). If v belongs to region r2, then we have at least quadratic
polynomial growth of (u,Pu).

III. Examples. In this section we shall give some elementary applications of the
preceding theorems. The list is not intended to be exhaustive. Moreover, due to
considerations of length, we shall not give a completely rigorous verification of
all of the hypotheses needed on P, 9 and A(-), but content ourselves with
verification of only the more relevant conditions on these operators. For example,
we shall not verify the regularity conditions on 9 but restrict our calculations to
the formal verification of (*) and (**). In most cases the Hilbert space norm on
D for which these regularity properties hold will be of the form

IMId = HWP + \(Px,Px) + \2(Ax,Ax)]V2   for some A„ A2 > 0.

The regularity properties of 9 themselves will then follow from the appropriate
Sobolev inequality (assuming sufficient regularity in the solution space).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 H. A. LEVINE

Example I. Let B c R" be a bounded region with the boundary of B, dB,
smooth enough to admit of applications of the divergence theorem. Let, for each
(x,t) G B x (0, oo), A(x,t) = [¿^(x.f)] be an n X n symmetric matrix with con-
tinuously differentiable real valued entries such that

(i) 2t a¥(x,/)€,{,> 0   for all   {- (&,...,Q S IV,

(ii) J, (oW*''))1'^ °   f0ra11   t**"-

Let the boundary of B, dB, be written as dB = Tx U T2 where IJ and T2 are
disjoint, "smooth" submanifolds of B. Suppose that A(x, t) is independent of t on
T2. We consider the problem

O11'1)       Sf-Âèi^O + W    ^0> = 0'
in ß X [0, oo), u(x,í) = 0 on Tj X [0, oo), 2,,,-i a^Vjdu/dxi = 0 on T2 X [0, oo),
where v = (vx,...,%) is the outward directed normal (on iy to the boundary of
B and where u(\,0) = k0(x), (3m/3í)(x,0) = v0(x) are prescribed initially.
Suppose that §(u)(x,t) = <5(u(x,t)). Let (f,g) = fBf-gdx denote the scalar
product of the Hilbert space H = E2(B). We let D = {/ G >Y |/ G C2(5),
/ = 0 on rj, 2,,,=i aij(x)ux.Vj = 0 on T2) and, for/ G Z)

[^W/](x) = -Ji¿(a0(x,0^)/(x).

One easily verifies that A(-) satisfies all the conditions on A(-) of Theorem I
including condition (i) on QA. (In fact,

Qa(v,v) = fB 2 {dag/dtXto/dxMto/dxjdx

for any smooth function f(x,i) such that for each t, v(;t) G D.)
Since P = 7, we take ZV = /Y.
The most interesting applications occur when either T2 = 0 or j4(x,í) is

independent of /.
We find from the definition of § that, for/ G 2),

S^) = SbSo 9(pm)f(x)dpdx - /fi (X/(X) ffWár)A

so that (*) holds for arbitrary f G Z) if and only if

/, (/o/W [á(zf(z)) - (4a + 2^w]&)rfx * °-
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 13

Thus, (*) holds if z9'(z) - (4a + l)9(z) > 0 for almost all z > 0 and z9'(z)
- (4a + \)9(z) < 0 for almost all z < 0, or, equivalently,

(*o 9(z) = uryz)
where op: R} -» Rl is monotone increasing (nondecreasing). Moreover, if we let
S+ = {x G B\ u0(x) > 0), 5_ = {x G B | k0(x) < 0). we see that (do) holds if
and only if

(m.2)   «-1(X**>*)*-1(C*»*)*
> i(«oM(0K)-

Thus, (III-2) can fail, for all u0 G D, only when tp < 0 if z > 0 and <p > 0 if
z < 0 (almost everywhere), i.e., only when <p = 0 a.e. Therefore we have, for
some T < oo, if (III-2) holds and v0 G S^ lim,_,r- fB u2(\,t)dx = +oo.

Remark. It is interesting to compare (*') with the nonlinearities used by Jörgens
[4] and Keller [5]. Although most of the conditions on § = So 9(r\)dr\ are
different in all three cases, there is one condition that was to be satisfied by them
all. Namely, the associated "potential" § satisfies, for some z0, §(z) > 0 for all
z > z0 and f£ §"'/2(z)úz < oo. That is, §-'/2 is integrable near infinity.

Example II. A "compact" nonlinearity. In the preceding example, the nonlinear-
ity had the form 9(g)(\) =/(g(x))g(x) where/(i) = 0(i*) as |j| -» +oo for
some ô > 0. In this example we take as the nonlinearity in (III-l)

9(g)(x) = g(x) fBK(x,y)g2(y)dy

where K is a square integrable, real valued function such that #(x,y) = K(y,x).
One easily finds that the Fréchet derivative of 9 at g G H is

9g ■ h(x) = h(x)fB K(x,y)g2(y)dy + 2g(x)£ K(x,y)g(y)h(y)dy

and that (F-I) and (F-II) hold since 9g is symmetric and bounded as a routine
calculation shows. Also,

§te) = \ÍbÍb K(x,y)g2(y)g2(x)dxdy
and (4a + 2)§(g) = (9(g),g) if a = |. The condition (do) reads

(III"3)      SbSb «&(*M<3)K(x,j)djdx > 2¡B ¿ a^x^unjdx.

Therefore, if K is positive on a subset of B of positive (n2 dimensional) Lebesgue
measure, we can choose t/0 G C§(B) such that this last inequality is fulfilled.
(This example can easily be generalized to more general integral operators.)
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14 H. A. LEVINE

Thus even a "smoothing out" of the nonlinearity makes no difference and
instability can occur even in the above case.

Example III. Here we consider a very special case of Example I. Consider the
problem

a2«/3i2 = d2u/ax2 + e9(u),      (x, t) G (0,a) X [0, oo),

u(x,0) = Uo(x), u,(x,0) = v0(x),      x G [0,a],

u(0,t) = u(a,t) = 0,       t G [0, oo).

We wish to examine the question of instability relative to the parameters e and
a. If 9(u) = u, it is well known that all solutions to the above problem satisfy,
for some K > 0, if e < iP-/a2,

lk(OIL<^(lklL+lklL)    ('e[o,oo))
where \\f\[, = (j0a \f\2dx)1^2. Otherwise solutions may have at most exponential
growth in time. We note that even here as a -* +oo the size of the set of e's for
which we have stability decreases although for any e < 0 and any a > 0 we have
the above stability inequality. However, if 9(u) = u2 say, then for any e ¥= 0,
there exist choices of uQ and v0 such that the corresponding solutions are unstable
in finite time. (Here §(/) = (1/3) S0°p(x)dx, a = J.) To see this, let /
G Ci[0,a],f(x) > 0 ifjc G (0,a) and/(0) = f(a) = 0. Let u0(x) = rf(x). Then
(do) holds for u0 provided

er £ (f(x)?dx>\S* (f>(x))2dx.

Now for any given £ simply choose \r\ large enough so that er > 0 and such that
the above inequality holds. In particular this says that for each / in {/
G C1 [0, a] | /(0) = f(a) = 0, / > 0 on (0, a)) and for each e =/= 0 there is some
T > 0 and a number r > 0 such that some solutions to the above initial
boundary value problem with tv0(.x) = rf(x) become (pointwise) unbounded in
[0,a]x[0, T). We note that in general, given /, we will have to take ||w0IL
= M ll/IL large. Consider, however f(x) = (2/a)1/2sin(7rjc/a), which is the first
(normalized) eigenfunction corresponding to eigenvalue ir2/a2 for /" + A/ = 0,
/(0) = f(a) = 0. Let u0 = rf. Let e > 0 be fixed. We would like to choose r > 0
so large that

refoa(f(x))3dx>3v2/2a2,

i.e. so large that er > A/a3/2 where Ais a positive constant independent of a and
e. However, for fixed ||k0II = f, as a increases for fixed e, eventually there will be
solutions to the above problem having initial displacement u0 which will be
unstable. Thus, in this sense, "large domains are more unstable than small
domains" (Sattinger [14]).
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 15

Example IV. A higher order equation. The following example generalizes readily
to higher dimensional problems: let B C R2 be a bounded domain in the plane.
We consider the following problem:

(2ph/d)d2w/dt2 = -(d2/dx2 + 32/3y2)2w + ff (w)   in B X [0, oo),

w(x,y, t) = ^w(x,y,0 = 0   on dB X [0, oo),

w(x,y,0), -ït(x, v,0) prescribed for (jc, v) G 2?.

This is the equation of motion of a clamped plate (see Love [13]) where fis a
given loading function acting (vertically) on the plate. Here p = p(x,y) is the
density of the plate at (x,y) while d is the flexural rigidity and h is the half
thickness of the plate. We assume ph/d > 0 at each point (x, v) G B.

We take H = t2(B) with the usual scalar product, and A — A2 where
D = DA = {fG C\B) | / = df/dv = 0 on dB). We see that (f,Af) > 0 for all
/ G D. If we let ÇF(h>) = ew2, f G Z>, be any function such that

efBP(x,y)dxdy > \jß (/„ + 4)2dx^,

w(jc, v,0) = f(x,y) and w,(x,.K,0) satisfy the conditions of Theorem I, then the
corresponding solution will become unbounded in finite time in the sense that
lim,_r- $B phd~lw2(x,y,t)dxdy = +oo. (Note that in the linear problem we have
stability. This follows from energy considerations.)

Observe also that the characteristics of w„ = -A2w are planes parallel to the
xy plane so that we do not have a Huyghen's principle and that the "domain of
dependence" is the whole "initial plane". This precludes employment of the type
of arguments used in [7], [9] and [14] to demonstrate instability of solutions to
certain nonlinear wave equations.

Example V. A system. In this example we consider the effect of a nonlinear
forcing term added to the classical equations of linear elasticity, viz:

P(x)j¡2 = dirX^'^ox^,) + ^("i'"2'"3).       i = h 2, 3,

in B X [0, oo). (The summation convention is employed here.) In vector notation

(III-4) p(x)32u/3/2 = (d/dx^CuWdu/dx,) + i(u).

The matrices Cu = (cikjl) are assumed to satisfy c^tj^t)^ > 0 for all tj = [%]3x3
with real entries and all x G B. (We presuppose the symmetry Cft = C£ or
cikJi = cjUk) We assume that the solution u = co1(«1,«2,m3) satisfies some stand-
ard homogeneous boundary conditions. (For example, in the notation used in
Example I, u(x,0) = 0 on Tx x [0, oo) while vkcikjlu}i = 0 for i = 1,2, 3 on
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16 H. A. LEVINE

T2 X [0, oo ). ) This condition together with the appropriate smoothness conditions
on u serves as the defining condition for the domain of the operator

Au = [Cwu,, ],k .

(The Hilbert space H = £?(B) ® t2(B) ® t2(B) is of course equipped with the
scalar product (u,v) = fB 2 u¡v¡dx.)

We take as our nonlinearity a vector function
—» —» —»
9 (u)(x, /) = 9 (u(x, /)),   9(ux, u2,u3) = col(£,, 92, 93).

Let (d%/duj) = (d9jdut), i,j = 1, 2, 3, so that 9 = VX where % = 9C(k,,w2,K3)
is a scalar function (potential). From the definition of 3 in (F-II) (assuming
%(0,0,0) = 0) and for f in the appropriate domain,

m = s(/„/2,/3)=/0' (fiWWMxUx^dp
(in-5)

= /* (I 3C-.(p0/^)^ - /a 0C(f(x))t/x.

It follows that (*) will hold for any solution to (III-4) if

(*") (4a + 2)3C(|,,|2,Q < 2 l,|?fâ,&,&)1-1     oc¡

while (do) holds for the initial displacement u(x,0) if

/,W,,0)),x>^cwW«^*.
(The summation convention is employed here.) Unfortunately, it is not possible
to give as simple a characterization of all the scalar functions % satisfying (*") as
in the one dimensional case (*')• However, if 9Cis homogeneous of degree 4a + 2,
then (*") holds with equality (Euler's identity).

The corresponding initial velocity vectors u„ (x,0) can be chosen as indicated
by Theorem II. Thus, for such choices, there is T, 0 < T < oo, such that

(III-6) Um fB p«,(x, t)ut(x, t)dx - +oo

but one cannot say which of the three integrals in (III-6) is the unbounded one.
Example VI. If one considers the extensional vibration of a rod of uniform

cross section fixed at one end and free at the other, then the governing equation
has the form pw„ = Ew^ where p is the (uniform) density of the material, E is
Young's modulus, and w is the displacement. If, however, the inertia of the lateral
motion is taken into account, the governing equation (Love [13, p. 428]) becomes

p(d2/dt2)(w - o2K2d2w/dx2) = Ed2w/dx2

where o is Poisson's ratio and K is the radius of gyration of a cross-section about
a central line. At the fixed end w — 0; at the free end dw/dx = 0.
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 17

Therefore, we are led to consider nonlinear problems of the form

(in-?)   £[p(x) - £(*»£)]■ = è(w£>+tw
where [av(x)] and [bu(x)] are positive definite and semidefinite matrices respec-
tively at each x in a suitable subset of R". (Here p > 0. If p > 0 then [av] need
only be positive semidefinite.)

If the nonlinearity is taken as in Examples I or II and if u0(x) = u(x,0)
satisfies (do), then one can apply the conclusions of Theorem I to the appropriate
initial-boundary value problem for (III-7) to deduce the nonexistence of global
solutions if f0 is appropriately chosen.

However, one cannot apply the arguments of [9] and [14] to (III-7) even if one
had available a "finite speed of propagation principle" because if p(x) is not
constant then one cannot free the equation of the space variable in order to get
a first (and second) integral of an associated ordinary differential equation whose
solutions blow up in finite time and solve the partial differential equation.

However, one may use our results in conjunction with the (known) finite speed
of propagation principle for either the initial value problem or an initial-
boundary value problem for

(III-8) p(x)a2u/dt2 = d2u/Ô-x2 + u2(x, t)      (p > 0 on R1)

to conclude that if u0 and v0 have compact support and if they satisfy (di) of
Theorem I, then the corresponding solution to (III-8) becomes pointwise
unbounded in finite time.

Finally, we remark that it is possible to treat the nonlinear version of the
following equation of motion of a naturally bent rod, namely

(' - w)v - "(S+2w+w)   <>e [0'«° < °° <2"
(see [13D.

Note, moreover, that if one begins with a problem of the form (II-l) which is
an abstraction of an initial-boundary value problem and if the region in space
under consideration is bounded, then L2 growth of the solution (assumed
continuously differentiable) will imply pointwise growth irrespective of whether
the L2 growth to infinity takes place in finite or infinite time. If F is a bounded
operator, growth of (u, Pu) implies growth of (u,u) clearly. If P is not bounded,
say P = —d2/dx2, then we get pointwise growth of du/dx.

IV. The damped equation. In the notation of §11, we suppose that P = /,
A > 0 and, for simplicity, that A(t) = A independent of t. Our problem is

(IV-1) k„ + au, = -Au + 9(u),   u(0) = Un,   u,(0) = v0,
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18 H. A. LEVTNE

where a > 0 is constant. (We assume the same regularity as for solutions to
(II-l).)

Theorem VI. Suppose 9 and A satisfy the hypotheses of Theorem I. Let
u: [0, T) -* H be a solution to (IV-1) in the sense of a definition analogous to that
used in Theorem \for solutions to (II-l). Suppose that

(D0) §(«o) > ¡Kuo,Au0) + (a/2a)2(«0, «o)].

Let

cos 9 - («b,i*o)/|kll Ikll,       r(uo) = y/M«o) ~ h^Au^f2.
Then, for any v0 G D such that \\v0\\ < /-(«o) and Ikllcos 9 > a|k||/2a, the
interval of existence of this solution is finite and

Um HOW = +00

where

T < a-1ln{2a||i/0||cos 0/(2a|kl|cos 9 - a|k||)}.

Proof. Let F(t) = (u,u). Then F'(t) = 2(u,u,) and F"(f) = 2(k,k„) + 2(u„u,)
so that

(IV-2)    FF" - (a + 1)(F')2 > 4(a + 1)S2 + 2F{(u,u„) - (2a + Ofa,«,)}.

Let

H(t) = (u,u„)- (2a + 1)(u„u,)

= -(u,Au) - a(u„u) + (u,9(u)) - (2a + l)(u„ut).

Then

H'(i) = («,«„)- (4a + l)(«/( «„)

(IV-3) = -a(u, u„) + 4a(M/,^«) + a(4a + 1)(«„ u,)

+ d(u,9(u))/dt - (4a + 2)(u„9(«)).

Thus, integrating back, using (*), (*») and (Do),

H(t) > 7/(0) - a/o' ^(u,un)dr, + (4a + 2)a/Q' («,,«,)tfii - 2a(«oM«o)

(IV-4)       > -a(«, «,) + 2(2a + l)§(u0) - (2a + l)[(«o,^«o) + fa0,fo)]

> -aF'(t)/2.
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GLOBAL SOLUTIONS TO NONLINEAR WAVE EQUATIONS 19

Therefore FF" - (a + 1)(F')2 > -aFF' so that (F_a)" + a(F-")' < 0 or
[e"(F~a)'\ < 0. Integrating this latter inequality back twice, we find that

(IV-5) Fa(t) > F"(0){1 - (1 - e-a')aF'(0)/aF(0)}-'.
Now the expression in braces on the right of (IV-5) will vanish at some finite
f0 > 0 provided aF'(0)/aF(0) > 1, i.e. provided (uq,v0) > (a/2a)(wo>"o) which
is the case by hypothesis. Therefore, hm,_r- ||m(/)II = +°° where T < t0 and

t0 = a-'ln[aF'(0)/(aF'(0) - aF(0))]

= a-iln[2a(u0,v0)/(2a(u0,v0) - a(u0,u0))].

The result follows.
The theorem has the geometric interpretation shown in Figure III.

Figure ID. If v0 lies in the shaded region including the boundary of the sphere to the right of
the hyperplane indicated by the segment Jgi",, then lim,_,r-||t((i)ll = +°o-

Remark. Note that if, in addition, 9 satisfies the hypothesis of Corollary 1-1,
then there exist «q's in D such that (D0) holds and consequently there are iv0's such
that Hi/oil < r(uo) and kIIcos 9 > a|k||/2o.

Note also that, in contrast to [14], it was not necessary to use any special
properties of A or of any associated ordinary differential equation.

V. Concluding remark. A similar analysis has been carried out for abstract
equations of the form
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Pdu/dt = -A(t)u + 9(u)

where P > 0 and A > 0. (See [16].)
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Note added later. Theorem VI can be improved somewhat by putting F(f)
— (u, u) + ß(t + t)2 as in Theorem I. We have

Theorem VII. Let 9and A satisfy the hypotheses of Theorem I and u: [0, T) -* H
solve (IV-1) in the sense of Theorem I. Suppose that (D0) of Theorem VI holds. Let
K"o) = \/2[S("o) - K"oM«o)]1/2. Then for any vQ G D such that v0 G S^ D S^
where

S^ - H e D | \\auja - v0\\ < rfa)},
there exists T, 0 < T < oo, such that limt_,r-(tt,«) = +oo.

Proof. With F(t) = (u,u) + ß(t + t)2, we find that

(IV-6) FF" - (a + 1)(F')2 > 4(a + 1)S2 + 2FH(t)

where S2 is given for P = / by the equation following (II-3) and

H(t) = («,«„) - (2a + 1)(«„«,) - (2a + 1)¿8.
By a calculation analogous to that leading to (IV-4) we see that

H(t) > -a(u,ut) + 2(2a + l)[S(«o) - J(«bM«è) " iK^o) - \ßl
Setting ß = 2\%(u0) - i(«o»^«o)] - (v0,v0) - t2(mo) - ||t/0||2 > 0 and observing
that F'O) = 2(h,h,) + 2ß(t + t) > 2(u„u), we find that //(r) > -\aF'(i) and
hence

FF" - (a + 1)(F')2 > -aFF'.

Therefore (IV-5) holds for this choice of F. The conclusion of the theorem follows
if we can show that aF'(0)/aF(0) > 1. This is possible for some t > 0 provided
there exists t such that

P(r) m t2 - 2aT/a + [|k||2 - 2a(«o,t>0)/a]r1 < °-

This is the case if

(IV-7) 0 < t < a/a + {(a/a)2 - [|k 117/3 - 2a(«o, fo)/^]}»/2.
This is clearly possible provided r(un)2 > \\auo/a — v01|2, as we see from a
computation using the definition of ß and the condition that the discriminant of
P(t) be nonnegative.
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Since t0 = -a_1ln[l - aF(0)/aF'(0)] we see that t0 will be as small as
possible provided aF'(0)/aF(0) is as large as possible.

We see that S^ n S^ # 0 if and only if 2r(u0) > (a/a) ||«01|. This latter
inequality is simply a restatement of (D0). The geometrical interpretation of this
statement is self evident.

It is of interest to remark that if wë find a w0 such that r(u0) > 0, then in any
problem where the damping constant a is less than 2ar(w0)/lkll> the theorem
holds for v0 G S^ n Sajli0 # 0. Moreover, if the damping constant is smaller
than ar(t/0)/|k|| then there are f0's in S^ n 5aiIl0 such that (u0,v0) < 0. Then,
even for such pairs of initial data, m0, % the solutions will not be global.
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