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The theoretical possibility of a new kind of diffusion-induced chemical turbulence is 

discussed. Here the nearly planar wavefront of a pulse or phase-boundary propagating through 

a more than one-dimensional medium is of our concern. By means of an asymptotic method 

an equation describing the behavior of a curved wavefront is first derived assuming that its 

spatial variation is slow. The method employed and the resulting equation are completely 

analogous to those encountered in the theory of turbulent phase waves presented earlier, 

although the physical situations considered are different. It turns out that if a spontaneous 

deformation of a planar wavefront occurs, this is immediately accompanied by turbulence 

provided that the system is well extended. The condition for this kind of instability is shown 

analytically to be fulfilled by a simple activator-inhibitor model. 

§ I. Introduction 

In nonequilibrium open systems, multiple diffusion processes give rise to a 

number of unexpected features. A most striking example is the symmetry-breaking 

spatial differentiation of the Rashevsky-Turing typen~ 5 l in which the difference in 

the diffusion rates of the activator and inhibitor plays a decisive role in patterning. 

It has recently been shown that the system of diffusion-coupled limit cycle oscil

lators is capable of showing turbulent behavior, 6 l~sl and that multiple diffusion 

processes with unequal diffusion rates are again important. Another example, simi

lar to the latter phenomenon, can be found in combustion. Apart from the instabili

ty originating from the thermal expansion of the gas, 91 the interaction of diffusion 

and heat conduction processes can lead to a flame-front instability and subsequent 

turbulence. 101 ' 11l For all the above phenomena, multiple diffusion processes toge

ther with some nonequilibrium conditions result in an effectively negative diffusion 

rate of the principal mode. The instability and turbulence of wavefronts in chemi

cal reactions which are treated in the present paper fall into the same class of 

phenomena as the above. 

Unlike the Rashevsky-Turing instability, however, the instabilities in the other 

three cases are characterized by the existence of a "translational mode". Take 

for example the propagation of a wavefront in a two-dimensional reaction-diffusion 

medium which is supposed to be well extended in both the x and y directions. 

Let X(x-vt) represent a propagating wave (a pulse or a phase boundary). Then 

X (x- vt + 'P) with arbitrary spatial translation YJ should also be a possible sol uti on 
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1886 Y. Kuramoto 

of the governing equation. 

The fact to be noticed Is the existence of a "constant of motion" c/J. This 
enables us, when cfJ is allowed to have a slow dependence on the lateral coordinate 
y, to apply an asymptotic method to finding an evolution equation for cf;(y, t) in 
a closed form. We shall find in § 2 how this can be accomplished. 

Exactly the same fact was encountered in discussing the turbulent phase waves 
in systems of diffusion-coupled limit cycle oscillators,8l <p (y, t) there corresponding 
to the phase of the local limit cycle oscillation. Indeed the analogy between the 
two problems is so complete that the final equations in both cases take an identical 
form, which is 

(1·1) 

if lv I is suf-ficiently small. It is interesting to note that Sivashinsky121 also derived 
the same equation when studying turbulent flamefront, but using a different method 
from ours. 

In § 4 we shall find that the quantity v may be negative, just as in the case 
of phase turbulence and combustion. The behavior of VJ for negative V has already 
been studied in some detail,sl, 12) and turbulent behavior was obtained if the system 
size was sufficiently large. Thus, in the present paper, we shall concentrate on 
deriving an equation of the form (1·1), and then provide an example giving rise 
to negative V, rather than analysing Eq. (1·1) itself except briefly in § 3. In § 5, 
a physical interpretation of the wavefront instability will be given. 

§ 2. General formulation 

Consider a two-dimensional reaction-diffusion system composed of n concentra
tion variables (X~> X,, · · ·, Xn) =X obeying the following equation in vector form: 

(2·1) 

where D is a diffusion matrix assumed to be diagonal, and abbreviations such as 
8, and ax in place of a/at and 8/ax are used. The formulation below may readily 
be generalized to the three-dimensional case, and we shall not discuss its generaliza
tion in detail. Suppose that Eq. (2 ·1) allows a steadily propagating solution 

X=X,(x-vt) (2·2) 

m an infinite medium. In particular we will be concerned with a propagating 
single pulse or single phase-boundary rather than periodic wave trains. The wave 
patterns of our concern are shown schematically in Fig. 1. Obviously, X, satisfies 

F(X,(z)) + (Dd/+vd,)X,(z) =0, (2· 3) 

where z Is the moving coordinate, 
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Instability and Turbulence of \Vavefronts 

----'>X 

(a) (b) 

Fig. 1. Schematic wave patterns of a component X, without front distortion. 

(a) Propagating phase boundary. (b) Propagating pulse. 

z=x-vt. 

1887 

(2· 4) 

We assume that X, represents a stable sol uti on with respect to a small disturbance 

u (z, t), which does not depend on y. To be precise, we substitute the expresswn 

X (z, t) =X, (z) +u (z, t) =X,+ :z= e"'tu~ (z) (2·5) 

into Eq. (2·1) to obtain 

with 

T=To+Dd, 2 +vd,, 

(To) ij = aFi (X,) /aX,j. 

' 

(2. 6) 

(2·7a) 

(2· 7b) 

The above-mentioned stability condition for X, means that no eigenvalue },~ should 

have a positive real part. However, it is important to notice that among the 

A~ at least one eigenvalue is exactly zero because of the equation 

which 1s obtained by the application of d, to Eq. (2·3). By comparison of Eqs. 

(2 · 8) and (2 · 6), one may put 

u 0 =d,X,, (2·9a) 

},0 =0. (2·9b) 

The existence of the zero eigenvalue is a natural consequence of the fact that 

any spatial translation of X, (z) produces a solution of Eq. (2 ·1). In the discus

sion below we always assume that all the other eigenvalues have negative real 

parts, and that the zero eigenvalue is isolated. The latter assumption is expected 

to be true for the waves under consideration, but may not be true for periodic 

wave trains. 
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1888 Y. Kuramoto 

It is appropriate here to introduce notation. We define the adjoint operator T* 
of r by 

s_==g(z) (Tf(z))dz= s_: (T*g(z))J(z)dz (2 ·10) 

for arbitrary vector functions f(z) and g (z) having the property: f, g, d,f, 
d,g----'>0 as lzl---'>oo. It is easy to see that T* is explicitly given by 

T*='Fa+Dd, 2 -vd,, (2·11) 

where 'To denotes the transpose of T 0• Correspondingly, we introduce the eigen
vectors u!* (z) satisfying 

(2 ·12) 

together with the orthonormality condition 

(2 ·13) 

For the sake of brevity, the following notation will be used: 

(2·14) 

where the n X n matrix A may contain functions of z and/or differential operators 
with respect to z. 

As a generalization of the solution in Eq. (2·2), we are now interested in an 
essentially two-dimensional solution X (z, y, t) such that its wave profile along z 
for any given y does not much differ from X, (z- ~J) with an appropriate choice 
of the phase (/J, but \/; itself shows a slow spatial variation in the lateral direction 
y. Such a wave pattern is schemetically shown in Fig. 2. However, the wave 
pattern of X (z, y, t) cannot be made identical with X, (z- (/J) by any choice of 
~0 (y), so that we have generally to put 

X· 

f 

----+X 

(a) (b) 
Fig. 2. Schematic wave patterns of a component X, with slow lateral variation 

of the fronts. (a) Propagating phase boundary. (b) Propagating pulse. 
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Instability and Turbulence of Wavefronts 1889 

X(z, y, t) =Xs (z-<j;(y, t)) +u (z-<j;(y, t), y, t), (2 ·15) 

where u takes account of the uncompensated deformation of the wave profile. 

We have now to inquire into the meaning of the phrase "appropriate choice of <j;". 

The most natural definition of <j; will be such that any translational disturbance 

is excluded from u, namely, 

(2·16) 

Besides making the decomposition (2 ·15) unique, the above orthogonality condition 

has an important physical implication. The absence of the translational mode in u 

implies that it describes only the rapid adiabatic processes which follow the slow 

process described by Xs (z- <j;). At such a dynamical stage, a great reduction of 

the dynamics may be accomplished by a functional postulate. We now apply 

this postulation to the pair of small quantities u and 8t<f; assuming them to be 

of the form 

u (z- <j; (y, t), y, t) = u (z- <j; (y, t), 8v2</J, (8y<j;) 2, 8/<j;, · · ·), 

8t<f;=S2(8y2<j;, (8y<j;) 2,8/<f;, ···). 

(2·17a) 

(2·17b) 

Note that the above expressions do not contain terms like 8y<j;, 8/<j;, 8v2</J8v</J, ···, 

that is, terms containing odd numbers of spatial derivatives. We have assumed 

this property so that dynamically reduced equations (2 ·17) may preserve the m

variance under the spatial inversion y~ -y, the property obviously possessed by 

the original equation (2 ·1). 

We note that in the absence of the spatial variation of <j;, the quantities u and 

8t<f; should vanish, recovering the solution (2 · 2). It is therefore appropriate to 

make a perturbation expansion of u and 8t<f; in powers of 8v. A systematic way 

for doing this is to introduce an indicator of smallness e, and make the replacement 

(2·18) 

m Eq. (2 ·17). Then we expand u and 8t<f; m powers of e, and finally put e = 1. 

The expansion forms will generally be 

where 

u (z', y, t) = 82 {u1 w (z') 8v2</J + u/2> (z') (8y<j;) 2} 

+ e• {u/1> (z') 8/<f; + · · ·} + 0 (e6), 

8t<f; = e2 {fJ/1> 8/<f; + f21 '2> (8v</J) 2} + e• {S22 w 8/<f; + · · ·} + 0 (e6), 

z'=z-<j;(y,t), 

(2·19a) 

(2·19b) 

(2. 20) 

and the quantities ua'P> (z') and f2a'P> are as yet unspecified. It can be seen that, 

provided that all the Q"'P> are known, Eq. (2·19b) is the evolution equation, in 
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1890 Y. Kuramoto 

closed form, for the phase function <j;. Equation (2 ·19a) has no direct importance 

m the present theory. 

The condition (2 ·16) now takes the form 

(2. 21) 

or, equivalently, 

(2. 22) 

On substituting Eq. (2·15) together with Eqs. (2·19a) and (2·19b) into Eq. 

(2 ·1), one may determine the quantities Ua <~J and Q"' <~J with the aid of the condi

tion (2 · 21). The explicit procedure is given in Appendix A. In particular, after 

putting e=1, Eq. (2·19b) takes the form 

with the coefficients 

V = Doo, 

11=- (Dd,) oo, 

}, =I: Ar- 1DorDro, 
!"<'0 

(2 · 24a) 

(2·24b) 

(2 · 24c) 

where the notation defined by Eq. (2 ·14) has been used. Equation (2 · 23) 1s the 

basic equation describing the evolution of the wavefront. 

§ 3. Cases of interest 

In this section vve consider two special cases for which Eq. (2 · 23) turns out 

to be useful. If the spatial variation of ~; is sufficiently slow, and if all the 

coefficients v, /1, Jc ... are quantities of normal magnitudes, then in Eq. (2·23) only 

the lowest order terms in Oy need be retained, to give 

(3 ·1) 

We assume that v is positive, otherwise this approximate equation can be shown 

to be meaningless. Exactly the same equation has been derived and used in dis

cussing pattern formation in systems of diffusion-coupled limit cycle oscillators. 131 

However, the peculiarity of the present problem is that the nonlinear term 11 (ay<j;) 2 

can be interpreted physically in the following simple manner. As is proved in 

Appendix B, we have in general the identity 

/l=V/2. (3. 2) 
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Instability and Turbulence of Wavefronts 1891 

On the other hand, the propagation velocity in the z direction Is obviously v 

+ Otcp, and this quantity should in general be related to the propagation velocity 

v< normal to the wavefront by the equation 

(3·3) 

The reason will be clear from Fig. 3. Since Otcp and (a yep) 2 are small compared 

with v, Eq. (3 · 3) may be approximated by 

v + atcjJ= v~ +!!__(a yep) 2• 

2 
(3·4) 

Comparing the above with Eq. (3 ·1) taking account of Eq. (3 · 2), we find 

lv.l = lvl-v~. (3·5) 

Here ~ is the curvature of the front, and is taken to be positive if the front is 

convex and negative if concave. Thus Eq. (3 · 5) simply means that the propagation 

speed normal to the front is modified only by a curvature effect. In particular, 

if v is positive, the front moves so as to make itself smoother, just as the surface 

tension at the liquid-vapor interface has the same effect. If the front is concave, 

the above smoothening effect is balanced with the sharpening effect due to the 

wave propagation, and one may expect the appearance of a shock structure. Equa

tion (3 ·1) indeed admits a family of shock solutions 

y 

X= \jl(y) 

~--------------------~X 

Fig. 3. Relation of iJ,cfl to the propagation ve

locity v, normal to the wavefront. The 

x-coordinate of the front is </J (y), which 

implies the relation cos (} = 1/ V {1 + (a,</J) '} 
giving Eq. (3·3). 

y 

1 

-------+X 

Fig. 4. A shock pattern corresponding to Eq. 

(3·6). Parameter values: a=-0.15, b=0.30, 

v=l.O v=lO.O. 
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1892 Y. Kuramoto 

where a and b are parameters related to the slope of the wavefront at infinity 

by the equation 

lim Oy</J=a±b. (3·7) 
y-)±= 

The front pattern described by Eq. (3 · 6) is illustrated in Fig. 4. It is interesting 

to note that Eq. (3 ·1) is transformed into the Burgers equation13> 

through U = Oy</J, so that the solution (3 · 6) is mathematically equivalent to the 

well-known shock solution of the Burgers equation. 

Another interesting feature is provided by negative v, the case of "negative 

surface tension". Equation (3 ·1) or (3 · 8) then becomes meaningless, because the 

latter can be transformed into the diffusion equation 

(3·9) 

with the negative diffusion constant through the Hopf-Cole transformation 

(3·10) 

Thus we must necessarily take account of some higher order terms in Eq. (2 · 23). 

Suppose that lvl is still small. Then the most important higher order term can 

be shown to be 8/</J, and the resulting equation is 

(3 ·11) 

where Jc>O 1s assumed. In fact the solution of the above equation has the 

scaling form 

(3 ·12) 

making all the other terms, excluded from Eq. (3 ·11), higher order in v. In 

previous papers6>.s> it was shown that the solution of Eq. (3 ·11) is turbulent if 

the system size is sufficiently large. Therefore a discussion on the behavior of </J 

will not be repeated. Instead we turn now to finding an example producing nega

tive v. 

§ 4. A soluble example showing negative JJ 

The example we will consider in this section is a piecewise linear version 

of the Bonhoeffer-van der Pol model with diffusion. Our purpose here is only to 

demonstrate the occurrence of negative v. For the calculation of V it suffices to 

consider a one-dimensional system. The equations considered are 
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Instability and Turbulence of \Vavefronts 

BtX= -X- Y +H(X-a) +DxOx2X, 

at Y = bX-cY +DYox2 Y. 

1893 

( 4 ·la) 

(4-lb) 

Here H 1s the Heaviside step function, and the parameters a, b and c are assumed 

to be in the range 

b,c>O. (4· 2) 

This kind of model has been studied by several people. Rinzel and Keller") 

discussed analytically traveling pulses and their stability for the case c = Dy= 0; 

Winfree 151 obtained by computer calculation a two-dimensional spiral pattern for 

the case c = 0, Dx = Dy; Koga and Kuramoto 161 recently demonstrated the existence 

of some propagationless solitary patterns for the case Dy ):> Dx. 

For the diffusionless case, our system has the following properties. There is 

always a stable fixed point at (X,Y)=(O,O). If the condition cj(b+c)>a is 

satisfied, there is also another stable fixed point (X0, Y0), where 

Xo=- c- Y 0 =-b-. 
b+c' b+c 

(4·3) 

We shall retain this notation for X 0 and Yo even if the bistability condition is not 

satisfied. The nullcline dtX = 0 forms a sigmoidal manifold. Thus X forms a 

hysterisis subsystem containing Y as a hysterisis eliciting parameter. It may also 

be said that X is an activating substance, Y being an inhibiting one. 

Our present concern is a steadily propagating solution 

X=X, (z), Y= Y,(z) (4· 4) 

with z = x- vt. The boundary condition 

X, ( oo) = Y, ( oo) = 0 (4· 5) 

1s always assumed. In particular we concentrate on the following two types of 

solutions. 

(A) A single front propagation for the bistable case with the boundary conditions 

X, (- oo) =X0, 

X,(O) =a. 

Y,(-oo) =Y0 , ( 4 · 6a) 

(4· 6b) 

(B) A single pulse propagation for the monostable and bistable cases with the 

boundary conditions 

X, (- oo) = Y, (- oo) = 0 , 

X, (o) =X, (0) =a, 

where r5 is, as yet, an unspecified pulse width. 

(4·7a) 

(4. 7b) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/6

3
/6

/1
8
8
5
/1

8
4
5
4
7
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1894 Y. Kuramoto 

The method of finding such solutions is almost identical to that of Rinzel and 
Keller, so that we omit all the calculational details. Thanks to the piecewise 
linear character of the model, in both cases the solution may be expressed in 
terms of exponential functions exp (aiz). Here ai are the roots of the equation 

where 

P(a) =f(a)g(a) +b=O, 

f(a) =Dxa2 +va-1, 

g(a) =Dyct2 +va-c. 

(4·8) 

(4· 9a) 

(4· 9b) 

The coefficients before the exponential functions are determined from the boundary 
conditions, and also from the continuity conditions for X, Ys and their first spatial 
derivatives at the junction points. Further, condition ( 4 · 6b) is used for the deter
mination of v and similarly the condition ( 4 · 7b), for v and (j. The sol uti on 
(X, Ys) thus obtained is given in Appendix C. 

The next thing to do is to find the null eigenvectors 

u<l= u*= z (xo(z)) (x0* (z)) 
0 

- Yo(z) ' 0 
- Yo*(z) 

(4-10) 

of the operators r and r*, respectively, with which the quantity )) may be ex
pressed as 

(4·11) 

where 

(4·12a) 

(4·12b) 

If zt0 and u 0 * are defined as normalized quantities, we have of course Gx+ Gy= 1. 
One may recall here that u 0 is simply given by the first derivative of the above
obtained propagating solutions according to Eq. (2 · 9a). Thus the only remaining 
problem is to find u 0* (z). The method for obtaining u 0*, and the expressions for 

u 0*, Gx and Gy is given in Appendix D. 

As is implied by Eqs. (D ·12) and (D ·13), the expression for V is quite 
complicated. It is possible, with the aid of a numerical procedure, to examine the 

sign of v for various parameter values. In order to continue the study analytically, 
however, the problem is simplified (but not made trivial) by allowing some of the 
parameters to have extremely small values. In particular, we are interested in the 
case 

b=r::b, c=E:c' ( 4 ·13) 
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Instability and Turbulence of lVavefronts 1895 

where e is a small quantity, while Dx, b, c as well as the other parameters are 

assumed to have normal magnitudes. In the limit e~O, the expressions for various 

quantities which we are concerned with are greatly simplified as follows. Assum

ing that the propagation velocity v is positive and of the order of 8114, which is 

actually the case as will be seen presently, the four roots of Eq. ( 4 · 8) are re

duced to 

a 1, 3 =-c:4 (-v±Vv 2 +4D~), 
2Dx 

a2 = e31'v-' (b +c), 

where v 1s the scaled velocity 

In terms of the scaled coordinate f defined by 

and of the scaled quantities 

our propagating solutions in Eqs. (C ·1) and (C · 3) are reduced to 

(A) 

(B) 

X, (f) =Xo+ Y0 exp (af), 

=0, 

Y,(~) =Y0 (1-exp(af)), 

=0. 

f<O 

~>O 

f<O 

f>O 

X, (f) =Yo (exp (- a?f) -1) exp (af), 

=Xo+ Yo exp [a (f -?f)], 

=0' 

Y, (f) =Yo (1- exp (- a?f)) exp (af), 

=Yo (1- exp [a (f -0')]), 

=0. 

O<f<?f 

f>?f 

~<O 

O<~<O' 

f>O' 

(4 ·14a) 

(4·14b) 

(4·14c) 

(4·1b) 

(4 ·16) 

(4·17a) 

(4·17b) 

(4·18a) 

(4·18b) 

(4·18c) 

(4·18d) 

(4·19a) 

(4·19b) 

(4·19c) 

(4·19d) 

(4·19e) 

(4·19f) 

In both Cases (A) and (B) the scaled propagation velocity is given by 
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Xs ,Ys 

I 
(a) (b) Xs ,Y5 

I 

~ 
~ --------------~L-----------4) ~ 

Fig. 5. Analytically obtained wave patterns for the extreme case (4·13); (a) and (b) 

correspond to Eqs. (4·18) and (4·19), respectively. Solid curves represent X,, and 

broken curves Y,. 

v= (1-2a)J-- Dx-= 
a (1-a) ' 

and the scaled pulse width for case (B) is 

c=~ln Yo 
b+c 2a-X0 

The wave patterns corresponding to Eq. (4·18) and (4·19) 

The expression for v obtained from Eqs. (D ·12) and ( 4 ·11) 

fied, and turns out to be identical for Cases (A) and (B) . 

(D ·12a) and (D ·12b) 

so that 

Gx= c;lf•(v2~~Dx)af2' 
Gy= -s114bDyjvS, 

V= s1J2f5x{1- b 2( ~Y )2}. 
(1-2a) Dx 

( 4. 20) 

(4· 21) 

are shown in Fig. 5. 

is also greatly simpli

We have from Eqs. 

(4 · 22a) 

(4· 22b) 

(4· 23) 

Note that we have [Gy/Gx[~o as s~o, still the quantities GxDx and GyDy have 

the same order of magnitude. Thus the transition from positive to negative V is 

possibl~ by changing some parameter, e.g., Dx. For any scaling choice different 

from that in Eq. (4·13) such a transition is impossible. For instance, if we take 

Dx=SDx keeping band cas in Eq. (4·13), the quantity v turns out to be de

finitely negative. 

§ 5. Discussion 

Here we supplement the results of the preceding sections with some qualitative 

arguments. The reason for the occurrence of the spontaneous deformation of a wave

front may be qualitatively understood as follows. In order to make the arguments 
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y y 

r I 

--4 x-vt --4 x-vt 

(a) (b) 

Fig. 6. Instability of a wavefront. For explanation, see text. 

concrete, consider a bistable system composed of an activator X and inhibitor Y. 

Suppose that the medium is now partitioned into two subregions, each corresponding 

to a uniform steady state P, = (X1 , Y1) or P,= (X,, Y,) as shown in Fig. 6 (a). The 

boundary separating these regions is a straight line, and it propagates along the 

x direction. Thus the region P 1 will be the activated region, namely, X,>X,, so 

that Y 1 should also be larger than Y,. A part of the wavefront is now pushed 

forward as in Fig. 6 (b), and we ask what happens subsequently. The fact that 

the diffusion constants Dx and Dy are positive implies that the phase boundary 

possesses a kind of surface tension acting as a flattening force on the front non

uniformity. If Dy is much greater than Dx, however, there exists a sizable counter

effect. In fact, in such a case, Y will diffuse rapidly out of the promontory A 

as indicated by the dotted line in Fig. 6 (b), and this will bring about the scarcity 

of Yin A. Thus the autocatalytic production of X is accelerated, and the propaga

tion speed is increased at the part _!l. What happens in the neighbourhood B 

is the exact converse. Namely, Y is excessive there so that the propagation speed 

will be diminished. As a result, the shape of the boundary tends to be distorted 

further. If such a destabilization force dominates the stabilizing force mentioned 

at first, we have an effectively negative surface tension. Then, the boundary as 

a straight line becomes unstable, and this should be accompanied by the appearance 

of some new structure. 

From a mathematical point of view, the negative sign of v in the example 

considered in § 4 comes from the difference in the signs of Gx and Gy. This can 

be further traced back to the existence of an antisymmetric part in the matrix r. 
Such a property of r is characteristic of an activator-inhibitor system. In addition, 

the condition Dy y Dx makes the negative contribution to v greater as is seen 

from Eq. ( 4 ·11). Such mathematical reasoning is in accordance with the intuitive 

picture described in the preceding paragraph. 

Just as the occurrence of a propagationless solitary pattern discussed in the 

previous paper, 16J the instability and turbulence of wavefronts might be considered to 
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1898 Y. Kuramoto 

be one of the phenomena resulting from the competition between the cross-inhibi

tory and cross-excitory natures of the system. If one compares Eq. ( 4 ·13) with 

Eq. (3 ·1) of Ref. 16), it can be seen that the latter requires stronger cross

inhibition than the former. Namely, in the present phenomenon, the cross-inhibi

tion is not strong enough to realize pattern localization, still it may be strong 

enough to give rise to a spontaneous deformation of the front and hence turbulence. 

Appendix A 

'vVe explain here how the quantities u,/"1 and Q" em appearing 111 Eq. (2 ·19) 

are determined from Eqs. (2 ·1) and (2 ·19). On substituting Eq. (2 ·19) into 

Eq. (2 ·1), the three terms constituting Eq. (2 ·1) may be expressed as 

a,X = a,X, + i'J,u =- (v+ 8,c/J) d,.X, + a,u 

= - vf),.X,- {e2 (!21 w 8,/c/J + !2/'1 (oycp) 2) + e4 (Q, (J) 3/c/J + · · ·) + · · ·} a,.X, 

+···, (A ·1) 

F(X) =F(X,) +T{e2 (u 1 ' 11 o/rjJ+u/'1 (i'Jycp) 2) +e'(u,' 1liY/yJ-!- ···) + ···} + ···, 
(A·2) 

= Dd';,x,- c.' D (d,.X,i'Jy'rjJ- d;.x, (i'JvrfJ) 2) 

+ c.'D (d;,u1 way'rjJ + dz',u, '21 (oycjJ) 2) + c4D (d;,u, cJJ + U1 ' 11
) i'J/rjJ + · · · . (A· 3) 

In the above, all terms with regard to the types iY/tjJ, (oycjJ) 2 and iY/tjJ have ex

plicitly been written down. Eqnation (2 ·1) may now be written in the form 

where 

.fo w (z') + 82 (f, w (z') il/t/J + .f1 ''
1 (z') (a yep)} 

+ e4 (.f/ 0 (.z') D/rjJ + ·· ·) + 0 (c.6
) = 0, 

f~ ol = F (X,) J_ (Dd,'. + vd,.) X,, 

f1 en= (Ql ' 11 - D) uo + rul en, 

f. (2) ( n (2) + v· l ) + 1" (2) 
• 1 = ~c 1 c z / Ito - lt 1 ' 

f '11 - 0 °1 + D Ul 1-l"tt C!l -zt ' 11 n ' 11 
2 - ~""' 2 ll 0 ll1 I 2 1 J6 1 ' 

(A·4) 

(A· 5a) 

(A·Sh) 

(A· 5c) 

(A· Sci) 

and Eq. (2. 9a) has been used. In order that Eq. (A· 4) holds identically, it Is 

necessary that all the coefficients fa en are identically zero. The equation fa w = 0 

is automatically satisfied according to Eq. (2 · 3). By applying 'tt,* to the equations 

f 1 °1' " 1 = 0 from the left and integrating over de::' from - = to +- oo, we obtain 
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Instability and Turbulence of vVavefronts 

S21 <21 = - (Dd.) oo, 

1899 

(A- 6a) 

(A· 6b) 

(A·6c) 

(A· 6d) 

where we have used Eqs. (2 · 6), (2 ·13) and (2 · 22). In a similar way, -vve find 

from the equation f 2 cv = 0, 

.lJ/11 = -I; At - 1 DotDlO. (A· 7) 
z.-.o 

On putting S21 w = v, S21 '
21 = 11 and S22 w =-A, we obtain Eqs. (2 · 23) and (2 · 24). 

Appendix B 

Here we give the proof of Eq. (3 · 2). The null eigenvectors zt0 (z) and 

zt0 * (z) have been shown in § 2 to satisfy 

(To (z) + Dd,' + vd.) U 0 (z) = 0, (B·1) 

and 

CT0 (z) +Dd/-vd.)u0*(z) =0, (B·2) 

or, taking the transpose of Eq. (B · 2) , 

(B·3) 

We now subtract the product formed by left multiplication of (B·1) by 'u0* from 

the product formed by right multiplication of (B · 3) by u 0 to obtain 

(B·4) 

The above may be rewritten as 

We assume that u 0 and u 0* go to zero sufficiently rapidly as Jzl~oo. Thus, Eq. 

(B · 5) may be integrated to give 

Integrating Eq. (B · 6) again, using partial integration, we obtain 

V= s_== (d/uo*Duo-'uo*Dd.uo)dz 

= -2 s_=='u0*Dd.uodz= -2(Dd.) 00 =2/1, 

which completes the proof. 

(B·7) 
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1900 Y. Kuramoto 

Appendix C 

Assuming that Eq. ( 4 · 8) has two positive roots a 1 and a 2 , and two negative 

ones a 3 and a 4 , our steadily propagating solutions for Cases (A) and (B) may 

be expressed as follows: 

(A) 

(C ·1a) 

(C·1b) 

Y, (z) =-X, (z) +H( -z) + Dxd/X, +vd,X,, z:;=o (C ·1c) 

where 

(C · 2a) 

(C·2b) 

(B) 

(C·3b) 

(C·3c) 

(C ·3d) 

where 

Whether solutions of the above forms actually exist or not depends on whether 

the conditions ( 4 · 6b) and ( 4 · 7b) allow for real v and positive G. In the extreme 

case as represented by Eq. ( 4 ·13) this condition is satisfied and the sol uti on is 

unique in each Case (A) and (B). 

Appendix D 

We briefly outline the procedure of finding u 0 *, together with the final ex

pressions for u 0 *, Gx and Gy. 
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Instability and Turbulence of \,Vavefronts 1901 

The quantity Uo* is the null eigenvector of r*, and the latter has in the 

present model the following explicit form: 

(
-1+o(X.(z) -a) +Dxd/-vd, 

T*= 
-1 

b ) 
2 • 

-c+Dd, -vd, 

The delta function in Eq. (D ·1) may explicitly be written as 

o(X.(z)-a)=-ro- 1o(z), (Case (A)) 

= - r. -1o (z- o) + ro - 10 (z), (Case (B)) 

where 

r •. o = d,X.l,~ •. o. 

(D·1) 

(D·2a) 

(D · 2b) 

(D · 3) 

Analogously to the problem of finding X. and Y., the quantity u 0 * may be ex

pressed in terms of exponential functions exp (f];z), where ;3; are the zeros of the 

polynomial p em defined by 

p (;3; v) = p (;3 ; - v) . (D·4) 

Equation (D · 4) implies 

;3; = -a;, i = 1, 2, 3, 4 . (D·5) 

In terms of x 0 * (z) and Yo* (z) defined by Eq. ( 4 ·10), the following conditions 

should now be required: The boundary conditions, x 0 * ( ± oo) =Yo* ( ± oo) = 0; the 

continuity conditions for x 0 *, Yo* and d,y0 * at the junction points; the jump condi

tion 

and 

d,xo * IHo- d,xo * 1.-o = (Dxr.) -I ::co* (o), 

d,xo *] +o- d,xo * 1-o = - (Dxro) - 1Xo * (0). (Case (B)) 

(D·6) 

(D · 7a) 

(D·7b) 

With these conditions one may determine u 0* (z) except for a multiplicative con

stant. The expression for the unnormalized u 0 * is 

(A) 

(D ·Sa) 

(D ·8b) 

(B) 

(D ·9a) 
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1902 Y. Kuramoto 

(D·9b) 

(D·9c) 

where 

As for the other notations used above, see Appendix C. The quantity y 0* is 
related to x 0 * by 

y 0*=b-1(1-Dxd/+vd,)x0* (D·ll) 

m both cases. The quantities Gx and Gy defined in Eq. ( 4 ·12) may now be 
calculated, and they turn out to have the following expressions: 

(A) 

(B) 

Gx=- (K1s+K2a+K1.+K24), 

Gy= b (K1s + K2s + K14 + K2•), 

Gy = b {J1sK1s+J2sK2s +J14K14 +J24K24- (f.l4- f.la)Ks4 

- r; (1-l~-~- /.l2-1)K12 + !!_ ( _jl~ +_E_~ + -~+-r;2 )} , 
2 Qs Q4 f.l1Q1 /.l2Q2 

where 

Kij=gigjKij' 

JiJ = 1 + r; -- P1- rJPi- 1
• 
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