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Instability of Elastic Filaments in Shear Flow Yields First-Normal-Stress Differences
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Using slender-body hydrodynamics, we study the flow-induced deformation of a high-aspect-ratio
elastic filament. For a filament of zero rest curvature rotating in a viscous linear shear flow, our model
predicts a bifurcation to shape instabilities due to compression by the flow, in agreement with experi-
mental observations. Further, nonlinear simulations of this shape instability show that in dilute solutions,
flexibility of the fibers causes both increased shear thinning as well as significant nonzero first-normal-
stress differences. These stress differences are positive for small-to-moderate deformations, but negative
for large-amplitude flexing of the fibers.
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Normal stress differences in shearing flows are a
fundamental property of viscoelastic fluids. A positive/
negative first-normal-stress difference for weakly elas-
tic flows may be thought of as an additional tension/
compression along streamlines. The corresponding ad-
ditional “hoop stresses” generated in curvilinear flows
represent the driving force behind such striking non-
Newtonian phenomena as the climbing of fluid up a
rotating cylinder [1]. Experiments involving dilute sus-
pensions of slender fibers exhibit a sharp transition from
zero to positive first normal stress differences beyond a
critical shear rate [2], but existing continuum theories
for rigid rods predict neither the onset nor the magnitude
of this transition [3]. In this article, we present the
first conclusive evidence that elastic instabilities on the
microscopic scale are primarily responsible for this onset
of normal stress differences.

Consider an elastic filament of rest length L suspended
in a general flow with background velocity U, as shown in
Fig. 1 for the plane Couette flow U � �gyex . The filament
is assumed to have an effective bending rigidity B corre-
sponding to a circular cross section of radius r, and an
aspect ratio of L�2r � e21. In the Kratky-Porod model
of a semiflexible polymer, the effective rigidity is defined
as the product of the persistence length lp times thermal
energy kT [4], while for a macroscopic rod it is the prod-
uct of the Young’s modulus E times the second moment
of area I � pr4�4 [5].

For rod-shaped colloidal particles of density rs sus-
pended in a flow with characteristic shear rate �g, fluid
density rf , and viscosity m, the Brownian, inertial, and
gravitational forces scale, respectively, as kT�L, rf �g2L4,
and g�rs 2 rf�r2L. In the majority of applications
involving slender colloidal particles, these forces are
negligible compared to those due to viscosity and particle
elasticity, which scale as m �gL2� ln�2e21� and B�L2

[3,6]. While the effects of thermal noise are important for
high-aspect-ratio molecules such as the tobacco mosaic
virus, knowledge of the underlying deterministic sus-
pension behavior is nonetheless an essential prerequisite
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for studying the stochastic dynamics of wormlike chains
via, for example, the Smoluchowski equation. Hence a
reasonable starting point for examining the microscale
behavior of industrial fibers and semiflexible biopolymers
is to consider the equations governing the deformation of
an elastic rod subjected only to hydrodynamic stresses.

Governing equations.—The deformation of a slender
elastic rod with arclength coordinate a and position vec-
tor x�a, t� at time t, when composed of a homogeneous,
isotropic solid, may be described by an orthonormal mate-
rial frame �n1, n2,l� affixed to the cross section [5], where
l � xa � ≠x�≠a denotes the unit tangent vector. The
rate of change of this frame along a is specified by the
curvature vector V. In the inertialess limit, the internal
force Q and moment M satisfy the equilibrium equations
Qa 1 f � 0 and Ma 1 l 3 Q 1 g � 0, where f and
g denote the externally applied forces and moments per
unit length, respectively, acting on a cross section. The
moment constitutive relation for a rod of circular cross
section in the absence of residual curvature is given by
M � Bkb 1 CV3l, where k � jla j is the Frenet cur-
vature, kb � V1n1 1 V2n2, and, given a Poisson’s ratio
n, C � B��1 1 n� is the torsional constant [7]. We treat
the filament as inextensible, so that a is also a Lagrangian
marker and the dynamics obey the constraint xa ? xa � 1.
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FIG. 1. An elastic rod centered in a shear flow.
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The viscous force acting on the rod may be approxi-
mated by f � 2�2pm� ln�2e21�� �2 2 ll� ? �xt 2

U�x�� to within an error of O�ln22�2e21�� [8], where d
denotes the identity tensor. Here we consider a single
filament in the absence of hydrodynamic interactions
with other suspended objects, i.e., the dilute-solution
limit. External moments per unit length may be neglected
�g � 0�, since they are caused by O�e� differentials in
fluid velocity across a given cross section with moment
arm e, and hence scale as O�e2� [9]. Nondimensional-
izing with length scale L and time scale �g21, the above
equilibrium and constitutive equations reduce to

Z�2d 2 ll� ? �xt 2 U�x�� � ��T 2 k2�l�a 2 laaa ,
(1)

where Z � �2pm �gL4���B ln�2e21�� is our dimensionless
parameter scaling the viscous drag relative to elastic restor-
ing forces, and the unknown tension T � l ? Q has been
nondimensionalized by B�L2; unless specified otherwise,
from here on all quantities are to be taken as dimension-
less. The limits Z ! 0 and ` correspond to a rigid rod and
a flexible thread, respectively [6]. Forces and moments at
each end of the filament are zero, leading to the nontrivial
boundary conditions T � 0, k � 0, and ka � 0. The in-
extensibility constraint xa ? xa � 1 implicitly determines
the tension in Eq. (1). Note that in the absence of exter-
nally applied moments, the twist density V3 of an elastic
rod with circular cross section is identically zero regardless
of the value of C; nonzero twist density can be included
to model applications where the hydrodynamic torques are
not negligible, as in the rapid relaxation of twisted bacte-
rial filaments [10].

Linear stability.— The position x of the fila-
ment may be specified by a Lagrangian description
x � x0 1 al0 1 u, a [ �21�2, 1�2�, where we choose
x0 to follow the midpoint of the filament and l0 to
denote the unit tangent l to the filament at x0. Hence
u is the deflection relative to a straight rod with orien-
tation l0, u�a � 0� � 0, and u�

a �a � 0� � 0, where
�?�� � �d 2 l0l0� ? �?� denotes the component perpen-
dicular to l0. Assuming our elastic rod is suspended in a
locally linear, incompressible flow with constant velocity
gradient tensor G, i.e., U�x� � U�x0� 1 �al0 1 u� ? G,
we linearize Eq. (1) for small deflections juj ø 1
to obtain
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where y � u�
aa and x � G:l0l0. Equations (2) and

(3) give the evolution of small transverse bending de-
flections u� relative to a rigid rod with instantaneous
midpoint tangent l0; Eq. (4) evolves the position of the
midpoint x0. These leading-order equations are obtained
from Eq. (1) by differentiation [Eqs. (2) and (3)] and in-
tegration [Eq. (4)] with respect to a, subject to the lin-
earized boundary conditions u� � u�

a � 0 at a � 0 and
u�

aa � u�
aaa � 0 at a � 61�2. Note that Eq. (2) has

u� � 0 as a trivial solution, and hence a high-aspect ratio
filament in any general linear flow will remain straight until
the onset of an elastic instability. Given a small deforma-
tion u�, it may be seen from Eq. (3) that deflections which
are even about the midpoint a � 0 (e.g., the C shape de-
picted in Fig. 1) do not affect the rotation rate.

At this point we restrict our attention to the plane shear
flow with G � eyex, as depicted in Fig. 1 along with the
spherical coordinates u and f. A rigid, straight rod cen-
tered in the x-y plane with x0 � 0 will be under either
quadratically varying tension (quadrants I, III) or compres-
sion (quadrants II, IV) as it executes pure counterclock-
wise rotation about the z axis � �f � 2 sin2 f , 0�, and
given sufficiently large compressive stresses, elastic insta-
bilities are possible. For nonplanar motion of a straight
rod, Eq. (3) has the solution

cotf�t� � cotf�t0� 1 �t 2 t0�, tanu�t� � C cscf�t� ,
(5)

where C [ �0, `� is the Jeffery orbit constant [11]. Note
from Eq. (5) that the time required for the azimuthal angle
f to reach 0 or p is infinite, as the O�e2� moment that
turns a finite-aspect-ratio filament through the x-z plane of
zero velocity is again due to the neglected differential in
fluid stresses across each cross section [9]. Here we are
interested in deviations from the rigid-rod behavior away
from the x-z plane where the axial forcing is sufficient to
sustain a buckling instability.

At any given dimensionless flow strength Z, the hydro-
dynamic forces acting on a straight filament are largest
when executing a Jeffery orbit in the plane of shear �u �
p�2�. Hence we examine the first onset of shape instabili-
ties by considering an elastic rod in the x-y plane, centered
at the origin. For strong flows, a slender rod that turns
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FIG. 2. The real part of the most unstable eigenvalue s for an
elastic filament in the plane of shear at a given dimensionless
flow strength Z and azimuthal angle f.
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away from initial alignment with the flow direction first
exhibits an elastic instability close to the plane of zero ve-
locity, where j �fj ø 1 and the coefficient x � sin�2f��2
is approximately independent of time. In that case, Eq. (2)
may be taken as a homogeneous, constant-coefficient par-
tial differential equation which is linear in y � u�

aa and
amenable to standard eigenvalue analysis. It turns out that
a filament in the plane of shear and turning away from
alignment first becomes unstable to an in-plane disturbance
of the form y � y�a� exp�st�ef, governed by

y�iv� 1 2Zsy 1 �Z sin�2f�� 3∑
7
2

y 1 2ay0 1
�4a2 2 1�

16
y00

∏
� 0 , (6)

subject to y � y0 � 0 at a � 61�2. Pseudospectral col-
location, using the Galerkin-type Chebyshev expansion
y�a� �

PN
n�0 anFn with Fn � �a2 2 1�4�Tn�2a� [12],

yields a generalized matrix eigenvalue problem for the
mode amplitudes an with eigenvalue s.

The behavior of the most unstable eigenvalue is shown
in Fig. 2. As the filament turns away from the zero-
velocity plane, the forcing factor Z sin�2f� decreases from
zero until buckling occurs at a critical value of 2153.2;
the corresponding eigenmode is even about the midpoint
a � 0, forming a “C shape” dominated by the basis func-
tion F0. For Z sin�2f� * 21880, the exponential growth
of the dominant C-shape disturbances is governed en-
tirely by the growth rate in region 1 of Fig. 2; in dimen-
sional terms, this growth rate s1 	 21.6 sin�2f��tc 2

39.0�tb, where tc is the convective time scale 1� �g and
tb � B ln�2e21���mL4� is the time scale for deformation
relaxation in a quiescent fluid. If Z sin�2f� is much lower
than the critical value, then, as indicated by the five regions
in Fig. 2, the mode with the fastest growth rate can be odd
about a � 0. The imaginary part of s is nonzero only
in region 3, but the frequency of amplitude oscillations is
small relative to the rate of rotation of the filament.

Nonlinear simulations.—Next we turn our attention
to the fully nonlinear deformation regime described
by Eq. (1), which is integrated forward in time using
a pseudospectral Galerkin approach with x � a0�t� 1

a1�t�a 1
PN

n�2 an�t�
RR

Fn da da in Cartesian coordi-
nates. The stringent time-step constraints resulting from
the fourth-order spatial derivatives are circumvented by
using a matrix integrating factor to treat the highest spatial
derivative implicitly [13]. While our stability analysis for
steady shear flow was restricted to strong flows where elas-
tic instability first occurs near f � 0 or p, computations
based on either Eq. (1) or the linearized equations (2)–(4)
indicate that the minimum dimensionless flow strength
required for the onset of buckling, at the point of
maximum compression �f � 2p�2, 3p�2, u � p�2�,
is indeed Z � 2153.2, as predicted from Eq. (6); a
highly approximate earlier treatment of this onset under-
estimates the required flow strength by a factor of about
2.4 [14].
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In Fig. 3, we show the nonlinear dynamics, at a
flow strength of Z � 7000, for a rod placed in the
plane of shear at the critical angle f�t � 0� � fc �
arcsin�2153.2�Z��2 � 20.011. Initially, we input a
small shape perturbation such that the magnitude of
each of the mode amplitudes an is about 0.01��n 1 1�4,
adjusted so as to satisfy the inextensibility constraint;
this noise level leads to a maximum initial transverse
deflection of about 1025L. For any such small-amplitude
disturbance, the initial shape instability will correspond to
the dominant unstable mode, the even C shape determined
from our stability analysis. As observed experimentally
for fibers in strong shearing flows [14], the filament then
executes a so-called snake turn, which results in a net
translation along the direction of shear. It was further
observed in the experiments that a deformation-induced
change in orbit period was not measurable relative to
errors associated with residual fiber curvature. Our fully
three-dimensional nonlinear simulations show in all cases
that changes in orbit times as well as orbit constants
C over one deformation cycle, relative to a straight rod
obeying Eq. (5), are virtually independent of dynamical
deformation, and depend in magnitude only upon the size
of the initial shape perturbation. For example, the time
required by a rigid rod to reach the final orientation shown
in Fig. 3 differs from t � 97.0 by only 0.02 percent.

The single-filament contribution to the bulk stress tensor
in a dilute solution is given by [15]

P � Z
Z 1�2

21�2
�2d 2 ll� ? �U 2 xt�x da , (7)

which for a straight, rigid rod gives P0 � �xZ�12�l0l0.
The instantaneous stress difference P 2 P0 differs appre-
ciably from zero only in the presence of large-scale defor-
mations, and the integral of this stress difference over one
deformation cycle (e.g., Fig. 3) is denoted by the tensor
DS. Varying the dimensionless flow strength Z, we have
simulated a range of deformation cycles for filaments re-
leased in the plane of shear at the critical angle fc with the
aforementioned initial shape perturbation, and the in-plane
components of the net stress difference DS are given in
Fig. 4.

From our linear stability analysis, the initially dominant
mode is an even C shape, but for every even deforma-
tion with instantaneous position vector x, in a dilute,
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FIG. 3. Nonlinear dynamics vs time of an elastic rod in the
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FIG. 4. Net bulk-stress differences relative to a rigid rod versus
flow strength Z.

statistically homogeneous suspension there is an equally
likely shape with position 2x that will evolve under the
symmetry x ! 2x with identical stress contributions.
The net stress differences reported in Fig. 4 are hence pro-
portional to the time-averaged, deformation-induced stress
contributions of each particle in an idealized dilute suspen-
sion of noninteracting filaments, all located in the plane
of shear and subject to the given flow and noise strengths.
For such a suspension, we can conclude from Fig. 4 that
elastic instability, relative to the rigid-rod analysis, results
in additional shear thinning �DSxy , 0�, and in positive
first normal stress differences �DSxx 2 DSyy . 0� for
flow strengths Z in the range from 153.2 to about 6650;
at flow strengths greater than 6650, negative first normal
stress differences are predicted.

Discussion.—Our formulation is the first to address the
dynamics and stability of filaments with large aspect ratios.
Previous numerical investigations [16] modeled an elas-
tic fiber as a linear array of 10 to 15 spheres, connected
by joints about which elastic-type restoring forces act to
straighten the array. In these simulations of fibers under
steady shear flow, the number of spheres was limited by
computational expense, and as a result only fibers with
low length-to-diameter aspect ratios (10 to 20) were con-
sidered; actin filaments and industrial glass fibers can have
aspect ratios that are 2 orders of magnitude larger. The
latter simulations also consistently predicted odd deforma-
tions in the shape of the letter S instead of the C shape
observed experimentally for stiff fibers [14], most likely
because on the one hand they did not introduce shape per-
turbations into their simulations, and on the other because
the approximately constant O�e2� moments per unit length
acting on an elastic rod near alignment may be shown to
seed an S shape with linearly varying curvature.

Experiments using nylon fibers �E 	 2 GPa, e 	 1022�
suspended in glycerin �m 	 2.3 Pa ? s� show a sharp tran-
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sition to positive first normal stress differences at a shear
rate of �g 	 50 s21 [2], while our stability criterion would
predict a shear rate of 55 s21. However, the first normal
stress difference in these experiments grows approximately
linearly with shear rate, a fact which we conjecture may
be due to significant long-range hydrodynamic interactions
among deforming fibers.

The transition to shape instabilities may also be rele-
vant to the rheological study of suspensions of semiflex-
ible biopolymers such as actin [17]. Such studies are
performed mainly using small-amplitude oscillatory shear,
and the strain amplitude is typically not reported, hamper-
ing specific comparisons with our linear stability analysis.
The simulation of multiple interacting fibers, and of time-
dependent shearing flows, are an aim of future research.
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