Instability of a Gaseous Envelope Surrounding
Hiroshi Mizuno, Kiyoshi Nakazawa and Chushiro Hayashi

$$
\text { Department of Physics, Kyoto University, Kyoto } 606
$$

 Hayashi, Nakazawa and Adachi, protoplanets composed of involatile materials are growing gradually through the capture of planetesimals. When a protoplanet becomes greater than protoplanet to form a gaseous envelope surrounding it.

We have studied the structure and stability of this envelope, which depend on the mass
and of the protoplanet, on the assumption that equilibrium and, thermally, isothermal in the outer optically-thin region but adiabatic

We have found that, when the mass of a protoplanet becomes greater than a certain critical value which depends on the opacity, the envelope can no longer be in hydrostatic equilibrium and begins to collapse. For a roughly estimated value of the opacity, the critical mass is of the order of $15 M_{E}$ and $6 M_{E}$ (M_{E} being the Earth's mass) for proto-Jupiter and
proto-Saturn, respectively. These masses are about one fifth and one tenth of the values found by Perri and Cameron, but they are consistent with recent Slattery's models of the present Jupiter and Saturn.

 рәр S[E!.
 order of 10^{5} years, only a small number of the planetesimals grow to protoplanet
 is increased to the order of $10^{21} \mathrm{~g}$. Subsequently, a protoplanet grows through the

is important to know at what stage and in protoplanets could acquire such gaseous materials. Perri and Cameron ${ }^{6)}$ investi gated this problem for the first time by considering that a part of the gas of the solar nebula is attracted by a protoplanet and forms a gaseous envelope surrounding

 already sedimented and condensed into protoplanets and planetesimals. According to our estimate as described in $\S 4$, the opacity is of the order of $3 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{g}$. Hence, the outer layer of the envelope with a considerable thickness is transparent

 value of the core mass at a critical stage where the envelope begins to collapse. In $\S 2$, we will describe assumptions and basic equations for the envelope as well
 which reveal that the existance of the isothermal layer reduces the critical core mass considerably. In $\S 4$, by means of these results the process of formation of the giant planets will be discussed.

§ 2. Formalism

 with a time-scale of 10^{6} or 10^{7} years. ${ }^{4)}$ The core attracts the neighboring gas of the ‘ə.

 envelope to find a relation between the core mass and the envelope mass.
a) IIydrostatic equations
 considered, the gas of the solar nebula is in circular motion around the Sun with

ently, in the same frame as that of the restricted three-body problem, i.e., in a case where the self-gravity of the gas is negligible, Nakazawa and Hayashi made
 mentioned boundary conditions, for a case of a polytropic gas and a non-rotating
 results indicate that, as far as the inner region of the Hill sphere (where the

 'əə! ‘untuq!

$\frac{1}{\rho} \frac{d P}{d r}=-\frac{G M_{r}}{r^{2}}$

(1)

$$
(\square)
$$

 on Eqs. (1) and (2) are given by

$$
(\varepsilon)
$$

 nebula in regions sufficiently distant from the Hill sphere, $M_{t}\left(=M_{c}+M_{e}\right)$ is the sum of the core mass M_{c} and the envelope mass M_{e}, and h is the radius of the Hill sphere*) given by

$$
h=a\left(\frac{M_{t}}{3 M_{2}}\right)^{1 / 3}
$$

(4)

where a is the distance from the Sun to the planet. It is to be noticed that, according to Eq. (3), the mean density of matter (including both the core and the
 density which depends only on the distance a. Perri and Cameron ${ }^{6)}$ employed the

H. Mizuno, K. Nakazawa and C. Mayashi same equations as (1) and (2) but adopted different boundary conditions. Instead of $r=h$ in Eq. (3), they put $r=a\left(M_{t} / M_{\odot}\right)^{1 / 2}$, i.e., they adopted a point where the gravity of the planet is equal to that of the Sun. However, the resultant differences will not be large since both the density and the temperature change only slightly in a region between $r=h$ and $r=a\left(M_{t} / M_{\odot}\right)^{1 / 2}$.
 metric but instead of Eq. (1) we may have an equation of the form

$$
\begin{align*}
& \text { (5) } \tag{6}
\end{align*}
$$

ecliptic plane, respectively. Errors introduced by the use of Eq. (1) instead of
-hand side of Eq. (5) are important only in regions relatively near the surface
of the Hill sphere where the variations of density and temperature are both small.
b) Equation of state
The equation of state for the gas is approximated by that of an ideal gas which
 and 27 percent, respectively. The dissociation of hydrogen molecules and the ionization of hydrogen atoms are taken into account in accordance with Hayashi and Nakano. ${ }^{\text {. }}$ At relatively low temperatures and high densities where the pressure ionization occurs, there is an appreciable departure from an ideal gas. However, this departure has been neglected in the present calculations since, as will be described later in $\S 3$, the mass of the gas contained in such high density regions is very small as compared to the total mass of the envelope.

c) Temperature distribution

 $r<r_{1}$, respectively, where r_{1} is the radius of a spherical surface where the optical depth measured inwards from the Hill surface is $2 / 3$, i.e.,

$$
\int_{r_{1}}^{h} \kappa \rho d r=\frac{2}{3}
$$

where k is the opacity of the gas. This assumption is most different from that of Perri and Cameron ${ }^{6)}$ as mentioned in $\S 1$. It is to be noticed for a solar nebula , Kusaka, Nakano and Hayash1 that, i κ is smaller than $10^{-2} \mathrm{~cm}^{2} / \mathrm{g}$,

Instability of a Gaseous Envelope Surrounding a Planetary Core 703
pendicular to the ecliptic plane and, consequently, radiation escapes almost freely from the surface at $r=r_{1}$ into the interstellar space
The boundary between the isothermal and adiabatic regions is determined by the opacity according to Eq. (6). The temperature of the solar nebula in the regions of Jupiter and Saturn is about 100 K . The opacity of the gas at such a low temperature is given by

$$
(L)
$$

 absorption by hydrogen molecules and helium atoms.
According to Goustad, ${ }^{9)} \kappa_{g}$ is proportional to the total mass of grains contained

 which were contained originally in the solar nebula, have already sedimented and
 total mass of grains floating in the nebula be denoted by f. Then κ_{g} is approximately given by ${ }^{\text {g) }}$
(8)

Since the value of f is not precisely known, we have regarded κ_{g} as a free param-
eter in our calculations.
 considered is nearly given by

$$
\kappa_{i} \simeq 1.0 \times 10^{2} \rho \mathrm{~cm}^{2} / \mathrm{g}
$$

where ρ is the gas density in unit of $\mathrm{g} / \mathrm{cm}^{3}$. The results of our calculations,

 than $3 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{g}$.
e) Procedure of integrations and core density
se s! amnionuis adofonuә out puy of suoupe[no[eo [eotiounu fo amppoooad atu

 from the continuity of M_{r} at this boundary.

We have assumed for simplicity that the core is a rigid sphere with a density of $5.5 \mathrm{~g} / \mathrm{cm}^{3}$, i.e., the mean density of the Earth. According to Slatterly, ${ }^{12)}$ the

density which ranges from 3.0 to $100 \mathrm{~g} / \mathrm{cm}^{3}$ but we have found that the resultant change of the envelope mass is less than only four percent.

£) Stability

 abatic perturbations in the following way. First, we have checked that perturbations can be treated as adiabatic even for the outer isothermal layer since the dynamical time-scale, τ_{d}, for a sound wave to travel through this layer is smaller than the cooling time-scale, τ_{c}. For typical models calculated by us, we have $\tau_{e} \simeq 10^{2}$ years and $\tau_{d} \simeq 1$ year
Now, let $\delta r=r \xi(r) \exp (i \omega t)$ be an infinitesimal displacement of matter from the equilibrium position r. Then, the equation for $\xi(r)$ is written in the form ${ }^{18)}$ $\frac{1}{\rho r^{4}} \frac{d}{d r}\left(\Gamma P r^{4} \frac{d \xi}{d r}\right)+\frac{1}{\rho r} \frac{d}{d r}[(3 \Gamma-4) P] \cdot \xi+\omega^{2} \xi=0$,
(10)
where $\Gamma=(\partial \ln P / \partial \ln \rho)_{s}$. The boundary conditions to be imposed on Eq. (10) are given by
where r_{c} is the radius of the rigid core.

$$
\xi=0 \text { at } r=r_{c} \quad \text { and } \quad \delta P=0 \text { at } r=h
$$

 argument on the eigen-value problem, ${ }^{44}$ we take the following procedure. First, putting $\omega^{2}=0$, we integrate Eq. (10) inwards from $r=h$ and find a solution which

 number is one or greater, then ω^{2} is negative and the envelope is unstable.

1[nso.x [eor.ıounn © \&

 values of ρ_{0} and T_{0} given in Eq. (3) have been taken from the model of Kusaka, Nakano and Hayashi. These values are listed in Table I. In view of uncertainties involved in this model, computations have been made also for the cases where

 and Cameron, ${ }^{6)}$ for a wholly adiabatic case which corresponds to $\kappa_{q}=\infty$.
Instability of a Gaseous Envelope Surrounding a Planetary Core 705

Table I. Physical quantities of the solar nebula in the regions of the Earth, Jupiter and Saturn, which are adopted from the model of Kusaka et al.
RegionDistance from the Sun a (a.u.)
Jupiter
Saturn

 stable models with maximum values of M_{c} will be called the critical models and the values of M_{c} and M_{t} for these models will be denoted by M_{c}^{*} and M_{t}^{*},
 Fig. 4) and this tendency will be understood as follows. Let us compare models with the same value of M_{t} but corresponding to different values of κ_{g}. Generally, most of the envelope mass is contained in the adiabatic region. If the opacity is smaller, the isothermal layer extends deeper into the interior and the entropy of
 mass of the gas contained in the adiabatic region are greater and, correspondingly, the core mass is smaller.

 envelope mass is contained in the adiabatic region. The inner boundary of the ‘s! sn!pex s!чL 'sn!pex I!! of course, strongly dependent upon the values of M_{t} and κ_{g}; it is in the range between 1 and 10^{-2} times the Hill radius for all the models calculated.

Fig. 4. The critical core mass as a function of the grain's

 only slightly from the value, $70 M_{R}$, found by Perri and Cameron.') The small

> §4. Formation of giant planets
 capture of planetesimals. When the core mass becomes greater than the critical
 and the envelope begins to contract due to the lack of the pressure force compared with gravity. Since this leads to the inversion of the pressure gradient near the Hill radius, the further evolution of the envelope, generally, is not quasi-static but dynamical and is to be solved in the future. However, it is certain that the әлой 's! чว!
 scale of the collapse is not known precisely at present.

[^0]

 the Earth disappeared. After this stage, the present atmosphere was formed out of the gases contained originally in the core.
Now, we consider the cases of Jupiter and Saturn where the circumstances are quite different from that of the Earth as mentioned above. Generally, the

 we are not in a position to be able to solve this difficult problem.

 final spectrum.

 әлеч әм 'Кโ.
709
to consider that, after the envelope begins to collapse onto the core, the gas of the solar nebula existing in some regions outside the Hill sphere is falling continuously into the Hill sphere and accretes onto the protoplanet. This growing process uot. हә. әצ! around the Sun, is all exhausted to form a present giant planet. It is to be noticed

 paper, by taking account of both the above-mentioned energy source and energy transport by radiation in the envelope.

H. Mizuno, K. Nakazawa and C. Hayashi

	References
	T. Kusaka, T. Nakano and C. Hayashi, Prog. Theor. Phys. 44 (1970), 1580.
	P. Goldreich and W. R. Ward, Astrophys. J. 183 (1973), 1051.
3)	V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, NASA TTF-677 (U.S. Department of Commerce, Springfield, VA 22151, 1969), p. 45.
4)	C. Hayashi, K. Nakazawa and I. Adachi, Publ. Astron. Soc. Japan 29 (1977), 163.
5)	W. B. Hubbard and R. Smoluchowski, Sp. Sci. Rev. 14 (1973), 599.
6)	F. Perri and A. G. W. Cameron, Icarus 22 (1974), 416.
7)	K. Nakazawa and C. Hayashi, to be published.
8)	C. Hayashi and T. Nakano, Prog. Theor. Phys. 30 (1963), 460.
9)	J. E. Gaustad, Astrophys. J. 138 (1963), 1050.
	L. M. Trafton, Astrophys. J. 146 (1966), 558.
11)	L. M. Trafton, Astrophys. J. 147 (1967), 765.
12)	W. L. Slattery, Icarus 32 (1977), 58.
13)	J. P. Cox and R. T. Giuli, Principles of Stellar Structure (Gordon and Breach, Science Publishers, 1968), p. 1029.
14)	See, for example, R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience Pub., New York, 1953), Vol. I, p. 451.
15)	C. Hayashi and Y. Nakagawa, Prog. Theor. Phys. 54 (1975), 93.
	M. Podolak and A. G. W. Cameron, Icarus 22 (1974), 123.
	M. Podolak and A. G. W. Cameron, Icarus 25 (1975), 627.
18)	M. Podolak, Icarus 30 (1977), 155.

[^0]:

