
DRAFT VERSION JUNE 18, 2011
Preprint typeset using LATEX style emulateapj v. 08/22/09

INSTABILITY-DRIVEN EVOLUTION OF POLOIDAL MAGNETIC FIELDS IN RELATIVISTIC STARS

RICCARDO CIOLFI
1 , SAMUEL K. LANDER

2,1 , GIAN MARIO MANCA
1 , LUCIANO REZZOLLA

1

Draft version June 18, 2011

ABSTRACT

The problem of the stability of magnetic fields in stars has a long history and has been investigated in detail
in perturbation theory. Here we consider the nonlinear evolution of a nonrotating neutron star with a purely
poloidal magnetic field, in general relativity. We find that an instability develops in the region of the closed
magnetic field lines and over an Alfvén timescale, as predicted by perturbation theory. After the initial unstable
growth, our evolutions show that a toroidal magnetic field component is generated, which increases until it
is locally comparable in strength with the poloidal one. On longer timescales the system relaxes to a new
non-axisymmetric configuration with a reorganization of the stellar structure and large-amplitude oscillations,
mostly in the fundamental mode. We discuss the energies involved in the instability and the impact they may
have on the phenomenology of magnetar flares and on their detectability through gravitational-wave emission.

Subject headings: stars: neutron — gravitational waves — magnetohydrodynamics (MHD) — methods: nu-
merical

1. INTRODUCTION

During at least two points within a neutron star’s (NS) life,
large-scale magnetic field rearrangement may occur. These
are shortly after the formation of NSs in supernovae (Bo-
nanno et al. 2003), and also during the giant flares of mag-
netars (Thompson & Duncan 1996; Geppert & Rheinhardt
2006). Whilst similar rearrangements may also occur in other
stars, they are likely to be particularly significant for the
physics of NSs, where the fields are exceptionally strong: up
to 1013 G at the surface of normal pulsars and 1015 G for mag-
netars. There are a variety of instabilities in NSs, and in a
proto-NS magnetic fields may actually have a stabilising ef-
fect (see, e.g. Miralles et al. (2002); Bonanno et al. (2003)),
but we are concerned here with the fast-acting “Tayler insta-
bility” which affects purely poloidal (or purely toroidal) mag-
netic fields in stars.

The magnetic-field geometry of a NS is important for the
star’s evolution, provides a distortion that may lead to gravi-
tational radiation (Bonazzola & Gourgoulhon 1996), as well
as powering the mechanisms by which these stars may be ob-
served: the pulsar emission for normal NSs, and the X/γ-ray
emission of magnetars. It is important therefore to determine
which models of magnetised NSs are stable equilibria.

The study of magnetised stellar equilibria dates back
to Chandrasekhar & Fermi (1953). Since then, many possible
magnetic equilibria have been studied, using both analytic and
numerical techniques. These have included configurations
with purely poloidal fields (Ferraro 1954; Monaghan 1965;
Bocquet et al. 1995) and purely toroidal fields (Roxburgh
1963; Kiuchi & Yoshida 2008), as well as mixed poloidal-
toroidal configurations (Roxburgh 1966; Haskell et al. 2008;
Tomimura & Eriguchi 2005; Lander & Jones 2009; Ciolfi
et al. 2009, 2010).

However, constructing a configuration in equilibrium is
only half the problem when modelling stellar magnetic fields;
one also needs them to be stable over many dynamical
timescales, since stellar magnetic fields have been observed
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to be long-lived. This has proved to be a challenging prob-
lem for analytic methods, which can only study the initial
localised instability and not the resultant field configuration.
With purely poloidal and purely toroidal fields known to be
unstable (Markey & Tayler 1973; Wright 1973; Tayler 1973;
Flowers & Ruderman 1977), only mixed-field configurations
are likely to exist in stars.

More recently it has become feasible to use numerical evo-
lutions to study these hydromagnetic instabilities, with the
benefit that the global behaviour of the instability may be
studied (analytic works rely on local analyses), as well as
the final outcome of the instability when the field undergoes
significant rearrangement (Lander & Jones 2011; Braithwaite
2007; Geppert & Rheinhardt 2006; Kiuchi et al. 2011). De-
spite this recent progress, there are still very few models of
stellar magnetic-field configurations whose stability has been
assessed.

The instability-induced redistribution of magnetic flux is
potentially a very violent event and it has been suggested as a
trigger mechanism for the giant flares of magnetars (Thomp-
son & Duncan 1996). This redistribution is likely to be ac-
companied by a significant change to the mass quadrupole
moment of a NS, making it a potentially detectable source of
gravitational waves (GWs) (Kashiyama & Ioka 2011; Corsi &
Owen 2011). For this reason it is important to understand the
frequency, amplitude and duration these GWs may have.

This paper is organised as follows. In Section 2 we give
a description of our computational infrastructure and initial
stellar models. In Section 3 we present results from our evo-
lutions, showing the generation of an instability and the sub-
sequent reorganisation of the magnetic field into a more stable
configuration. We also study the GW emission from the insta-
bility and assess its detectability. Conclusions are presented
in Section 4.

2. PHYSICAL SYSTEM AND NUMERICAL SETUP

We model our initial NS as a nonrotating isolated fluid body
in ideal magnetohydrodynamics (MHD) and with a purely
poloidal magnetic field permeating it and extending to the ex-
terior. The initial axisymmetric equilibrium configuration is
generated by the LORENE code, which produces a fully rela-
tivistic solution and consistently accounts for the metric dis-
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Figure 1. Snapshots of the development of the instability in our fiducial star, showing projections on the (x, z) plane (upper row) and (x, y) plane (lower row)
of the simulation at times t = 1, 3, 10ms (left to right), respectively. Shown with vector lines are the (global) magnetic-field lines, while the colours show the
intensity of the toroidal magnetic field only; also reported are the iso-density contours of the rest-mass density near the stellar surface.

tortions and structure deformations induced by the magnetic
field (see Bocquet et al. (1995)). The star is modelled as a

polytrope with equation of state p ≡ KρΓ, where Γ = 2 and
K = 98.5, so that a NS with mass of 1.41M⊙ has a radius
of about 12.1 km. Because the timescale for the instability is
shorter (and computationally feasible) for stronger magnetic
fields, we have considered stars with B0/10

16 G ∈ [2.5, 10],
where B0 is the value at the magnetic pole, selecting a value
of B0 = 6.5× 1016 G as the reference one.

Using these initial configurations, we perform general-
relativistic MHD simulations in three spatial dimensions un-
der the Cowling approximation, i.e. we do not evolve the Ein-
stein equations but consistently solve for the MHD equations
in a fixed and curved spacetime. This choice is motivated by
wanting to reduce computational costs and by the fact that
the changes in the spacetime are expected to be intrinsically
small. As a consequence, the GW emission is computed us-
ing the Newtonian quadrupole formula (Nagar et al. 2007;
Baiotti et al. 2009). The evolutions are performed with the
WhiskyMHD code, whose properties have been tested and
discussed in a number of earlier papers (Giacomazzo & Rez-
zolla 2007; Pollney et al. 2007; Giacomazzo et al. 2009; Gia-
comazzo et al. 2011). Our standard numerical setup consists
of a grid with three refinement levels (Schnetter et al. 2004),
the highest one having a resolution h/M⊙ = 0.17 ≃ 250m
and covering all of the star. The outer boundaries are placed
at a distance of 54M⊙ ≃ 79 km.

The most salient difference of the code with respect to
the references above is in the treatment of the atmosphere.
We recall that as customary in relativistic hydrodynamics us-
ing finite-volume methods, we surround the star with a low-
density “atmosphere”, whose dynamics is prescribed by suit-
able boundary conditions. More specifically, the rest-mass
density there is set to a constant value, while the fluid ve-

locity is reset to zero (see Baiotti et al. (2005) for details).
Although this prescription works very well in hydrodynamic
simulations, it becomes problematic in ideal MHD, since it
prevents any evolution of the magnetic field in this region. For
sufficiently strong magnetic fields this approach can rapidly
lead to errors at the stellar surface, which prematurely ter-
minate the simulations. To improve on our treatment of
the atmosphere and allow for a dynamics of the magnetic
field at surface and outside the star, we add a magnetic dif-
fusivity term to the induction equation, which we write as

∂t(B̃
i) = ∂j(ṽ

iB̃j − ṽjB̃i) + η∂i∂
iB̃j , where η is the scalar

resistivity (see Giacomazzo & Rezzolla (2007); Giacomazzo
et al. (2011) for details on the implementation in ideal-MHD
case). Because we want to retain the ideal-MHD behaviour
in the stellar interior and allow for an evolution in the atmo-
sphere, we set the resistivity to zero within the bulk of the star,
letting it increase continuously to its atmospheric value start-
ing from a low-density region near the stellar surface. More
specifically, we set η(ρ) = η0f(ρ), where ρ is the rest-mass
density, f(ρ) is the Fermi function and η0 is a free parame-
ter. We used a reference value of η0/M⊙ = 0.12, but we will
discuss how results change for a lower value.

Again to reduce computational costs and because we are in-
terested in the development of magnetic-field instabilities, we
add a perturbation designed to trigger them. From the anal-
ysis of Markey & Tayler (1973) we expect a θ-component of
the velocity near the neutral line to induce the fastest-growing
instability. Hence, we introduce a perturbation of azimuthal
index m = 2 in this quantity, such that the relative change in
the magnetic field is 10−3. We have verified that the results do
not change qualitatively for other choices of the perturbation
and that an instability develops even without a perturbation.

3. RESULTS
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Before discussing the nonlinear development of the insta-
bility, it is useful to recall the predictions of the perturbative
studies of Markey & Tayler (1973) and Wright (1973) about
its early growth. In particular, we expect that: (i) the instabil-
ity should be localised in the closed-field line region around
the neutral line (i.e. where the poloidal magnetic field van-
ishes); (ii) the instability should occur after about an Alfvén

timescale τA (if τA ∼ 2R
√

4π〈ρ〉/B0, where 〈ρ〉 is the aver-
age rest-mass density and R the stellar radius, τA ∼ 3 ms for
our fiducial model); (iii) the (exponential) growth rate of the
instability should scale linearly with magnetic field strength.
As we will discuss, all of these expectations are met.

Figure 1 provides snapshots of the development of the in-
stability in our fiducial star, showing projections on the (x, z)
plane (upper row) and (x, y) plane (lower row) of the sim-
ulation at times t = 1, 3, 10ms (left to right), respectively.
These correspond to early, mid and late stages of the evolu-
tion. Shown with vectors lines are the (global) magnetic-field
lines, while the colors show the intensity of the toroidal mag-
netic field only; also reported are the iso-density contours of
the rest-mass density near the stellar surface.

As expected, the instability develops around the neutral line
(left column), rapidly generating a toroidal magnetic field
in this region (middle column). The growth of this compo-
nent continues until it reaches a comparable strength to the
poloidal one. At this point, the growth proceeds much more
slowly, and the magnetic field evolution is less dramatic (right
column), as the star evolves towards a new equilibrium. As
revealed by the different panels in Fig. 1, the development of
the instability breaks the axisymmetry of the initial config-
uration, leading to a complex structure with high azimuthal
wave numbers (the m = 10 component is dominant in the
middle column), which is eventually replaced by an m = 2
geometry at later stages (right column). While in this complex
evolution the (small) m = 4 component is probably inherited
from the Cartesian coordinate system, it is interesting that the
high-m modes develop despite the initial perturbation being
an m = 2 one. Note also that the toroidal magnetic field pro-
duced by the instability is concentrated in vortices (smaller at
early times and larger at later times) and that it changes sign
both on meridian planes (see upper row) and on the equatorial
one (see lower row). This late-time structure is different from
the typical (axisymmetric) twisted-torus discussed in previous
works (Braithwaite 2009; Ciolfi et al. 2009; Lander & Jones
2009). We believe that this loss of axisymmetry follows from
the conservation of magnetic helicity in ideal MHD (Woltjer
1958). Since purely poloidal (or purely toroidal) magnetic
fields have zero helicity and the latter has to be conserved
during a transformation in the ideal-MHD limit, the genera-
tion of a vortex structure represents the natural way in which a
newly-generated toroidal field will not violate the initial zero-
helicity of the system.

A few additional remarks are worth making about Fig. 1.
The first one is about the evolution of the magnetic field in
the regions right outside the star, which is essentially con-
trolled by the resistivity there. Although the reference value
used, η0/M⊙ = 0.12, is rather high and responsible for a
considerable decay of the magnetic field, it also allows for a
smooth evolution and removes the development of the discon-
tinuities which would appear in the ideal-MHD limit. As we
will discuss later on, the qualitative behaviour of the insta-
bility is not affected by the value of the resistivity or by the
initial magnetic field strength. The second remark is about the

Figure 2. Evolution of the energy in the toroidal Em,tor (red solid line)
and poloidal Em,pol components (black solid line), normalised to the initial
value of the magnetic energy. The dashed lines refer to the corresponding
evolution with η0 = 0.06 and show a smaller dissipation of the magnetic
field (see inset) but the same dynamics in the instability.

dynamics of the toroidal magnetic field that, as it grows to be-
come locally comparable with the poloidal one, it also moves
towards the stellar surface, where it can induce outflows of
matter for smaller values of η0. While a more detailed discus-
sion of this process will be presented in a subsequent work, it
is worth mentioning here that these winds could eject consid-
erable amounts of matter (i.e. ∼ 10−5 − 10−4 M⊙) and thus
have direct connections with the magnetar phenomenology.

Figure 2 provides a more detailed analysis of the instabil-
ity’s behaviour, by monitoring the evolution of the energy in
the toroidal Em,tor (red solid line) and poloidal Em,pol com-
ponents (black solid line), normalised to the initial value of
the magnetic energy. Initially the toroidal component is very
small, growing slowly until a time of 2 ms. At this point,
which is close to our Alfvén-timescale estimate of 3 ms, there
is a sudden exponential growth, which lasts for another 1 ms.
The exponential growth, which nicely matches the predic-
tions of the linear-perturbation regime described by Markey
& Tayler (1973), lasts for ∼ 0.5τA and then ceases, leaving a
configuration which is seen to be roughly unchanged for sev-
eral more Alfvén timescales. This suggests that the configura-
tion shown in the right column of Fig. 1 is in a quasi equilib-
rium and is no longer susceptible to the instability. Note that
whilst the local maxima of the field components are likely to
dictate the system’s stability, the energy eventually present in
the toroidal-field component is only ∼ 3% of the total mag-
netic energy. This value may increase slightly on a much
longer timescale.

Also reported in Fig. 2 as dashed lines are the correspond-
ing evolution of the magnetic energies when a smaller resis-
tivity of η0/M⊙ = 0.06 is used. Since the evolution of the
instability in this case is qualitatively very similar (cf. the evo-
lution of Em,tor), we have confidence that our prescription
for the resistive behaviour of the magnetic field near the stel-
lar surface does not influence the dynamics of the instability.
At the same time, however, a smaller resistivity is also re-
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Figure 3. Instability growth-rate as a function of the initial magnetic field
strength for the NSs considered (red empty circles). Note the scaling remains

approximately linear up to B0 ≃ 7× 1016 G. Marked with a blue star is the
corresponding growth-rate for η0 = 0.06.

sponsible for a smaller decay of the poloidal magnetic field
(see inset), which is considerably dissipated by the end of the
simulation. While this behaviour is inevitable in a resistive
context and has been reported also by other authors (Braith-
waite 2007), it represents an aspect of these evolutions which
could be improved with a fully consistent resistive MHD ap-
proach (Palenzuela et al. 2009).

Another important confirmation of the perturbative analy-
sis is offered in Fig. 3, where we show the inverse of the
growth-time τ , defined through the exponential growth of the
toroidal component, versus the initial magnetic-field strength
(red empty circles). Note that the scaling is essentially linear
for B0 . 7×1016 G, deviating from this for higher values, be-
cause of the stronger magnetic tension. More specifically, the
stronger Lorentz force will tend to oppose the fluid motions
in the polar direction near the neutral line and which trigger
the instability. The presence of a linear scaling is essential to
extend our results to typical pulsar magnetic-field strengths,
thus estimating a growth-time of ∼ 10 s for a neutron star with
B0 = 1012 G. Also marked in Fig. 3 (blue star) is the inverse
growth-time for the fiducial star evolved with the smaller re-
sistivity of η0/M⊙ = 0.06; again, the close similarity in the
timescales confirms our expectation that the instability is not
influenced by the choice of the resistivity.

The final discussion is reserved for the potential GW signal
emitted during the development of the instability. In Fig. 4
we report the GW strain in the + and × polarizations as com-
puted from the Newtonian quadrupole formula. It is quite ap-
parent that the signal is not of a burst type but, rather, that
the main effect of the instability is that of triggering large-
amplitude oscillations of the star in its fundamental F -mode.

These GWs start emerging from the numerical noise al-
ready at ∼ 3.5ms, but are associated to high-m oscillations
and hence not efficient sources of GWs. However, as the
magnetic field starts to approach the final m = 2 configu-
ration at ∼ 7ms, the oscillations become more efficient in
producing a GW signal (Note that a m = N pertubation

Figure 4. GW strain in the + and × polarizations. Note the instability trig-
gers large-amplitude F -mode oscillations.

in the magnetic field leads to a m = 2N perturbation in
the density). Because these oscillations will have a rather
narrow spectral distribution peaked around the F -mode fre-
quency (which is not significantly affected by the presence of
magnetic fields), they represent very good sources of a peri-
odic signal, potentially detectable by future advanced detec-
tors. Defining the root-sum-square amplitude of the cross po-

larization as hrss =
[

∫ +∞

−∞
dt h2

×(t)
]1/2

, and assuming that

the oscillations will persist undamped for ≃ 0.1− 1 s, we es-
timate hrss = (0.54 − 1.7) × 10−22 for a source at 10 kpc.
The corresponding signal-to-noise ratio for a detector such as
advanced-LIGO or advanced-Virgo is S/N ≃ 1.6 − 5, thus
potentially observable. A more detailed analysis of the spec-
tral properties of the GW signal will be presented in a future
work. These waveforms represent the first estimate of the con-
version of the kinetic energy generated through the instability
into GWs. For weaker magnetic fields, perturbative analyses
have suggested this coupling is much weaker (Levin & van
Hoven 2011), but more work is needed to investigate nonlin-
early this regime.

4. SUMMARY

We report on numerical evolutions of the instability of
poloidal magnetic fields in relativistic stars and the subse-
quent generation of a mixed-field configuration in quasi-
equilibrium. In agreement with the expectations from analytic
perturbative studies (Markey & Tayler 1973; Wright 1973),
we show that the instability appears after about an Alfvén
timescale, localised in the region of closed field lines. In addi-
tion, the growth-rate of the instability has the expected linear
scaling with magnetic field up to very large field strengths.

The instability leads to the generation of a toroidal mag-
netic field, which starts with a complex and high-m azimuthal
structure, and is produced in local vortices. The instability
ceases when the two field components are locally comparable
in strength and the resulting configuration relaxes towards a
geometry dominated by an m = 2 toroidal component. This
non-axisymmetric configuration is different from the simpler
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axisymmetric ones of earlier studies (Ciolfi et al. 2009; Lan-
der & Jones 2009; Braithwaite 2009; Ciolfi et al. 2010). How-
ever, it also represents the natural evolution of a system which
is required to conserve its initial zero helicity in the ideal-
MHD limit.

The total magnetic energy of the final configuration has
around a 3% contribution from the toroidal component; this is
comparable with the equilibria studied by Ciolfi et al. (2009)
and Lander & Jones (2009), but considerably lower than that
of Braithwaite (2009), where stratified main-sequence stars
were considered. Interestingly, the development of the in-
stability also leads to the buoyancy of the newly-generated
toroidal magnetic field and this can result into a mass outflow
near the stellar surface. Additional work is needed to estab-
lish how these winds can be related to the phenomenology
observed in giant flares of magnetars.

A consequence of the instability for the very strong
magnetic fields considered here is that of triggering large-
amplitude oscillations of the star in its F -mode. Our simu-
lations show that the small-amplitude oscillations of the star
are amplified by about an order of magnitude by the time the
instability has saturated. Because these oscillations will have
frequencies around the F -mode frequency, it is reasonable to
perform searches for periodic signals associated to giant flares
in magnetars. For a source at 10 kpc with oscillations persist-
ing undamped for ≃ 0.1− 1 s, the root-sum-square amplitude
at 1500Hz will be hrss = (0.54− 1.7)× 10−22, thus leading
to a signal-to-noise ratio S/N ≃ 1.6 − 5 for a detector such
as advanced-LIGO or advanced-Virgo.

During the completion of this work we have become aware
of a very similar analysis carried out by Lasky et al. (2011),
where the instability of purely poloidal magnetic fields in rel-
ativistic stars was also presented. Despite the different numer-
ical setups, the results obtained by Lasky et al. (2011) about
the development of the Tayler instability are in good agree-
ment with those presented here, thus validating each other’s
conclusions.

We are grateful to Bruno Giacomazzo, Ian Jones and Yuri
Levin for useful comments, and Roberto De Pietri for help in
the GW estimates. Support comes also from the “Della Ric-
cia” Foundation, from “CompStar”, a Research Networking
Programme of the European Science Foundation, and from
the DFG grant SFB/Transregio 7.
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