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In the context of false vacuum decay at zero temperature, it is well known that bubbles expand with
uniform proper acceleration. We show that this uniformly accelerating expansion suffers from an instability
related to the bubble size. This can be observed in Minkowski spacetime as a tachyonic mode in the
spectrum of fluctuations for the energy functional in the reference frame in which the uniformly
accelerating bubble wall appears static. In such a frame, arbitrary small perturbations cause an amplifying
departure from the static wall solution. This implies that the nucleated bubble is not a critical point of
the energy functional in the rest frame of nucleation but becomes one in the accelerating frame. The
aforementioned instability for vacuum bubbles can be related to the well-known instability for the
nucleated critical static bubbles during finite-temperature phase transitions in the rest frame of the plasma.
It is therefore proposed that zero-temperature vacuum decays as seen from accelerating frames have a dual
description in terms of finite-temperature phase transitions.

DOI: 10.1103/PhysRevD.107.036014

I. INTRODUCTION

There are many phenomenological scenarios where
multiple vacua appear including the Standard Model
(SM) of particle physics. Because of the running of the
Higgs self-coupling in the SM, the effective Higgs potential
develops a lower minimum at a very large field value [1–7].
Therefore, the electroweak vacuum in the SM is believed to
be a false vacuum which can decay to the lower minimum
via quantum tunneling.1 The theory of false vacuum decay
is developed in the seminal papers by Coleman and Callan
[11,12], following earlier works [13–15]. When the false
vacuum decays in a first order phase transition, i.e. over-
coming a classical energy barrier, a bubble nucleates

spontaneously and subsequently expands. Vacuum transi-
tions also occur at finite temperature [16–18]. One notable
example was believed to be the electroweak phase tran-
sition in the SM. It is now known that it corresponds
to a crossover instead [19–21]. Nevertheless, a variety of
models beyond the SM [22–29] do feature first-order phase
transitions.
Bubble nucleation also plays an important role for a

variety of phenomena in several contexts. The collisions
and mergers of the bubbles produce a potentially observ-
able stochastic background of gravitational waves [30–33]
(see Refs. [34–39] for reviews). Moreover, the bubbles of a
strong first-order electroweak phase transition may turn out
to be pivotal for generating the cosmic matter-antimatter
asymmetry [40,41], see also Refs. [42–45]. In describing
these phenomena, a key parameter is the bubble wall
velocity.
The motion of the bubble wall is very different in phase

transitions at zero temperature compared to those at finite
temperature. In the former, the bubble wall expands with
uniform proper acceleration. This standard picture follows
from the equation of motion of the scalar field in
Minkowski spacetime. As observed by Coleman [11], a
solution that is directly tied to the quantum tunneling
process and describes an expanding vacuum bubble can be
easily obtained by analytical continuation of the Oð4Þ-
symmetric Coleman bounce, a configuration in Euclidean
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1In field theory with infinite spatial volume, when the multiple
vacua are degenerate tunneling rates between one vacuum and
another are vanishing and one has spontaneous symmetry break-
ing. However, when the spatial volume is finite, tunneling effects
become important again [8–10].
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space (see Sec. II for a brief review). In this paper we will
refer to the vacuum bubble with uniform proper acceler-
ation as a Coleman bubble. It is widely accepted that the
latter describes the real-time growth of nucleated bubbles
at zero temperature, and studies of bubble interactions in
vacuum transitions typically use unperturbed Coleman
bubbles as initial conditions [31,46,47]. Aside from the
ColemanOð4Þ bounce, there also exists a time-independent
bounce solution, for which the symmetry is reduced to
Oð3Þ both at zero and finite temperature. Only in the latter
case is the static bounce connected to the transition rate due
to thermal fluctuations. We will refer to the Oð3Þ bounce
also as the static bounce. The static bounce at zero
temperature has no direct connection to tunneling proc-
esses, but at finite temperature it provides the initial
conditions for bubbles nucleated by thermal processes.
However, one cannot conclude that the corresponding
bubbles remain static after nucleation, as one might be
led to think, through a naive analytical continuation of the
static bounce. This is because the bubbles nucleated at
finite temperature are not stable even when they are critical
points of the free energy. Shortly after the nucleation of a
bubble at finite temperature, before the plasma backreac-
tion is sizable, the critical finite-temperature bubble will
undergo a period of acceleration triggered by some per-
turbations. For studies of bubble dynamics during thermal
transitions, the initial condition for bubble configurations is
usually different from the exact static critical bubble, see
e.g. [48,49], as otherwise the bubbles would not expand.
This is in contrast to the case of vacuum transitions, for
which as mentioned above one usually evolves unperturbed
Coleman bubbles.
In this article, the uniformly accelerating motion of the

bubble wall at zero temperature is revisited. We show that,
although the standard acceleration satisfies the equation of
motion, it is not stable under small perturbations of the
bubble radius, which preserve the spherical symmetry of
the bubble. This is seen in the uniformly accelerating frame
where the expanding bubble appears to be static. We derive
the eigenvalue equation for the fluctuations of the energy
functional in the static background of the scalar field and
show that there is a tachyonic mode.
The Coleman bubble appears to be static in an accel-

erating frame and suffers from an instability akin to the
case of the static critical bubble in finite-temperature
phase transitions in the plasma frame, i.e. the rest frame
of the plasma. Indeed, there is also a tachyonic mode in
the background of the static critical bubble in finite-
temperature phase transitions. This suggests that false
vacuum decay at zero temperature, observed in an accel-
erating frame, can be viewed as a thermal transition. This
correspondence was pointed out for bubbles nucleating
around horizons in Ref. [50] and has been used implicitly
in many studies [51–55]. For uniformly accelerating
observers, the presence of the Rindler horizon implies

the perception of a “plasma”—the Unruh bath [56]. A
natural consequence of the instability of the Coleman
bubble under radial perturbations, as well as the corre-
spondence with finite-temperature phase transitions, is that
for classical simulations of the expansion of bubbles in
vacuum transitions one may consider bubble configurations
that are different from the exact Coleman critical bubble,
in analogy with the usual initial conditions for simulations
of thermal transitions. In principle, to study the late-time
growth of vacuum bubbles in the accelerating frame or of
finite-temperature bubbles in the plasma frame, one has to
consider the coupled system between the scalar field and
the Unruh bath or the plasma [57–63], respectively. It is
expected in either case that the walls of the bubbles will, in
general, travel with a nonvanishing velocity in the afore-
mentioned frames.
Another conceptual point about the quantum nucleation

of classical bubbles at zero temperature that needs clari-
fication concerns Lorentz invariance. The full analytic
continuation of the Euclidean bubbles are hyperbolic
three-spaces, or three-dimensional hyperboloids, and there
are infinitely many spatial hypersurfaces—related by
boosts—that are normal to the four-velocity of the bubble
wall. In order to interpret the analytically continued
configurations in terms of real-time processes, the full
three-dimensional hyperboloid may be truncated by a
particular flat spatial hypersurface. Setting the time to be
constant on this hypersurface defines a particular inertial
frame and we will refer to it as the rest frame of nucleation.
The first related question is: What selects the rest frame for
a nucleation event? This issue has become a subject of
investigation [64–66]. Another question is, for a bubble
observed at a late time, how one can identify the rest frame
of nucleation by performing measurements only on the late-
time bubble wall motion.2 The instability of the uniformly
accelerating expansion mentioned above can in principle
provide a way to determine the rest frame of nucleation if
one assumes that perturbations on the bubble wall occur at
the time of bubble nucleation so that the unstable behavior
starts also at that time. Analogously, in the case of finite-
temperature phase transitions the instability can also be
used to determine the rest frame of the plasma solely from
the bubble wall motion.
The present paper is organized as follows. We review

false vacuum decay at zero and finite temperature and the
standard bubble growth for zero-temperature bubbles in
Sec. II. In Sec. III, we focus on zero temperature transitions
and introduce the uniformly accelerating frame, where
the standard bubble motion appears to be static. We then

2One may think that the rest frame of nucleation is simply the
rest frame of the bubble center and the latter is unique. This is
not correct because there is no unique criterion to tell where is
the bubble center. The SOð3; 1Þ symmetry of the full three-
dimensional hyperboloid allows any inertial observer to identify a
static bubble center at sufficiently late times.
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analyze the fluctuations around the static background and
prove the existence of a tachyonic mode in the fluctuation
spectrum. An analogous instability is shown to exist for the
bubbles nucleated at finite temperature as critical points of
the free energy in the plasma frame. In Sec. IV, we discuss
the correspondence between the false vacuum decay at
zero temperature as seen from the uniformly accelerating
observers and finite-temperature phase transitions. This
provides a physical picture of the instability for the standard
accelerating expansion of zero-temperature bubbles. We
conclude in Sec. V. Throughout this paper, we use ℏ ¼
c ¼ 1 and the metric signature ðþ;−;−;−Þ in Minkowski
spacetime.

II. BUBBLE ASPECTS IN PHASE TRANSITIONS

A. At zero temperature

In this section, we briefly review the Callan-Coleman
formalism [12] of false vacuum decay and the uniformly
accelerating growth of nucleated bubbles [11]. Additionally,
we summarize the main features of bubble nucleation in
finite-temperature phase transitions.
In a scalar field theory with a potential of the form shown

in Fig. 1, the ground state about the metastable minimum
φþ is not stable and can decay through quantum tunneling.
In order to obtain the decay rate, Callan and Coleman
consider the following Euclidean false vacuum to false
vacuum transition amplitude3:

Z½0� ¼ hφþje−HT jφþi ¼
Z

DΦe−SE½Φ�; ð1Þ

where H is the full Hamiltonian and T is the amount of the
Euclidean time for this transition amplitude. The classical
Euclidean action is given by

SE½Φ� ¼
Z

d4x

�
1

2
δμνð∂μΦÞ∂νΦþUðΦÞ

�
; ð2Þ

where δμν is the Kronecker symbol and μ; ν ¼ 1;…; 4. The
potential is chosen for convenience such that UðφþÞ ¼ 0
but otherwise kept general.
To see why the Euclidean partition function gives out the

decay rate, we insert a complete set of energy eigenstates
into the partition function, i.e.

hφþje−HT jφþi ¼
X
n

e−EnT hφþjnihnjφþi: ð3Þ

Taking the large T limit, we thus obtain

E0 ¼ − lim
T →∞

1

T
ln

�
Z½0�

jhφþj0ij2
�
: ð4Þ

In Ref. [12], it is shown from the path integral expression
for the partition function that the energy E0 has an
imaginary part which gives the decay rate as

Γ ¼ −2ImE0 ¼ lim
T →∞

2

T
ImðlnZ½0�Þ: ð5Þ

Here we have used the fact that the squared amplitude does
not contribute to the imaginary part.
One can calculate the path integral by expanding it

around the stationary points. The dominant contributions
to the tunneling rate are due to the lowest-lying bounce
solution (and the fluctuations about it). The (tree-level)
bounce is a solution to the classical equation of motion

−∂2φþU0ðφÞ ¼ 0 ð6Þ

that satisfies the boundary conditions φjx4→�∞ ¼ φþ and
_φjx4¼0 ¼ 0, where the dot denotes the derivative with
respect to x4 ≡ τ and the prime denotes the derivative of
the classical potential with respect to the field φ. The
bounce solution has an Oð4Þ symmetry and thus is a
function only of ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ τ2

p ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ τ2

p
. Equation (6)

then reduces to

−
d2

dρ2
φ −

3

ρ

d
dρ

φþU0ðφÞ ¼ 0: ð7Þ

We denote the bounce solution as φb. The decay rate per
unit volume is given as

Γ=V ¼ Ae−B; ð8Þ

where

B≡ 2π2
Z

dρρ3
�
1

2
ð∂ρφbÞ2 þUðφbÞ

�
ð9Þ

FIG. 1. A classical potential UðΦÞ that possesses a false
vacuum, φþ, and a true vacuum, φ−. The potential is chosen
such that UðφþÞ ¼ 0 for convenience.

3The calculation of the rate of quantum tunneling directly in
Minkowski spacetime has been the subject of some recent
research [67–71].
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is the bounce action and A is a prefactor that can be
obtained from the fluctuations about the bounce.
From Eqs. (1) and (2), the fluctuations can be studied

through the eigenvalue equation,

½−∂2 þ U00ðφbÞ�Φ̂nðxÞ ¼ λnΦ̂nðxÞ: ð10Þ

Because of the Oð4Þ symmetry of the bounce, one can
separate the angular dependence as

Φ̂nðxÞ ¼ ϕnjðρÞYjlmðerÞ; ð11Þ

where YjlmðerÞ are hyperspherical harmonics evaluated
on a vector er on the unit three-sphere. Substituting this
decomposition into Eq. (10), one obtains the radial eigen-
value equation:

�
−

d2

dρ2
−
3

ρ

d
dρ

þ jðjþ 2Þ
ρ2

þU00ðφbðρÞÞ
�
ϕnjðρÞ ¼ λnϕnjðρÞ;

ð12Þ

where we impose the boundary conditions ϕnjð∞Þ ¼ 0. It
is well known that there is a negative mode with j ¼ 0
[12,72] which is responsible for the imaginary part in the
partition function. For instance, for the thin-wall limit
which applies when the energy difference between the
false and true vacua is much smaller than the barrier height,
we have [73]

�
−

d2

dρ2
−
3

ρ

d
dρ

þ U00ðφbðρÞÞ
�
∂ρφbðρÞ ¼ −

3

R2
c
∂ρφbðρÞ;

ð13Þ

where Rc is the bounce radius.
It is the case that in the thin-wall limit the negative mode

corresponds to dilatations of the bounce solution. In this
regime, one can separate the bounce action into two parts,
the surface contribution and the volume contribution. The
surface term is

BsurfaceðRÞ ¼ 2π2
Z

Rþδ=2

R−δ=2
dρρ3

�
1

2
ð∂ρφbÞ2 þ UðφbÞ

�
¼ 2π2R3σ; ð14Þ

where we have defined the surface tension σ and δ is a small
number representing the thickness of the bubble wall. The
volume term is

BvolumeðRÞ ¼ 2π2
Z

R

0

dρρ3Uðφ−Þ ¼ −
π2

2
R4ϵ; ð15Þ

where ϵ≡ −Uðφ−Þ. Then Rc is determined by extremizing
the bounce action with respect to R,

dB
dR

����
R¼Rc

¼ 0 ¼ 6π2R2
cσ − 2π2R3

cϵ

¼ 3π

2

�
4πR2

cσ −
4

3
πR3

cϵ

�
; ð16Þ

giving Rc ¼ 3σ=ϵ. Substituting Rc into BðRÞ, one obtains
the standard result BðRcÞ ¼ 27π2σ4=ð2ϵ3Þ. The negative
eigenvalue is given by [73]4

λ0 ¼ −
3

R2
c
¼ 1

4

1

BðRÞ
d2BðRÞ
dR2

����
R¼Rc

; ð17Þ

indicating that the negative mode corresponds to dilatations
of the bounce.
The existence of a negative mode in the eigenvalue

equation (12) is a characteristic property of a potential
allowing for false vacuum decay, regardless of the thin-wall
approximation. This fact will turn out to be important when
we discuss the fluctuations about the bubble, which appears
static in the comoving frame that is accelerating with
the wall.
In the rest frame of nucleation, the bounce solution yields

the nucleated field configuration via φbubbleðt ¼ 0;xÞ ¼
φbðτ ¼ 0;xÞ. In fact, in a tunneling process, there should
be a wave functional for the nucleated scalar configurations
and φbðτ ¼ 0;xÞ should only be the most probable one. In
this paper, we assume that the nucleated configuration is
given by, or close enough to, φbðτ ¼ 0;xÞ. In the thin-wall
case, φbðτ ¼ 0;xÞ is a bubble of radius Rc.
We want to remark that Rc corresponds to a local

maximum of the action, BðRÞ, but not of the energy.
Indeed, in the thin-wall case, the energy for a static bubble
of radius R is given by EðRÞ ¼ 4πR2σ − 4πR3ϵ=3. From
Eq. (16) one sees that EðRcÞ ¼ 0 which is reasonable
because quantum tunneling satisfies energy conservation.
A consequence of this is that in the rest frame of nucleation,
the nucleated bubble at zero temperature is not critical
according to the criterion of successful nucleation. This is
because it will still expand if its radius is slightly smaller
than Rc (see Fig. 2). Yet, the bubble can be viewed as
critical in the sense that it is the configuration most likely to
occur. This is further confirmed in the numerical calcu-
lations in Sec. III. For clarification of terminology, we
define

(i) critical or H-critical: The bubble is called critical or
H-critical if it is a saddle point of the energy (or free
energy for the finite temperature case) functional.

4The expression given in Ref. [73] misses the factor 1=4
because the normalized dilatational mode in the thin-wall limit is
given by 2B−1=2

∂Rc
φ. The normalization is relevant in order to

quantitatively relate variations by the negative modes to dilata-
tions. This factor can be checked from Eqs. (14) and (15) with
BðRÞ ¼ BsurfaceðRÞ þ BvolumeðRÞ.
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(ii) S-critical: The bubble is called S-critical if it is a
saddle point of the four-dimensional Euclidean
action.

With the above terminology, in the rest frame of nucleation
the nucleated bubble at zero temperature is S-critical but
not H-critical. As we shall see shortly, the nucleated bubble
is however H-critical in the accelerating frame, just as
nucleated bubbles in finite-temperature phase transitions
are H-critical in the plasma frame.
The subsequent evolution after nucleation follows from

the equation of motion in Minkowski spacetime. Since it
can be obtained from the Euclidean one by an inverse Wick
rotation τ → it, it directly follows that when the nucleated
bubble is given by φbðτ ¼ 0; xÞ, the bubble would evolve as
φbubbleðt;xÞ ¼ φbðit;xÞ ¼ φbð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t2 þ r2

p
Þ. For definite-

ness, take the position of the bubble wall as the set of
spacetime points corresponding to some fixed field value
between φþ and φ−. Since the value of the field φbubbleðt;xÞ
is constant on the surface r2 − t2 ¼ const, the worldline of
the bubble wall in a fixed spatial direction ex is thus a
hyperbola, as shown in Fig. 3. It is therefore concluded in
Ref. [11] that bubbles nucleated at zero temperature grow at
a uniform proper acceleration rate. Note that this standard
picture of bubble nucleation and subsequent growth is only
true for the rest frame of nucleation. For the same spacetime
diagram (the truncated three-dimensional hyperboloid),
a boosted observer would see a different bubble-growth
history. Yet the wordlines of the bubble are then still given
by hyperbolae. Thus, the rest frame of nucleation is an
inertial frame where an S-critical bubble is nucleated with
vanishing bubble wall velocity at t ¼ 0 and subsequently
expands at uniform acceleration—when there are no
perturbations about the bubble configuration.

B. At finite temperature

In addition to vacuum transitions and the Coleman
bubble, finite-temperature phase transitions are also of
significant interest. The relevant thermal partition function
at a high temperature T ¼ 1=β is

Z½T� ¼ e−βFðTÞ ¼ Tre−βH ¼
Z

DΦe−SE½Φ�: ð18Þ

In the equation above, F is the total free energy, while SE is
the Euclidean action with the compact time interval β and
periodic boundary conditions. The relevant saddle point
solutions can be found from reducing Eq. (2) to time-
independent configurations,5

SE½Φ�=β → S3½Φ� ¼
Z

d3x

�
1

2
ð∂iΦÞ∂iΦþ UðΦÞ

�
: ð19Þ

In analogy to the vacuum case, the transition rate induced
by thermal effects is [17]

Γ ¼ −2ImFðTÞ ∼ expð−βB3Þ; ð20Þ

with ∼ indicating that the relation holds up to the
determinant prefactor. Above, B3 ¼ S3½φ̄b� designates the
three-dimensional action evaluated on a static bounce
solution φ̄b with theOð3Þ symmetry, which is an extremum
of S3 and thus satisfies

−
d2

dr2
φ̄b −

2

r
d
dr

φ̄b þ U0ðφ̄bÞ ¼ 0; ð21Þ

with

FIG. 2. Dependence of the bubble energy on the bubble radius,
at t ¼ 0 in the rest frame of nucleation and the thin-wall
approximation. The radius of the nucleated bubble corresponds
to an energy-conserving point, indicated by the dot.

FIG. 3. The uniformly accelerated motion of the bubble wall
after the nucleation at t ¼ 0. The solid hyperbola represents the
bubble wall while the dashed line represents the light cone.

5At finite temperature, one can still consider theOð4Þ Coleman
bounce solution provided its radius is smaller than the inverse
temperature. However, at high temperature the corresponding
bounce action should be larger than that of the Oð3Þ static
bounce, and thus nucleation via the Coleman bounce is sup-
pressed. In this paper, we only consider the static bounce at finite
temperature.
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φ̄bð∞Þ ¼ φþ; φ̄0
bð0Þ ¼ 0: ð22Þ

Since thermal fluctuations can induce significant correc-
tions to the classical potential, it is customary to include
the leading effects of thermal fluctuations in solving the
bounce. In such a case, one would replace the classical
potential UðΦÞ with one including thermal corrections in
S3½Φ�. S3½φ� can then be thought as the free energy in
a scalar background field φ. Below, we will use the
same notation, but UðΦÞ could include the leading
finite-temperature corrections.6 For the purpose of the
computation of the static bounce, the temperature can be
considered constant and absorbed into the various cou-
plings. The bounce corresponds to an unstable configura-
tion at the top of the free-energy barrier (where the
free-energy here includes spatial gradients) between the
true and the false vacuum. Because of this instability,
one naturally expects a negative mode in the fluctuation
operator δ2S3=δφ2 evaluated at the static bounce. In
analogy with Eq. (11), for the three-dimensional action
S3 the fluctuations can be decomposed as

Φ̂nðxÞ ¼ ϕnlðrÞYlmðexÞ; ð23Þ

where x denotes the three-dimensional spatial coordinates,
and YlmðexÞ are the usual three-dimensional spherical
harmonics evaluated on the vector ex on the unit two-
sphere. Analogously to Eq. (12), one obtains now a radial
eigenvalue equation,

�
−

d2

dr2
−
2

r
d
dr

þ lðlþ 1Þ
r2

þU00ðφ̄bðrÞÞ
�
ϕnlðrÞ ¼ λnϕnlðrÞ:

ð24Þ

By taking derivatives with respect to r in Eq. (21), it is
easily shown that in the thin-wall limit there is a negative
eigenvalue in the l ¼ 0 sector given by

λ0;static ¼ −
2

R2
c;static

¼ 1

3B3ðRc;staticÞ
d2B3ðRÞ
dR2

����
R¼Rc;static

; ð25Þ

where Rc;static is obtained by extremizing the three-
dimensional action S3 similarly to the zero temperature case.
In contrast to the Coleman bounce, whose analytic

continuation to real time gives a uniformly accelerating
expansion, the static bounce corresponds to a time-
independent solution. It is usually assumed that the scalar
configuration at the time of nucleation in finite-temperature
phase transitions is very close to the static bounce, but it
cannot be restricted to the bounce itself because in that case
the bubbles would not expand and the transition would not

complete. Again, one may think that the static bounce,
which we will also refer to as the static bubble, only gives
the most probable nucleated state. Hence, in this paper
we assume that the nucleated bubbles are given by small
deformations of the static bounce. In contrast to the
Coleman bubble, the static bubble is H-critical, as S3½φ�
is now the free energy. Therefore, it is expected that some
deformations of the static bounce will result in an accel-
erating expansion or contraction at early times, depending
on the competition between the surface tension and the
bulk free-energy difference between the phases outside and
inside the bubble. These expanding (contracting) deforma-
tions of the static bounce lead to a successful (failed) phase
transition.
In the following section we show that the Coleman

bubble also features an instability in its time evolution, in
analogy to the static bubble. However, this instability can
only be seen in the accelerating frame where the Coleman
bubble becomes H-critical. For both the Coleman bubble
and the static bubble, the instability can be connected to
the negative mode of the fluctuation operator about the
corresponding background.

III. CLASSICAL INSTABILITY OF THE BUBBLE

A. Coleman bubble in the accelerating frame

We show in the present section that the standard
bubble growth for zero-temperature transitions reviewed
in the previous section is unstable against arbitrarily
small perturbations. We first recall some simple facts
about the uniform accelerating frame. Consider a worldline
ft; r; θ0 ¼ const;ϕ0 ¼ constg satisfying

r2 − t2 ¼ ρ2 ¼ const: ð26Þ

In this coordinates the metric reads ds2 ¼ dt2 − dr2−
r2ðdθ2 þ sin2 θdϕ2Þ. Taking ρ ¼ Rc would give the world-
line of the Coleman bubble for fixed angles θ and ϕ. Here
we have assumed that the bubble center is located at the
origin. From the above equation we immediately obtain for
the inertial observer that

d2r
dt2

¼ ρ2

ðt2 þ ρ2Þ3=2 ; ð27Þ

so that the coordinate acceleration is not uniform. On the
other hand, we can compute the proper acceleration on the
worldline by first expressing it through the proper time ξ
and then simply taking derivatives. We first parametrize the
worldline as

γðξÞ ¼ ðρ sinhðαξÞ; ρ coshðαξÞ; θ0;ϕ0Þ ð28Þ

so that Eq. (26) is automatically satisfied. To make the
argument in the hyperbolic functions dimensionless, we

6For false vacuum decay at zero temperature, one can also
compute the bounce with a quantum-corrected potential.
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have introduced a variable αwhich has the same dimension
as length and time. It is determined by imposing that the
Minkowski norm of the four-velocity of the worldline
equals one, gμνðdγμ=dξÞðdγν=dξÞ ¼ 1 (so that ξ can indeed
be interpreted as the proper time) which gives α ¼ 1=ρ.
Taking the derivative of γðξÞ, one obtains the four-velocity,

uðξÞ ¼ ðcoshðξ=ρÞ; sinhðξ=ρÞ; 0; 0Þ: ð29Þ

The proper acceleration is indeed uniform,

gμν

�
duμ

dξ

��
duν

dξ

�
¼ −

1

ρ2
: ð30Þ

Equation (28) also indicates the usual coordinates in the
uniformly accelerating frame fξ; ρ; θ;ϕg.
In order to explicitly show the instability, and inspired by

the worldline followed by the wall, we choose the following
coordinates fta; ra; θ;ϕg via

t ¼ ra sinh ta; ð31aÞ

r ¼ ra cosh ta: ð31bÞ

Note that ta is dimensionless and is related to the proper
time via ta ¼ ξ=ra. Still, r2 − t2 ¼ r2a, meaning that the
Coleman bubble appears static in this coordinate frame
φbubbleðta; ra; θ;ϕÞ ¼ φbubbleðraÞ ¼ φbðraÞ. For these new
coordinates, we have the metric

ds2 ¼ r2adt2a − dr2a − ðr2a cosh2 taÞðdθ2 þ sin2 θdϕ2Þ: ð32Þ

Substituting the above metric into the Minkowskian
action

SM½Φ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
gμνð∂μΦÞ∂νΦ −UðΦÞ

�
ð33Þ

we obtain

SM½Φ� ¼
Z

dta

Z
dra

Z
dθ

Z
dϕLa

M; ð34Þ

where

La
M ¼ 1

2
ra sin θðcosh2 taÞð∂taΦÞ2

−
1

2
r3a sin θðcosh2 taÞð∂raΦÞ2 − 1

2
ra sin θð∂θΦÞ2

−
1

2
ra

1

sin θ
ð∂ϕΦÞ2 − r3a sin θðcosh2 taÞUðΦÞ: ð35Þ

Through a Legendre transformation, we obtain the
Hamiltonian density,

H½Π;Φ� ¼
Z

dra

Z
dθ

Z
dϕ

�
1

2
r2aΠ2

þ 1

2
r3a sin θðcosh2taÞð∂raΦÞ2 þ 1

2
ra sin θð∂θΦÞ2

þ 1

2
ra

1

sin θ
ð∂ϕΦÞ2 þ r3a sin θðcosh2taÞUðΦÞ

�
;

ð36Þ

where Π≡ ∂L=∂taϕ. Note that since ta is not the proper
time, the above Hamiltonian density does not give the
physical energy density measured by the uniformly accel-
erating observers. Nonetheless, such a coordinate frame can
still be used for computations and is employed in dis-
cussions on the Unruh effect [74]. An advantage of using
the dimensionless time ta is that it is associated with a
constant global dimensionless “temperature” T̂a ¼ 1=ð2πÞ,
while the proper temperature in the accelerated frame,
Ta ¼ 1=ð2πraÞ, is “inhomogeneous” in ra. A constant T̂a
makes it possible to identify the zero-temperature phase
transition as a finite-temperature phase transition in the
coordinate frame fta; ra; θ;ϕg.
Let us consider spherically symmetric and ta-independent

field configurationsΦðraÞ. One can then integrate over θ and
ϕ in Eq. (36) and obtain

H½ΦðraÞ; ta� ¼ 4πðcosh2taÞ
Z

drar3a

�
1

2
ð∂raΦÞ2 þ UðΦÞ

�
:

ð37Þ

Then 0 ¼ δH=δϕ gives

d2

dr2a
Φþ 3

ra

d
dra

Φ −U0ðΦÞ ¼ 0: ð38Þ

This is exactly the equation of motion for the bounce with
ρ replaced by ra, see Eq. (7). Therefore the configuration
of a uniformly accelerating bubble, φbubbleðraÞ ¼ φbðraÞ,
indeed satisfies the Hamilton equations. Furthermore, this
means that in the thin-wall case Rc corresponds to an
extremum of the energy H½φðRÞ� in the accelerating frame.
In order to study the stability properties of this configu-

ration, we substituteΦðraÞ ¼ φbðraÞ þ Φ̂ðraÞ into Eq. (36)
and obtain the following eigenvalue equation:

�
−

d2

dr2a
−

3

ra

d
dra

þU00ðφbÞ
�
Φ̂nðraÞ ¼ λnΦ̂nðraÞ: ð39Þ

We impose the boundary condition for the fluctuations
Φ̂ðra ¼ ∞Þ ¼ 0. We also require the derivative of Φ̂n with
respect to ra to vanish at ra ¼ 0, in order to have a regular
behavior. Equation (39), with the replacement ra → ρ, is
exactly the same as Eq. (13) which corresponds to j ¼ 0 in
Eq. (12). Thus, we immediately know that there exists a
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tachyonic mode in the eigenspectrum. We therefore con-
clude that the static background φbðraÞ is energetically
unstable; the extreme point is not a minimum.
One can also witness the instability by considering the

motion of the bubble wall in the presence of a small
perturbation. For this purpose, we allow Φ to have a
dependence on ta, but we keep an Oð3Þ symmetry for the
bubble. Integrating out θ and ϕ in Eq. (34), we obtain

SM½Φ� ¼ 4π

Z
dtadraðcosh2taÞr3a

�
1

2r2a
ð∂taΦÞ2

−
1

2
ð∂raΦÞ2 −UðΦÞ

�
: ð40Þ

To be specific, we now consider the archetypical
example for tunneling in field theory that is given by the
quartic potential

UðΦÞ ¼ U0 −
1

2
μ2Φ2 þ g

3!
Φ3 þ λ

4!
Φ4 ð41Þ

with μ, g, λ all taking positive real values and g → 0 in the
thin-wall regime [11,12]. The deformations of the Coleman
bubble can then be parametrized by making use of the kink
profile,

φbubbleðra; taÞ ≈ v tanh½γðra − RaðtaÞÞ�; ð42Þ

where

v ¼
ffiffiffiffiffiffiffi
6μ2

λ

r
; γ ¼ μffiffiffi

2
p : ð43Þ

For the Coleman bubble, one has RaðtaÞ ¼ Rc, with Rc
given by

Rc ¼
12γ

gv
; ð44Þ

while the bounce action is BðRcÞ ¼ 8π2R3
cγ

3=λ [73,75].
Substituting Eq. (42) into Eq. (34) and taking the limit of

large Ra (consistent with the thin-wall approximation), we
obtain

SMðRÞ ¼ 4π

Z
dtaðcosh2taÞ

�
2v2γRa

3

�
dRa

dta

�
2

−
1

2π2
BðRaÞ

�
; ð45Þ

where we have used Eq. (9). Since the radius Rc of Eq. (44)
is an extremum of BðRaÞ, expanding the latter around Rc
gives

BðRaÞ ≈ BðRcÞ þ 2BðRcÞλ0ðRa − RcÞ2; ð46Þ

where we have used Eq. (17). Substituting the above
expansion into Eq. (45), one obtains the equation of motion
for the bubble wall:

d2Ra

dt2a
þ 2ðtanh taÞ

dRa

dta
þ 3BðRcÞλ0
2π2v2γRa

ðRa − RcÞ ¼ 0: ð47Þ

In the above equation, we have neglected a term
ðdRa=dtaÞ2=2Ra which is suppressed since we are consid-
ering the large Ra regime. When one substitutes the
expressions given below Eq. (42) into the last term, one
finds that the above equation of motion only depends on the
parameter Rc,

d2Ra

dt2a
þ 2ðtanh taÞ

�
dRa

dta

�
−
3Rc

Ra
ðRa − RcÞ ¼ 0: ð48Þ

Further taking Ra ¼ Rc þ δRa, one obtains

̈δRa þ 2ðtanh taÞ _δRa − 3δRa ¼ 0: ð49Þ

We clearly see that the negative mode gives rise to the last
term above and drives the bubble wall away from Rc
(because λ0 < 0). Note that RaðtaÞ≡ Rc is a solution to
Eq. (47) with the initial condition Raðta ¼ 0Þ ¼ Rc and
dRa=dtajta¼0 ¼ 0. But this solution is unstable. Any small
perturbation that gives the bubble wall a deviation from Rc
or from the vanishing velocity will trigger an increasing
deviation of the bubble wall away from the posi-
tion Ra ¼ Rc.
The validity of equation of motion (47) is limited by two

assumptions that we have made. First, we consider here the
thin-wall regime. Second, Eq. (47) is valid only for Ra ∼ Rc
since we have used the expansion (46). Nevertheless,
equation (47) clearly shows that the instability of the
motion for the bubble wall is induced by the negative
eigenvalue λ0 which remains present beyond the thin-wall
regime.
In particular, for δRa < 0, Ra will become smaller at an

exponentially increasing rate. From the point of view of an
accelerating observer, this would look like a contracting
bubble. This, however, does not correspond to a failed
nucleation from the point of view of an inertial observer.
In the rest frame of nucleation, the bubble always expands.
On the other hand, for δRa > 0, the bubble moves away
from criticality to values of Ra > Rc. The expanding
and contracting behavior observed in the accelerating
frame only represents two different possible deviations
from the Coleman bubble. Given the standard arguments
about the growth of tachyonic modes [76], the instability
that is initially triggered through the quantum fluctuations
about the parameter Rc can be described after some time
by a classical statistical ensemble of different trajectories
δRaðtÞ.
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We note that it is the condition Raðta ¼ 0Þ ¼ Rc that
breaks Lorentz invariance. The fluctuations are assumed
to start growing at t ¼ 0, i.e. at the instant of bubble
nucleation, where the wall is at rest. Then, the information
about the rest frame of nucleation might remain contained
in the growth of the instability.7 A bubble moving at a
relative velocity could then be described by shifting the
parameter ta in the coordinate transformation (31). The
growing fluctuation therefore determines the rest frame of
nucleation in an observer-independent way. While we think
that this interpretation of the growing instability is plau-
sible, it would be interesting to follow up on the quantum-
to-classical transition in the evolution of Ra in more detail.
For such a purpose, it may be useful to set up an effective
Schrödinger equation for this parameter so that one can
relate with the emerging classical statistical behavior for an
upside-down harmonic oscillator [76].
There is a close analogy between false vacuum decay in

the thin-wall regime and the Schwinger effect [77–79].
Both phenomena can be described as quantum tunneling
of an effective relativistic particle [80]. In the thin-wall
regime, thinking along the same lines, one can effectively
describe the location of the bubble wall as a point particle,
as we have done in order to set up the action Eq. (45). As a
check, we derive the equation of motion for the bubble
wall in the accelerating frame using the point-particle-like
description. A similar use of the effective pointlike
description for the expansion of thin-wall bubbles at zero
and finite temperature can be found in Refs. [81–83].
The zero-temperature thin wall is governed by the

following action (see, e.g. Ref. [81]):

Sp ¼
Z

dt

�
−4πr2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
dr
dt

�
2

s
þ 4πr3

3
ϵ

�
: ð50Þ

The kinetic term corresponds to the surface tension with the
appropriate Lorentz factor and the potential term to the
latent heat. The radius r appears here as a single degree of
freedom and therefore behaves analogous to the trajectory
of a relativistic point particle. Performing the coordinate
transformation (31), we obtain the Lagrangian

Lp ¼ −4πr2aσ cosh2 ta
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a − _r2a

q
þ 4πr3aϵ

3
cosh3 tað_ra sinh ta þ ra cosh taÞ; ð51Þ

where _ra denotes the derivative of ra with respect to ta. The
corresponding Euler-Lagrange equation is

̈ra −
4_r2a
ra

þ 2ðtanh taÞ_ra − 2ðtanh taÞ
_r3a
r2a

−
3ra
Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a − _r2a

q
þ 3ra _r2a

Rcr2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a − _r2a

q
þ 3ra ¼ 0: ð52Þ

Since ra ∼ Rc ≫ _ra, we have

̈ra þ 2ðtanh taÞ_ra −
3ra
Rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a − _r2a

q
þ 3ra ¼ 0: ð53Þ

Expanding ra ¼ Rc þ δra, we finally arrive at

δ̈ra þ 2ðtanh taÞ _δra − 3δra ¼ 0: ð54Þ

This is exactly the same as Eq. (49) as one would expect.
The instability of the bubble wall analytically continued

from the Euclidean bounce solution is reminiscent of the
instability for the small black hole that appears in the
Hawking-Page phase transition [84]. There, the small black
hole is unstable because of its negative specific heat. For
temperature ranges that allow for a gravitational first-order
phase transition, there are typically three saddle points in
the Euclidean path integral: two stable ones, namely the
thermal anti-de Sitter (AdS) space and the large black hole
in AdS, and an unstable one being the small black hole in
AdS. The small black hole thus plays the role of the bounce
in the Hawking-Page phase transition. It has one and only
one negative mode in its fluctuation spectrum. When
analytically continued to Lorentzian signature, the small
black hole has negative specific heat and thus is unstable.
This instability can then be seen as a consequence of the
existence of the negative mode in the Euclidean formalism.

B. Static bubble at finite temperature

We now show the instability in the time evolution of
perturbations of the static bounce during finite-temperature
phase transitions. In the analysis of zero temperature
bubbles, we have seen that the Coleman bubble appears
static in the uniformly accelerating frame, and the insta-
bility was shown to lead to the expansion or contraction of
the perturbed bubbles.
In the case of the static bounce, as it is already time

independent in the inertial plasma frame, one could carry
out the same analysis as before by considering the time
evolution of configurations with initial conditions close to
the form of the static bounce in the plasma frame. However,
in principle one should also consider the dynamics of the
plasma. This requires for example to include the finite-
temperature corrections to the potential UðΦÞ mentioned
before, as well as nonzero plasma velocities v. Then, one
cannot model the bubble expansion through an equation of
motion that is simply obtained from a Lagrangian for a
scalar field with a potential that has constant coefficients.
Nevertheless, close to the time of bubble nucleation, one

7If the bubble wall were subject to completely random
perturbations during its history, then the information would
certainly be lost in noise at late times.
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may ignore variations of T and v, so that one can consider
the usual scalar dynamics with a potential UðΦÞ with
constant couplings, which may include finite-temperature
corrections evaluated at the nucleation temperature. In this
regime, we can perform an analysis analogous to the zero
temperature case. To make contact with the discussion on the
zero-temperature case, we still use Eq. (41) to parametrize
the potential. Now consider a family of deformations of the
static bounce parametrized as φðr; tÞ ¼ v tanh½γðr − RðtÞÞ�
in the thin wall limit, with the profile given as in Eq. (42),
with ra substituted by r, the same values of v and γ,

Rc;static ¼
8γ

gv
; ð55Þ

and RaðtaÞ substituted with RðtÞ ¼ Rc;static þ δRðtÞ.
Substituting the ansatz into the three-dimensional action,
and using Eq. (55) one obtains the following equation of
motion for δR:

δR̈ −
2

R2
c
δR ¼ 0: ð56Þ

As it occurs for perturbations of the Coleman bubble in the
uniformly accelerating frame, there is an unstable behavior
by which supercritical bubbles (δR > 0) expand, and sub-
critical bubbles (δR < 0) collapse.
To close this section, let us provide a numerical con-

firmation, which does not rely on the thin wall regime, of
the instability of bubble propagation at zero and finite
temperature by studying the time evolution of bubble
profiles obtained by deforming the Coleman and static
bubbles at t ¼ 0. For this purpose, we choose the param-
eters in Eq. (41) as

μ ¼ 1; g ¼ 1=2 λ ¼ 1;

and

U0 ¼ −
1

256
ð−537þ 35

ffiffiffiffiffiffiffiffi
105

p
Þ ¼ 0.696706:

This leads to UðφÞ having a shape in qualitative agreement
with Fig. 1, with

φþ ¼ 1

4
ð

ffiffiffiffiffiffiffiffi
105

p
− 3Þ ¼ 1.81174;

φ− ¼ −
1

4
ð

ffiffiffiffiffiffiffiffi
105

p
þ 3Þ ¼ −3.31174:

The Coleman bounce continued to Minkowski spacetime at
t ¼ 0, φbubbleðρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−t2 þ r2

p
Þjt¼0, is shown by the orange

line in Fig. 4 together with two deformations in which the
bubble radius is altered by one unit. We choose to define the
bubble radius RðtÞ as the value of r for which φbubbleðr; tÞ
reaches 1=2ðφð0; 0Þ þ φð∞; 0Þ). The figure also shows

the static bounce in gray, plus two deformations in which
the radius is modified by �1. Note how, when the same
potential is used for the zero-temperature and finite-
temperature phase transitions, the radius of the static bubble
is smaller than that of the Coleman bubble, as it is also
indicated by the thin-wall results of Eqs. (44) and (55).
In fact, the previous equations match the numerical values
for the radii up to 3% deviations. Taking the profiles in
Fig. 4 as initial conditions, together with the requirement
_φðt ¼ 0; rÞ ¼ 0, we can solve the evolution equations for
the scalar field in the rest frame of nucleation (at zero
temperature) and plasma frame (at finite temperature) under
the assumption of an Oð3Þ symmetry,

φ̈ðr; tÞ − d2

dr2
φðr; tÞ − 2

r
d
dr

φðr; tÞ þU0ðφÞ ¼ 0: ð57Þ

Doing so, we obtain the bubble radii illustrated in Fig. 5.
The top and middle plots show the evolution of the
deformed Coleman bubbles in the rest frame of nucleation
and the accelerating frame, respectively. The bottom plot
shows the evolution of the deformations of the static bubble
in the plasma frame. The results confirm the expected
unstable behavior, in which the deformations of the bubble
configurations become amplified in the cases where the
initial one was static. In the case of the Coleman bubble,
note that the unstable behavior does not appear so dramatic
when seen from the rest frame of nucleation, in which all
the deformed bubbles considered here keep expanding.
However in the accelerating frame, in which the Coleman
bubble is static, only the supercritical bubbles expand,
while the subcritical ones contract. A similar behavior is
observed for deformations of the static bubble in the plasma
frame. Note that, were we to consider larger deformations
of the Coleman bubble, one would eventually find bubbles
that collapse. This is because such deformations would
eventually fall into the subcritical region of the static
bounce, as is clear from Fig. 4. Our results suggest a
correspondence between the dynamics of Coleman bubbles
in the uniformly accelerating frame, and finite-temperature

FIG. 4. Orange: continuation of the Coleman bounce in the
numerical example for t ¼ 0 (solid line), plus deformations with
larger (dashed line) and smaller (dot-dashed line) bubble radius.
Gray: analogous curves for the static bounce.
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phase transitions: both cases involve static H-critical
bubbles, and feature an unstable behavior under perturba-
tions. In the next section, we will elaborate further on this
correspondence.

IV. CORRESPONDENCE BETWEEN FALSE
VACUUM DECAY AT ZERO AND FINITE

TEMPERATURE

In this section, we explain the relation between the static
vacuum bubble configuration in the accelerating frame
and the static bubble configuration in a finite-temperature
plasma. This relation also leads to an interpretation of the
negative modes about the Coleman bounce in terms of the
instability of the finite-temperature bubble.
If one performs a Wick rotation of the time parameter

ta → −iτa, then the original Oð4Þ bounce becomes static
with respect to the Euclidean time τa, as shown in Fig. 6.

As was mentioned previously, this is reminiscent of the
static bounce for false vacuum decay at finite temperature.
Therefore, one may think that bubble nucleation seen by
the accelerating observers is a thermal vacuum transition.
In that case, the same process has two different descrip-
tions: in the rest frame of nucleation and the accelerating
frame. The equations of motion must coincide in order to
give the same bounce. It should be noted that when staying
within the rest frame of nucleation, the critical configura-
tions corresponding to the Coleman bounce and the static
bounce associated with thermal transitions are inequivalent
and solve different equations, i.e. Eqs. (7) and (21),
respectively. The fact that the static bounce in the accel-
erating frame satisfies the same equation as the Coleman
bounce is made possible by the nontrivial spacetime metric
in the noninertial frame. The duality between vacuum and
thermal transitions has already been pointed out in Ref. [50]
when the bubble is nucleated around a horizon.8 The
existence of a horizon provides a thermal description for
the static observers outside of the horizon (which are
uniformly accelerating observers for the Rindler horizon).
However, the situation here is more subtle.
Given the form of the Coleman bounce, the Euclidean

time τa ¼ ita, does not allow for a symmetry of the bounce
background in Euclidean spacetime of the form Oð2Þ ×G,
with Oð2Þ acting in the imaginary time direction and G on
the spatial coordinates. Thus, one cannot identify a globally

FIG. 5. Evolution of the radii for the bubbles with initial
conditions as in Fig. 4. The upper and middle plots give the
evolution of the deformations of the Coleman bubble in the rest
frame of nucleation and accelerating frame, respectively. The
bottom plot gives the evolution of the deformations of the static
bubble in the plasma frame.

FIG. 6. The Oð4Þ-symmetric bounce can be viewed as a static
bounce with Euclidean time τa. The solid half circle represents
the phase boundary between the false vacuum (outside) and the
true vacuum (inside).

8For black hole horizons, this correspondence is valid only for
the Hartle-Hawking vacuum [52].
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thermal system. This is consistent with the fact that there is
no horizon in the frame fta; ra; θ;ϕg. Note that the light
cone r ¼ t (or ra ¼ 0) is not a Rindler horizon. To have a
Rindler horizon, one may consider a Rindler frame
ftR; xR; y; zg obtained from

t ¼ xR sinh tR; ð58aÞ

x ¼ xR cosh tR; ð58bÞ

where ft; x; y; zg are the inertial coordinates from the rest
frame of nucleation. The Rindler horizon is shown in Fig. 7.
The essential difference between a Rindler horizon and the
light cone r ¼ t is that a Rindler horizon separates two
causally uncorrelated regions, the wedges ðx > 0;−x <
t < xÞ and ðx < 0;−x < t < xÞ. Consider the spatial slice
at t ¼ 0. The state on x > 0 is entangled with the state on
x < 0. For the Rindler observers in one single wedge,
another wedge is unobservable and must be traced over.
The reduced density matrix is thermal [56]. In our case, the
accelerating frame with spatial spherical symmetry fills
all of the space at t ¼ 0. A pure state defined on this
spatial hypersurface therefore remains pure when restricted
to the frame (31). This is why we do not have a thermal
interpretation for the vacuum transition that is globally
valid in the radially accelerating frame.
However, any single accelerating observer with given

ra; θ;ϕ in the radially accelerating frame (31) is indistin-
guishable from a Rindler observer. Therefore any local
consequences of the Unruh effect must also be experienced
by observers that are static in the accelerating frame
fta; ra; θ;ϕg. Such observers see a locally thermal quantum
field system. Pictorially, the local thermal property can be
thought of as originating from the entanglement between
the antipodal points, fra; θ;ϕg and fra; π − θ;ϕþ πg. In
this sense, we may extend the correspondence proposed in
Ref. [50] to the situation analyzed in the present paper.

Namely, the bubble nucleation at zero temperature
observed in the rest frame of nucleation has locally a
thermal description in the accelerating frame fta; ra; θ;ϕg.
Since the static bounce from the thermal description and
the Oð4Þ-symmetric bounce pertain to the same transition
process, the equations of motion must coincide. (The
mismatch between the global symmetries in both inter-
pretations does not affect the requirement on the coinci-
dence of the equation of motion.) The profile of the static
bubble is simply obtained from the analytic continuation
of the static bounce solution in the thermal description.
Because of the stationary condition, the time variables do
not appear in the equation of motion. This explains why
Eq. (38) takes the same form as Eq. (7).
From the theory of finite-temperature phase transitions

we know that there must be a negative mode for the
fluctuations about the static bounce which gives an imagi-
nary part for the free energy. This negative mode is
inherited when we perform the inverse Wick rotation τa →
ita again, because the time coordinates do not appear in the
eigenvalue equations for the fluctuation spectrum. The
uniform acceleration of the bubble is then unstable because
of the negative mode. Given that the existence of a negative
mode for the fluctuations about the static bounce is a
necessary condition for false vacuum decay, the instability
in the uniform acceleration is robust.

V. CONCLUSIONS

False vacuum decay plays an important role in a variety
of phenomenological studies. In particular, vacuum tran-
sitions in the early Universe could be a source of gravi-
tational waves by means of collisions and mergers of the
nucleated bubbles and therefore currently evoke an increas-
ing interest in the cosmology community. For most studies,
the bubble motion is particularly relevant. In this paper, we
revisit the bubble growth for false vacuum decay at zero
temperature and at finite temperature shortly after nucle-
ation. In the case of zero temperature, we have shown that
the picture of uniformly accelerating bubble expansion
from Coleman needs to be supplemented. We observe that
the standard uniformly accelerated bubble, although sat-
isfying the classical equation of motion, is not stable under
perturbations preserving the spherical symmetry. This is
demonstrated by studying the eigenvalue equation for
fluctuations in the static background of a Coleman bubble
as seen from a uniformly accelerating frame and prove the
existence of a tachyonic mode in the spectrum. In this
accelerating frame, in which the critical Coleman bubble
is static, the instability manifests itself in the growth
(decrease) of bubbles having greater (smaller) radii than
the radius given by the S-critical bubble. The instability is
related to the well-known negative mode of the fluctuation
operator of the Euclidean action about the Coleman
bounce, which plays a fundamental role in the computation
of the tunneling rate. Earlier studies of instabilities focused

FIG. 7. Rindler horizon for the uniformly accelerated observers
in the x direction. The y and z directions are suppressed. The
horizon is invariant under the y and z translations.
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on deformations violating the spherical symmetry, or
considered configurations with multiple bubbles [85–88].
At finite temperature, we have shown that as long as the

changes in the plasma velocity and temperature are small,
as expected in the early stages of bubble growth, there
is an analogous instability in the plasma frame, by which
perturbations of the critical static bubble with larger or
smaller radii respectively expand or collapse. This insta-
bility is of course well known and is the reason why the
static bubble is called critical (see Sec. II for the terminol-
ogy). However, a less emphasized point, sometimes being
misunderstood, is that the Coleman bubble in the rest frame
of nucleation is not critical but only S-critical. Only in the
accelerating frame it can be interpreted as H-critical. The
unstable behavior for the Coleman bubble in the accel-
erating frame is completely analogous to that of static
bubbles in the plasma frame. This indicates that vacuum
transitions viewed from accelerating frames can be seen as
finite-temperature phase transitions [50]. This duality
suggests that, in the same way that simulations of finite-
temperature phase transitions use bubble profiles different
from the exact H-critical bubble to ensure the growth after
nucleation, when simulating vacuum transitions one may
also consider bubble configurations differing from the
exact S-critical Coleman bubble. In this case, the instability
studied in this paper would manifest itself in the

simulations, although in the rest frame of nucleation this
effect may be very small.
Note that under the duality mentioned above, the

instability we discovered for the uniformly accelerating
bubble at zero temperature is mapped to the instability of
the nucleated critical bubble at finite temperature, instead of
the instability in its latter growth. We summarize the dual
relations in Table I. In the case of finite-temperature phase
transitions, one can have additional instabilities in the
temperature and velocity fields of the plasma [89] in the
bubble growth.
Finally, we note that under the plausible assumption that

the instability starts to develop at the instant of nucleation,
the growing fluctuations carry the information about the
rest frame of nucleation and are important for under-
standing the development of the bubble away from criti-
cality in an observer-independent way.
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