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Instability in dynamic fracture and the failure of
the classical theory of cracks

Chih-Hung Chen1, Eran Bouchbinder2* and Alain Karma1*

Cracks, the major vehicle for material failure1, undergo a
micro-branching instability at ∼40% of their sonic limiting
velocity in three dimensions2–6. Recent experiments showed
that in thin systems cracks accelerate to nearly their limiting
velocity without micro-branching, until undergoing an oscil-
latory instability7,8. Despite their fundamental importance,
these dynamic instabilities are not explained by the classical
theory of cracks1, which is based on linear elasticity and
an extraneous local symmetry criterion to predict crack
paths9. We develop a two-dimensional theory for predicting
arbitrary paths of ultrahigh-speed cracks, which incorporates
elastic nonlinearity without extraneous criteria. We show
that cracks undergo an oscillatory instability controlled by
small-scale, near crack-tip, elastic nonlinearity. This instability
occurs above an ultrahigh critical velocity and features an
intrinsic wavelength proportional to the ratio of the fracture
energy to the elastic modulus, in quantitative agreement with
experiments. This ratio emerges as a fundamental scaling
length assumed to play no role in the classical theory of cracks,
but shown here to strongly influence crack dynamics.

Crack propagation is the main mode of materials failure. It has
been a topic of intense research for decades because of its enormous
practical importance and fundamental theoretical interest. Despite
considerable progress to date10–15, the classical theory of brittle
crack propagation1 still falls short of explaining the rich dynamical
behaviour of high-speed cracks in brittle solids such as glass,
ceramics and other engineering, geological and biological materials
that break abruptly and catastrophically.

This theory, termed linear elastic fracture mechanics (LEFM)1,
assumes that linear elastodynamics—a continuum version of
Newton’s second law together with a linear relation between stress
(force) and strain (deformation)—applies everywhere inside a
stressed material except for a negligibly small region near the crack
tip. It predicts the instantaneous crack velocity v by equating the
elastic energy release rate G, controlled by the intensity of the stress
divergence near the crack tip, with the fracture energy Γ (v). The
scalar equationG=Γ (v)must be supplementedwith an extraneous
criterion to select the crack path; the most widely used one is the
principle of local symmetry9, which assumes that cracks propagating
along arbitrary paths feature a symmetric stress distribution near
their tips.

A central prediction of this theory is that straight cracks
smoothly accelerate to the Rayleigh wave speed cR (the velocity
of surface acoustic waves) in large enough systems1. However,
cracks universally undergo symmetry-breaking instabilities before
reaching their theoretical limiting velocity2–7. In three-dimensional
(3D) systems such as thick plates, instability is manifested by

short-lived micro-cracks that branch out sideways from the main
crack. This so-called micro-branching instability2–6 typically occurs
when v exceeds a threshold vc of about 40% of cR. Recent
experiments in brittle gels have further shown that on reducing
the thickness of the system, micro-branching is suppressed and
instability is manifested at a much higher speed (vc ∼ 90% of
the shear wave speed cs) by oscillatory cracks with a well-defined
intrinsic wavelength λ (refs 7,8,15). Such behaviour cannot be
explained by LEFM, even qualitatively, as it contains no length scales
other than the external dimensions of the system.

To investigate dynamic fracture instabilities, we use the phase-
field approach16–20. By making the near-tip degradation zone spa-
tially diffuse, this approach avoids the difficulty of tracking the
evolution of sharp fracture surfaces inherent in traditional cohesive
zone models1. It is therefore capable of describing complex crack
paths while treating both short-scale material failure and large-scale
elasticity, without adopting the common assumption that elasticity
remains linear at arbitrary large strains near the crack tip (Fig. 1a).
This generalized approach features two intrinsic length scales miss-
ing in LEFM (Fig. 1b): the size ξ of the microscopic dissipation zone
around the tip, where elastic energy is dissipated while creating new
fracture surfaces, and the size ℓ of the near-tip nonlinear zone, where
linear elasticity breaks down when strains become large. We stress
that while ξ and ℓ aremissing in LEFM, they are consistent with it as
they remain much smaller than the system size. Moreover, ℓ scales
with the ratioΓ/µ of the fracture energy to the shearmodulus, but is
generally much larger than Γ/µ and also depends on crack velocity.
Experiments and theory suggest that this nonlinear scale may be
related to the oscillatory instability8,15,21–25, but this relationship is
not fundamentally established. Here we develop a new phase-field
formulation (see Methods and Supplementary Information) that
maintains the wave speeds constant inside the dissipation zone,
thereby avoiding spurious tip-splitting occurring in previous phase-
field models at relatively low crack velocities26. This new formula-
tion allows us to model for the first time the ultrahigh-speed cracks
observed experimentally.

The nonlinear strain energy density estrain is chosen to correspond
to an incompressible neo-Hookean solid (see Supplementary
Information) (Fig. 1a), representing generic elastic nonlinearities
and quantitatively describing the experiments of refs 6–8,15,21,25.
We consider mode-I (tensile) cracks in strips of height H (in
the y-direction) and length W (in the x-direction). Fixed tensile
displacements uy(y = ±H/2)= ±δy are imposed at the top and
bottom boundaries with δy ≪H such that strains are small and
linear elasticity is valid everywhere in the sample except within
a small region of size ℓ≪ H near the crack tip, where elastic
nonlinearity is important. The applied load is quantified by the
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Figure 1 | Nonlinear elasticity and crack-tip length scales. a, The stress σ ,

normalized by the shear modulus µ, versus strain ε for a linear elastic solid

(blue line) and a nonlinear elastic solid (red line corresponding to estrain
defined by equation (4)) under uniaxial tension. Nonlinearity becomes

important around εc ≈0.1. b, A schematic representation of near-tip length

scales neglected in linear elastic fracture mechanics (LEFM), but consistent

with it as long as they are much smaller than the system size. These include

the dissipation zone of size ∼ξ , where elastic energy is dissipated in the

process of creating new crack surfaces, and the nonlinear zone of

size ∼ℓ>ξ , where linearity breaks down. The region where linear elasticity

breaks down, termed the ‘process zone’ in fracture mechanics, includes

both the dissipation and nonlinear zones. To estimate ℓ, note first that the

LEFM stress divergence σ∼µε∼KI/
√
r, where r is the distance from the

crack tip and KI is the mode-I stress intensity factor, is valid for r close to,

but larger than, ℓ. As ℓ is the region where elastic nonlinearity becomes

important, it can be estimated by setting r∼ℓ and ε∼εc in the last

expression. Finally, invoking energy balance in the tip region1, Γ0 ∝K2
I /µ,

one obtains ℓ∼ℓ0/ε
2
c ≫ℓ0, with ℓ0 ≡Γ0/µ. Note that the velocity

dependence of the fracture energy and the relativistic distortion of near-tip

fields for crack velocities approaching cs can both have a strong influence

on the size and shape of this nonlinear region, going beyond this

simple estimate.

stored elastic energy per unit length along x in the pre-stretched
intact strip, G0 = estrainH , where estrain is uniquely determined by δy .

Figure 2 unprecedentedly demonstrates the existence of a rapid
crack oscillatory instability in our simulations. Figure 2a shows
a close up on the crack at the onset of oscillations in the mate-
rial (undeformed) coordinates (see also Supplementary Fig. 1 and
Supplementary Movie 1) and a corresponding sequence of crack
snapshots in the spatial (deformed) coordinates, along with the
strain energy density field. The results bear striking resemblance to
the corresponding experimental observations in brittle gels7, repro-
duced here in Fig. 2b (see also Supplementary Movie 2). Figure 2c
shows the time evolution of the Cartesian components, (vx , vy),
and magnitude of the crack velocity, v=

√
v2
x
+v2

y
, demonstrating

that the instability appears when v exceeds a threshold vc ≈ 0.92cs.
Figure 2d shows the time evolution of the oscillation amplitude A
and wavelength λ, which both grow before saturating. The saturated
amplitude is an order of magnitude smaller than the wavelength, in
good agreement with experiments7.

Importantly, we verified that the wavelength is determined by
an intrinsic length scale by carrying out simulations for different

system sizes, yielding negligible variations in λ (Supplementary
Fig. 2). Moreover, we verified that the instability is caused by near-
tip elastic nonlinearity by repeating the simulations using the small-
strain (linear elastic) quadratic approximation of the nonlinear estrain,
corresponding to conventional LEFM. These simulations yielded
straight cracks that tip-split on surpassing a velocity of ≈0.9cs,
without oscillations. Since both forms of estrain—nonlinear neo-
Hookean and its small-strain linear elastic approximation—are
nearly identical everywhere in the system outside the near-tip
nonlinear zone, we conclude that nonlinearity within this zone is
at the heart of the oscillatory instability.

To investigate the dependence of the oscillatory instability on
the external load and material properties, we varied G0/Γ0, where
Γ0 ≡Γ (v=0) is the fracture energy at onset of crack propagation,
and the material-dependent ratio Γ0/(µξ) ≡ ℓ0/ξ controls the
relative strength of near-tip elastic nonlinearity and dissipation.
Results of extensive simulations are shown in Fig. 3, presenting the
crack velocity versus propagation distance for several G0/Γ0 values,
and ℓ0/ξ = 0.29 in Fig. 3a (also used in Fig. 2) and ℓ0/ξ = 1.45 in
Fig. 3b. The plots clearly show that the onset of instability occurs
when v exceeds a threshold value vc independently of the external
load. Decreasing the load simply reduces the crack acceleration and
hence v exceeds vc after a larger propagation distance; instability
is not observed for the lowest loads in Fig. 3a,b because v has not
yet reached vc by the end of the simulations. Comparing Fig. 3a
and Fig. 3b, vc is seen to increase by only a few per cent when
Γ0/(µξ) is increased fivefold. This result is consistent with the
experimental finding that vc remains nearly constant when the ratio
of the fracture energy to the shear modulus is varied several fold
by altering the composition of the brittle gels, which affects both
quantities and hence their ratio7. Furthermore, the onset velocity
vc ≈ 0.92cs in Figs 2 and 3a is in remarkably good quantitative
agreement with experiments7.

Unlike the critical velocity of instability vc, the wavelength of
oscillations λ has been experimentally observed to significantly
vary when the fracture energy Γ (vc) and the shear modulus µ
were changed by varying the material composition8. The phase-
field framework allows one to independently vary Γ (vc) andµ, and
also to assess the role of the energy dissipation scale ξ . The size of
the nonlinear zone ℓ is theoretically expected to be proportional
to (and much larger than) Γ (vc)/µ, but as the pre-factor is not
sharply defined, we plot in Fig. 4a λ versus Γ (vc)/µ, both scaled
by ξ , where Γ (vc)/µ≈1.2Γ0/µ is obtained from accelerating crack
simulations (seeMethods).We superimpose in Fig. 4a experimental
measurements in brittle gels, where a value ξ≃153 µm was chosen
to match the y-intercepts of linear best fits of both the theoretical
and experimental results. The slopes dλ/d(Γ (vc)/µ), which are
independent of the choice of ξ , are in remarkably good quantitative
agreement. This agreement demonstrates that small-scale elastic
nonlinearity, which is quantitatively captured by the phase-field
approach, is a major determinant of the oscillation wavelength λ
that increases linearly with Γ (vc)/µ, when Γ (vc)/(µξ) is suffi-
ciently large. The existence of finite y-intercepts further suggests
that the dynamics on the dissipation scale also affects λ. How-
ever, it should be emphasized that oscillations exist only above a
minimum value of Γ (vc)/(µξ)∼ℓ0/ξ≪1 (indistinguishable from
the origin on the scale of Fig. 4a). This minimum reflects the fact
that nonlinear effects become negligible when ℓ < ξ (or ℓ0 ≪ ξ ,
since ℓ≫ ℓ0, see Fig. 1). Below this minimum, we observe the
same behaviour as for linear elasticity: stable straight crack prop-
agation and then tip-splitting with increasing load G0/Γ0. Above
this minimum, oscillations with a wavelength following the linear
fit in Fig. 4a exist over a finite range of loads that increases with
increasing Γ (vc)/(µξ). All in all, these results demonstrate the
failure of the classical theory of fracture, which assumes that elastic
nonlinearity plays no role. The singular role of elastic nonlinearity
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Figure 2 | Onset of the oscillatory instability. Results of phase-field simulations of brittle mode-I (tensile) fracture in rectangular strips of height H and

lengthW illustrating the onset of the oscillatory instability (full scale is available in Supplementary Fig. 1). a, Zoom in on the crack trajectory, defined by the

φ= 1/2 contour, in the material (undeformed) frame (top) and a sequence of snapshots of the crack surfaces, along with the normalized strain energy

density field estrain/µ, in the spatial (deformed) frame (bottom). b, The corresponding experimental observations in brittle gels. c, The magnitude v, and the

Cartesian components vx and vy , of the crack velocity (scaled by the shear wave speed cs) versus crack propagation distance d (scaled by H). The onset of

instability is marked by the dashed lines. d, The oscillation amplitude A and wavelength λ (scaled by ℓ0 =Γ0/µ) versus d/H. Simulation parameters are

ℓ0/ξ=0.29, H/ξ=300,W/ξ=900, G0/Γ0 =2.6 (corresponding to a background strain εyy =3.62%),∆=0.21ξ and β=0.28 (see Methods). Panel b

adapted from ref. 7, APS.
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Figure 3 | Critical velocity of instability. Results demonstrating the independence of the critical velocity of instability vc on the external loading and the

ratio of fracture energy to the shear modulus, which controls the size of the near-tip nonlinear zone. a,b, The normalized crack velocity v/cs versus the

normalized crack propagation distance d/H for different external loads, measured by the dimensionless ratio G0/Γ0, and ℓ0/ξ=0.29 (a) and

ℓ0/ξ= 1.45 (b). The critical velocity in b exceeds slightly cR =0.933 cs due to elastic nonlinearity (see Supplementary Information). Other simulation

parameters are H/ξ=300,W/ξ=300 (calculations withW/ξ=900 yielded the same critical velocity vc),∆=0.21ξ and β=0.28.

is further highlighted by our finding that the incorporation of
Kelvin–Voigt viscosity17 in the linear elastic phase-field model
does not suffice to produce an oscillatory instability. This result

suggests that reversible nonlinear elastic deformation, as opposed
to irreversible viscoelastic or viscoplastic dissipative processes, pro-
vides a general mechanism to destabilize high-speed cracks in
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ratio of the fracture energy Γ (vc) to the shear modulus µ, which controls the size of the near-tip nonlinear zone. a, The wavelength λ versus Γ (vc)/µ (both

quantities scaled by ξ). Experimental measurements in brittle gels (data taken from ref. 8) are superimposed on this plot by setting ξ≃ 153 µm such that

the y-intercepts of the best linear fits (dashed lines) of the theoretical and experimental results coincide. This ξ value is roughly consistent with

experimental estimates8. Note that the theoretical data span a wider range of values compared with the experimental data, and do so in a much more

continuous manner. The reason for this is that in the experiments Γ (vc), µ and ξ are varied in a correlated (and not well-controlled) manner through

varying the material composition, while in the theory these physical quantities can be varied independently so as to represent a broad range of different

materials. b, The normalized crack-tip nonlinear deviation δ/ℓ0 from the parabolic LEFM tip (see inset for a visual definition) versus the normalized crack

velocity v/cs. Inset, a snapshot of the crack surfaces and normalized strain energy density estrain/µ in the spatial (deformed) coordinates for v/cs =0.93

(marked by the black square in the main panel). c, A sequence of snapshots of the crack surfaces and the normalized strain energy density estrain/µ during

one complete steady-state oscillation cycle, demonstrating that the asymmetry in the near-tip strain fields is temporally out-of-phase with the

instantaneous crack propagation direction (see also Supplementary Movie 1). Simulation parameters in a are the same as in Fig. 3 except the ratio ℓ0/ξ

varying between 0.15 and 2.9. Simulation parameters in b are ℓ0/ξ= 1.45, H/ξ=300,W/ξ=900, G0/Γ0 =3.0 (corresponding to a background strain

εyy =8.90%),∆=0.21ξ and β=0.28. Simulation parameters in c are the same as in Fig. 2.

conditions where nonlinear effects remain important outside the
dissipation zone.

Elastic nonlinearity has been found experimentally to also affect
the crack-tip shape21,23,25, which strongly departs at high velocities
from the parabolic shape predicted by LEFM. This departure is
quantified by the deviation δ of the actual tip location from its
predicted location based on the parabolic shape. Figure 4b shows
that δ indeed grows dramatically in a narrow range of ultrahigh
velocities approaching vc and can be larger than ℓ0 in agreement
with experiments8,21,25. As δ is related to ℓ, this result indicates a
strong dependence of the latter on velocity. During oscillations, the
crack-tip shape and near-tip nonlinear elastic fields become asym-
metrical about the instantaneous crack propagation axis on a scale
comparable to δ, as illustrated in Fig. 4c, which shows snapshots of
the crack-tip shape and strain energy density during one complete
steady-state oscillation cycle. This illustrative sequence reveals that
the asymmetry in the near-tip strain fields is temporally out-of-
phasewith the instantaneous crack propagation direction, signalling
a breakdown of the principle of local symmetry under dynamic
conditions24. How asymmetry on the scale of the nonlinear zone
provides an instability mechanism, for example, the one proposed
in ref. 24, remains to be further elucidated. Our newly developed
nonlinear phase-field model of high-speed cracks provides a unique
framework to address this and other fundamental issues, such as
the basic relationship of crack oscillations and 3D micro-branching
suggested by recent experiments27.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.

Received 10 February 2017; accepted 7 July 2017;
published online 21 August 2017

References
1. Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1990).
2. Ravi-Chandar, K. & Knauss, W. G. An experimental investigation into dynamic

fracture: III. On steady-state crack propagation and crack branching. Int. J.
Fract. 26, 141–154 (1984).

3. Fineberg, J., Gross, S. P., Marder, M. & Swinney, H. L. Instability in dynamic
fracture. Phys. Rev. Lett. 67, 457–460 (1991).

4. Sharon, E. & Fineberg, J. Microbranching instability and the dynamic fracture
of brittle materials. Phys. Rev. B 54, 7128–7139 (1996).

5. Fineberg, J. & Marder, M. Instability in dynamic fracture. Phys. Rep. 313,
1–108 (1999).

6. Livne, A., Cohen, G. & Fineberg, J. Universality and hysteretic dynamics in
rapid fracture. Phys. Rev. Lett. 94, 224301 (2005).

7. Livne, A., Ben-David, O. & Fineberg, J. Oscillations in rapid fracture. Phys. Rev.
Lett. 98, 124301 (2007).

8. Goldman, T., Harpaz, R., Bouchbinder, E. & Fineberg, J. Intrinsic nonlinear
scale governs oscillations in rapid fracture. Phys. Rev. Lett. 108, 104303 (2012).

9. Gol’dstein, R. V. & Salganik, R. L. Brittle fracture of solids with arbitrary cracks.
Int. J. Fract. 10, 507–523 (1974).

10. Marder, M. & Gross, S. Origin of crack tip instabilities. J. Mech. Phys. Solids 43,
1–48 (1995).

NATURE PHYSICS | VOL 13 | DECEMBER 2017 | www.nature.com/naturephysics

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

1189

http://dx.doi.org/10.1038/nphys4237
http://dx.doi.org/10.1038/nphys4237
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS4237

11. Adda-Bedia, M., Arias, R., Ben Amar, M. & Lund, F. Dynamic instability of
brittle fracture. Phys. Rev. Lett. 82, 2314–2317 (1999).

12. Buehler, M. J., Abraham, F. F. & Gao, H. Hyperelasticity governs dynamic
fracture at a critical length scale. Nature 426, 141–146 (2003).

13. Buehler, M. J. & Gao, H. Dynamic fracture instabilities due to local
hyperelasticity at crack tips. Nature 439, 307–310 (2006).

14. Bouchbinder, E., Fineberg, J. & Marder, M. Dynamics of simple cracks.
Ann. Rev. Condens. Matter Phys. 1, 371–395 (2010).

15. Bouchbinder, E., Goldman, T. & Fineberg, J. The dynamics of rapid fracture:
instabilities, nonlinearities and length scales. Rep. Progr. Phys. 77,
046501 (2014).

16. Bourdin, B., Francfort, G. A. & Marigo, J.-J. Numerical experiments in revisited
brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000).

17. Karma, A., Kessler, D. A. & Levine, H. Phase-field model of mode III dynamic
fracture. Phys. Rev. Lett. 87, 045501 (2001).

18. Hakim, V. & Karma, A. Laws of crack motion and phase-field models of
fracture. J. Mech. Phys. Solids 57, 342–368 (2009).

19. Pons, A. J. & Karma, A. Helical crack-front instability in mixed-mode fracture.
Nature 464, 85–89 (2010).

20. Bourdin, B., Marigo, J.-J., Maurini, C. & Sicsic, P. Morphogenesis and
propagation of complex cracks induced by thermal shocks. Phys. Rev. Lett. 112,
014301 (2014).

21. Livne, A., Bouchbinder, E. & Fineberg, J. Breakdown of linear elastic
fracture mechanics near the tip of a rapid crack. Phys. Rev. Lett. 101,
264301 (2008).

22. Bouchbinder, E., Livne, A. & Fineberg, J. Weakly nonlinear theory of dynamic
fracture. Phys. Rev. Lett. 101, 264302 (2008).

23. Bouchbinder, E., Livne, A. & Fineberg, J. The 1/r singularity in weakly
nonlinear fracture mechanics. J. Mech. Phys. Solids 57, 1568–1577 (2009).

24. Bouchbinder, E. Dynamic crack tip equation of motion: high-speed oscillatory
instability. Phys. Rev. Lett. 103, 164301 (2009).

25. Livne, A., Bouchbinder, E., Svetlizky, I. & Fineberg, J. The near-tip fields of fast
cracks. Science 327, 1359–1363 (2010).

26. Karma, A. & Lobkovsky, A. E. Unsteady crack motion and branching in a
phase-field model of brittle fracture. Phys. Rev. Lett. 92, 245510 (2004).

27. Goldman Boué, T., Cohen, G. & Fineberg, J. Origin of the microbranching
instability in rapid cracks. Phys. Rev. Lett. 114, 054301 (2015).

Acknowledgements
This research was supported by the US-Israel Binational Science Foundation (BSF), grant
no. 2012061, which provided partial support for C.-H.C. E.B. acknowledges support from
the William Z. and Eda Bess Novick Young Scientist Fund and the Harold Perlman
Family. A.K. acknowledges support of grant number DE-FG02-07ER46400 from the U.S.
Department of Energy, Office of Basic Energy Sciences. The authors thank M. Nicoli for
his contribution to the initial development of the phase-field simulation code.

Author contributions
All authors contributed equally to this work.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints. Publisher’s note:
Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations. Correspondence and requests for materials should be
addressed to E.B. or A.K.

Competing financial interests
The authors declare no competing financial interests.

1190

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | VOL 13 | DECEMBER 2017 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys4237
http://dx.doi.org/10.1038/nphys4237
http://www.nature.com/reprints
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS4237 LETTERS

Methods
We use the phase-field framework16,17 that couples the evolution of the material
displacement vector field u(x ,y , t) to a scalar field φ(x ,y , t) that varies smoothly in
space between the fully broken (φ=0) and pristine (φ=1) states of the material.
The present model is formulated in terms of the Lagrangian L=T −U , where

U =
∫ [

κ

2
(∇φ)2 +g (φ) (estrain − ec)

]

dV and T =
ρ

2

∫

f (φ)
∂u

∂t
·
∂u

∂t
dV (1)

represent the potential and kinetic energy, respectively, ρ is the mass density inside
the pristine material, and dV is a volume element. The form of U implies that the
broken state (φ=0) becomes energetically favoured when the strain energy density
estrain exceeds a threshold ec, and the function g (φ)=4φ3 −3φ4 is a monotonously
increasing function of φ that controls the softening of elastic energy at large strains.
The parameters κ and ec determine the size of the dissipation zone ξ=

√
κ/(2ec)

and the fracture energy Γ0 =2
√
2κec

∫ 1

0
dφ

√
1−g (φ)≈2.9ecξ in the

quasi-static limit17,18. The evolution equations for φ and u are derived from
Lagrange’s equations

∂

∂t

[

δL

δ
(

∂ψ/∂t
)

]

−
δL

δψ
+

δD

δ
(

∂ψ/∂t
) =0 (2)

for ψ= (φ,ux ,uy), where the functional

D=
1

2χ

∫ (

∂φ

∂t

)2

dV (3)

controls the rate of energy dissipation. As shown in the Supplementary
Information, it follows from equations (1)–(3) that d(T +U )/dt =−2D≤0. This
gradient flow condition implies that the total energy (kinetic + potential) decreases
monotonously in time due to energy dissipation near the crack tip where φ varies.
In addition, we impose the standard irreversibility condition ∂tφ≤0.

The above model distinguishes itself from previous phase-field models26,28 by
the formulation of the kinetic energy in equation (1). Previous models exhibit a
tip-splitting instability in a velocity range (40% to 55% of cs depending on the mode
of fracture and Poisson’s ratio26,28) much lower than the velocity in which the
oscillatory instability is experimentally observed7. Furthermore, tip-splitting
generates two symmetrically branched cracks that are qualitatively distinct from
both the 3D micro-branching and 2D oscillatory instabilities. Low-velocity
tip-splitting can be suppressed by choosing f (φ) in equation (1) to be a
monotonously increasing function of φ, similarly to g (φ). In particular,
f (φ)=g (φ) (used here) ensures that the wave speeds remain constant inside the
dissipation zone, which is physically consistent with the fact that dissipation and
structural changes near crack tips in real materials do not involve large
modifications of the wave speeds. As the wave speeds control the rate of transport
of energy in the dissipation zone, cracks in this model can accelerate to
unprecedented velocities approaching cs, as observed experimentally in
quasi-2D geometries7.

In addition, unlike conventional phase-field models, we focus on a nonlinear
strain energy density given by

estrain =
µ

2

(

FijFij +[det(F)]−2 −3
)

(4)

where Fij =δij +∂jui are the components of the deformation gradient tensor and
i, j={x ,y}. It corresponds to a 2D incompressible neo-Hookean constitutive law,
exhibiting generic elastic nonlinearities and quantitatively describing the brittle
gels in experiments6,25. In the small-strain limit, neo-Hookean elasticity reduces to
standard linear elasticity with a shear modulus µ and a 2D Poisson’s ratio ν=1/3.

The equations are non-dimensionalized by measuring length in units of ξ and
time in units of τ=1/

(

2χec
)

, characterizing the timescale of energy dissipation.
Crack dynamics is then controlled by only two dimensionless parameters: ec/µ and
β≡τ cs/ξ . The first controls the ratio ℓ0/ξ=2.9ec/µ, where ℓ0 =Γ0/µ sets the size
of the nonlinear zone where elasticity breaks down (Fig. 1). The second controls the
velocity dependence of the fracture energy. In the ideal brittle limit, β≪1,
Γ (v)≈Γ0 is independent of v. In the opposite limit, β≫1, dissipation is sluggish
and Γ (v) is a strongly increasing function of v. We vary ec/µ between 0.05 and 1.0
to control the importance of elastic nonlinearity and choose a value β=0.28 so
that Γ (v)/Γ0 increases by about 20% when v varies from zero to vc (see the inset of
Supplementary Fig. 4), in qualitative similarity to experiments25. The equations are
discretized in space on a uniform square mesh with a grid spacing∆=0.21ξ and
finite-difference approximations of spatial derivatives, and integrated in time using
a Beeman’s scheme (see Supplementary Information) with a time-step size
∆t=5×10−4 τ . Large-scale simulations of 106–107 grid points are performed
using graphics processing units with the CUDA parallel programming language.

LEFM has been experimentally validated for accelerating cracks that follow
straight trajectories, prior to the onset of instabilities15,29. Therefore, as a
quantitative test of our high-speed crack model (see Supplementary Information),
we verified the predictions of LEFM by showing that an accelerating crack centred
inside a strip (as illustrated in Supplementary Fig. 3) satisfies the scalar equation of
motion G=Γ (v), as long as their trajectory remains straight (v<vc). We
performed this test for the nonlinear form of estrain defined by equation (4) by
monitoring the instantaneous total crack length a (distinct from the crack-tip
propagation distance d plotted in Figs 2 and 3), crack velocity v, and energy release
rate G calculated directly by contour integration using the J -integral (see
Supplementary Information). The results show that cracks accelerated under
different loads G0/Γ0 exhibit dramatically different v versus a curves
(Supplementary Fig. 4), but the same G versus v curves (inset of Supplementary
Fig. 4), which define a unique fracture energy Γ (v) (independent of the external
load and crack acceleration history). Those results are consistent with the
theoretical expectation that the relation G=Γ (v), which simply accounts for
energy balance near the crack tip, should remain valid even in the presence of
elastic nonlinearity as long as G is calculated through the J -integral evaluated in a
non-dissipative region.

To investigate crack instabilities, we carried out simulations using a treadmill
method19,26 that maintains the crack tip in the centre of the strip by periodically
adding a strained layer at the right vertical boundary ahead of the crack tip and
removing a layer at the opposite left boundary. This method allows us to study
large crack propagation distances by mimicking an infinite strip with negligible
influence of boundary effects. To further support the results presented in the main
text, we carried out additional simulations to verify that the oscillation wavelength
is independent of the choice of the degradation function g (φ) (Supplementary
Fig. 5) and the grid spacing∆ (Supplementary Fig. 6).

Code availability. The CUDA implementation of the phase-field simulation code
is available upon request.

Data availability. The data that support the plots within this paper and other
findings of this study are available from one of the corresponding authors
(A. Karma) upon reasonable request.
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