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ABSTRACT. In the search for an easily-classified Baire set of diffeomor-
phisms, all the studied classes have had the property that all maps close enough
to any diffeomorphism in the class have the same number of periodic points of
each period. The author constructs an open subset U of Diff'(Ta) with the prop-
erty that if f is in U there is a g arbitrarily close to f and an integer n such
that f” and g” have a different number of fixed points. Then, using the open
set U, he illustrates that having a rational zeta function is not a generic prop-
erty for diffeomorphisms and that Q-conjugacy is an ineffective means for classi-
fying any Baire set of diffeomorphisms.

A. Introduction and statement of theorems. Let Diff” (M") be the space of C”
diffeomorphisms of a compact C* n-manifold M with the C” topology, 1 <7 < e,
Central problems in the study of differentiable dynamical systems, as formulated
by Smale ([24], [26)) are

(a) Find a Baire subset B of Diff’ (M") with strong stability properties.

(b) Find a practical means of classifying the elements of B.

Let [ € Diff" (M). The nonwandering set of f, Q{f), is the invariant set {x €
M: for any neighborhood U of x there is a positive integer » with /?U N U £ &},
[ satisfies Axiom A if the periodic points of [ are dense in Qf) and if Q(f) has
a hyperbolic structure, i.e., there is an invariant splitting of the tangent bundle of
M restricted to Q(f)

™| Q) = E* & E°

with T/: E¥ — E* an expansion and Tf: ES — E® a contraction. Hirsch and
Pugh [9] have shown that if / satisfies Axiom A, then for each x € Q(f) the stable
manifold of x, WS(x, [) ={y € M: d(f/™x, [™y) — 0 as m — oo}, is a smooth, injec-
tively immersed open cell through x and depends smoothly on x and /. The un-
stable manifolds of f, W*(x, ), are the stable manifolds of {~!. [ is structurally
stable (Q-stable) if for each g in some neighborhood of [ in Diff” (M) there is a
homeomorphism h: M — M (h: Qf) — Qg)) with gh = bf on M (on Qf)). A generic
property is a property that holds for a Baire subset of Diff" (M). For a general
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218 C. P. SIMON [December

reference, see Smale’s survey article [24] or Nitecki’s book [14].

Finally, the reader is referred to [8] and [31] for the definition and properties
of a k-foliation T on M. f: M — M respects the foliation F if the image of a leaf
of ¥ by / is another leaf of .7 preserves the foliation § if { maps each leaf
onto itself.

To put the results of this paper into perspective, we discuss briefly the recent
history of problems (a) and (b). There have been a number of unsuccessful candi-
dates for B, beginning with Morse-Smale maps, {20], i.e., diffeomorphisms whose
nonwandering set is hyperbolic and consists of a finite number of points, whose
stable and unstable manifolds intersect only transversally (strong transversality
condition). Such maps were later shown to be structurally stable [15] but by no
means dense in Diff” (M) ([22], [24}). Smale showed that structurally stable maps
are not dense in [23], where he conjectured that diffeomorphisms that satisfy Axiom
A and the strong transversality condition might form a Baire subset of Diff” (M).
Later, he demonstrated [25] that maps satisfying Axiom A and the *‘no-cycle prop-
erty’’ were {}-stable. However, in 1968 Abraham and Smale [2] showed that neither
)-stable maps nor ones satisfying Axiom A form a Baire subset of Diff"(M") for
r>1, n> 4. Newhouse [13] has the corresponding result for 7 > 2, n = 2. However,
both Abraham and Smale [26] have emphasized that many more such counterexamples
must be constructed and analyzed for the theory to advance, especially since each
new conjecture for B has arisen from careful analysis of past counterexamples. The
examples we construct in this paper are the first c! counterexamples to the generi-
city of Axiom A and {)-stability on 3-manifolds. More significantly, all the above
classes of diffeomorphisms conjectured to solve problem (a) have had the following
property: all maps close enough to any diffeomorphism in the class have the same
number of periodic points of each period as the original map. Theorem 1 below il-
lustrates that this is not a generic property, i.e. there is an open set in Diff’(T3)
with the property that as close as you wish to any map in the set there is another

map with a different number of periodic points of some period.

Theorem 1. Let 1<r< o, For { € Diff (T?) and positive integer n, let N (f) =
number of fixed points of {" =fofoc---(ntimes)...f: T3 13, Then, there exists
an open set U in Diff (T3) such that if fo €U and U, is any neighborhood of [
in U, there are [, € U and integer n such that N ({ )£ N _(f) and all periodic
points of f, of period < n are byperbolic.

The proof of Theorem 1 is contained in S$SB-K. First, let us see what effect
it has on problem (b), the classification problem. In [24], Smale conjectured that an
effective means of classifying the maps in B might be the zeta function. The zeta

function of a diffeomorphism [ is

¢(f) = é/(t) = exp <§ fvft—) where N, = N{/)

i=1
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1972] INSTABILITY IN Diff'(Ts) 219

as in Theorem 1. Artin and Mazur [3] demonstrated that a dense (not Baire) set of
diffeomorphisms have zeta functions with a positive radius of convergence. Meyer
[12] and Shub [19] showed that if [ satisfies Axiom A, C/(t) has a positive radius
of convergence. Williams [28] demonstrated that if A is a hyperbolic attractor of

f, C(fIN) is rational. Bowen and Lanford ([4], [5]) showed the same for A zero-
dimensional and hyperbolic. Recently, Guckenheimer [7] has shown that if [ satis-
fies Axiom A and the no-cycle property, {{(f) is rational. However, in order to be
at all effective and practical as a means of classification, {{f) must be rational for
a Baire set of diffeomorphisms. Whether or not {(f) is generally rational was asked
in [24, Problem 4.5}, [29], [27], and [28]. Theorem 2 uses Theorem 1 to answer this ques-

tion.

Theorem 2. Diffeomorphisms with rational zeta functions do not form a Baire
subset of Diff’ (T3), 1 <7< co,

Proof of Theorem 2. Since there are only a countable number of rational zeta
functions [5], enumerate them as Z, Z, 5 Zyeee. Say Z (t) = exp (27 Ni:ti/i).
Let U be the open set in Dxff'(T3) from Theorem 1. Let V, ={f € U| for some k
in N, (1) N (/) £ N’ and (2) f* has only hyperbolic fixed pomts} So, if [ € V
C(f) £ Z] By the hyperb011c1ty in the definition of V] each V; is open. We claxm
each V]. is also dense. Then, we will have V ={) V]., a Baire subset of U; and no
diffeomorphism in V can have a rational zeta function.

Suppose the above claim is false, i.e. that there is an open set W in U with
W NV, =g By the Kupka-Smale Theorem [21], there is g, € W with all periodic
points hyperbohc Since g, 4 V N (gl) = N’ for all k. By Theorem 1, there are
g, €V and integer i with N (gz) £N. (gl) N’ and Fix (gz) hyperbolic. Thus, g,
€ V] contradicting W N V] =@

Finally, Theorem 3 below deals with another aspect of the classification prob-
lem. It states that {)-conjugacy is not a reasonable equivalence relation to use in
classifying diffeomorphisms. The same result holds for any equivalence relation
which has all N (/) constant in each equivalence class. The proof of Theorem 3
is the same as that of Theorem 2 with V replaced by {f € U| for some & in N, (1)
N (/) # N, (b ) and (2) / has only hyperbohc fixed points}.

Theorem 3. There do not exist a countable set {b } and a Baire subset B in
Diff’(T>) such that each { in B is Q-conjugate to some h..

Let us outline the construction used to prove Theorem 1. In §B, we construct
a hyperbolic *‘D-A” diffeomorphism g of T2 Q(g) consists of a fixed point source
6 and a one-dimensional expanding attractor Z. The one-dimensional {W5(x, g): x € 3}
fill up T2\{6} and extend to a g-invariant foliation & of T2 If b: S! = S! has
{+ 11 as a fixed point source, g x b is a diffeo of T3 respecting the foliation F

whose leaves are a product of S! and the leaves of O. In §D, we construct b: T3
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— T3 which is the identity on %, = X x {+ 1}, which preserves ¥, and which forces
the two-dimensional local unstable manifolds of points of 21 to intersect the one-
dimensional stable manifolds from 21 transversally. Fisa normally-hyperbolic
foliation (SF) for f="5b0(g x h). So, maps near { will respect foliations F' near
5.

In §D, we single out an open subset B1 of 21 and for each x ¢ Bl a 2-disk
F(x) in the leaf of  through x, so that J {F(x): x € B} is a 3-disk. Each f|F(x)

’

contains a Smale “‘horseshoe’’ as drawn in Figures 6, 9, and 10, yielding a one-par-
rameter family of horseshoe maps. In §§H, I, and J, we show how an arbitrarily small
change in { can radically change the topological type of one of these horseshoes so
that, for some x, {|F(x) will have a different number of periodic points than the
corresponding f' |F'(x"). In §], we achieve the hyperbolicity of Theorem 1 by using
the Kupka-Smale Theorem. See also [32].

Theorems 1, 2, 3 hold at least for all manifolds which are the product of T?
with any manifold. The author has benefited from many valuable and encouraging
discussions with R. Clark Robinson, Sheldon Newhouse, and especially from the in-

spiration and counsel of R. F. Williams.

B. Anosov diffeomorphisms and derived-from-Anosov diffeomorphisms. Let 4
be a 2 x 2 matrix with all integer entries, determinant 1, and no eigenvalues of
norm one. A, induces a hyperbolic automorphism A of the 2-torus via the canonical
quotient map m: R? — T2, A, has eigenvalues A, p with 0 < |A[ <1< |u| and eigen-
spaces L, M respectively. Let £ and M be the families of all lines in T2 paral-
lel to rr(LO) and ﬂ(Mo) respectively. £ and M become the stable and unstable mani-
folds for A giving us two transversal foliations of the torus. For example, W*(8, A)
=n(L 0) where 0 = 7(0, 0).

We now construct a C° perturbation of A, using a surgery described by Smale

[24] and Williams [30].

Theorem (Smale-Williams), Let A: T? — T2 be a byperbolic toral automorphism.
Then there exists g: T® — T? such that

(a) g is smoothly isotopic to A,

(b) nonwandering set Ug) = {0} U Z, where 6 = 7(0, 0) is a point source and
2 is a one-dimensional attractor with byperbolic structure,

(c) the stable manifolds of g|Z are the lines of P except for L which divided
by 0 now forms two stable manifolds,

(d) g respects the foliation {WS(x, A): x € T?}.

g is usually called a D-A map, since it is derived from the Anosov diffeomor-
phism A. In the construction of g, one chooses a small rectangle O (in the canoni-
cal coordinates of [24]) about 6. Then, g = ¢ o A where ¢ is a C* diffeomorphism
of T? that is the identity outside O NA(Q) and on DO, the path component of M,
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N Q containing 6. One requires that ¢(C) = C for each path component C of mem-
bers of £ in Q and that, on each C, ¢ is expanding away from D0 N C. The ex-
pansive constant of ¢ on the path component of L N Q containing 0 need be
greater than u. In effect, one changes A on Q so that g has 2 saddle-like fixed
points {xo, 3703 in Q and one point source 6, as in Figure 1; while A had only one
fixed point in Q, the saddle point 6. Williams ([27], {30]) has shown that %, a “'gen-
eralized solenoid,’’ is locally the product of a Cantor set and an interval, periodic
points of g are dense in X, W2, g) = £, and X = W¥(x, g).

=

0

A(Q)

Figure 1
The leaves of our foliation are now the generalized stable manifolds of points
of 2 with the exception that W¥(x, g) UWS(x , g) U {6} forms one leaf. Now % is
a basic set for g, i.e. a closed invariant subset of {Mg) with a hyperbolic structure,
a dense orbit, and a dense subset of periodic points. So, T_ M has an invariant
splitting E* @ E~ and there are constants 0 <A, <1<y, such that |TgX| <
AX| for X € ET and [TgX| > p |X| for X € E*. By choosing ¢ so that the rate

of expansion of g = ¢ o A on all the above-mentioned intervals C is less than p,
where 1 <p, <<p,, one makes the rate of expansion normal to the foliation larger

than any rate of expansion on any leaf.

Consider now g* for any integer £ > 0. Q(g®) = Q(g). x, is a fixed point of
g® and WS(x, g) = WS(x, g*) for all x € Qg). g* respects the above foliation. In
addition, |T(g¥)X] <A*|X| for X € E~ and |T(g")X| > pk|X| for X € E*. ¥ 7 in
Theorem 1 is finite, choose k so that #I; > 4" and )\Ii <Y%. If r = oo, make u’; > 16.

gk will be denoted as g in the remainder of this paper.

C.gxh: T = T? Let h: S} = S! bea C* diffeomorphism of the circle with
exactly two (hyperbolic) fixed points: { + 1} a source and {- 1} a sink. Choose 5
so that T, (P(s) = as where 3<a <4 and b increases no arc of S! by a factor

greater than 4.
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g x b is a hyperbolic C™ diffeomorphism of the 3-torus, T3 = T2« 5. Since
Qg x b) = V) x YUb) [24, $10], g x A =Sx{+ 13U @, + 1D U xi-1}u
@, - 1).

For convenience, we introduce the following notation: T2 T?x{+ 1}, T=3x
+ 1, 0=00,+1), x;= (xg, + 1), g, = (g x b)lTi,

Since g respected the foliation {W*(x, A)} on T2, g x b respects the foliation
fWS(x, A) x S} on T? x S!. We will denote this C* foliation with cylindrical
leaves by ¥ and the leaf of F containing X € T3 by F(x).

Note also that, around the fixed point x, Ws(xo, g x b) is a 1-disk lying in
Tz+ and equal to W¥(x, g+). Wx,, g x b) is a 2-disk transversal to W*(x, g x b),
and equal to W*(x, g+) x [$T - {- 11l

D. The bump function b with support near x . Choose 2-disk B, in Tz+ such
that

(1) %, € interior (as 2-disk) of B .

(2)60¢B,.

(3)B, C 0O, where O is as in $B.

(4) If x € J°, the path component of W*(x, g x b) N B, containing x,
digx, x,) < 1/3d(x, xo). If y € J¥, the path component of W(x o g+) N B, contain-
ing %, dgy, x )> 3d(y, x ) This is possible because eigenvalues A and pu of
T, 8 are such that A < / and |p| > 4.

(5) B, =] xJ* in T%

6) Let v, be the point of d]° closest to 6 as in Figure 2. frgdx J*C
W‘;)C(G, g+), a fixed local unstable manifold of 8 for g ; while g’i({vo} x J%) N
Wll‘oc(e, g+) =g forall n>1.

(7) For each x € B, N X, let W] (x, g) be the path component of W*(x, g+) N
B containing x. Choose B, so that, for x € B, N 3, g(Wi(x, g C Wi(gx, g) or
misses B .

Choose interval B, in S sothat + 1 € int B,C Sl and = €B, =dhz, +1)>
3d(z, 1). Then, B = B1 X 32 is a 3-disk about X, in T3.

Notauon The following notation will be helpful:

2 path component of = N B containing X, i.€. 7%

Flx) = path component of F(x) N B containing x for x € B;

W7 (x, g x h) = the local stable manifold of x, i.e. path component of W*(x, g x b)
N B containing x, for x € 2 N B;

WY (x, g x b) = the local unstable manifold of x, i.e. path component of
W4(x, g X h) N B containing x, for x € E N B;

WS(E)_ = U Wil g for x €3,

Note that WS (x, g x b) is an interval and equals Flx) N T2 , while W¥(x, g x b)
is a 2-disk. Now, choose 2-disk N, in B, so that
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(@) N, N 3 =4,

(b) ;"W )NB, =% and g'(N) NN, =@ forall n>0,

(c) Wi(xo, g x b) divides N, into two 2-disks (as in Figure 2),
(@) if W{(x, gxh) NN, =@, then g Wilx,gxh)NB =g

¢

Wi(xo, gxXh) ——

T? x {+1}

M
&

Figure 2A
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In addition, as in Figure 2, about x, choose 2-disk N, in the interior (as 2-
disk) of B sothat Ny NN, =@ but Wj(x, g x b) meets N iff it meets N, for
x €3,

At this point, it will be helpful to name a collection of intervals in S1. First,
write S! as the union of two intervals, S+ and S _, where S+ NnNs_= -1, + 1}
Then, choose open intervals N, and N, in B,C S such that

(i) +1€N,,

(i) NyclB,-N,1ns,,

(iii) #~'N; 0 N, = 2,

(iv) AN, D N,.

Also, let NS be an interval in B, such that
) N2 C interior (as 1-disk) of NS’

(vi) Ny N N, =4.

Let ¢ be the point (?N5 N S+. Finally, let N, be a subinterval of N, about + 1,
contained in b~ lNS with length at most 1/3 the length of N,.

Figure 3

Let D1 = (N0 X N3) N W’I“(xo, g x b), a 2-disk in T3, Finally, choose open
set N in T2 such that

(1) N (T2xN,)=N xN,,

(2) NN (NoxSl)=NoxN3,
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(3) N C interior B,
(4) Bn(gxh INCB, x b~ 1B, -
) lg,B, x{c}]mN @.
So, N n W¥ (x gxh)= , and N al T2 N,. chtonally, we want N N F(x) to be
empty or as in Figure 4 for x € E where a,=Nn Flx) NN, C T+ and a,=Nn

F(x)ﬂD C Wi (x, g x h).
612/ NﬂF(x\ \
\

a

( 1

N,

~

A 4

F(x), Figure 4

One now can construct a C* diffeomorphism & of T3, a “‘bump function
whose main purpose is to force Wi (x, g x h) to intersect Ti transversally. b
need have the following properties:

(a) b = identity outside N,

(b) b(D )mtersects T transversally (in N, of course),

(c) b(F(x)) C F(x) for all x € B, i.e. b preserves the foliation J,

(@) bllixy} x N3] intersects W (x, g x ) in two points,

(e) the largest increase of arc length under & occurs at {xoi X N3 where length
blix}x N ]/length of {xodx Ny =P,

(f) for all x € 2 F(x) mtersects b(D ) transversally in Ny xN,.

Pictorially, & sends points from left to right in N N F(x) in Flgure 4; and for
X = X4 b(dz) intersects &, in two points. Finally, choose & at the end of S$B so
that p¥ > [4(1 + P))" and again denote g* by g. Ny, N, and B, will still have

the desired properties for our new D-A g.

E. Stable and unstable manifolds for b o (g x b). Let f=bo(gxh). fisa C¥
diffeomorphism of T2, and f respects the foliation J = {W*(x, A) x S} since b
preserves F. To obtain U, the open set of diffeomorphisms in the statement of our
theorem, we will construct a ball about f in Diff (T3).

Since a study of the orbit structure of maps near [ is parallel to such a study
of f, we will try to understand the stable and unstable manifolds for { in this sec-
tion. First, note that since we did not alter g x » near g x ») and periodic
points are dense in g x b), Qg x ») CQU/) with the same hyperbolicity constants
there for { as for g x b.
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We will make frequent use of the following simple lemma:

Lemma 1. Let [, [, be diffeomorphisms of compact manifold M. Let % be a
byperbolic compact invariant subset in Sf) with periodic points of % dense in Z.
Let N be a subset of M3 f, = [ outside N and N N% = g,

(a) For x € X, let Wix(x, f) be a subset of W(x, {). If /"W‘;x(x, flnN=g
for all n >0, then x € Qf ) and W} (x, ) CW(x, f)).

(b) If {;=bof where supp b C N and ("W} (x,[) "N =g forall n>1, then
x € Uf,) and Wi)c(x, f)CWx, ).

(c) Let W§ (x,[) be a subset of W*(x, ). If {7"W] (x, [) NN =& for all
n> 0, then x € Q(/l) and W'l‘oc(x, f) C We(x, /1)

@ If fi=0bof where supp b C N and /""W'I‘oc(x, fNN=g forall n>1,
then x € Q’(/l) and b[W'l;c(x, f)] C W¥(x, [1)

Proof of Lemma 1. Let x € . As in [9] and [21], W¥(x, f) = {y € M:
d(f"x, f"y) — 0 as n -— + oo},

Let y € Wfoc(x,/). %,y € N—fx=[xand fy={y. Infact, ["x, {"y € N for
all >0 =[x ={"x and [Ty =f"y forall n> 0. So,

d(/-'f}’, /'11") = d(fnY1 /nx) — 0 as n — oo,

x is nonwandering for /, since £ N N = & and periodic points are dense in .
y € Wfoc(x, fl)’ proving (a).

If f{{=bof and y € W} (x, [)possibly in N), fy & N by hypothesis and there-
fore f;y = b ofy = fy. Then, argue as in the proof of part (a) to obtain (b). (c) fol-
lows, since W*(x, /)= WS(x, /~1).

(d) f"lW';)c(x, {) is a subset of W¥(f ~x, /) and f—"[/'IW’;)C(x, NAN-=
f~®*+DW (x, {) "N =g for n>0 by hypothesis. By (c), [~ 'W% (x, f) C
we(f -~ 1x, /1) = W“(/'l'lx, /1); therefore,

1™ Wioels 1) C[iWHT 5, 1) = Wi, /)

But,flo/"l=bo/o/"1=b. This proves Lemma 1. N
Let f=5b o (g x b) be as defined above. As above, for x € 3, let Wi(x, 1),
the local stable manifold for x, be the path component of W¥(x, f) N B that con-

tains x; and let W'I“(x, f), the local unstable manifold for x, be the path component

of W¥(x, /) N B that contains x.

Lemma 2 For x € E,
(a) Wi(x, f)= Wi(x, g x b),

& W&, N=wE, gx b =B,
(&) Wilx, [) = W e,y /) = BIWE (xgy g x )L
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Proof of Lemma 2. We will use Lemma 1, with X = solenoid in T2 and N as
constructed in §D NnZ=g and f=gxh outsxde N. By (b) in defxmtxon of N,
in $D, (g xh)™"NN B, =g for all n> 0. Since B, = WS(Z g x h), Nﬁ(gxb)"Ws(x gxb)—
& for n> 1, (a) and (b) follow now from Lemma 1 and the definition of W For
(c), recall that Sc W¥(x o, g x b) and so Wi (x, g x b) = W¥(x, g x h) for all x €
3. we 7 (x0: g x b) meets N only in T2 x N, Smce h™"N, ﬂN =g forall n>1
and W4 (xo, g x b) is invariant under (g x b) , (g x b))~ "W (x gxhNN=g
for » > 1. By (d) of Lemma 1 and the definition of W}, b[W‘,:(xO, gx hl=Wwilxg, /).
The local stable and unstable manifolds for [/ around x are pictured in Figure

Figure 5

It will be helpful to have some notation for the three-dimensional local un-
stable manifold of ¢. Considering 0 first as a source for g : T2 5 T2 let
WI"OC(O, g+) be a 2-disk in its unstable manifold, with {vo} x J* in its interior, as
in Figure 2. W} (6, g+) can be constructed so that

(1) interior N| N interior Wﬁ‘oc(e, g+) = ¢,

(2) boundary N, N boundary Wi‘oc(e, g+) £d,

3) g:"W';)C(O, g+) C W'ix(ﬁ, g+) and is disjoint from B, for all n> 0,

(4) g reduces lengths on stable manifolds outside W;‘oc(e, g+) by at least one-
third. (g does so near 2 and away from Q.)

Define W% (0 gxb)_W" 0, g )><N in T? x S1. Since NN (T2Zx N )—

x N,, we can defme w (6, /) = Wi (0 g x b) by Lemma 1 and property (3) above

Since [ respects fohanon F, xeT?is periodic under [ only if leaf F(x) is

I

periodic under /. Since the leaves for F are products of the stable manifolds of 3
and S!, x must lie on F(y) where y is a periodic point on 2. Consequently, a
good way to study /) is by examining [” restricted to a leaf of period .
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Lemma 3. /IQ(/|'I\"(x0)) is conjugate to the shift automorphism on the bisequence
space of 3 symbols, i.e. 3%,

Since Lemma 3 is superfluous to the proof of Theorem 1, we merely sketch its
proof. One constructs by the methods of §I, a closed rectangle R in 'P\;(xo) such
that f: R — F(xo) looks like the standard geometric realization of the shift on 37,
as in [22]. See Figure 6.

F(xo), Figure 6

To show the conjugacy to the shift, one easily applies the methods of [18]. Finally,
by using the properties of the subsets constructed in SD, one shows that
Qf | Flx ) C R.

Let z be a periodic point in 2 N N, of least period k. Suppose ['z € In N,
only for i =0, il, IR if i < k. Then, an analysis like that of LLemma 3 will show

that /’k‘Q(/’ﬂF(z)) is conjugate to the shift map acting on a quotient space of B

F. Normally-hyperbolic foliations.

Definition. Let [ be a diffeomorphism of compact C™-manifold M" that respects
a foliation F on M. We call [ r-normally-byperbolic (with respect to ¥) if 3 a con-
tinuous splitting TM = E+ QE & TF invariant under T{ such that the following
conditions hold: for some Riemannian metric on M 3 constants A, g with 0<A<
1<y such that if 0 £ X € TM,

IT/X] <AMX| if X € E_,
|T7X) > ulX| if X € E,,

MX|<|TFX| < pulX| for i=0,1,..0,r, if X € TF.

Intuitively, this condition means that the contracting (expanding) effect of [ normal
to the leaves of the foliation is at least r times greater than the contracting (expand-

ing) effect of [ on the leaves.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] INSTABILITY IN Diff’ (T>) 229

Definition. For foliation J on M, let Q(ff) be the quotient space obtained by
identifying leaves of J to points. If f respects ¥, 71 0F) — O(F) is well defined.
If g respects foliation 9 on M, (?, [) is conjugate to (9, g) if there is homeomor-
phism b: Q(c.f) — Q(@) such that the following diagram commutes:

f
oF) —— 9(FH)

0@ —=E— 0©)

Theorem (Hirsch-Pugh-Shub [10]). Let 1 <7< and M be a compact C*-man-
ifold. Let [ be a C" diffeomorphism of M that is r normally-hyperbolic with respect
to some foliation § where the leaves of  are C'-manifolds. Then, there exists an
open set U in Diff" (M) about [ such that if g € U, then g respects a foliation Q
whose leaves are C'-manifolds. (¥, [) is conjfugate to @, g)-

Remark 1. As constructed in $B, the D-A map g is r normally-hyperbolic with
respect to the foliation F = {WS(x, A): x € T?}. In fact, one can construct an invari-
ant foliation §, everywhere transverse to J and containing the path components of
S as leaves. g is expanding on leaves of §, but contracting on leaves of ¥ except
near 6 where by proper choice of ¢ the expansion can be made arbitrarily slow com-
pared to the expansion along leaves of §. Take E+(x) to be the tangent space to
the leaf of § through x and E~(x) to be empty. S is tangent to a ‘‘Denjoy vector
field” on T2.]

Remark 2. g x h: T3 — T? is r normally-hyperbolic with respect to F =
{Ws(x, A) x S'}. To see this, one constructs a one-dimensional invariant foliation
Q+ on T3, expanding under f and everywhere normal to ¥, by putting the foliation
G of Remark 1 on each T2 x {s} for all s €S,

Remark 3. /= b o (g x b) is 7 normally-hyperbolic with respect to J ={W(x, A)

x $1. It is not as simple a task to construct the invariant subbundle E' for bo

(g x h) as it was for g and g x b. However, b takes each leaf of F into itself and
expands lengths by a factor < P (as defined in §D) while expansion normal to leaves
under b o (g x b) remains greater than [4(P + 1))". The stability of foliation J fol-
lows then from the methods of $2 of an expanded version of [10] where Hirsch,
Pugh, and Shub characterize normal hyperbolicity by comparing the spectrum of fy
restricted to TS (where /H(v) =Tfovof =1 for sections v of TM) to the spectrum
of [, restricted to the formal normal bundle of T¥. Furthermore, in [6, esp. §VI],
Fenichel proves a similar perturbation theorem using only the asymptotic behavior

of sucha map { without assuming any invariant splitting of TM.
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G. The open set U in Theorem 1.

1. If the 7 in Theorem 1 is finite, the last section indicated how g can be
chosen so that [ =b o (g x b) is r normally-hyperbolic with respect to J. If 7 = oo,
choose g so that [ is at least 2 normally-hyperbolic. Then, let U in each case be
as in the conclusion of the Hirsch-Pugh-Shub Theorem.

2. Part of the Q-stability theorem [25] states that if A is a hyperbolic basic
set (as defined in §B) for /, then each g close enough to / has an invariant basic set
A’ that is near to and conjugate to A. So, we can choose U so that for f' € U, there
is a one-dimensional set X' with /|2 conjugate to f'|Z'. For all ' iU let x,
denote the fixed point corresponding tothe fixed point x for f. Let F'(x) = F "(x)
N B for x € 2' N B where F' € ', the foliation of f'. For f'C” close to /, F "(x)
is C" close to F(x), where again for notation’s sake, we are assuming the conjugacy
between f|2 and f'|2' is the identity.

Let W{'*(x, /') for x € 2’ be the path component of W*'*(x, /') N B containing
x. By the Hirsch-Pugh Stable Manifold Theorem [9], for /'C" near {, WL(x 1 is
C’™ near WL(x f) and WY L%, /) is C" near Wi (x, f).

3. Wi(x,, [) intersects W o [) transversally in two points in N, x N.,.
Choose U so that this is true for all f' € U. In particular, we can demand t_hat, for
fleu, f'\Q(/"lF'(xo)) is conjugate to the standard 3-shift since this open condition
([18], [22]) is true for /.

4.1 [ is C" near f=bo(gxh), /' =b'olgxh) where b’ is C" near b.
Choose U so that, for ' € U, T? x {+ 1} intersects WY (x, ') transversally in
N1 x N,.

5. Let N, CN,CS! beas in $D. Using [9], choose U so that, for all /' € U,
Wi(x, fc B, x N, for all x in interior 3

6. By (b) of §D /(N ) ﬂN = @. Choose U so that this holds for all [ in

7. WY (xo, f) is transverse to, the boundary of B. Choose U so that this is
true for all f' € U. In particular, 3 will be an interval for all f'.

8. Choose U so that W‘L(xo, fn (N1 X Nz) C linterior of Nl] x N, for all
flel.

9. Using stable manifold theory again, choose U so that /"IW’i(xo, fYNN =
& forall [ € U.

10. Using (4) in construction of N, choose U so that B N /"IN C B1 X
h=1(B, - N,).

11, Since b = identity on gB1 x ¢ (cf. (5) in construction of N) and ¢ ¢ Nz’
b[gB x{cl N T?x N = @#. Choose U so that for b’ as in (4) above, b'[gBl x {el]
nszN ﬁ,le/[B xb’lc]ﬁszN —QS

12. B is the union of 2-disks F(x) for x € 2 For [ e U, demand that either
F(x) is a 2-disk whose ‘‘interior’’ lies in B or /(F(x)) N B = ;25
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13. Consider W% (0 /) described in SD. Choose U so that for fleu,
wy (6, f) C w«(o, 1M, and /"lW“ (6, /) lies in the interior of W} (6, /) and in the
complement of B.

14. Since h(N,) D B,, one can choose U so that /(1% x N2) S T?x B, and
/’[G(TZ X BZ)] c &T% x BZ)‘

15. Let 6N2 = {al, az} C ST with a € S+. In [T?x Nz] -/~ 1N, [/ increases
distances normal to T? x fal, azl by a factor greater than 3 by construction of 5.
Choose U so that this holds for all [ € U.

16. For x € T? x {al, azi, let K(x) be distance measured along F(x) from x
to szial} if x esz{az} or to sz{azi if x €T2x{a1}. For f=bolgxh),
K(x) = length of N, for all x € T? x dN,. Choose U so that for all f' € U and all
x as above, K(x) <3 x length of N, = K.

17. If /' is C" near bo(gx h), {'= b ok, where k is C” near (gx h). gx b

satisfies Axiom A and strong transversality condition. Therefore, by [17], it is

structurally stable. Choose U 3 if /'€ U, f'= b o k where k is topologically con-
jugate to g X h.

H. Perturbing maps in U.

Notation, If / is in U, let ? be the foliation on T3 as in (1) in §G let 2
or 2(f) denote the important solenoxd as in (2) in $G; let 2 be the path compo-
nent of 2 N B contammg %o Zt is an interval by (7) in §G Let W] (x, /)

W (x, [) and F(x) be as defmed in (2) of §G. In this section, we want to prove

Lemma 4 Given [ € U, there is a point z € 2(/0) and a one-parameter family
of maps in U, f/t}, 0 <t <1, such that the following hold:

(1) 2(f) =3, for all ¢ €0, 1.

2) W3 L(z, f ) and WY (z, [0) bave linking number 0 in N x N,; in fact, they
intersect but WS lies on one side of W} .

(3) ws L(z, / ) and W (z, / )} have lznkmg number at least 2 in N, x N,.

Figures 7 and 8 describe the difference between (2) and (3).

z D y z \/

Figure 7. 'I\;O(z) Figure 8. 'I}ll(z)
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Let /, be an arbitrary map in Diff (T?). Let A, = tx € 3: W3 (x, f) 0
Wixy, [) £ & in N x N, o). A, is a nonempty proper closed subset of %, by (3)
and (8) of §G since W (2 ) is a two-dimensional topolog1cal disk, a result of the
stable manifold theorem Ordenng the po’x\nts in the interval 2 naturally, there is

a unique z in AO such that if 2'> z in 20, then z' ¢ /\0. So,
Wiz, o) N Wiz, [) #& in Ny x N,
W”i(z', [O) N WSL(Z', /0) =g in Ny xN, for z'>z

Recall that since z, z' € EO C WY (xgs /0), Wi (x s /0) = Wiz, ) = Wi, [ )).
Since the zero linking number is a closed condition, W¥ (x, /0) and Wj(z, fy)
have linking number zero in N, x N,. However, they do intersect there, as in
Figure 7.

We now construct our one-parameter family of maps. Let y € Wi(z, /0) al
w (xo, /0) NN, xN,, as in Figure 7. Choose y to be the furthest such point on

(z fo) from z. T Wi (z, /O)C T W (xo, f). Choose nonzero vector X(y) normal
to TyW (x5 /o) tangent to F ol2), and pointing in the S_-direction, i.e. away from
WZ(xO, fo). Extend X(y) toa C°° constant vector field on T>. Now select an open
set V in N, x N, around y with fO(V) NV =g and with WZ(xO, f) dividing V
into two parts. Let k: T3> SR bea C” Urysohn function that is 1 near y but 0
outside V; and consider vector field Y(x) = &(x)X(x) for x € T? with flow a,
Defining f,= &, 0f, let £; >0 be such that, for all ¢t € [0, ¢ ] f, is in the e open set
U in Dxff’(T3) By Lemma 1, E 2 WS (x, f) = WS (x, /0) for all x € 3 o and
Wilxg, ) = G W e f) = atWL(xO’ fo)'

All one need show now is that, for ¢t > 0, Wi(z, [t) and W‘i(xo, /z) have linking
number greater than zero in N, X N,,. W,‘:(xo, /0) divides V into two parts, with
Wi(z, /0) NV lying in the lower (S_) part. Since Wi(z, /0) is tangent to
Wi (x,, [) at y and a, pushes Wi (xo, fo) in the normal direction, there is ¢,
with 0 <1, <t sothat, for ¢ €(0, t,], some of W] (z, f) lies above a Wi (x,, f)
NV and some lies below. Thus, the linking number of Wi(z, /'0) and a W (xo, [o)
is greater than 0 in V for t € (0, 12]. Now reparameterize {o, tz] to [0, 1]. Since
Wiz, f)) = Wi (2, {,) and a Wixg, fo) = Wi (x,, ), the proof of Lemma 4 is com-
plete.

If r < o in the statement of Theorem 1, the Fo(x) are C" manifolds by (1) in
$G and X can be chosen everywhere tangent to F (e.g., usmg foliation charts of
[8]) In this case, F F and one merely pulls W% (xo,/ )N F (z) down along

F (z) to proceed from the situation of Figure 7 to that of Figure 8.

Lemma 5. If { € U, f does not satisfy Smale’s Axiom A, i.e. {o bas a non-

byperbolic nonwandering point,
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Proof. The point y of Lemma 4 is nonhyperbolic yet nonwandering.

y €U/ ): y € Wilz, f) N W¥(x, f). But W*(z, /) and W*(x, f ) intersect
transversally since W¥(z, /0) = W"(xo, /O) and x € Wu(xo, fo) h WS(xO, fo) By
**Cloud Lemma,’’ {24, (7.2)} or [2], y € Q(/O).

y not hyperbolic: y € W¥(z, /0) and y € W{(x , /0) If y were hyperbolic,
Ws(y, /0) = Wo(z, /0)’ Wu(y, [0) = W“(xo, /0) and y € Wu(y, /0) A Ws(y, /0) But
W(z, /0) and W”(xo, /0) do not meet transversally at y. Q.E.D.

1. Construction of special 2-disks in the F(x)'s. In this section, { will denote
an arbitrary element of U, not necessarily b o (g x ») as in previous sections. For
each f €U aniperiodic point % in X(/) N [NO X NZ]’ we construct a ‘“‘rectangular’’
2-disk R(x) C F(x), which will have roughly the same purpose as the R in Figure 6.
If x € 2(f) N [Nyx N,] and x* is the corresponding point in 2(f'), R(x, f) will be
C O close to R(x', [').

Lemma 6. Let f € U and let s be a path in F(x,/)mszNz for x €Z N
[NOXNZ]‘ Suppose sN % =g If f"sCszN2 for 0<j<k,then ['sN N=(
for 1<j<k Ifalso [Ms O Wilxo, [V =@, ["s N Wi(xy, [) =@ forall n>m.

Proof. last sentence follows from /'IW‘L(xO, fc WZ(xO, f). The geometric
reason for /s N\ N = & is that / sends points in T? x N, closer to W‘L(xo, f) and
away from N. To send s back to N, [ would have to map some of s out of T? x
Nz' Suppose fs N N £ &. Since sCB, sN [/_IN N Bl £ 4. By (10) of §G, s
contains a path from X to B, xh~ 1(B2 - Ns) and so must intersect B x {h=1c}
where c is in Figure 3. So, fs N /(B x h~'c] £ @. By (11) of $G, fs has a point
outside T?x N,. This contradicts the hypothesis and shows /s " N = &

For j=2, argue as for j =1 if fs C B, Otherwise, fzsﬂ B =g by (12) in §G;
and N C B. Let 7 be the first integer > 2 with [s " B£ F but [~ s B=g. If
/is met N, it would have to do so in N, x N, since N ﬂszN —N x N,. Then,
f*s would join Ny x N, to X byacurve in F(f 's) mszN In F(/ls) OT2>< N,,
w4 (xo,/) separates 2 from N, x N,. But fis N W”(xo,/) ;5 since W} (x, f)
lies in B and is invariant under /1. So, fs must leave F(/ 's) and intersect
W';oc(o, f). But then, sN /_’W" (8, {) # &. Since s lies in B, this contradicts (13)
of $G. So, /s NN =&. An inductive argument then finishes the proof of this lemma.

Now let g be a periodic point for [, say of (least) period m, in %{f) N No X
N, with W‘(q, f)n N, xN, # @. We are going to construct rectangle R(g) in F(q)
Let s, bea closed mterval in W \q, {) with endpomts g and w, that is maximal
in that s, C s C Ws(q, /) and s ;ésl implies 35 NN=g So w1 is the point on
NN F(q)] N Ws(q) furthest from g. Let s; be the path along 9N N F(q)] from w, to
w, where w, € T? % {a } (cf. (15) of $SG). Let s, be the path in T? {a, In F(q)
from w, to w,, a point on f~ lyu (q, ) n F(q) Let s, be the path in /—IW“ {q,])
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H'E(q) from w, to . S, U S, U S; U S, encloses a rectangle Ro(q) C 'I\’J(q). [R in
Figure 6 is Ro(xo).]

Let Rl(q) be the component of /R, N T2 x N, containing fs,. [In Figure 6,
Rl(xo) is RN fR.] Define inductively R,.(q) = component of /'R]._ l(q) NT? % N,
containing /isl. By Lemma 6, Rj.(q) N N =g for 1 <j<m;and so R].(q) = compo-
nent of /jRO(q) NT? >'<VN2 containing /’sl. Finally, recalling f™q = g, define
R (9)=f(R__ (@) C F(g) and denote {~™R_(g)=(~""=DR__.(q) as R(q) or
R(q, ). See Figure 9.

Note that for 0 < i< m each Ri(q) is a "‘rectangle’’ with one side, viz. /isl,
lying in /iWi(q, f); and each /“iRl.(q) is a rectangle in Ro(q) with s, as one of
its sides. For notation’s sake, label the sides of Rl.(q) as S;1, S.o, S;3, iy and
the sides of R(q) as s{, Sy 53', s, where s,; and s].' correspond to s, in R(9),
i=1, 2, 3, 4. For each i <m and each Rl.(q), call the maximum distance measured
along F(fiq) from x in Sy = /"s1 to S5 cT?x {al} the height of Rl.(q). For each
i <m and each /-'Ri(q), call the maximum distance measured along F(q) from x
in s, to the opposite side of /—’Rz.(q), viz. /_lsiS’ the height of f_zRi(q). By (16)
of $G, the height of each R (9) < K. By (15) of §G, height of /'R (g) < K/3 for
0<i<m and so height of R(g) < K/3™~ L.

We now describe the sides of R_(9), i = /Sm-l,i' Sm—1,3 CT?x {al} and
(14) of SG imply that Sm.3 lies above T? x B, i.e. above F(q), as in Figure 9.

Since s is the path component of

-1,4

S
m,3 ‘/Vu
[ (XO)

% 4

Figure 9. R_(q)(shaded area) in F(q).

we(fm=1g) N F(/™~1g) N T? x N, containing ™14 (by induction), s
part of W*(q, /) N F(q) between ¢ and s

4 18 that

m.3 Sm.1 Cs, C Wi(q, {) by construction
and since { preserves orientation. By the second part of Lemma 6, s_ | and s

1 .2
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are disjoint from W} oo /) as in Figure 9. Putting all this together, one obtains

Lemma 7. Let g be a periodic point for f € U, of (least) period m, in Z(f)
N[Ny x N1 such that W{(q, [) meets P, the boundary of N | x N, nearest 6

Tben tbere is a “‘rectangle’’ R(q) in F(q) N T?x N, with boundary s1 U s U
3 U s where
sl' is the arc of Wi(q, () from q to P,
; C P N Flg),
s, CWilg, ) ﬂF(q) and
s, joins s, to s, and is opposite s .
Height of R(q)< K/3™" 1, Let R _(9)= f™R(q) with sides s .= /”’sl.' , i=
1,---,4.

s 1 C s'- 5.5 lies above rl\;(q) in F(q),
s 4C W (g, /) N F(q) and joins s m1 10 S N
sm, lies strictly between Wi (q, /) N F(q) and W} (x, [} N F(g), as in
Figure 9.

R(q) varies continuously with [ € U. If [, is a one-parameter family of maps
in U which agree outside N and respect the same foliation, then one R(q) works

for all the [’s.

Now R(gq) contains at least one point period < m, viz. 4. In Lemma 8, one
constructs another 2-disk R"(q) about R(g) in F(gq) such that [ has no points of
period <m in R#(q) —~ R(q). For Lemma 9, one thickens R"(¢) to a 3-disk V(q)
such that f has no points of period < m in V(g)\R(g).

Lemma 8. Let q, m, { be as in Lemma 7 with R(q)C ’i\"(q) as constructed in
Lemma 7. Then, there is another 2-disk R(q) C F(q) such that
1) R”(q) contains R(q) in its interior as a 2-disk, and
(ii) / has no points of period <m in R*(¢)\R(g).
R¥(q) varies continuously for [ in U. If {' near [ respects the same foliation and
equals [ off N, then R*(q, f)=R"gq, ).

Proof. The proof is simple but a little tedious. So, we will sketch it geomet-
rically, using Figure 9. Let s1 , 52' , 13' , s; be the edges of R(q) as in Lemma 7.
There are no points of period < m in F(q) below W3 (q, /). To see this, write [
as bok where k is topologlcally conjugate to g x b as in (17) of §G. & has two
invariant tori, T? (k) and T2 “(k), with 3(/) and the WS (x /) contained in Tz(k)
by Lemma 1. % and b send all points “‘below”’ T? (k) toward T? “ (k). Thus, there
are no nonwandering points ‘‘below’’ T+(k), and hence belowNWz(q, ) for f=bok.

There are no nonwandering points to the right of Sé in F(q) since by its con-
struction in §E and by (13) of §G such points are in the three-dimensional

W']:x(e, {). There are no points of period < m to the left of s; in F(q). One way
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S

to see this is to extend R () to a rectangle R (q) with boundary s, s 37 54

2 5

where

s;Cs,CWilg, )y s,=5, 53C§3CT2><{aI}, 54 C left boundary of F(q).

Define R (q) inductively as above and let R(g) =f""R (q) an extension of R(q)
to the left. If x € R(9)\R(9), [(x) € (T2 x N)\N for i=0,+++,m — 1, and so
[¥(x) = k(x) where k is conjugate to g x h. x cannot have period <m for [ since
q is the only point of period < m for k in 'I?(q).

Finally, we need to see that we can extend R(g) beyond 53' . /”’s; N T?x 32
= & by Lemma 7 and, by (14) and (17) of §G, Q) n X(T? x B,) C T2(k). So [™s;
N /) =& and there is a 2-disk V, about f™s 3' but missing closed set Q(f).
/_mV is disjoint from Q(/) and extends R(q) above s . This finishes our sketch
of the construction of R (9).

We want to thicken R#(q) to a 3-disk V(q) such that all points of period <m
in V(g) actually lie in R(gq).

Lemma9. Let q, m, [ be as in Lemma 7. Let R(q) and R¥(q) be as con-
structed in Lemmas 7 and 8. Then, there is a 3-disk V(q,) in T> such that R(q)
CRYNq)CV(q). If x €V(q) with [Ix =x and 0<j<m, then x € R(g). V(g) N
F(q) = R™(q) and V(q) varies continuously with | € U.

Proof. We first show that points of period j not on R”(q) do not accumulate
on R”(q ). Suppose the contrary, i.e. suppose there exists a sequence of points
{xn} such that

(1) x, ¢ R"(q) for all =,

(i1) /fxn =« forall n, with 0 <j<m, and

(iii) the sequence ixn§ accumulates on R#(q).

By compactness and since Fix (/j) is a closed set, there is a point X € R¥%q) 3
x - X, where {xn} is now a subsequence of the original sequence and [/(¥) = .
Therefore, j = m. Otherwise, [ ’F(q) = F(q) and ['W%(q, f). But W¥(g, f) N
fI(WS(q, [) =@ for 0<j<m.

Choose chart R3 about F(q) where R? x {0} contains F(g) and R? x {1} C
leaf of foliation. Let X R - 0 x R! be the projection on the third factor. Using
[10], we can choose our chart so that for [’ near f:

(i) new chart RZ x R! is close to the original one,

(ii) R% x {t} C leaf of foliation for [,

Gii) R2x 10} D Flg, /",

(iv) s for [’ is C2-close to m, for f.

Now, 7, o (/™ —id): R} = R! with N olf™ —id)x =0.9 5 o(f™ id)/8x3(9_c_) £
0 since [ is expanding in the x, direction, i.e. normal to the foliation. By the im-

plicit function theorem, [773 olf™ - id)1~ 1(Q) forms a two-dimensional submanifold

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972} INSTABILITY IN Diff’ (T2) 237

through ¥ in our chart. /™R™q) C F(g). So, y € R*(g) implies y € R?x {0} and /™y € R?
x {0} /™y —y € R?x {0} or 7, o(/™ — id)y = 0. Therefore, R*(g) C [m, o (/™ - id)]~'(0).
Since /'"xn =x_forall n,all x_ € [773 o(f™ —~ id)1~1(0). But by the submanifold
property, the x cannot accumulate to R™(g) without being on R*q). So, points
of period j not on R"(q) do not accumulate on R”(q) and, consequently, there is
an open neighborhood V(g) about R”(q) as in the conclusion of this lemma. As [

varies, 7, and ™ vary smoothly; so [773 o(f™ - id)1~10) and V(¢) vary continu-

ously witi fel.

J. Comparison of /0 and /1. As in the statement of Theorem 1, let /0 be an
arbitrary map in U and U an arbitrary neighborhood of f, in U. For convenience,
we can without loss of generality consider U as our U since every open subset
of U0 has the properties in §G. Let us now use the 2-disk R(g) constructed in
I to study the one-parameter family of maps {/t§ discussed in $H. Recall that
for all f € U, 2(f) is locally the product of a Cantor set and an interval ([27},
[30]). For z € ’i(/), Wiz, f) N 2(f) is a Cantor set and so points of Wi(z, /) n
3(/) accumulate on z.

Let f, and z be as in Lemma 4. Choose z' >z in E(/ ) [= 2(/0)] using the
order in ’§H such that WS (z', / ) and W" (z' ) / ) [= WL(xO, /1)] have nonzero link-
ing number in N, x N,. By choice of z in 2(/0) Wi (<, /0) and Wt(z',/o) do not
intersect in N1 X N2. Using the stable manifold theorem {9], the openness of non-
zero linking number and of nonempty intersection, and 2([0) = 2(/1), one can choose
a neighborhood H of z' in 2(/0) such that, for all y € H,

(a) Wz(y, /1) N W’Ii(y, /1) intersect in N, x N, with nonzero linking number,

(b) Wiy, /0) N Wl,:(xo, /O) [and consequently Wi (y, /0) n Wiy, /0)] is empty
in N, % N,.

Let H1 be a compact nbd of z! satisfying (a) and (b) and homeomorphic to the
product of a Cantor set and an interval. Since H is closed, there is an ¢ > 0 such
that for y € H  the distance (measured along F(y)) between W% (y, /0) and W$ (y, /O
in N X N is at least ¢, using (b).

Smce periodic points are dense in 2(f) and there are finitely many points of
each period [27], there are periodic points in H, of arbitrarily high period. Choose
9 € H, of (least) period m where K/3™ <. Construct R(q,/ ) and R(g, [ ) as in
Lemma 7. So /”’R(q, f)=R (q, /) lies in F{q) and is bounded by Ws(q, /)
W“(q, /) N F(q) and WL(xO, f) N F(q) as in Fxgure 9. Also, in N xN,, / R(g)
lies below W"(q, /) ) F(q) and above W% (xo, /) a F(q) In the C case, 7 < o,
R(q, {6 ) = R(q, /i ) by Lemma 4 and the last sentence of Lemma 7.

However, the height of R(q) < K/3™ <, while the distance between W“(xo,/ )
and W (g, fy) is at least ¢ in F(q) N N, xN,. So we have exactly the situation of
Figure 9 with R(q) and /'"(R(q)) not mtersectmg in N, x N,. On the other hand,
since W% (q, / ) has nonzero linking number with W? (q,/ ) in N X N2, Figure 10
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would more accurately describe the situation for R(g, /l)’

/’1”5’ —

4

) .-/'1"52’ DWZ(q,/l)

—

R(g) R ] ] .
— 2 -

Figure 10. 'I;(q, /1)

Lemma 10. g is the only point of period <m for [ in R(q, /0) However,
{TR(g, { )N R{q, [,) has at least three components each of which contains a fixed

point of /'{’

Proof. Since g has least period m, /:F(q, f)NF(q,[)=2 for 0<i<m and
so there are no points of period <m in R(g, /z)’ Let x € R(q, fo) with /B”x = x.
Since RN /”’R N N x N =&, x € N. By construction of R, [6x ¢ N for j<m.
Using (17) of $G, /o =bo k where & is con;ugate g x b and support b CN. So
/{)x = k’ox for =0, 1,---,m and x € F1x(k”’) N F(q, /0) Therefore, x = g and ¢
is the only point of period m in R(yq, /).

The situation is different for f . Let s, s, 53' , S, be the sides of R(g, f,)
as in Lemma 7. As in Figure 10, /'{'s; and fTs, cut across R(g) in N, x N,, dip
below R(q), and then cross it again. More precisely, there exist closed subintervals
I‘;, I; of /'fs; and closed subintervals If, 1% of /'{'sé such that

(a) there is x* between I‘: and Ig on [7s, lying below R(9),

4
(b) there is x2 between If and I% on /'l"s; lying below R(g),
(c) each I’ has one endpoint on sl' and the other on 33', e.g., the points {a,
b, ¢, d} in Figure 10 where ad is l% and bc is lg.

Choose l% and 1; so that the subinterval @b of 53' and the subinterval cd
of s; have minimal length. Similarly, choose I2 and I{. Let M, CR N /TR be

the 2-disk bounded by I‘: and lf and let M, (= abcd in Figure 10) CR N {TR be
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the 2-disk bounded by I3 and I2.
Claim, /'" has a fixed point in M, and another one in M,. We will work on
M.; the proof for M, is isomorphic, modulo a change in orientation.

To facilitate the analysis of M., one introduces a coordinate system on F(q)
NT?x N, with WL(q, /1) the x-axis, 4 the origin and the positive direction toward
N x N,, i.e. to the right in Figure 10. Let s; be the y-axis with positive direction
toward s, i.e. “‘up’’ in Figure 10. Now /"'"ad C s and thus lies to the right of
M, and f]" bec C s, and lies to the left of M,. /1 ab lies in R(q) below s;
and fl'mc_g lies in R(q) above s{.

Williams has shown me the following simple technique for exhibiting a fixed
point for f'l'"’le given the above situation. The set E = {z € M, f1™z and z
have the same y-coordinate} separates M, into two disjoint open sets, {z: /I”’
increases y-coordinate of z} containing cd and {z: /I”‘ decreases y-coordinate
of z} containing ab, Similarly, E = {z € M,: /;”"z and z have the same x-coor-
dinate} separates M, into two disjoint open sets, one containing bc and the other
containing ad. Since M, is closed, E_ N Ey # @ by point-set topology arguments.
But E, NE =1z € M,: [Tz =z}, proving this lemma.

Summarizing, we have a one-parameter family of diffeomorphisms in U:
/;"IR(q, /t): R(q, /t) — Rm(q, /1) R(q, /t) varies continuously with ¢ and in the
C’ case, r < =, do not vary at all, /6" has exactly one fixed point in R(q, /), while
{T has at least three fixed points in R(q, /1). The set of f in U that have ¢ as
the only fixed point of /™ in R(q, /) is open. So, there isa T with 0< T <1
such that /fl'f has more than one fixed point in R{q, /T) but /;" has ¢ as its only
fixed point in R(g, f,) for all ¢ with 0 <t <T,

K. Three perturbations of /, in U. In this section |J will mean |J ;":é First,
one makes hyperbolic all periodic points of /T of period < m not in the orbit of
R(g, {;). From Lemma 9, there is a 3-disk V such that R C interior V and all
points of V of period < m are actually in R. Choose V small enough so that V,
[7Vsee- ,/’,;"IV are mutually disjoint. By Peixoto’s proof of the Kupka-Smale
Theorem [16], one can choose /_T so that

W) Ty=frin Y=U 5V,

2) if /;,z =2, 0<n<m,andz ¢ Y, then z is a hyperbolic fixed point of
o

(3) Trel.

Since [ .. :_/T in Y, {1 has at least 3m points of period m in {J PTR Now,
perturbing f .. in Y to make all points in Y of period m hyperbolic, one obtains,
via [16} again, g1 where

(D gr= 7_7. outside Y,

(2 gr € U,

(3) gr has at least 3m points of period m in U /—77.R and all points of
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period < m are hyperbolic.
We now want to perturb /_T in another way to g .. € U where
(i) g4 =/ outside Y,
(ii) g = /Tl on R for some Tl < TO’

(iii) g has exactly m points of period <m in Y, all of which are hyperbolic.
Then, we will have g, and g, in U such that

(a) g and g have all points of period < m hyperbolic,

®) N, (&) >N, & ).

One of {gT, g—T} must satisfy the conclusion of Theorem 1, i.e. Nm(fo) # Nm(gT)
or Nm(/o) A Nm(g_T). '

So, we need only construct g, as above. Let Y, = U PV, i=0,1,2,3
where V DV OV DV,DV, are all closed 3-disks with the properties that all
points of V, of period <m for [r lie in R, int VD R, and V,Dint Vi for each
i y=U/rLv=Uriv.

Let ¢: T> — R be C” with the property that ¢ = 0 outside Y but ¢ = 1 in-
side Y, and consider the one-parameter family of maps of T3, k, = (1- (;5)/_7. + Bf,.
k, is C” for all ¢. kp= /_T since /—T = [, where ¢ £0,i.e.in Y. k, = /—T outside
Y for all t since ¢ = 0 there.

Let R, be the 2-disk Rlg, f) in F(q, f). R, varies continuously with t. So,
there is an open interval (t,, t,) about T such that Rz C V2 for t € (tl, t,). Choose
V1 and (11, tz) so that all points of period < m for /t in Vl lie on Rz when t €
(¢4, £,). Since J /’TV2 C Uint /]T.Vl’ one can choose an open interval (13, t,)
about T so that U/]z‘_/z C UYint fRV, =Y, for te (t4, t,). Choose an open in-
terval (ts, t6) about T so that kz €U for t € (¢ 5 t6). Choose an open interval
(t7, tg) about T so that for such ¢, kt has no points of period <m in U/Zr (V\VB)'
This is possible since &k, =/, hasno such‘periodic pgints. Finally, choose an
open interval (ty, t,) about T so that | J/%.V, C UKV, for ¢ 5(19, tio)-

Now choose t < T with ¢ € nl.szl (¢ t,;). Claim k, is our desired g .

k, € U and k,= [ outside Y.

So it suffices to show that &, has only m points of period <m in Y. Let x
€Y with k;x = x for some 'i <m. Y= [U/’TV3] U [U/]T(V\Va)] x € U /"%.V3
sinctlz tE(t,, ty). x € ngvz since ¢ €(t9’.t10)° Alsc_), k,=/, in LJ/;V2 =
U&V,CY, since t € (ty, t4?. So x € LJ/;V2 and fx = x for some i, 1 <i<m,
Because t €(t, t,), x € |J[]R,. Since t<T, g is the only point of period < m
for f,

finish the proof of this theorem.

2i-1

in R,. Therefore, x = { g for some j <m. So, k, can be the g, needed to
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