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The instability of normal neutron star matter is investigated from the viewpoint of 
collective oscillations which are coupled with condensed pions in neutron matter. It is shown 
that there is no inconsistency between the instability conditions obtained by· two apparently 
different approaches, i.e., the mean field method by Sawyer et al. and the Green's function 
method by Migdal. The double pole condition, which determines the instability threshold 
in the Green's function method, is interpreted in terms of collective motions. 

§I. Introduction 

It is of great interest whether or not the pion condensate appears in superdense 
nuclear matter in connection with the cooling mechanism of neutron stars/> the 
understanding of transient superdense states caused by high-energy heavy-ion col­
lisions2> and other related problems.3) There are two apparently different approach­
es to the problem of pion condensation in neutron star matter. That is, Sawyer 
and Scalapino4> h;l.Ve worked the problem on the basis of the Hamiltonian in which 
the condensed n- field has been replaced by the mean field. A series of their 
work has indicated the possibility that the ground state of neutron star matter 
would be rearranged at a slightly greater nucleon density than the normal nuclear 
matter density p0• Then the new ground state has been prepared to be a coherent 
mixture of protons, neutrons and condensed negtive pions. In a preceding paper, 5>, 
we have shown that this state can be treated with the coherent-state representation 
of proton particle-neutron hole. On the other hand, by using the pion Green's 
function, Migdal6> has obtained the conclusion that neutral pions would be able 
to appear at the smaller density than Po and charged pions nearly at the same 
density. 

It is the purpose of this paper to reproduce the results of the mean field 
method and the Green's function method by using the method of normal mode 
which was introduced by Sawada and Fukuda7> in order to study the stability of 
the Hartree-F ock state within the rang~ of the random phase approximation (RP A). 
They have pointed out that there exists an extremely important relation between 
the instability of the Hartree-Fock state and the solution of the RPA equation 
which describes some kind of approximate normal mode. When an infinitesimal 
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deformation which is. generated by a collective oscillation is. applied to the Hartree­
Fock state, there is. s.uch a case that Hartree-Fock state becomes t,mstable. In 
this case we must use a new approximate ground state in the sense of the varia­
tional principle. The instability of the Hartree-Fock state is chllracterized hy the 
complex frequencies of the corresponding collective eigenmode St which . satisfies 
the following RP A equation: 

[St, H] = -wSt, (1·1) 

where H is the total Hamiltonian of the system. 
We apply the above criterion of instability to neutron star matter. Then the 

results which were given by Sawyer et al. and by Migdal are obtained by the. 
method of normal mode. For simplicity, we omit the effect of (3; 3) isobar state.6'' 8J 

In § 2 we apply the method of normal mode to Sawyer's model and obtain 
the instability' condition for the appearance of condensed negative pions in neutron 
star matter. In § 3 we investigate the instability in Migdal's model and obtain 
the instability conditions for neutrai and charged pions. The double pole condition 
for the instability threshold, which has been studied by Bertch and Johnson;9' 

1s interpreted in ter:rp.s of collective motions. 

§ 2. Sawyer's mo4el 

In this section we apply the method of normal mode to the simple model 
discussed by Sawyer et aV' This model is characterized by the Hamiltonian which 
consists of kinetic energies of neutrons and protons, the energy of negative' pions, 
and the P-wave part of the interaction of nucleons with a single n-: mode. Using· 
a spinor notation for nucleon operator, we have 

H=~ eq(n/nq+pqtpq) +w~ca~cta~c-iM~c'~ (P~-kO"znqakt-h.c.), (2·1) 
q q 

where nqt and pqt are respectively the creation operators for neutrons and protons 
'of momentum q, a~ct is the creation operator for n- particles of m~mentum k= -kz, 
eq = q2 /2M is the kinetic energy of nucleons and W~c = (P + m~ 2) 112 is the energy 
of pions. The last term in the Hamiltonian (2 ·1) is the interaction of nucleons 
with pions through the nonrelativistic pseudo-vector coupling, in which M~c has 
the form 

M _ fk 
k- ( rl)lf2 ' m,. W~c~~, 

(2·2) 

·where f is taken to be 1.1 and S2 represents the volume. 
By making use of the variational state which consists of a coherent mixture of 

neutrons, protons and condensed negative pions, Sawyer and Scalapino have found that 
the expectation value of the Hamiltonian (2 ·1) is less than the energy of normal 
neutron matter, if the nucleon density is greater than the critical density Pc.m.f.; 
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m,/oh(0k+ ekY 
Pc,m.f. = 4f2k2 .. (2·3) 

where the subscript· m.f. signifies the result of mean field approximation for n­
fields. In Appendix A we show that, if tne instability condition is satisfied, these 
procedures are really reasonable· according to the method of normal mode. 

The Hartree-Fock state in our case is the normal state of neutron matter in 
which all the single-particle states are filled by neutrons up to the Fermi momen­
tum qF set by the total nucleon density (3zr2p) 113: 

(2·4) 

where. I 0) is the true vacuum. In order to find an approximate eigenmode associat­
ed with n-, we define an operator as 

(2·5) 

where the second term on the right-hand side is the particle-hole operators coupled 
with the n- field. Then the coefficients A and .~ are to be determined by the 
RPA equation {1·1). The commutator of Skt and His obtained as follows: 

+I; { (eq-k -eq) ~k (q) -iMkAk}nqtrJ.Pq-k, (2·6) 
q 

where 8 'is the ordinary step function. Identifying Eq. (2 · 6) with - 0Sk t, we 
· obtain a set of equations: 

(0-0k)Ak-2iMk I; 8(qF-q)~k(q) =0, (2·7a) 
q 

(2·7b) 

From Eqs; (2·7a) and (2·7b), the eigenvalue equation for 0 IS given by 

1 = _ MqFfZk2 ¢(k, 0) 
2n2m,.2 0k (0- 0k) 

(2·8) 

¢(k, 0) = 0+ ek _ qF {(0+ ekY _ 1}ln[ 0+ ek+kvF [ 
. 2ek 2k k2vi . 0 + ek -kvF 

(2·9) 

and VF is the Fermi velocity. 
For such a density p that the state defined by Eq. (2·4) is still stable, the 

right-hand side of Eq. (2·8) is shown in Fig. 1 as a function of 0, for 0k>kvF-ek. 
In Fig. 1 the intersecting points A, · · ·, B, C and D determine the frequencies of 
approximate eigenmode s_kt· The points between A and B correspond to· the con­
tinuum states of proton particle-neutron hole, and: become a branch cut as !J~=. 
The point C represents the collective motion of particle-hole pairs. The point D 
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"""""":;:'-t"";;t--T-+--t-i7"'7"5>'"'7"St---T--+--T-+.--+----:~-w Fig. 1. The right·hand side of the 

corresponds to the 7r state. 

eigenvalue equation (2·8) as a func­
tion of (1), for (l).>kvp-E.. Eigen­
frequencies are represented by the 
points A, B,. · ·. Oblique lines repre­
sent the region of continuous spectra. 

As the density is increased, the loop between C and D is lifted up and there­
fore the points C and D come closer to each other. At the critical density Pc 
they coincide with each other, and it becomes a double root of Eq. (2 · 8). The 
complex eigenfrequencies appear at the densities above Pc· Then, according to the 
criterion, the Hartree-Fock state (2 · 4) is no longer sta~le with respect to this 
kind of collective oscillation. This statement followed. from the method of normal 
mode corresponds to the double pole condition in the Green's function method. 

For (l)+ek~kvF, we obtain 

(2 ·10) 

In this case C and D coincide with each other at 

(2 ·11) 

and the corresponding critical density is 

_ m/(l)k ((l)k +.skY 
Pc- . 4j2k2 ' (2 ·12) 

which agrees with Eq. (2 · 3) obtained by the mean field method. If the instability 
is arisen, the variational procedure to obtain the new ground state is given in 
Appendix A in connection with the 7r- condensed state used by Sawyer et al.4> 

§ 3. Migdal's model 

In the same way as discussed in § 2, we apply the instability criterion based 
on the method of normal mode to the pion-nucleon system with the Hamiltonian 
given by 

(3·1) 

H 0 consists of the kinetic energy of nucleons and the energy of pions: 

Ho= I; eqCqtCq +I; (l)kf/Jkt · f/Jk , (3·2) 
q k 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/54/5/1429/1913410 by guest on 21 August 2022



Instability of Neutron Star Matter for Pion Condensation 1433 

where Cqt is the 4-compoJ1-ent creation operator for nucleons defined by 

C/= (pqttPqltnqttnq/), (3·3) 

and f/>1ct the pion field operator. Then the creation operators for n+, n- and n° 

are respecti~ely represented by 

(3·4) 

HnN is the P-wave pion-nucleon interaction: 

(3·5) 

HNN is the effective nucleon-nucleon interaction which excludes one-pion exchange 
terms/0l and therefore HNN is mainly the short range interaction: 

(3 ·6) 
• 

In Eqs. (3·5) and (3·6), pa are the matrices defined by 

pl= (~ ~); 2 (0 (J:r: = I ~). 2 ( 0 Pv = ii 
-ii) 

0 ' 

2 (I p. = 0 ~I); p3= plp2; 4 (I 0) p = 0 I ' (3·7) 

where I is the 2 X 2 unit matrix. H' contains the other interactions, e.g., S-wave 

pion-nucleon interaction and pion-pion interaction, which are neglected in this paper. 
First, we look for an approximate collective eigenmode associated with neutral 

pions of momentum k. We introduce an operator 

S~c<0>t=X1~0~¢~c<0>t+X2~0~¢~~+ I; [1Jl,~c(q) ·C/p1Cq-~c+1J2,1c(q) ·Cqtp1p,2Cq-/c]. (3·8) 
q 

Then, utilizing the fact that the v (k) 's are mainly the short range interaction, 

we have 

X {1JI,Ic(q) -1}2,~c(q)} ]¢k0>t+ [a>~cX2~0k-i.J2M~ck 

X I; {(}(qF-q) -(}(qF- [q-k[)}. {1Jl,k(q) -1}2,/c(q)} ]¢~~ 
q ' 

-(}(qF- [q' -k[)} {1JI,Ic(q') -1J2,1c(q')}] ·Cqtp1Cq-/c 

+I; [ (eq-k '-- eq) 1J2,1c (q) + (i/ .J2)M~ck (X1~0~ -X2~0f) 
q 

(3 ·9) 
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where the w/s are given by some linear combinations of the v(k)'s and the v(O)'s.­
By equating Eq. (3·9) with -wSkcolt, the equations for obtaining the coef­

ficients in Eq_. (3 · 8) are as follows: 

(w -wk) Xr;0fc =i·./2MJ£. ~ {() (qF-q) -{} (qF-[q -kf)} 
q 

X {1Jr,k(q) -1]2,k(q)}, (3 ·lOa) 

(w + wk) X2;0fc=iv'2Mkk· ~ {() (qF-q) -{} (qF-fq--kl)} 
q 

(3 ·lOb) 

X {1Jr,k(q') -1]2,k(q')}, (3·10c) 

• (w + eq-k- eq) 1J2,k (q) = (ws,k/2!2) ~ {() (qF-q') -0 (qF-[q' -kl)} 
q' 

X {1Jr, k ( q') -1]2, A:(q')} 

- (i/ v'2)Mkk (Xr;olc- x2;ofc). (3·10d) 

From Eqs. (3·10c) and (3·10d), we obtain 

C ) C ) z M kk C Xr;olc - x2:0D 
1Jr,k q -1]2,k q ~ v'2 (w+eq-k-sq){l+g<0>(k)xo(k,w)} 

(3 ·11) 

where 

Xo(k,w)= 1 ~()(qF-q)-{}(qF-[q-kl). 
N(qF) q {)) + Cq-k--, Cq 

=__!_[1 -~{(w+ s"Y -l}lnJ w+ sk+kvF 
2 Zk Pvi · w+ sk_-kvF 

(3 ·12) 

g <o> (k) = N(qF) (w +w ) 2!2 l,k 3,k (3·13) 

and N(qF) =!JMqF/ (277:2) is the density of states per unit energy for a nucleon 
on the Fermi surface. 

The solubility condition for the resultant equations, which are obtained by 
substituting Eq. (3·11) into Eqs. (3·10a) and (3·10b), leads to the eigenvalue 
equation for co: 

1 _IIo(k,w) · 
- {))2-{))k2 , 

., 
(3 ·14) 

where II0 (k, w) is the polarization operator of 77:0 m neutron star matter and is 
given by 
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Instability of Neutron Star Matter for Pion Condensation 1435 

IIo(k w) =- 2N(qF)j2k2 Xo(k,w) (3·15) 
' JJm,.2 1+g<0>(k)xo(k, w) 

As is seen from Eqs. (3 ·14) and (3 ·15) by taking qr~O, there may exist 
a branch of w' according to the following equation: 

1 +g<ol (k)xo(k, w) =0, (3·16) 

which is spin so~nd branch.6' In Appendix B, we briefly show that the spin 
sound branch can be obtained from Eq. (3 ·16), if g<ol (k) is a short range and 
repulsive interaction. However, since we are interested in the instability thresh­
old, we are not concerned with this branch. 

The right-hand side of Eq. 
(3 ·14) is illustrated in Fig. 2 

as a function of' w2, for OJk>ek 
+ kvF and for the case that the 
Hartree-Fock state (2 · 4) is still 
stable. "The point A represents 
the collective motion of particle­
hole pairs. The points betwee:q_ 
B and C become a branch cut 
as !J-H>O. The point_ D cor­
responds to the state_ of n°. 

As the density is increased, 
the point A moves toward the 

Fig. 2. The right-hand side of the eigenvalue equation 
(3·14) as a function of a> 2, for w.>e.+kvF. 

left in figure and intersects w = 0 at the critical density p/0'· At the densities above 
·Pc <ol the eigenfrequencies ·corresponding to the point A beco~e imaginary, so that 
the ground state of neutron star matter must be rearranged according to the criteri­
on discussed before. Thus the instability condition is given by 

wk2 +II0 (k, 0) =0. (3 ·17) 

The critical density is determined by Eq. (3 ·17). 
For w+ek)>kvF, we hav~ 

k ~ _ n2pk2 

Xo ( , w) - M• ( 2 2) • . qF w - ek. 
(3 ·18) 

T~erefore, if we neglect the nuCleon-nucleon interaction, we obtain 

2 2 p (O)= m,. wk 
c 4Mf2 • 

(3 ·19) 

On the ·manner quite parallel to the previous discussions, we investigate the 
instability of neutron star matter with respect to the collective oscillations caused 
by the condensed "n-, ~hich is the only ~harged pion to be coupled with the 
collectiye motion of particle-hole in neutron matter. Let us introduce an operator 
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8 (-)t=X<->"' Ht+x<-lA-<+l+"'CJ- (q) .ctplp 2c k 1,k '1-'k 2,k '1-'-k £....! !:>l,k q .:r; q-k 
q 

(3 ·20) 

Then, by performing tedious but straightforward calculations with the RPA .equa­
tion, we obtain the eigenvalue equation as follows: 

1 _ /L (k, w) 
- w2- wk2 ' (3 ·21) 

where II_ (k, w) is the polarization operator of TC- in neutron star matter and is 
given by 

II_ (k, w) = 2N(qF)f2k2 X- (k, w) 
!Jm,/ 1 + g<-l (k )x_ (k, w) 

(3 ·22) 

with 

X-(k,w)= 2 I:: ()(qF-q) 
N(qF) q w+eq-k-eq-LI 

w+ e~c-LI _ qF { (w+ ek-LI)2 _ 1}ln/ w+ ek+kvF-LI/ (3 .23) 
2e~c 2k k2v/ · w + ek -kvF- Ll 

and 

g<-l(k) =N(qF)Wn. 
. 2!2 ' 

(3. 24) 

The quantity Ll is a function of the v(O)'s and represents the energy shift which 
originates from asymmetry of isospin in the Hartree-Fock state (2 · 4). 

The right-hand side of the eigenvalue equation (3 · 21) is shown in Fig. 3 
as a function of w, for wk>kvF-ek+LI. The points between A and B become a 
branch cut as !J-H;;o. The point C represents the collective motion of proton 
particle-neutron hole pairs. The point D corresponds to the state of TC-. The 
point E corresponds to the state of TC+, which has been excluded from the Hamilto-

Fig. 3. The right-hand side of the eigenvalue 
equation (3 · 21) as a function of w, for w. 
>kvF-e.+.d. 

niaJ;l used by Sawyer et al.4> (See 
also Fig. L) 

The complex eigenfrequencies ap­
pear at the densities above _the critjcal 
density p/->, at which C and D coincide 
with each other. Thus the instability 
condition is found as follows: 

2w.=[fJII_(k,w)] , (3·25) 
OW riJ=wc 

where We is a root of Eq. (3 · 21). 
For w + S~c~kvF, neglecting the 

nucleon-nucleon interaction, we obtain 
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2 2 
X- (k, w) ~ n P (3 · 26) 

MqF(w+ e~:) 

Therefore the instability condition in this case gives the critical density as follows: 

p c"""'>= m,.2w~:a (1+~)a;2+ m,.2eJcw~:2(1- e/) 
c 3v'3f2P 3w~:2 3f2k2 9w~:2 ' 

(3 ·27) *) 

and then the corresponding frequency is 

{)) = .!!!.!!_ { (1 + ~) lf2-~} • 
c v'3 3w~:2 v'3w~: 

(3 ·28) 

The instability conditions for the cases of neutral and charged pions, (3 ·17) 
and (3 · 25), are identical with the double pole conditions in the Green's function 
method. al. gJ,lll 

§ 4. Conclusion 

For the investigation of the instability of neutron star matter, the method of 
normal mode introduced by Sawada and Fukuda has been applied to the models 
discussed by Sawyer and Scalapino and by Migdal. The application to the former 
gives the same critical nucleon density for the instability threshold as the one 
obtained by means of the mean field method. On the other hand, the application 
to the latter reproduces the results which have been obtained by means of the 
Green's function method. Also the double pole condition in the Green's function 
method has been explained from the viewpoint based on the collective eigenmode. 

Appendix A 

, In this Appendix, according to the method of normal mode, we give a pro­
cedure to obtain a new ground state for, the system described by the Hamiltonian 
(2 ·1), if the instability is arisen by the approximate collective eigenmode (2 · 5). 
Sawada and Fukuda have shown that, if the system is unstable with respect to 
the collective oscillation characterized by an approximate eigenmode St, the new 
ground state can be obtained from the variational principle by making use of 
trial functions 

I 'IJ!(a) )=exp[i{S(a)t +S(a)} Jl (/)o), (A·1) 

where S(a) has the same structure as S and the a's are variational parameters. 
In our case the variational trial function is 

(A·2) 

*l The difference between numerical factors in Eqs. (2·12) and (3·27) in the lowest order 
approximation is referred to the description of pions by the Schrodinger equation or the Klein­
Gordon equation. 
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Here it is impotant to note that we must pay attention to the charge neutrality 
condition of the state (A· 2). We divide the operator on the_ right-'hand side of 
Eq. (A· 2) into 

U~=exp(Aakt -A*ak) (A·3) 

and 

(A·4) 

where 

(A·5) 

with the replacement of Bq=(}q exp(icp). U~ is the operator which cangenerate 
the coherent state of 7C-, i.e., the condensed state of 7C.-. Then, if we take the 
7C- condensed state as the trial function, the variational ground state energy is 

(A·6) 

where 

(A·7) 

is the state with the 7C- condensate in the Fermi sea of neutrons. Although the 
state J f])cond) is the state with -electric charge, the condition-of charge neutrality as 
a whole can be considered as a constraint condition on the variational calculations. 

In the calculation of (A· 6), it is seen that the 7t- fields _in H defined by 
Eq. (2 ·1) may be replaced by the square root of the number of condensed pions, 
namely, the mean field. The unitary transformation of the Hamiltonian left in 
Eq. (A· 6) is the analogous transfdrmation with the one introduced by Yoshida 
on the theory of superconductivity,12' and also is equivalent to the canonical trans­
formation performed by Sawyer et al.4' Based on the coherent state representation 
of proton particle-neutron hole pairs~ the variational calculation~> to be continued 
have been given in the preceding paper by making use of the saddle-point method.5' 

Appendix B 

We shall briefly review the presence of the spin sound branch, when the 
condition (3 ·16) is satisfied. If g<o> (k) is the short range and _repulsive interaction, 
it behaves like a positive constant in the limit k---?0. Therefore, w must tend to 
zero in the limit k---?0 in order that Eq. (3 ·16) is satisfied. Accordingly we have 

(k ) ~ w 1 w + kvF ' Xo , (J) -1--- n , 
2kvF w-kvF 

(B·1) 

and the condition (3 ·16) is 

(B·2) 
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Instability .of Neutron Star Matter for Pion Condensation 1439 

When we take the limit qr~O in Eq. (B · 2), we have a branch of w in the 
region of long wave-length with the energy , 

w=kvF, 

which is the spin sound in the Fermi system. 
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