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Abstract 

In non-ideal vibratory system, the excitation is a nonlinear function of system response. The dynamic behavior of 

such system is often characterized by an energy source with limited power. The study of instability phenomena 

in non-ideal rotor driven through a non-ideal energy source is of considerable current interest. The non-ideal rotor 

system often gets destabilized on exceeding a critical input power near the resonance. This kind of instability is 

termed as Sommerfeld effect marked with nonlinear jump phenomena. This paper investigates the attenuation of 

nonlinear jump phenomena and numerical study of bifurcations of a non-ideal unbalanced rotor system with 

internal damping using time delayed feedback via active magnetic bearings. The results show that the time delay 

indeed plays a critical role on the suppression of the jump phenomena. Following, some new insights are also 

revealed through a numerical study of saddle node, Hopf and trans-critical bifurcations with time delay as a 

bifurcation parameter. The transient analysis confirms the results obtained analytically through the steady-state 

consideration.  

Keywords Internal damping; Sommerfeld effect; Time delayed feedback; Bifurcations; Non-ideal system; Jump 

phenomena; AMB 

1 Introduction 

The control of instability of high-speed non-ideal rotor system has been considered a great challenge to many 

researchers in recent times. These rotors are coupled with an energy source with limited power (i.e., DC motor, 

induction motor etc) which also gets affected by the response of the system contrary to its ideal counterpart in 

which the source is not influenced by the system response [1]. Mathematical modelling of such non-ideal systems 

involves an additional degree of freedom which describes the nonlinear interaction of the rotor system with the 

electric motor. The interaction between the motor and the rotor system is highly complex and nonlinear.  During 

the coast up operation, close to the system resonance, the rotor speed suddenly jumps to a very high value and the 

corresponding amplitude simultaneously jumps to a very low value on exceeding a critical power input of the 

motor. A similar kind of jump in the reverse manner is also observed during the coast down operation wherein 

the spin speed jumps to a very low value and the corresponding amplitude jumps to a very high value. This jump 

phenomena marked with a curve of discontinuity is observed in the frequency response which reveals that certain 

spin speeds could not be achieved during the steady-state when the input power exceeds a critical value. This kind 

of jump phenomena is well-known as Sommerfeld effect [2] which often destabilizes the system near the 

resonance. The non-conservative circulatory forces due to intrinsic material damping also causes the system 

unstable beyond a certain threshold spin speed which is referred to as a second kind of Sommerfeld effect in rotor 

dynamics literature [3]. 

A few studies are reported so far dealing with the attenuation of instability for non-ideal systems. A tuned 

liquid damper is proposed by Felix et al., [4] as a passive control strategy which successfully attenuated the 

instability of a structural frame excited through a non-ideal excitation. A kind of friction model is employed to 

mitigate the Sommerfeld effect  of a non-ideal structure using a vibration absorber [5]. Semi-active control 

technique is also employed to study the Sommerfeld effect mitigation such as using MR damper on a non-ideal 

vibratory system powered through a DC motor is reported by Castao et.al., [6]. Another important work on the 

suppression of non-linear jump phenomena using a magnetorheological damper is reported in [7]. In 2018, 

Balthazar and his co-authors proposed an experimental technique using shape memory element to mitigate the 

jump phenomena exhibited by a non-ideal cantilever [8]. In the recent past, a novel approach [9] based on 

fractional order external damping is employed to study the attenuation of the jump phenomena of a non-ideal 

internally damped shaft-disk system. Subsequently, a semi-active control scheme through a switched stiffness 

device was also proposed by the same authors [10].  
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Active Magnetic bearing (AMB) has many advantages over its passive counterpart such as non-

contacting nature of suspension over the convention fluid film and anti-friction bearings, elimination of lubricant, 

very low friction, no wear, high rotor speed and high load carrying capacity at extreme conditions such as very 

high or very low temperature and vacuum. Many scientific articles dealing with control of rotating machinery via 

AMB system have been published [11–20]. But AMB based active control strategy dealing with suppression of 

the Sommerfeld effect in non-ideal internally damped rotor system was not reported before 2019. In 2019, Jha 

and Dasgupta proposed an active control scheme based on a linearized model of AMB system  to attenuate the 

Sommerfeld effect in a non-ideal rotor disk with material damping successfully [21]. 

 

It is well-known that the time delay often destabilizes the system. Thus, the analysis of the dynamic 

behaviour of AMB with time delay is extremely important.  The source of the intrinsic time delay is due to the 

hardware of the digitally controlled AMB system which comprises digital signal processor (DSP), analog-to-

digital (A/D) and digital-to-analog (D/A) converters, memory, filters, interfacing components etc. Usually, a 

multiplexer topology is employed for multiple A/D conversion channels for sampling. Improper synchronization 

of A/D converters with sample and hold circuit, delay in A/D and D/A conversion, computational dead time may 

have adverse effect on the phase margin of the system leading to instability. A few works discussed the problem 

of the time-delays in AMB-system [20, 22–24]. Influence of time delay is reported in [22] to study the stability 

of a Jeffcott rotor-AMB system based on Hopf bifurcations. In a similar kind of study, it has been shown that on 

exceeding a critical time delay, instability occurs in a rotor system coupled with AMB [23].  Following, occurrence 

of period-doubling bifurcations is investigated in a system with time-delayed magnetic levitation marked with 

soft spring characteristics [24]. A study on vibration suppression of a time-delayed AMB system subjected to 

multi-parametric excitation is reported in [20]. This study also reveals that the efficacy of the controller may be 

enhanced if the time delay is kept within a stable range. Eissa et al. [25] studied the effectiveness of a time-delayed 

PD controller to attenuate the instability of a nonlinear system coupled with a magnetic bearing. Balthazar et al 

[26], studied the Hopf bifurcation on a centrifugal vibrator actuated by a non-ideal motor. However, influence of 

time delay in attenuating the Sommerfeld effect of non-ideal eccentric rotor system with internal damping is not 

yet reported so far. The bifurcation studies of such non-ideal systems are also not available in literature. 

 

This paper aims to present the influence of intrinsic time delay in attenuating the nonlinear jumps of a 

non-ideal rotor-AMB system driven through a brushed DC motor. Moreover, it also reveals the complex dynamics 

of this non-ideal system through different bifurcation studies (such as saddle node, Hopf and trans-critical) with 

the help of root-loci plots. The rest of the paper organised as follows. Section 2 gives the mathematical modelling 

of the proposed system with time delay. Section 3 discusses the influence of time delay in attenuating the 

Sommerfeld effect. Following a transient analysis is also performed which confirms the analytical results given 

in Section 3. Numerical studies of bifurcations through a set of root-locus plots are presented in Section 4 which 

reveal the complex dynamics of instability influenced by the time delay based on certain conditions. Section 5 

gives the conclusions and future work. The steady-state amplitude frequency responses close to the system 

resonance are obtained for several time delays.  Following, a transient analysis is found to be in good agreement 

with the steady-state results.  

 

 

2 Model description and equations of motion 

A typical internally damped non-ideal eccentric rotor-AMB system with time delay driven through a brushed DC 

motor is considered for the present work as shown in the Fig. 1. The system equations of the proposed rotor-disk 

model required to perform analytical and transient analysis are presented in the following subsections.  

 

Fig. 1 Schematic of a non-ideal rotor-AMB system with time delay 



2.1 Equations of motion  

A flexible internally damped shaft driven through a brushed DC motor supported by a pair of identical rigid 

bearings is shown in the Fig. 1. A small disk is mounted with small eccentricity at the mid-span of the shaft. No 

gyroscopic term is involved as the disk is centrally mounted. Additionally, two identical AMBs with a small time 

delay ( ) are employed as shown in Fig. 1. The proposed model offers one more degree of freedom (DOF) to 

describe the nonlinear complex interaction between the system and non-ideal DC motor. Using the Lagrange-

differential equations, the generalized vector differential equation may be obtained as follows:  

                                                                                                       ( )1   

Eq. (1) represents a delay differential equation (DDE) [27] which is typical representative of infinite-dimensional 

system [27] as time delay ( )  is exclusively present in the RHS of the Eq. (1). The non-linear system with the 

time-delays has been an active topic of research over the past decades [19, 20, 28, 29]. In the present system, the 

main sources of instability are due to non-conservative internal damping and time delay induced source loading 

term. The nonlinear interaction between the DC motor and the system may be represented by the following 

equation: 
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,M D and K are symmetric and positive definite diagonal matrices, H is an anti-symmetric circulatory matrix 

[30] ( ) i.e.,
T

H = -H which may destabilize the system involving material damping ( )i
R [31], q is a 2 1 column 

vector of generalized coordinates. The material damping in rotor dynamics plays a key role in determining the 

stability of the system. It is considered to be a function of past history of loading, strain rate and temperature of 

the system. Owing to the presence of 
i

R , the follower types circulatory forces ( )CH
F appear in the source loading 

(see Eq. 4) is non-conservative in nature as 0
CH

F ,  causes self-excited vibration,  represents the angular 

rotation of the eccentric disk. On the right-hand side of Eq. (1), the second term, ( )t −
c

F represents control force 

provided by the AMB actuator with time delay ( ) .  In the RHS of Eq. (2), m
T and L

T represent the torque supplied 

by the DC motor, and the nonlinear source loading torque respectively. The parameters used in Eq. (1) & Eq. (2) 

are presented in Table 1.
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Table 1 

Symbol Name of the disk and motor parameters 

m mass of the centrally mounted disk 

I  mass moment of inertia of the shaft-rotor system about the axis of spin 

e
R  external damping referred to the disk centre 

i
R  internal or material damping referred to the disk centre 

r
R  damping offered by the bearings and medium to the system 

m
R  armature resistance of the DC motor 

s
V  supply voltage 

m
  DC motor characteristic constant 

e constant small eccentricity in the disk 

  phase corresponding to initial position of mass centre of the disk  

 

2.2 AMB Model with time delay  

AMB system suspends rotor through electromagnetic force, thereby eliminating physical contact with the bearing. 

A schematic diagram of AMB system with time delay is shown in Fig. 2. A Hall-effect based proximity sensor 

senses the rotor displacement and sends the signal as a negative-feedback to the controller. The controller, based 

on a control law, generates the control current which then passes through a time delay block to incorporate a delay. 

Then the time delayed signal gets amplified by the power amplifier.  Following, control force is built up in the 

electromagnetic actuator which applies on the rotor shaft. 

 

 

Fig. 2 Schematic of an AMB system with time delay 

In the present study, the control currents given by the AMB system along the x and y direction according to 

Proportional-Derivative (PD) control scheme are expressed as: ( ) ( )( )x p a d
i K K x t K x t  − = − − + − and 

( ) ( )( )y p a d
i K K y t K y t .  − = − − + − Using the control currents ( ) & 

x y
i i , − −  the time delayed linearized 

control force ( )( )t −
c

F may be expressed as: 
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c
F                                       ( )3  

where AMB u i a p s
K K K K K K= − +  and 

2 2 3

0 4  and 4
AMB i a p s d i o u

C K K K K K , K Ki / c K Ki / c .= = = The AMB 

parameters are given in Table 2. Details of the derivation is given in [30]. 



Table 2 

Symbol Name of the AMB parameters 

s
K  sensor gain 

a
K  gain of the power amplifier 

pK  proportional gain of the controller 

d
K  derivative gain of the controller 

0i  bias current 

c  radial clearance 

 

Usually, the time delay present in the digitally controlled AMB actuators is finite [19]. Thus, the displacement 

and the velocity feedback terms given in Eq. (3) may be approximated as [32]: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t x x ,x t x x

y t y y , y t y y

   

   

−  − −  − 


−  − −  − 
                                                                                          ( )4  

Assumption of finite time delay justifies the reality of digitally controlled AMB system and in no way affects the 

accuracy of the analysis. Thus, the resulting system turns out to be finite dimensional. Making use of Eq. (4), Eq. 

(1) & (2) makes the Eq. (1) into a finite two-dimensional ODE as follows:  

( ) ( )t   =M q + D q + K + H q F                                                                                                                            ( )5
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and   
AMB e i AMB AMB AMB

M m C , C R R C K , K K K . = − = + + − = +  

The RHS terms in Eq. (2) i.e., the torque supplied ( )m
T by the DC motor, and the nonlinear source loading torque 

( )L
T given in Eq. (2) may be further expressed as:  

( )m m s m m
T V / R  = −                                                                                                                                        ( )6  

( ) sin cos
L i

T R xy xy Cx Kx e Cy Ky e    = − + + − +                                                                           ( )7  

2.3 Stability condition of the steady-state response  

Owing to the isotropic nature of external and internal damping, Eq. (3) admits a special orthogonal group with 

dimensions two (SO(2)) symmetry [33, 34]. Hence a self-symmetric solution under SO(2) may be expressed as 

( )0cos
r

x F t = + and ( )0sin
r

y F t . = + The steady-state synchronous whirl amplitude ( )0F may be expressed 

as: 

( )( )
1 2

2
2 2 2 2

0

/

r AMB r d r
F me / K K M C   = + − +  

                                                                             ( )8  



where ( )d e AMB AMB
C R K C= − +  and the phase angle, ( )( )1tan

r
y / x t . −= −  Here, synchronous whirl 

amplitude is not influenced by the material damping as the speed of the non-ideal energy source (i.e., DC motor) 

is assumed to be constant. 

It is well-known that for a critical circulatory parameter ( )0
crit r i crit

i.e., R ,  =   [35] the energy 

supplied to system ( )m
W  equals to the energy dissipated by the system ( )d

W . Applying this condition on the 

previous equations [36],  a polynomial of 5th order is obtained as follows:  

( )( ) ( )( ) ( )2 2 2 2 5 2 4 2 2 3 2 22 2
m m r m r m s r m m r d r m s d r

M R R m e R C M V R R MK C V MK C       + + − − + − + −

( )2 2 2 0
m m r r m s

K R R K V .  + + − =                                                                                                                     ( )9  

It is obvious that not all the roots of the Eq. (9) give stable solutions. Using the approach given in [37] which 

states that a stable energy state exists if and only if ( )m d
W W−  happens to be a decreasing function for a critical 

value of 
r

 say 
rc

  . This criterion ensures possible existence of a locally minimum energy state and every root 

satisfying the above criterion must lie on the stable branch. Moreover, the term given in Eq. (9) ( )22 0
d

MK C− 

implies the number of positive real roots may be three or one according to the Descarte’s sign rule. Thus, the 

existence of multiple roots confirms the presence of the Sommerfeld effect marked with nonlinear jumps [38, 39]. 

3 Influence of time delay and bias current on attenuation of the Sommerfeld effect 

Using the system parameters [21] (see Table 3) and making use of Eq. (9) along with the minimum energy state 

criterion as mentioned above, the following numerical simulations are carried out.  

 

Table 3 

System Parameter Value System Parameter Value 

m 2 kg 
e

R  150 Ns/m 

K  48 10 N/m i
R  50 Ns/m 

e  0.001 m 
r

R  52 10− Nm s /rad 

m
R  40Ω  

m
  0.1 Nm/A 

I 0.004 kg.m2 
n

  200 rad/sec. 

 

The result presented in Fig. 3 is in good agreement with [21] in which during coast up phase, the non-dimensional 

whirl amplitude ( )2 /
n

B g = jumps from a higher value (‘b’) to a lower value (‘d’) nearer to resonance, upon 

exceeding a critical input power while the non-dimensional rotor spin speed ( )* /
r r n

  = jumps simultaneously 

from a lower (‘b’) to higher value (‘d’) with no AMB and no time delay i.e.,  0
a

i =  0. =  Similarly, during coast 

down, the amplitude jumps to a higher value (‘a’) and from ‘c’ whereas the rotor speed goes to a lower value at 
(‘a’). 



 

Fig. 3 Steady-state amplitude frequency response without AMB 

 

 

(a) (b) 

Fig. 4 (a) & (b) Steady-state amplitude frequency response with fixed bias current and various time delays 

 

Fig. 4 (a) and Fig. 4 (b) illustrate the attenuation of the Sommerfeld effect as time delay decreases for some fixed 

bias current. The similar phenomena are observed when the non-dimensional spin speed amplitude and versus 

non-dimensional supply voltage as shown in Fig. 5 and Fig. 6 respectively for several time delays with a given 

bias current. The transient analysis shown in Fig. 8 (a) confirms the steady results illustrated in Fig. 4 (a) & (b).  



Fig. 5 (a) & (b) Steady-state spin speed variation with supply voltage for fixed bias current and various time 

delays 

On the other hand, if the time delay is fixed, the Sommerfeld effect is found to be attenuated as the bias current 

decreases (see Fig. 7 (a) & (b)) which is contrary to the results reported in [21] wherein the Sommerfeld effect is 

found to be reduced gradually as the bias current increases for the same non-ideal system without time delay. This 

result suggests that the AMB system with time delay is not only more realistic but also advantageous as it requires 

very small current to suppress the Sommerfeld effect. The same result is also true for the rotor speed and amplitude 

versus supply voltage graphs. The transient analysis illustrated in Fig. 8 (b) confirms the above result. The 

transient study shown in Fig. 9 is found to be in good agreement with the steady-state result. 

  

Fig. 6(a) & (b) Steady-state amplitude variation with supply voltage for fixed bias current and various time delays 



  

Fig. 7 (a) & (b) Steady-state amplitude variation with spin speed for fixed time delay and various bias currents 

 

Fig. 8 (a) Sommerfeld effect attenuation for a fixed 

bias currents and various time delays  

Fig. 8 (b) Sommerfeld effect attenuation for a fixed 

time delay and various bias currents   

 

Fig. 9 A comparison between transient and steady-state response  

 

4 Bifurcation analysis 

The study of instability phenomena characterized with nonlinear jumps seems to be more realistic and convincing 

when time delay is considered. Delay induced bifurcation studies in a complex dynamical system reveal a couple 

of interesting facts. In the following sub- sections, numerical experimentations of saddle-node, Hopf and trans-

critical bifurcations are carried out systematically with the help of root loci technique [40].  

 

 



4.1 Root locus method 

 

Using a fifth order polynomial of 
r

  given in Eq. (9), one may write the following transfer function between a 

fictitious input and output pair as:  

( ) ( )
( )

4 2

4 2 0

5 3

5 3 1

N s N s N s N
G s

D s D s D s D s

+ +
= =

+ +
                                                                                                                    ( )10                                    

where s is a complex variable, ( )N s  and ( )D s  are numerator and denominator respectively, and  
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2  and . 

m m d m m m r m

m m r d m m r

N M ,N MK C ,N K , D M R R m e R C ,
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= = − − = = + +

= − + − = +
 

The root-loci plot (see Fig. 10(a)) clearly shows how the closed loop poles vary with the system gain parameter 

i.e., supply voltage ( )s
V  in the complex s-plane. This diagram also confirms the existence of the Sommerfeld 

effect through the presence of multiple roots between the break-away marked as ‘b’ and break-in marked as ‘a’ 
point with gain parameter ( )s

V  463 V and 168 V respectively for 0i = 0.6 A and 0 001. = s.  It is well-known 

from the linear control theory that the break-away (with maximum gain) and break-in (with minimum gain) can 

be obtained using the condition ( )0
s

dV / ds .= The points ‘ b ’ and ‘ a ’ in the root loci plot (as shown in Fig. 10 

(a)) corresponds to the points ‘ b ’and ‘a’ respectively as shown in Fig. 10 (b) where the jumps are shown by the 

dash line during the coast up and coast down respectively. 

 

4.2 Saddle-node bifurcation 

 

Considering the bias current ( )0i as a bifurcation parameter with fixed time delay, the distance between the break-

away and break-in point found to be reduced. Finally, these two points are found to be merged into a single point 

known as bifurcation point by annihilating each other when bias current ( )0i attains 4.598 A with the same time 

delay (i.e.,  = 0.001) with supply voltage ( )s
V is 437 V shown Fig. 11 (a). This kind of bifurcation is referred to 

as cyclic saddle node bifurcation [41]. The complete cessation of the Sommerfeld effect is observed when i0 > 

4.598 A as shown in Fig. 11 (b). 

  

Fig. 10 (a) Root-locus plot of Eq. (10) for 0i = 0.6 

A and 0 001. =  

Fig. 10 (b) Nonlinear jumps in frequency response for 

0i = 0.6 A and 0 001. =  



Fig. 11 (a) Root-locus plot of Eq. (10) for 0i = 4.598 A 

and 0 001. =  

Fig. 11 (b) Root-locus plot of Eq. (10) for 

 0i  4.598 A and 0 001. =  

 
 

Fig. 12 (a) Saddle-node point for critical time delay  

0 000393
c

. =  

Fig. 12 (b) Saddle-node point for critical time delay  

0 000052
c

. =  

 

On the other hand, considering the time delay as bifurcation parameter, the saddle node bifurcation occurs when 

time delay attains its critical value ( )0 000393
c

i.e., . = for fixed bias current shown in Fig.12 (a). The Sommerfeld 

effect would disappear completely when 0 000393. .   Fig.12 (b) illustrates the same phenomena for a much 

lower value of bias current, the saddle-node appears when the critical time delay is found to be much lower i.e., 

0 000052
c

. . =  These critical values of time delays are negligibly small for a digitally controlled AMB system 

and not feasible. The above-mentioned numerical experimentation reveals that the saddle-node bifurcation is not 

practically achievable considering the time delay as a bifurcation parameter because the critical time delays are 

found to be negligibly small and hence not practicable for relatively smaller fixed bias current. 

 

 

 

 

 

 



4.3. Hopf bifurcation  

 

Using the transfer function given in Eq. (10) with supply voltage ( )s
V as a gain parameter, the following fifth 

order polynomial can be constructed as:  

( )
5

5 4 3 2

5 4 3 2 1 0

0

i

i

i

F s a s a s a s a s a s a s a
=

= = + + + + +                                                                                           ( )11  
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( )( ) ( )( ) ( )
( )

2 2 2 2 2 2 2 2

5 4 3 2

2 2 2
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  2  2  
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m m r m s m m m r d s m d

m m r s m

a M R R m e R C , a V M , a R R MK C , a V MK C ,

a K R R a V K .

   

 

= + + = = − + − = − −

= + =
 

According to the Routh-Hurwitz stability criteria [40], the vibratory response is stable  if  all nonzero 
i

a in Eq. 

(11) have the same positive or negative sign (necessary condition) and the corresponding all the Hurwitz 

determinants must be positive ( )1 2 5
i

D ,i , ,..,= (sufficient condition) which implies, 

4 2 0

4 2 0

4 2 0 5 3 1

4 2 5 3 1

1 4 2 3 5 3 1 4 5 4 2 0

5 3 4 2 0

4 2 5 3 1

5 3 1

4 2 0

0 0
0

0 0
0

0  0 0 0 0 0 0
0

0 0 0
0

0 0

a a a
a a a

a a a a a a
a a a a a

D a , D ,D a a a ,D ,D a a a .
a a a a a

a a a a a
a a a

a a a

=  =  =  =  =   

As the time delay ( )  exceeds a critical value ( )c
,  a pair of complex conjugate roots will cross the imaginary 

axis which leads to Hopf bifurcation with multiplicity of two. On substituting s j= in Eq. (11) and separating 

the real and imaginary parts leading to ( )( )Re 0 F j & =  ( )( )Im 0F s .=  Now choosing the time delay ( ) as a 

bifurcation parameter, one may apply the transversality condition i.e., ( )
0

Re 0
i

d / ds





  for the occurrence of 

the Hopf bifurcation [23]. Using the above conditions for the occurrence of Hopf bifurcation, a set critical time 

delays ( )c
 may be obtained numerically for different fixed bias currents. In the root locus diagram as shown in 

Fig. 13 (a), the Hopf bifurcation is observed as two complex conjugate pairs are seen to cross the imaginary axis 

simultaneously when the time delay becomes 0.4361 for a fixed bias current 0.45 A. The corresponding phase 

plot as shown in Fig. 13(b) confirms the existence of Hopf as a typical wire framed paraboloid [42, 43] is formed. 

This paraboloid represents a limit cycle with time delay as a bifurcation parameter representing the third 

dimension.   This unstable limit cycle confirms the presence of Hopf as the solution goes to infinity. A couple of 

similar kind of Hopf bifurcations may be obtained for different critical time delays as illustrated in Fig. 14 (a) and 

Fig. 14(b). 



 
 

Fig. 13 (a) Root-loci plot when  
c
 = 0.4361 for 

0 0 45i .= A. 

Fig. 13 (b) Phase-portrait when
c
 = 0.4361 for

0 0 45i .= A. 

 

 

 

Fig. 14 (a) Root-loci plot when
c
 = 0.2991for 

0 0 64i .= A. 

Fig. 14 (b) Phase-portrait when 
c
 = 0.2991 for

0 0 64i .= A. 

 

4.4 Trans-critical bifurcation 

 

Another kind of bifurcation is observed through the root locus as shown in Fig. 15(a). A critical time delay  ( )c
 =

0.002961 is obtained numerically with a given bias current ( )0i = 1.2 A for a certain condition, 
2 4
d

C MK. At 

critical value of the time delay, a discontinuous line is seen in the left portion of the frequency response curve as 

given in Fig.15 (b) which clearly a sign of  inception of instability occurs at c
  owing to the presence of a pair of 

complex conjugate poles with positive real parts lying on the right half plane of the root locus as shown in Fig. 15 

(a).  For c
,  the Sommerfeld effect is seen to be present in the form of jump phenomena where in near to the 

critical speed, the amplitude jumps to a lower value and the rotor speed jumps to a much higher value as shown 

Fig.16 (b) corresponds to a root locus plot shown in Fig.16 (a). A similar kind of jump is discussed in Fig.10 in 

which the break-in and break-away points are illustrated corresponding to minimum and maximum gain 

respectively. On the contrary, when c
t , the jump phenomena still exist but in the reverse manner i.e., at the 



very outset, the jump occurs leading to a discontinuous region marked in red color in the frequency response 

diagram as shown in Fig.17 (b) where the steady state solution does not exist and the value of damping is found 

to be negative causing self-excited vibration. The Fig. 17 (a) shows the root-locus diagram corresponds to Fig. 17 

(b) also confirms the switching of stability as the nature of the root loci is just appeared in a reverse manner 

relative to Fig.16 (a).   Owing to presence of negative damping at the beginning of run up, the rotor system attains 

its instability threshold at the very outset.  Moreover, the break-in and break -away points are also found to be 

swapped with each other. This kind of switching of stability refers to as trans-critical bifurcation [44] as the 

corresponding break-in and break-away points will never destroy each other but switching the stability as the time 

delay (i.e., bifurcation parameter) becomes greater or lesser than its critical value ( )c
 .  

  

Fig.15 (a) Root-loci plot when 
c
 = 0.002961 for 

0 1 2i .= A. 

Fig. 15 (b) Frequency response diagram when 

c
 = 0.002961 for 0 1 2i .= A. 

 

 

 

Fig. 16 (a) Root-loci plot when
c
  0.002961 for 

0 1 2i .= A. 

Fig.16 (b) Frequency response diagram when  

c
  0.002961 for 0 1 2i .= A. 

 



  

Fig. 17 (a) Root-loci plot when
c
  0.002961 for 

0 1 2i .= A. 

Fig. 17 (b) Frequency response diagram when  

c
  0.002961 for 0 1 2i .= A. 

 

5 Conclusion and future work 

A novel approach is presented in this paper which reveals the influence of time delay on the complex dynamics 

of instability marked with nonlinear jumps exhibited by a non-ideal eccentric rotor with time-delayed AMB 

system.  The analytical solution obtained through an energy balance confirms that the time delay indeed influences 

the attenuation of the Sommerfeld (i.e., nonlinear jumps) effect with fixed bias current. It is evident from the 

frequency response diagram that the Sommerfeld effect starts attenuating as the time delay decreases. On fixing 

the time delay, the instability effect is also found to be attenuated as the bias current decreases. This observation 

reveals that the time-delayed AMB system is more economic compared to an AMB system without time delay 

aiming to suppress the Sommerfeld effect as in the latter case, the instability starts attenuating only when the bias 

current increases [21]. The transient analyses confirm the above-mentioned results obtained analytically. In 

addition, three different bifurcations are studied numerically using root-loci technique with time delay as a 

bifurcation parameter. The saddle node bifurcation occurs when the bias current attains a critical value for a given 

time delay at which the Sommerfeld effect is found to be disappeared completely. On the other hand, saddle-node 

also occurs at a specific critical time-delay with a given bias current. But the critical time delay is very small and 

hence not practicable for a digitally controlled AMB system. Following, Hopf bifurcation study reveals the 

existence of multiple Hopf points with the formation of a wire framed paraboloid in the phase-portrait which 

destabilizes the system further. Switching of stability is also observed at a critical time delay obtained with a 

specified condition. This switching of stability confirms the existence of trans-critical bifurcation. The present 

model of the rotor system with the inclusion of fractional order AMB with variable time delay along with the 

prediction of chaotic motion can be envisioned as a future work.  
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