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ABSTRACT: Nonlocal continuum, in which the (macroscopic smoothed-out) stress 
at a point is a function of a weighted average of (macroscopic smoothed-out) 
strains in the vicinity of the pOint, are of interest for modeling of heterogeneous 
materials, especially in finite element analysis. However, the choice of the 
weighting function is not entirely empirical but must satisfy two stability con­
ditions for the elastic case: (1) No eigenstates of nonzero strain at zero stress, 
called unresisted deformation, may exist; and (2) the wave propagation speed 
must be real and positive if the material is elastic. It is shown that some weight­
ing functions, including one used in the past, do not meet these conditions, 
and modifications to meet them are shown. Similar restrictions are deduced for 
discrete weighting functions for finite element analysis. For some cases, they 
are found to differ substantially from the restriction for the case of a continuum 
if the averaging extends only over a few finite elements. 

INTRODUCTION 

Nonlocal continuum models, in which the stress at a given point is 
assumed to be a function of a weighted average of the strains within 
the neighborhood at that point, offer the possibility to take into account 
the stress-strain interaction at distance due to heterogeneity of the mi­
crostructure. Interest in this modeling approach was revived recently as 
it was realized that some sort of averaging over a characteristic volume 
is required to model the strain-softening zones in heterogeneous brittle 
materials and their progressive damage due to microcracking (1-3). 

Some attempts have been made to apply nonlinear nonlocal material 
models in finite element analysis of dynamic failures caused by strain­
softening. Computer results, however, indicate that nonlocal material 
models are highly susceptible to various instabilities, not only in the strain­
softening range but also in the elastic range. The intent of this study is 
to examine the instabilities in the elastic range, which are entirely due 
to the modeling approach, in particular, the choice of the weighting 
function used for strain averaging. 

NON LOCAL MEDIUM 

In the classical, or local, theory of linear elasticity, the constitutive re­
lation may be written as <Iij (x) = C;jkm (X)Ekm (x), in which <Iij' Eij = Carte­
sian components of the stress and strain tensors; (:ijkm = elastic constants 
that may depend on location vector; x; and Eij = (Ui,j + uj,i)/2, in which 
Ui = displacement components (repeated subscripts imply summation, 

'Prof. of Civ. Engrg. and Dir., Center for Concrete and Geomaterials, North­
western Univ., Evanston, Ill. 60201. 

2Grad. Research Asst., Northwestern Univ" Evanston, Ill. 60201. 
Note.-Discussion open until March 1, 1985. To extend the closing date one 

month, a written request must be filed with the ASCE Manager of Technical and 
Professional Publications. The manuscript for this paper was submitted for re­
view and possible publication on January 27, 1984. This paper is part of the Jour­
nal of Engineering Mechanics, Vol. no, No. 10, October, 1984. ©ASCE, ISSN 
0733-9399/84/0010-1441/$01.00. Paper No. 19198. 

1441 

and subscripts preceded by a comma denote partial differentiation). The 
equations of motion are <Iij,j = plii in which p is the mass density, and 
superior dots denote time derivatives. 

In the theory of statistically inhomogeneous materials, it has been found 
that. the sm~othed-out macrostresses, <Iij' and macrostrains, Eij' repre­
sentmg certam averages of the actual randomly distributed microstresses 
and microstrains, do not have a point correlation. Rather, the entire 
(smoothed-out macroscopic) stress and strain fields within a certain 
characteristic volume are mutually related (4,21-25). In the simplest the­
ory of this kind, proposed by Kroner (21,22), Kunin (24), Krumhansl 
(23), Beran and McCoy (4), and Levin (25), and developed in detail by 
Eringen and co-workers (5-20), the components of the stress tensor, <Iij' 

are assumed to be expressed by an averaging integral over the strains 

<Iij (x) = i o:(x - x' )C;jkmEkm (x' )dV (x') ............................. (1) 

in which V = volume of the body; Cijkm = the elastic moduli, which may, 
but need not, depend on x - x'; the products of o:(x - x' )Cijkm are called 
the nonlocal elastic moduli; and o:(x - x') is a given weighting function 
of the distance Ix - x'I. This function must satisfy the normalizing con­
dition, f vo:(x - x' )dV = 1, so that the correct constitutive relation is ob­
tained for the special case of uniform strain (E = const.). The differential 
equation of motion has generally been considered in a the usual form, 
<Iij,j = pli,;. Recently it has been suggested that it is also possible to in­
troduce an averaging integral on the right-hand side of the equation of 
motion, i.e. over the term pli,;. Such generalizations, however, are not 
considered in this paper. 

TABLE 1.-Fourler Transforms of Various Weighting Functions 
Number Name Weighting function, a(5) Interval Fourier transform, a*(w) Sign 

(1) (2) (3) (4) (5) (6) 

1 Normal 
_1_e-s2/212 distri- -x < 5 < ::c e-w2/2/2 >0 

bution \12,; I 

Triangular 7(1-7 151 ) 
I 

2 (~)'( 1 - cos~) 2 151 < 2 "'0 

1 I 2 wi 3 Uniform - 151 < 2 -sin- ;:;0 I wi 2 
4 Spike 8(5) -x < 5 <::JO 1 >0 

5 Spiked 1 - c I 2 wi 
C8(5)+- 151 < 2 c + (1 - c) - sin-

uniform I wi 2 
6 Spiked 

C8(5) + (1-C)7 [1-7151] 
I 

C + 2(1 - C)(~) 2 (1 - cos~) trian- 151 <2 
gular 

7 Bilateral 
expon- ..: e-'s;I -x < 5 < Xl 

1 >0 ---
ential 21 1 + (wl)2 

8 Cauchy 1 I 
distri-

;[2+ 52 
-Xl < 5 < x e-'wl' >0 

bution 

9 Hyperbolic [~ICOShG) r [ COSh( ~;I) r -IX < 5 < x >0 cosine 
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FIG. 1.-Minlmum Value for Spike Coefficient, c 

For the sake of simplicity, we consider only an infinite elastic body 
subjected to one-dimensional deformation, for which Eq. 1 may be sim­
plified as 

O'(x) = E(e(x», (e(x» = E i~ etx + s)ex(s)ds ....................... (2) 

with i~ <X.(s)ds = 1 ............................................ (3) 

in which s = x' - x; 0' = stress; e = au/ax := strain (0' and e are both 
smoothed-out macroscopic quantities); (e) = average strain; u = displace­
ment; E = Young's modulus, which is assumed to be constant; and <X.(s) 
= a given empirical weighting function, which represents a material 
property and is symmetric, i.e., ex(-s) = exes). Table 1 lists various pos­
sible simple formulas for exes), of which the first two have been used by 
Eringen and co-workers (5-20). In these expressions, 1 represents a char­
acteristic averaging length (Fig. 1), which is a property of the given ma­
terial and may be regarded as having a certain fixed ratio to the maxi­
mum size of the inhomogeneities in the microstructure. The normalizing 
condition (Eq. 3) ensues from the requirement that, for a homogeneous 
strain state (e = const.), Eq. 2 must reduce to O'(x) = Ee(x). 

The classical, local continuum is obtained as a special case when exes) 
= 8(s) = Dirac's delta function (No.4 in Table 1). As will be seen later, 
there is some merit in considering various linear combinations of a local 
continuum and a nonlocal continuum. Such combinations may be ob­
tained by superimposing a spike on a smooth distribution, as exempli­
fied in Table 1, Nos. 4 and 5, in which c is an arbitrary real coefficient, 
Os c s 1. For c = 0, we have the usual nonlocal medium (No.3 or 2), 
and for c = 1, we have the classical local medium as a special case 
(No.4). 

UNRESISTED DEFORMATION AND WAVE PROPAGATION 

Any theory of an elastic continuum must obviously satisfy the follow 
ing two requirements: 

Requirement I.-If the stresses, O'(x), are everywhere zero, the strains 
in a stable material must be also zero, i.e., no unresisted deformation 
(zero-energy deformation mode) may be permitted by the theory. 
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Requirement n.-In a stable material, the wave propagation velocity, 
v, must be real. 

From these two requirements it follows that the Fourier transform of 
the weighting function, exes), must be positive for all real w, i.e. 

ex*(w) = fX e- iws ex(s)ds > o ....................................... (4) 
-x 

Let us now prove this condition, considering Requirement I first. Ac­
cording to Eq. 2, O'(x) = 0 occurs when 

Ix e(x + s)ex(s)ds = 0 ........................................... (5) 
-x 

This condition may not have any nonzero solution (eigenstate). A gen­
eral strain distribution may be approximated as e(x) = ~k ak exp (iWkX), 

in which ak and Wk are some real numbers (k = 1, 2, 3, ... ), and the 
actual strain is to be understood as the real part. No single term of this 
expansion, i.e. 

e(x) = a e iwx .................................................... (6) 

with a real amplitude, a, and a real frequency, w, may satisfy Eq. 5. 
Substituting Eq. 6 into Eq. 5, we obtain the condition that the equation 
f~x exes) exp [iw(x + s)]ds = 0 must not have any solution, and dividing 
this equation by exp (iwx), we conclude that ex*(w) must not be zero for 
any w. Since ex*(w) must be continuous, it must be either positive every­
where or negative everywhere. That a positive ex*(s) is the only possi­
bility cannot be proven without Requirement II. 

Second, consider the Requirement II. We restrict attention to small 
deformations, such that in one dimension e(x) = au(x)/ax, in which u 
= displacement. The equation of motion is aO'/ax = p a2u/at 2

, in which 
t = time and p = mass density. Eq. 2 then yields 

a IX au(z) a2u 
E - -- ex(x - z)dz = p -2 (z = X + s) .................. (7) 

ax -x az at 

Any wave may be decomposed into harmonic components of the type 

u(x) = a eiw(x-vt) ................................................. (8) 

in which v = wave velocity, w; a := real constants; and w ¥ 0 (since for 
w := 0 there is no strain). Substituting Eq. 8 into Eq. 7, multiplying the 
equation by [exp (iwvt)]/(iwpa), and substituting z := X + s, dz = ds, we 
obtain 

E a [ . fX . ] -- e1WX e1ws (-)d - 2· jwx (9) p ax -x ex s s - V !W e ............................ . 

Furthermore, substituting s = -y, and noting that ex(-s) = <X.(s), we find 
that the integral in this equation equals J~x exp (-iwy)ex(y)dy, which rep­
resents ex*(w). Then, differentiating e1wx ex*(w) with respect to x, and di­
viding the equation by iwe iwx, we finally get 

2 E 
v =; ex*(w) .................................................. (10) 
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We see that vis real if and only if a*(w) is positive for all w except w = 
O. The fact that a*(w) must be positive also for w = 0 follows from Re­
quirement I, as already proven. For the usual local continuum (Table 1, 
No.4), we have a*(w) = 1 for all w. 

Note that Requirement I is applied only to an elastic continuum. It 
could not be applied, of course, to inelastic materials with residual stresses. 
However, Requirement I could then be replaced, with equal results, by 
the requirement that, if the stress rate, &, is zero, the strain rate E must 
also be zero, provided that the tangent modulus, Et = du /dE., is positive. 

EXAMINATION OF SOME WEIGHTING FUNCTIONS 

Eq. 10 with the condition a*(w) > 0 was obtained in a somewhat dif­
ferent manner by Eringen (Ref. 5, Eq. 4.11) as part of a wave dispersion 
study. It seems, however, that Eq. 10 has not yet been used to check 
various weighting functions, a(s), and, in fact, one function that violates 
the condition a*(w) > 0 has been used subsequently. 

Looking now at Table I, we see that the condition a*(w) > 0 is not 
satisfied for the triangular wei~hting function, used previously in some 
works (12,14,16,19). In finite element analysis, it is found that, when 
this function is used, spurious oscillations rapidly develop and soon pro­
duce an overflow number. 

Further, we may note that the uniform weighting function (Table I, 
No.3) is also inadmissible. This simple function has, however, one im­
portant advantage for the modeling of inelastic behavior. For this func­
tion, and only for it, 1(E.(x» represents exactly the change of distance 
between material points at x + 1/2 and x - 1/2, which appears to be 
useful for models of strain-softening (2). 

Correction for the uniform weighting function (No.3) or the triangular 
one (No.2) may be obtained by using a combination of local and non­
local media. Such a combination, which has already been considered by 
Eringen (18) for the purpose of matching (by a nonlocal continuum) the 
exact wave dispersion relation for an atomic lattice, may be obtained by 
superimposing a spike in the form of Dirac delta function, as indicated 
in Table I, Nos. 5 and 6. For the spiked triangular distribution, its Four­
ier transform (No.6 in Table 1) is always positive if c > O. Thus, it suf­
fices to choose any coefficient c > 0 to prevent nonzero stress states at 
a zero strain state. 

For the spiked uniform distribution we need, according to Table I, No. 
5, that 

c sin y 
-->---' 
1- c Y , 

wI 
Y ="2 .................................... (11) 

The location of the highest maximum of the right-hand side for y > 
o is given by the condition tan y = y, from which y = 4.49341. Eq. 9 
then yields the condition 

c> 0.178465 (Table I, No.5) .................................. (12) 

FINITE ELEMENT ApPROXIMATIONS 

When the continuum is approximated by finite elements, the stability 
conditions may be different. Are they more severe or less severe? 
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Consider a one-dimensional system of identical constant-strain ele­
ments (Fig. 2), with nodes numbered as k = I, 2, 3, ... Noting that the 
strain in the kth element is E.k = (Uk+l - uk)/h, in which Uk are the nodal 
displacements and h is the element length, Eq. 2 for the average stress 
may be approximated as 

(1k = E [: (Uk+l - Uk) + 1 - c ± aj (Uk+j+l - Uk+j )] •••.••.••••••••• (13) 
h h j~-n 

in which Uk denotes the average stress in the kth element bordered by 
nodes k and k + 1; subscripts j, k refer to element or node numbers; n 
is the number of elements over which the averaging is made at each 
side of the central element; c = coefficient of a superimposed delta func­
tion spike; and aj are the given weights for the case without the spike. 
These weights may be chosen either as the values of a(z) at element 
centroids, or (better) as the integrals of a(z) over the areas of the re­
spective elements, with s being measured from the centroid of the ele­
ment number, k. These weights must be normalized so that ~ aj = 1. 

According to Requirement I, the difference equation in Eq. 13 may not 
allow a nonzero solution (eigenstate) when Uk = 0 for all k. We seek a 
solution of the form 

Uk = A e
iwhk (k = 1,2, ... ) ...................................... (14) 

in which A and ware real constants, and i 2 = -1. Substituting this into 
Eq. 13 where Uk = 0, we get 

a) Finite I-D Bar 

k=l 2 k-n k 

2h 

~ _~bJ\J\A/~ 
o x 10h 

:~ 
-4 

o x 10h 

Weighting Functions 

.618 
illIIillID82~.254 • 

n = 1, £ = 3h, c = 0.237 

7/15 
b) Infinite 1-D Bar 4/l?IJl11UL15 
i) ~ve ight ing Func t ion Wll1llli.lllW 

-7h 7h 

n = 1 
£ = 3h 
c = 0.2 

n ,09..l8 n '8 
ii) Weighting Function tll~1WWlllllJ.illlliJ.w 

n = 2 
£ = 5h 
c = 0.1 

h 

c: I C\ A C\I 
~ _h

V V V 1 

~'~ 
-2~--------~--------~ 

-7h o 7h 

FIG. 2.-Nonzero Strain Fields at Zero Stress 
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TABLE 2.-Minimum Values of Spike Coefficient, c, for Finite Element System 
and Uniform Weights 

n 
(1) 

..., 
o 
o 

1 
2 
3 

c n c n c n c 
(2) (3) (4) (5) (6) (7) (8) 

0.25000 4 0.18472 8 0.18019 30 0.17860 
0.20000 5 0.18261 10 0.17959 50 0.17851 
0.18898 6 0.18142 20 0.17876 x 0.17847 

LC==:C=====::::J=====:C:====::::JI==l0:::f~ 
~ L = 100" r 0, / A=lin.2 

WED = 4 x 10
6

E

PSi r = 0.000225 lb. - sec.
2 /in~ 

-------- No. Time (0.0001 sec.) 

U1~ ~, 
o t (sec) 

O.,~ ______ ~ ______ ~ 

o 50 100 

x 

..., 
c 
c 
c 

1 0.15 
2 1.95 

x 

3.75 
5.55 
7.50 

c = 0.3 

FIG. 3.-Displacement and Strain Fields for Spiked Uniform Weighting Function 
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n 

c(e iwh 
- 1) + (1 - c) 2: (1; (ei(j+I)wh - eijwh

) = 0 .................... (15) 
j=-n 

The real part of this equation yields 

( 

sin y )-1 
,~ 1 - ft. _; 'in [(2j + l)y[ ; 

wh 
y = 2" ................... (16) 

and the imaginary part is found to yield the same equation. 
Now, to avoid unresisted deformations, the value of c must be larger 

than the largest value of the right-hand side function in Eq. 16 for all 
real w. Since this function is periodic with period 41T, one needs to look 
for the maximum only within the interval 0 ~ w ~ 41T. The maximums 
have been found by computer search first for the uniform distribution, 
(1; = 1/1, and the results are summarized in Table 2; c must be larger 
than the values in this Table. 

The maximums of the right-hand side of Eq. 16 have then been found 
for (1; according to the triangular distribution, the normal distribution, 
and the bilateral exponential distribution. For these distributions, the 
maximum right-hand side of Eq. 16 was found to be always negative. 
So we conclude that the discrete forms of these distributions are always 
admissible even without the spike. This result is interesting for the tri­
angular distribution since its continuous form (without a spike) is not 
admissible. Here, the discretization makes the limit on c less severe than 
for the continuum version, whereas for the uniform distribution, the 
discretization makes the limit on c more severe (Table 2). 

Experience with numerical finite element calculations shows that the 
solution does not behave well if c is close to its minimum admissible 
value. The situation seems similar to that in solving a linear equation 
system whose matrix is nearly singular (ill-conditioned). Noise in the 
form of large oscillations builds up if c is close to its limiting value. 
Therefore, the difference of c from its limiting value must be finite and 
sufficiently large. Numerical experience showed that c > 0.3 is required 
for the uniform weighting function for a continuum (Fig. 3). 

CONCLUSIONS 

1. In the formulation of nonlocal elasticity, the weighting function used 
for strain averaging must be chosen such that: (1) Unresisted deforma­
tions, i.e., deformations at zero stress, cannot take place; and (2) the 
wave propagation speeds must be real. 

2. Not all reasonable looking weighting functions, and not all of those 
used in the past, satisfy this condition. One of those is the triangular 
weighting function. Remedy can be obtained by superimposing a delta 
function spike on the weighting function, which is equivalent to a linear 
combination of stresses from local and nonlocal continua. 

3. In finite element applications, the conditions resulting from the 
foregoing requirements are similar but not exactly the same. The use of 
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a weighting function that is close to violating the foregoing requirements 
causes numerically difficulties. 
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