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A direct numerical simulation of a turbulent channel flow with a lower curved
wall is performed at Reynolds number Reτ ≈ 600. Low-speed streak structures are
extracted from the turbulent flow field using methods known as skeletonization in
image processing. Individual streaks in the wall-normal plane averaged in time
and superimposed to the mean streamwise velocity profile are used as basic states
for a linear stability analysis. Instability modes are computed at positions along
the lower and upper wall and the instability onset is shown to coincide with the
strong production peaks of turbulent kinetic energy near the maximum of pressure
gradient on both the curved and the flat walls. The instability modes are spanwise-
symmetric (varicose) for the adverse pressure gradient streak base flows with wall-
normal inflection points, when the total average of the detected streaks is considered.
The size and shape of the counter-rotating streamwise vortices associated with the
instability modes are shown to be reminiscent of the coherent vortices emerging
from the streak skeletons in the direct numerical simulation. Conditional averages of
streaks have also been computed and the distance of the streak’s centre from the wall
is shown to be an essential parameter. For the upper-wall weak pressure gradient
flow, spanwise-antisymmetric (sinuous) instability modes become unstable when sets
of highest streaks are considered, whereas varicose modes dominate for the streaks
closest to the wall.
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1. Introduction

Turbulent boundary layers with pressure gradient are present in many realistic
internal and external aerodynamic flows (flow around turbine blades, aerofoils, to cite
a few). Many different groups examined such flows with incipient separation or near
separation. To understand flow which undergoes separation and subsequent turbulent
reattachment is of prime importance to correctly predict the efficiency of many
aerodynamic devices, such as lifting bodies or turbine blades. Such turbulent flows
with adverse pressure gradient (APG) have however been regarded as being among

† Email address for correspondence: ehrenstein@irphe.univ-mrs.fr
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the most challenging flow dynamics to predict using turbulence models according to
Wilcox (1993). Flows influenced by a strong pressure gradient over a long streamwise
distance are particularly difficult to model. The Reynolds stress equations, which
are at the basis of the Reynolds-averaged Navier–Stokes equations, as well as the
more accessible two equations models, include a number of terms that need to be
modelled. The modelling is usually based on a scaling of the mean velocity profiles
and turbulent quantities for a turbulent boundary layer in equilibrium. The mean
velocity profile has been examined by a number of groups, with the object to recover
collapsing profiles in different regions of the boundary layer. Most of these studies
are conducted experimentally at large Reynolds numbers (see Sk̊are & Krogstad
1994; Bernard et al. 2003; Song & Eaton 2004). For a turbulent boundary layer with
APG, several scalings have been proposed (Clauser 1954; Castillo & George 2001
and Aubertine & Eaton 2006) but none of them have been demonstrated to be valid
for a large range of pressure gradients and Reynolds number. Taking benefit of the
constant increase of numerical simulation capabilities, direct numerical simulations
(DNS) of such flows with pressure gradient are now possible but restricted to small
or moderate Reynolds numbers. The Reynolds number accessible by DNS has not
significantly increased as compared to the first DNS of APG flows by Spalart &
Watmuff (1993) or Na & Moin (1998). However, DNS has allowed to cover a large
range of pressure gradients for attached or separated APG flows on flat walls or with
various curvatures (see Skote & Henningson 2002; Lee & Sung 2008; Marquillie,
Laval & Dolganov 2008; Lee & Sung 2009).

The effect of pressure gradient in turbulent boundary layer is not restricted to
the difficulty in finding proper scaling for both the inner layer and for the outer
region of the boundary layer. The APG also modifies significantly the distribution
of Reynolds stresses as reported by many authors for different pressure gradients,
with strong streamwise variation or nearly constant ones, as, for instance, in Sk̊are &
Krogstad (1994). In the presence of APG, all the components of the Reynolds stress
are affected and, independently from the first peak in the inner layer, a second peak
appears and moves away from the wall. The intensity of the peak is variable and
depends on the strength and the extent of the pressure gradient and consequently
on the equilibrium state of the boundary layer. A comparison of several experiments
and DNS of APG flows in various configurations and for a large range of Reynolds
number was performed by Shah, Stanislas & Laval (2010). This study emphasizes
the behaviour of the second peak in the streamwise component of the Reynolds
stress. This second peak is reported to be located in the region between y/δ = 0.4 and
y/δ = 0.5, except for the DNS of Spalart & Watmuff (1993) which is at a fairly low
Reynolds number.

The underlying mechanism of the energy peak inherent in APG near-wall turbulence
remains to be understood. It may be conjectured that the production of intense
vortices associated with the peak is connected with the breakdown of more organized
turbulent flow structures. A commonly admitted breakdown scenario which has been
proposed for the late stages of transition processes to turbulence in wall-bounded
flows is based on streak instabilities. The presence of elongated streaks gives rise to
inflectional velocity profiles in the surrounding flow, exciting secondary instabilities
which evolve into streamwise vortices, leading to a self-sustained process in shear flows
(see Waleffe 1997). Streak instabilities have been studied in zero-pressure gradient
shear flows, such as channel flows, confirming that the instability is of inflectional type
and that the instability induces spanwise oscillations of the streak (Reddy et al. 1998;
Elofsson, Kawakami & Alfredsson 1999). Sinuous (anti-symmetric) streak instability
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modes have been shown in an experimental investigation by Mans, de Lange & van
Steenhoven (2007) to be at the origin of natural breakdown in a flat-plate boundary
layer with free-stream turbulence. Anti-symmetric perturbations are likely to be
selected for inflectional streak base flow profiles in the spanwise direction, whereas
wall-normal inflection points rather trigger varicose (symmetric) instability modes.
Varicose modes have, for instance, been reported for streak distributions generated
by nonlinear Görtler vortices in Hall & Horseman (1991).

Conducting an experiment in a low-turbulence wind tunnel, Asai, Manigawa &
Nishioka (2002) provided evidence for secondary instabilities of streaks initiated by
sinuous as well as varicose modes. It is shown in this latter work that hairpin-like
structures with a pair of counter-rotating streamwise vortices result from the growth of
the varicose mode. These findings, and in particular the streak breakdown associated
with varicose modes, have been retrieved in the numerical study by Brandt (2007)
who considered a single low-speed streak in a laminar boundary layer. Generating an
isolated streak by blowing through a slot, reproducing an experimental investigation
by Acarlar & Smith (1987), the varicose scenario of streak instability in a turbulent
boundary layer has numerically been addressed in Skote, Haritonidis & Henningson
(2002). Symmetric and anti-symmetric turbulent breakdown due to the interaction of
streaks has been documented in Brandt & de Lange (2008). Further evidence of wall-
turbulence generation through the instability and breakdown of low-speed streaks
has been provided in Asai et al. (2007) for the zero-pressure gradient boundary
layer. The mechanism leading to breakdown is shown to be consistent with the
regeneration cycle of wall turbulence (Jiménez & Pinelli 1999). Focusing on the role
of streak instability dynamics in wall-turbulence production, Schoppa & Hussain
(2002) consider a representative steady low-speed streak superimposed to a turbulent
mean velocity profile, corresponding to minimal channel turbulence (Jiménez & Moin
1991). The stability of this streak flow is analysed with the DNS-based approach
which had previously been used for transition studies in free mixing layers (Schoppa,
Hussain & Metcalfe 1995). It appears that only sufficiently strong streaks are unstable
to sinuous modes, while streak transient growth is the dominant vortex generation
mechanism for the streak model considered in Schoppa & Hussain (2002).

Streak instability in APG turbulent boundary layers has found less attention.
Here, we aim at assessing a possible link between the above-mentioned turbulent
kinetic energy peak observed in our simulation data and a streak instability. For this
purpose, in a first step, a technique known as skeletonization in image processing
(Palágyi & Kuba 1999) is used to isolate from the turbulent database averaged low-
speed streak structures. Superimposing the mean velocity profile, a stability analysis
of the streak base flow, varying in both the wall-normal and spanwise coordinate, is
performed by solving the corresponding eigenvalue problem, using a locally parallel
flow assumption along the wall of the divergent–convergent channel. The outline
of the paper is as follows: in § 2, the DNS-procedure is described and some details
of the turbulent APG flow are provided. The streak detection method is briefly
explained in § 3. First, the method is applied in § 4 to a turbulent zero-pressure
gradient channel flow and the stability results for the resulting streak base flows
are discussed. The characteristics of the low-speed streak for the non-parallel APG
flow are investigated in § 5 and the stability results for streak base flows along
the upper wall and the lower curved wall of the channel are provided. In § 6, the
connection between the instability prediction and the coherent structure dynamics in
the simulation data for the APG wall turbulence is discussed and some conclusions
are drawn.
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Figure 1. Computing grid of the DNS in the (x, y) plane (every 16 meshes are plotted in
each direction). The flow is coming from the left.

2. Direct numerical simulation

2.1. The DNS procedure

The algorithm used for solving the incompressible Navier–Stokes system is similar
to the one described in Marquillie et al. (2008). To take into account the complex
geometry of the physical domain (see figure 1), the partial differential operators are
transformed using the mapping that has the property of following a profile at the lower
wall with a flat surface at the upper wall. Applying this mapping to the momentum
and divergence equations, the modified system in the computational coordinates has
to be solved in the transformed Cartesian geometry.

The three-dimensional Navier–Stokes equations are discretized using fourth- and
eighth-order centred finite differences in the streamwise x-direction. A pseudo-spectral
Chebyshev collocation method is used in the wall-normal y-direction. The spanwise z-
direction is assumed periodic and is discretized using a spectral Fourier expansion, the
nonlinear coupling terms being computed using a conventional de-aliasing technique
(3/2-rule). The resulting 2D Poisson equations are solved in parallel using MPI
library. Implicit second-order backward Euler differencing is used for time integration,
the Cartesian part of the diffusion term is taken implicitly whereas the nonlinear
and metric terms (due to the mapping) are evaluated using an explicit second-
order Adams–Bashforth scheme. In order to ensure a divergence-free velocity field, a
fractional-step method has been adapted to the present formulation of the Navier–
Stokes system with coordinate transformation.

The objective of the DNS is to work out a database of a turbulent flow with
adverse pressure gradient at the highest accessible Reynolds number and with a
geometry comparable to the experiment which was carried on in the LML wind
tunnel (Bernard et al. 2003). A channel flow configuration was chosen instead of
two separated boundary layers because channel flow inlet conditions are much easier
to generate. The reason is the difficulty in defining a a priori simulation which
leads to two different boundary layers with statistics comparable to the experiment.
Therefore, the inlet conditions are generated by precursor DNS of flat channel flows
at the equivalent Reynolds numbers. The simulation domain for the DNS with APG
is 4π in the streamwise x direction, 2 in the normal y direction and π in the spanwise z-
direction. The Reynolds number based on the inlet friction velocity (u◦

τ = 0.0494) and
half the channel height h is Reτ = 617. The spatial resolutions are 2304 × 385 × 576
in the streamwise, normal and spanwise direction, respectively. The grid is stretched
in the streamwise direction (see figure 1) in the region of strong pressure gradient.
The computation has been performed on 64 vector processors on the NEC SX8 at
the High Performance Computing Center of Stuttgart (HLRS), with a sustained 640
Gflops performance. The simulation was integrated over 50 convective times (based
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Figure 2. Spatial resolution of the DNS as compared to the Kolmogorov scale η = ν3/4/ǫ1/4.
�x,�y,�z are the mesh sizes in streamwise, normal and spanwise direction, respectively.

on half the channel height and the maximum velocity at the inlet) ensuring statistical
convergence and the statistics were computed over 972 velocity and pressure fields
equally distributed in time.

The ratio of the Kolmogorov scale η =(ν3/ǫ)1/4 with respect to the maximum mesh
size is shown in figure 2. The maximum of this ratio is lower than 2 almost everywhere
in the simulation domain and it takes values of 3.02 in the diverging part and up to
5 very close to the wall (not visible in the figure). However, in order to evaluate the
spatial resolution of the near-wall region, the mesh sizes in wall units (�x+, �y+, �z+)
are more relevant. Their maximum values at the inlet are �x+ =5.1, �y+

min = 0.02
and �z+ = 3.4. The global maximum values are reached in the converging part of the
channel with �x+ = 10.7, �y+

min =0.03 and �z+ = 7.4.

2.2. Characterization of the flow

The pressure coefficient of the DNS is compared with the experiment of Bernard
et al. (2003) (see figure 3). The observed differences between the experiment and
the DNS are expected. Indeed, the inlet conditions are different and the Reynolds
number in the experiment is more than one order of magnitude higher than in
the numerical simulation. In order to characterize the pressure gradient, the non-
dimensional quantity P + = ν(dP/dx)/(ρu3

τ ) was preferred over the Clauser parameter
β = (δ∗/τw) dP/dx. Indeed, channel flow inlet conditions are used and the boundary-
layer displacement thickness δ∗ cannot be defined accurately for the whole flow. The
streamwise evolution of P + is given in figure 3 at the two walls. At the lower wall,
the sign of the pressure gradient changes at x = −0.2 and P + increases very sharply
near x = 0.2. The value of P + is not shown for 0.5 <x < 1.5 which corresponds to
the recirculation region. The curve exhibits a small plateau (P + ≃ 0.3) in the recovery
region for 1.8 <x < 2.6 and monotonically decrease to zero by the end of the bump.
The evolution of the pressure gradient at the flat upper wall is smoother: P + becomes
positive near x = 0.2 and rises up to P + =0.8 at x = 1.7. The pressure gradient grows
more progressively than for the lower wall and the maximum increase is shifted
downstream near x = 1.3. The position of the maximum growth of P + is important
and will be related to the instability analysis in § 5.2.

The friction coefficients Cf = τw/( 1
2
ρU 2

max ) are compared for the two walls in figure 4.
The graph indicates that the flow slightly separates at the lower wall (contrary to
the experiment at much higher Reynolds number) but not at the upper wall. The
minimum friction velocity as well as the minimum of pressure coefficient at the
upper wall are moved forward by δx ≃ 0.5 as compared to the lower wall. The lower
intensity of the pressure gradient as well as the absence of curvature at the upper
wall lead to a positive minimum friction velocity Cf = 1.55 × 10−3. The detachment
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Figure 3. Pressure coefficient Cp = (P −Po)/((1/2)ρU 2
max ) and dimensionless pressure gradient

parameter P + = (ν/u3
τ )(∂P/∂x). The pressure coefficient of the experiment (at the lower wall)

of Bernard et al. (2003) is given as a reference, and the Reτ of the experiment is roughly
estimated from the boundary-layer thickness in front of the geometry.

region can be defined by using the probability density function of reverse flow γu.
Simpson (1981) defined four different states of a separating turbulent boundary layer:
incident detachment for γu > 0.01, intermittent transitory detachment for γu > 0.2 and
transitory detachment for γu > 0.5. The detachment occurs when the time-averaged
wall shearing stress is zero. The result of γu is shown in figure 4 for the lower wall.
In this case, the region of transitory detachment and detachment almost coincide
and is restricted between x = 0.5 and x =1.4. Using these definitions, the maximum
thickness of the recirculation zone is approximately 0.03 which corresponds to less
than 20 wall units based on inlet quantities. The probability of reverse flow is not
shown at the upper wall as the maximum value is lower than 0.33 and the region
with γu > 0.01 is much thinner than for the lower wall.
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Figure 4. Skin friction coefficient Cf = τw/((1/2)ρU 2
max ) (a) and probability density function

of reverse flow γu (b) at the lower wall. A very thin region of reverse flow is present at the
upper wall (not shown) but the maximum probability of reverse flow is lower than 0.33.

As we are dealing with channel flow inlet instead of real turbulent boundary layer,
the size of the boundary layers cannot be defined accurately. However, it is of interest
to have a rough estimation in order to be able to scale and to localize statistical
phenomena and coherent structures inside the boundary layer. The pressure gradient
at the upper wall is obviously too low to recreate a well-defined boundary layer
from the channel flow profile and the characteristics of the boundary layer have been
estimated only at the lower wall. The definition of the boundary-layer thickness δ

was adapted to extract from the channel profile the upper bound of the boundary
layer formed near the wall by using the following criteria: U (y) > 0.8 Umax and
dU/dy(y) < 0.25 Umax/h. The streamwise range where these criteria are satisfied is
shown in figure 5. The boundary-layer thickness is seen to be minimum at the position
of the maximum of friction coefficient (δ = 0.042 near x = −0.7) and increases up to
δ = 0.1 at x = 0.8. It is interesting to note that the value δ =0.06 at the summit of
the bump corresponds to approximately 40 wall units based on u◦

τ at the inlet. The
momentum thickness (θ) and the shape factor have also been computed. Due to
the effect of pressure gradient, the shape factor rises from H ≃ 2 to H > 4.5 near
the centre of the thin separation region. The increase is slow and nearly linear up
to x =0.1 and the slope suddenly increases near x =0.22. This position will be of
importance for the instability results to be discussed.
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Figure 5. Statistics of the turbulent boundary layer above the lower bump. The boundary
layer thickness (δ), defined such that U (y) > 0.8 Umax and dU/dy(y) < 0.25Umax/h, momentum
thickness (θ ) and shape factor (H ) are given for a limited range of streamwise positions where
they can be defined with a fair accuracy.

Figure 6. Iso-value of the Q–criterion (Q = 1
2 [|Ω |2 − |S|2] with S = 1

2 [∇u + (∇u)T] and

Ω = 1
2
[∇u − (∇u)T]) for the whole simulation domain.

The objective of the present study is not to give a complete statistical description of
the DNS near-wall turbulence. A brief overview of the distribution of the Reynolds
stresses and the budget of the turbulent kinetic energy is provided in Laval &
Marquillie (2009) and a more complete analysis was done by Marquillie et al. (2008)
for a DNS of the same flow and the same geometry but at a lower Reynolds number
(Reτ = 395 instead of Reτ = 617). These two analyses stress a strong production peak
of turbulent kinetic energy near the maximum of pressure gradient on both the
flat and the curved walls. As already observed by many authors, the three normal
components of the Reynolds stresses are enhanced. This strong modification of the
Reynolds stresses reveals the production of intense coherent vortices muddled by
complex interactions. Iso-values of the second invariant Q of the velocity gradient
tensor shown in figure 6 gives evidence of these strong coherent vortices. These
structures suddenly emerge at x positions which are in the range of the strong
pressure gradient variations shown in figure 3. A detailed analysis of these vortices
shows that their intensity defined by their average vorticity is much larger than
the average intensity in a zero-pressure-gradient turbulent boundary layer or a flat
turbulent channel flow.
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3. Streaks detections

Streaks are known to be a fundamental element in turbulent boundary-layer
flows. Numerous studies have been devoted to extract key features and statistical
characteristics of the streaks in order to better understand their role in wall-bounded
flows (see Lin et al. 2008 for a recent review). Most of the previous studies have
used experimental data for zero-pressure-gradient flows. Here, the objective is to
analyse the effect of the pressure gradient on the streaks characteristics. For this
purpose, a detection procedure has been developed to extract the centreline of the
streamwise low-speed streaks from the three-dimensional instantaneous velocity fields.
The streaks detection procedure is mainly based on a “skeletonization” algorithm.
The idea of these algorithms is to find a curve (a skeleton) representative of a
shape in space. This skeleton is defined to be equidistant to the shape’s boundary
and is responsible for maintaining its topology. Skeletons are used in a wide range
of applications in computer vision, image analysis and digital image processing.
Medical image analysis, pattern recognition and fingerprint recognition being some
well-known applications of these techniques. The detection process consists of the
following main steps: thresholding of the input data, topological correction of the
binary image and centreline extraction by thinning and pruning. Examples of similar
procedures applied to elongated structures in medical image processing can be found,
for instance, in Palágyi et al. (2006).

The first step is to identify the structure objects in the velocity field. We use the same
detection function used by Lin et al. (2008) for streaks detection from two-dimensional
instantaneous velocity fields obtained from PIV measurements. The three-dimensional
binary image of streaks is obtained by applying a threshold directly to the normalized
streamwise velocity fluctuation field. The resulting binary field, interpolated on a
regular grid for application of the skeletonization algorithms, is composed of “1”
voxel for the low-speed streaks and “0” voxel otherwise (a voxel is the equivalent in
3D of a pixel which represents 2D image data). A top view of the thresholding results
is shown in figure 7(a) for a small region of the lower wall.

Thresholding may produce imperfect results leading to segmented objects having
small holes and protrusions on the object boundary. These small imperfections can
alter the centreline detection by creating undesirable small lines connecting the main
centreline of the streaks to the boundary. Classical mathematical morphological
operators (see Gonzales & Woods 2008) are commonly used as a pre-processing step
to improve the binary field before applying the skeleton detection. As a first step,
holes are filled by applying morphological closing operations (a dilatation followed
by an erosion). Then, a morphological opening (an erosion followed by a dilatation)
is employed to remove the protrusions and the surface layers as a result of the closing
operation. Dilatation and erosion operations are parameterized by a 3D structuring
element which has been empirically determined in order to preserve, in a conservative
way, the shape of the binary objects. An example of this topological correction after
the thresholding can be seen in figure 7(b).

Several algorithms have been developed to extract the skeleton of a binary object
(see Cornea, Silver & Min 2007 for an extensive review). Thinning is a frequently used
method to extract centrelines in a topology-preserving way. This algorithm consists
of deleting step by step border points of a binary object that satisfy topological and
geometric constraints, until only the centreline remains. The curve–thinning algorithm
chosen here (Palágyi & Kuba 1999) has the additional property of producing directly
one-voxel-wide centrelines. The thinning algorithm applied to the corrected binary
image is shown in figure 7(b). The centreline of the elongated streak is clearly identified
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Figure 7. Example of the streaks detection procedure on a small region: (a) thresholding;
(b) topological correction and thinning; (c) pruning; (d ) streak centreline on original
thresholding (top and side view).

by the algorithm; however, small additional branches coming from the remaining
protrusions on the surface of the tubular object can be seen. Also, skeletons appear
in small structures that cannot be identified as streaks.

In order to retain only the main centreline of the streaks, a cleaning procedure,
classically called pruning, is performed. The first step consists of removing the small
structures using a suitable threshold based on the total number of points in the
skeleton. The next step consists of removing side branches of the remaining skeletons
for which we applied a standard pruning approach called morphological pruning.
This procedure involves two phases. First, the branches are labelled by identifying
special points of the skeleton, such as end-points and branch-points. Then, the side
branches shorter than a predefined threshold are removed (see Gonzales & Woods
2008 for further details). The final result of the full detection procedure, after the
pruning, is shown, both on the corrected binary image (see figure 7c) and on the
original image after thresholding (see figure 7d ).

4. Zero-pressure-gradient turbulent channel flow

4.1. Streaks averaging procedure

The procedure described in the last section is able to detect all individual low-
speed streaks (called simply streaks in the following) of a near-wall turbulent flow.
The detection is based on a thresholding of the fluctuating velocity and as can be
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Example of 

averaging window

Figure 8. Results of the detection of the low-speed streaks at the lower wall in the converging
part of the domain. The skeletons are indicated with dark tubes down to x = 1.3 as the 3D
visualization indicates that the streaks are totally destroyed further downstream.

seen in figure 8, despite the image processing treatments, the detected streaks are
fairly complex (with some multiple branches/skeletons still visible) and only those
which are sufficiently long and representative of well-defined streaks were retained
for the statistics. In the following, (xc, yc, zc) will denote the coordinates of the
points detected as centrelines of streaks. The objective of the present study is not
to accurately characterize the full range of streaks but rather to define a realistic
streak on average. For this purpose, a conditional average of the streamwise velocity
fluctuations in the normal plane (y, z) in the vicinity of the detected streaks has been
computed. The average is defined as

〈u
′

〉x (y, z) =
∑

t

∑

xc=x,zc

u
′

(x, y, z − zc, t)G(y, z − zc), (4.1)

where G is an averaging window of fixed size (an example is shown in figure 8)
centred at the zc spanwise location of each streak skeleton. The streamwise velocity
fluctuation values within all these averaging windows (in the spanwise direction and
time) are collected and an average streak 〈u

′
〉x (y, z) is recovered for each streamwise

location x. The width of the window has been chosen sufficiently large in each case
to recover the low-speed streak and the two adjacent high-speed streaks.

4.2. Characterization of average low-speed streaks in flat-channel flow

The detection procedure has first been applied to the results of turbulent channel
flows from del Álamo & Jiménez (2003) and del Álamo et al. (2004) at three different
Reynolds numbers (Reτ =180, Reτ = 550 and Reτ = 950). For Reτ =180, the statistics
were performed with 100 velocity fields of size 12π × 2 × 4π. For the larger Reynolds
numbers, 10 velocity fields of size 8π × 2 × 4π and 8π × 2 × 3π, respectively, proved
sufficient for the statistics. As the spacing between streaks scales in wall units, the
number of streaks in each simulation box increases as Re2

τ leading to approximately
the same order of streaks samples for the three cases. The value of the threshold
used to extract the streak was set to u′ = C urms

m as recommended by Lin et al. (2008)
(urms

m being the maximum over y of urms at each streamwise position). The constant
C was chosen to detect most representative streaks and to avoid as much as possible
small (or non-physical) ones in the outcome of the procedure. Here, the only output
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Figure 9. Averaged streaks 〈u′〉 for the channel flows (del Álamo et al. 2004) at three
Reynolds numbers (Reτ = 180, Reτ = 550 and Reτ = 950). The streaks are visualized with
negative (continuous lines) and positive (dashed lines) iso-contours (with increment 0.15 urms

m )
of conditional average of the fluctuating streamwise velocity in the vicinity of low-speed streaks
detected using the procedure described in § 3. The iso-contour corresponding to the detection
threshold (u′ = −0.9 urms

m ) is plotted with a continuous thick line.

which will be used is the spanwise location of the streak’s centre zc. The value of the
constant C is therefore much less critical than it would be for the full characterization
of each individual streak (see Lin et al. 2008). For the flow cases at the different
Reynolds numbers, the same threshold of streamwise velocity u′ = −0.9 urms

m is used
for the detection procedure of the individual streaks. It has been checked that the
resulting locations of the streak’s centre (xc, yc, zc) coincide or differ only by one mesh
size from the local minimum of the fluctuation streamwise velocity.

For the parallel flat channel, the average low-speed streaks 〈u′〉x(y, z) at the
streamwise positions x have been averaged also over all x and the results 〈u′〉(y, z)
at the three Reynolds numbers are shown in figure 9. The thick contour defines the
typical size of the streaks and corresponds to the isoline equal to the threshold of
streamwise velocity used in the detection procedure. The width lz and height ly of the
averaged streak as well as the position of its centre lc (defined by the minimum of the
averaged streamwise velocity) are indicated for each Reynolds number. The shapes
and sizes are almost identical in wall units for the two largest Reynolds numbers but
slightly differ for Reτ = 180. This analysis reveals the Reynolds number dependency
at low Reynolds numbers. The average width (l+z ≃ 25) and average height (l+y ≃ 29) of
streaks for the two largest Reynolds numbers are in good agreement with predictions
of many authors including Lin et al. (2008) from experimental results in a turbulent
boundary layer at a much higher Reynolds number.

In order to qualify the variety of streaks, the probability density function of their
intensity is investigated. Several parameters have been already introduced to quantify
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Figure 10. Probability density function of the intensity of streaks detected for the channel
flow at Reτ = 550. The intensity Is is defined as the normalized average fluctuating streamwise
velocity around the streaks in a normal plane (see (4.2)). The probability corresponding to the
20% and 10% stronger streaks are indicated with the hatching and grey shading, respectively.

the streaks intensity. In Andersson et al. (2001) the so-called A-criterion measures
the normalized streamwise velocity differences between the extrema of the low-speed
streaks and their adjacent high-speed streaks. A more elaborated parameter was
introduced by Schoppa & Hussain (2002). This other criterion θ is defined as the
maximum angle of the isovalues of the streamwise velocity in the neighbourhood of
a low-speed streak at a constant characteristic streak centre height. These two criteria
are not direct measurements of the intensity of the low-speed streaks. According
to the definitions, the parameter A, as well as θ , also depend on the intensity of
the associated high-speed streaks. Furthermore, the parameter θ depends on the wall
distance of the centre of the low-speed streak in a non-trivial way. In order to quantify
more precisely the intensity of the single low-speed streaks, a new parameter Is is
defined as the normalized averaged streamwise fluctuating velocity in the vicinity of
the low-speed streak centre in the (y, z) plane with

Is =
1

ly lz

1

umax

∫ +lz/2

−lz/2

∫ +ly/2

−ly/2

u′(y − lc, z − zc) dy dz, (4.2)

umax being the maximum value of the mean streamwise velocity profile. The intensity
Is is computed for the channel flow at Reτ = 550 at each streamwise position x of
each branch of detected streaks, using statistics of the average quantities (ly , lz and
lc) computed in a previous step. The probability density function computed on all
streamwise locations is shown in figure 10 for Reτ =550. The averaged intensity
is −0.17 and the distribution is close to a Gaussian. The intensities corresponding
to the 20% and 10% stronger streaks are also indicated as their characteristics
will be discussed in a following section on stability analyses. In order to compare
the three criteria of intensity, the average of the 10% strongest low-speed streaks
are computed using the three definitions of intensity (Is , A and θ). The result is
shown in figure 11. The average formed with the 10% strongest streak using the
criterion Is exhibits the strongest streak core. As expected, the average with the 10%
largest values of A produces streaks with strong adjacent high-speed streaks. In the
present identification procedure of streaks, the streak’s centre is determined and the
θ-criterion was evaluated at the height corresponding precisely to each individual
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Figure 11. Conditionally averaged streaks (〈u′〉), visualized with negative (continuous lines)
and positive (dashed lines) iso-contours (increment 0.15 urms

m ), for the turbulent channel flow
at Reτ = 550. The average of the 10% strongest streaks according to the A-criterion (a),
the θ -criterion (b) and the intensity Is-criterion (c). d : average of the 20% highest streaks
according to the distance of the streak’s centre y+

c from the wall.

low-speed streak centre yc. Note that in Schoppa & Hussain (2002), θ is evaluated
at several constant wall distances ranging from 10 to 30 wall units. The average
low-speed streak evaluated with the 10% largest values of θ proved to be less intense
and it exhibits a centre at some higher distance from the wall than the averaged
streak using the A criterion (see figure 11). This comparison confirms that θ can be
seen as a measure of both the intensity and the wall distance of the streaks.

Most of the studies on streaks instability focused on the streaks intensity. However,
the wall-normal position of the streaks with respect to the normal gradient of mean
streamwise velocity is also expected to play a significant role in the instability, as it
strongly affects the curvature of the mean velocity isolines. In the following section,
instability analyses will be conducted for the averages of five different subsets of
low-speed streaks, defined by the height of their centre yc by bands of 20%. The
streak base flows for the 20% highest and the 10% strongest streaks are compared
in figure 11. The strength of the averaged 20% highest low-speed streaks is seen to
be weaker than that of the averaged 10% strongest streaks defined with Is but it is
comparable to the average using the A and θ criteria. The main difference is the lower
intensity of the associated high-speed streaks. The stability of the four conditionally
averaged streaks of figure 11 will be investigated in the following section.

4.3. Stability equations and numerical procedure

The linear stability of streaks has found a lot of attention since the pioneering
work of Waleffe (1997) who identified streak instability as a key element for self-
sustained processes in near-wall regions of transitional and turbulent shear flows.
Zero-pressure-gradient boundary layer streaks have, for instance, been considered in
Brandt & Henningson (2002) and Hoepffner, Brandt & Henningson (2005), for streaks
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arising from the so-called lift-up effect associated with the presence of streamwise
vortices as optimal disturbances of unstable shear flows (Schmid & Henningson 2001).
For turbulent channel flow, Schoppa & Hussain (2002) consider representative streak
structures for linear stability analyses. Before we address, in the next section, the
instability of streaks in the presence of adverse pressure gradients, which has found
less attention up to now, we first provide some results for the turbulent channel flow.

Superimposing averaged streaks and the mean velocity profile, one recovers for the
parallel channel flow a streamwise velocity Ū (y, z), called in the following as streak
base flow, which is considered as the basic state for a modal instability analysis. In
this parallel setting, the velocity and pressure perturbations are

u(x, y, z, t) = (û(y, z), v̂(y, z), ŵ(y, z)) ei(αx−ωt), p = p̂(y, z) ei(αx−ωt), (4.3)

the perturbation being unstable if the imaginary part ωi of the complex temporal
eigenvalue ω = ωr + ωi is positive. Linearizing the Navier–Stokes at the base state
(Ū (y, z), 0, 0), the perturbation modes are solution of

− iωû = −Ū iαû − v̂
∂Ū

∂y
− ŵ

∂Ū

∂z
− iαp̂ +

1

Re

(
∂2û

∂y2
+

∂2û

∂z2
− α2û

)
, (4.4)

−iωv̂ = −Ū iαv̂ −
∂p̂

∂y
+

1

Re

(
∂2v̂

∂y2
+

∂2v̂

∂z2
− α2v̂

)
, (4.5)

−iωŵ = −Ū iαŵ −
∂p̂

∂z
+

1

Re

(
∂2ŵ

∂y2
+

∂2ŵ

∂z2
− α2ŵ

)
, (4.6)

0 = iαû +
∂v̂

∂y
+

∂ŵ

∂z
. (4.7)

Note that the stability equations are made dimensionless using half the channel
height at inflow as reference length. Natural symmetries arise in the mode
structure with respect to the centre z = 0 of the spanwise box. According to the
commonly used classification (see, for instance, Asai et al. 2002), varicose modes
are such that the streamwise perturbation velocity component û(y, z) is symmetric,
i.e. û(y, −z) = û(y, z), whereas û(y, z) for sinuous modes is anti-symmetric with
û(y, −z) = −û(y, z). The Chebyshev-collocation discretization is used in both the
wall-normal y direction and the spanwise z coordinate. The wall corresponds to
y = 0, where the no-slip condition for the perturbation flow velocity is imposed. In all
the stability computations, the wall-normal coordinate extends to a distance ymax =1
from the wall, where the perturbation velocity is prescribed to be zero.

The stability computations have been performed for the turbulent channel flow
with Reτ = 550, that is in wall coordinates y+

max = 550, which indeed is far from
the turbulent wall boundary layer. In the spanwise direction −a � z � a, periodic
boundary conditions are applied for the perturbation flow velocity and pressure, i.e.

[û, p̂](y, −a) = [û, p̂](y, a),

[
∂ û

∂z
,

∂p̂

∂z

]
(y, −a) =

[
∂ û

∂z
,

∂p̂

∂z

]
(y, a). (4.8)

The incompressibility condition is applied everywhere in the domain
0 � y � 1, −a < z <a, and the system once discretized gives rise to the generalized
eigenvalue problem

−iωBv = Av. (4.9)

Here, the vector v contains the disturbance flow velocity and pressure. The operator
B corresponds to the projection onto the discretized velocity components and A
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corresponds to the discretized right-hand side of system (4.4)–(4.7). The near-wall
gradients have to be solved and in the forthcoming analysis Ny = 300 collocation
points have been considered in the wall-normal direction, which proved to be sufficient
for convergence of the stability results. Note that owing to the accumulation of the
Chebyshev collocation points near the wall, seven discretization points are in the
region below one reference wall unit y+ = 1 and the distance up to y+ =100 (which
corresponds to y ≈ 0.18) contains 80 points. Up to Nz =80 collocation points have
been used in the spanwise direction. Note that with this highest discretization used,
the operator A in (4.9) is a 93 132 × 93 132 matrix and it would be impossible to apply
a direct matrix-eigenvalue solver to the system. It has become customary to solve
such large eigenvalue problems using Krylov subspace projection method together
with a shift-and-invert strategy, known as the Arnoldi algorithm (see Nayar & Ortega
1993). Here, this approach is applied, similar to the global mode analysis in detached
boundary layers performed in Gallaire, Marquillie & Ehrenstein (2007). Given the
computer memory requirements (up to 140 Gbytes), most of the computations have
been performed on the parallel shared memory IBM Power 6 cluster of IDRIS.

For validation, the results reported in Kawahara et al. (1998) for a modelled mean
velocity and streak structure reminiscent of a low-Reynolds-number turbulent channel
at Reτ = 180 have been considered. In this work, eigenmodes, referred to as modes
I, II and III, are discussed in detail. For instance, the growth rate associated with
the (sinuous) mode II, for a spanwise width 0.58 and dimensionless channel-height 2,
reported in Kawahara et al. (1998) and converged within 4 % is ωi =0.6, the real phase
velocity being cr =ωr/α =13.6. This result is retrieved in our computation (within
the convergence error) for Ny =150, Nz = 20, the computed value being ωi = 0.63 and
cr = 13.4.

4.4. Stability results

The streaks obtained using our detection procedure for the channel flow are shown in
figure 11. Superimposing the averaged streak structure at Reτ =550 (corresponding
to Re = 11 180 in the stability system (4.4)–(4.6)) to the mean velocity profile, the
stability computations have been performed: no instability could be detected when
considering the unconditionally averaged streaks. This is in agreement with previous
investigations, which reported evidence of a streak-amplitude threshold for streak
instability (see Elofsson et al. 1999; Schoppa & Hussain 2002) in near-wall turbulence.
Critical amplitudes for instability of large-scale optimal streaks, solution of the
Reynolds-averaged Navier–Stokes equation, have also been reported recently by
Park, Hwang & Cossu (2011). The streak amplitude may however not be the only
relevant parameter for streak breakdown and, for instance, secondary transient growth
associated with optimal perturbations of streaks can be dominant (Schoppa & Hussain
2002; Hoepffner et al. 2005).

As discussed in § 4.2, there is some arbitrariness when defining the streaks intensity.
When considering only the 10% strongest streaks according to both the A and θ

criteria, no instability is found for the present turbulent channel flow, whereas for the
Is-criterion an instability threshold could be detected. The corresponding results are
shown in figure 12, the + and × symbols being the amplification rates ωi , as function
of the perturbation wavelength λ+, for the 20% and the 10% most intense streaks,
respectively. As can be seen, the 20% most intense streaks are still stable, whereas the
10% strongest streaks have positive amplification rates for a range of wavelengths.
The channel-half height being the reference length in the stability system (4.4)–(4.7),
in wall-coordinates λ+ = 2πReτ/α with α being the streamwise wavenumber in (4.3).
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Figure 12. Channel streak instability growth rate ωi as a function of the wavenumber λ+ in
wall units for the 20% strongest streaks (+), the 10% strongest streaks (×) (Is-criterion, (4.2))
and the 20% highest streaks (�).

The computations have been performed for the highly resolved stability system with
Ny = 300, Nz = 80, the spanwise width of the conditionally averaged streaks being
−0.307 � z � 0.307 (or, equivalently, in wall coordinates −169 � z+ � 169).

As already mentioned in § 4.2, an alternative criterion is to consider the distance
of the streak’s centre from the wall, the average of the 20% highest streaks being
shown in figure 11. Using this conditionally averaged streak for the streak base flow,
the stability characteristics have been computed as well and the results are shown
in figure 12 (squares). The amplification rates are seen to be of the same order of
magnitude, with again a maximum at λ+ ≈ 500, as those for the 10% most intense
streaks. However, as can be inferred from figure 11, the average of the 20% highest
streaks is less intense than the average of the 10% strongest streaks with respect to
the Is-criterion. Sets of streaks with centres closer to the wall have been considered
as well, but the resulting streak base flows proved to be stable. It may therefore
be hypothesized that the distance of the streaks from the wall may indeed be an
alternative criterion when addressing the question of streak instability. The instability
found for the most intense and the highest streaks is of sinuous type. The real part of
the streamwise vorticity mode ω̂x = ∂ŵ/∂y − ∂v̂/∂z (at the most unstable wavelength
λ+ ≈ 500 for the 10% strongest streaks) is shown in figure 14. Note that for a sinuous
perturbation, ω̂x is symmetric with respect to z =0. In Schoppa & Hussain (2002), it
has already been shown that sufficiently intense low-speed streaks in zero-pressure-
gradient wall-turbulence become unstable to sinuous normal modes. The general
sinuous scenario has also been addressed in the context of bypass transition for
zero-pressure-gradient boundary-layer flows (see Schlatter et al. 2008). The symmetry
properties of the streak instability mode are expected to be related to the inflection
points of the base flow. It has, for instance, been shown (see Asai et al. 2002) that
spanwise inflection points promote spanwise oscillations of the streaks, associated
with the sinuous mode. The streak superimposed to the mean velocity profile, i.e.
the streak base flow, is shown in figure 13 for the averaged streak as well as for the
10% strongest and the 20% highest streaks (the latter two base flows being unstable



222 M. Marquillie, U. Ehrenstein and J.-P. Laval

y +

100

80

60

40

20

0

(a)

100

80

60

40

20

0

(b)

100

80

60

40

20

0

(c)

0 20 40 60–20–40–60

z+

0 20 40 60–20–40–60

z+

0 20 40 60–20–40–60

z+

Figure 13. Contour plot of streak base flows for the flat channel at Reτ =550: unconditionally
averaged streaks (a), the average of the 10% strongest streaks (b) (Is-criterion, (4.2)), the
average of the 20% highest streaks (c). The thick continuous line and thick dashed lines
indicate the location of ∂2Ū/∂2y = 0 and ∂2Ū/∂2z =0, respectively.
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Figure 14. Real part of the most unstable perturbation streamwise vorticity mode ω̂x , with
λ+ ≈ 500, for the 10% strongest streaks of the flat channel at Reτ = 550 (see figure 12).

according to the results in figure 12). For the three cases, the location of the inflection
points with respect to the spanwise coordinate (shown as the dashed lines) is very
similar. For the strongest and highest streaks however, there is a closed contour of
inflection points (shown as the thick continuous line) with respect to the wall-normal
coordinate. This contour is centred at y+ ≈ 40 for the 10% most intense streaks.
Interestingly, the iso-contours of the streamwise vorticity are precisely localized above
and below y+ ≈ 40 as shown in figure 14.

5. Adverse-pressure-gradient turbulent flow

Owing to the non-parallel converging–diverging channel and the resulting pressure
gradients, the averaged flow quantities, and, in particular, the streak base flow Ū in
the stability system (4.4)–(4.6), depend on the streamwise coordinate x. Consequently,
a normal-mode analysis assuming homogeneity of the disturbance in the streamwise
direction is strictly speaking not valid anymore. When using the matrix-eigenvalue
stability approach, it would however be hardly feasible to consider a full stability
analysis for a base flow depending on the three space coordinates, given the
computer memory requirements. Indeed, already for the parallel flow assumption,
the stability operator is of very large size, the sharp gradients of the base flow near
the wall necessitating a high resolution in (y, z) (which at each x location is the
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Figure 15. Streamwise evolution of the maximum turbulent kinetic energy peak at the two
walls of the converging–diverging channel flow.

coordinate system normal to the wall which is considered). It is only a posteriori,
by assessing the instability findings in relation to the flow simulation results, that
the locally parallel base flow assumption will find some justification. The appropriate
locations for significant local streak instability analyses have to be inferred from some
characteristics of the turbulent flow field, assuming that indeed streak instability is
associated with the generation of near-wall streamwise vortices.

5.1. Vortices and turbulent kinetic energy

The Q-criterion depicted in figure 6 indicates a sudden increase of turbulence at
some location slightly downstream the bump, which is confirmed by the increase of
turbulent kinetic energy shown in figure 15. Indeed, a rather sharp dominant peak is
visible at the lower wall starting at a small distance from x =0 (the bump summit),
while slightly more downstream a smoother peak can be seen for the upper wall.

The dominant role of the streak near the upper wall is retrieved in the Q-criterion
for the direct numerical simulation results, shown in figure 16. The intense vortices
are seen to precisely emerge from the streak skeletons upstream and the structures are
irregularly distributed in the spanwise direction. The definite breakdown of streaks at
the upper wall takes place within a certain range in the streamwise coordinate, rather
than at a precise x-value and the emerging structures, which are confined in a limited
bandwidth, travel some distance downstream.

Owing to the non-homogeneity in the streamwise x-direction, in the following two
sets of wall units are considered. Local wall units are denoted conventionally with the
superscript + and reference wall units based on u◦

τ at the inlet have the superscript
⋆. In order to quantify the correlation between the low-speed streaks and the vortices
visualized in figure 16, the conditional probability, with respect to the streaks spanwise
location, for the presence of intense vortices at a given position in the (y, z) plane is
considered. For the correlation analysis, the intense vortices have been defined as the
region in space where the Q-criterion is larger then a constant value (Q > 200) and the
statistics are computed for all low-speed streak centres at a fixed streamwise location.
This correlation statistics is shown in figure 17 for the upper wall at x =2.01 in the
region corresponding to the peak of turbulent kinetic energy. The correlation between
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Figure 16. Iso value of the Q-criterion and skeleton of the low-speed streaks at the upper
wall in the region of instability (1.7 <x < 4.2)
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Figure 17. Probability density function of vortices (defined as region of space where Q > 200)
conditioned by the presence of a low-speed streak at z⋆ =0. Upper wall statistics at x = 2.01
(a) and lower wall statistics at x = 0.6 (b).

the streaks and intense vortices is larger around the streak centres. Its value exhibits a
maximum at the two sides of the streaks which may be the mark of counter-rotating
vortices associated with varicose mode instability. A strong correlation also appears
away from the streak centres which is due to the quasi-periodicity of streaks in the
spanwise direction. The same statistics were conducted at the lower wall at x = 0.6, the
production of intense vortices being much more localized in the streamwise direction
than for the upper wall. This indicates that if the vortices emerge through streaks
breakdown, they rapidly spread homogeneously in the spanwise direction as can be
seen in figure 6. However, upstream this position, the correlation between streaks
and vortices exhibits two peaks at each side of the streaks, as seen in figure 17. The
correlation is much weaker than for the upper wall as the statistics are conducted
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Figure 18. Averaged streaks 〈u′〉x at two streamwise locations x at the bottom wall (a) and
upper wall (b) of the converging–diverging channel. The streaks are visualized with negative
(continuous lines) and positive (dashed lines) iso-contours (increment 0.15 urms

m ) of conditional
average of the fluctuating streamwise velocity in the vicinity of low-speed streaks detected
using the procedure described in § 3. The iso-contour corresponding to the detection threshold
(u′ = −0.9 urms

m ) is plotted with a continuous thick line.

at a streamwise position which is located at the beginning of the peak of kinetic
energy, indicating that only a small fraction of vortices are generated. The maximum
correlation increases further downstream (not shown here) but it becomes nearly
homogeneous in the spanwise direction.

5.2. Characterization of low-speed streaks

The same detection procedure is used to compute the average statistics at each
streamwise location of the two walls of the APG channel flow DNS. The shape
of the averaged streaks is compared at two locations for each wall (see figure 18).
The first position (x = −0.75) is located in the converging part of the flow near the
maximum peak of Cf . The second positions are located near the minimum of Cf

at each wall. The shapes in the converging part (x = −0.75) are rather different at
the two walls. At the lower wall, the streak is distorted by the effect of the strong
favourable pressure gradient to reach a triangular-like shape with a large lower basis.
With a lower favourable pressure gradient, the structure is much less distorted at
the upper flat wall but is slightly reshaped as compared to the average streak in the
flat-channel flow.

The size and position of the average streaks for the two walls are shown in
figures 19 and 20. The statistics are indicated both in reference wall units and in local
wall units in order to be able to compare the streamwise physical modifications at
different streamwise locations. At the lower wall, the average width is nearly constant
in reference wall units (l⋆z ≃ 27) up to x =0.4. The growth of l⋆z further downstream is
probably not significant as it is located downstream the separation point where most
of streaks are destroyed (see figure 8). The average height l⋆y presents a minimum near
x = −0.4 which corresponds roughly to the beginning of the adverse-pressure-gradient
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Figure 20. Streamwise evolution of the statistics of averaged streaks 〈u′〉x at the upper wall
of the converging–diverging channel. The width lz (circles), height ly (squares) and distance of
the centre lc from the wall (triangles) are plotted in local wall units (open symbols, left scale)
and in inlet reference wall units (filled symbols, right scale).

regime. The centre of streaks starts to move away from the wall further upstream in
reference wall units (l⋆c ) but stays almost constant in local wall units (l+c ≃ 20) down to
the summit of the bump. The statistics of the average streak behave similarly at the
upper wall but the curves are shifted downstream following the shift of the pressure
gradient curve (see figure 3). For instance, the minimum of the streak height l⋆y is
located near x = 0.2 which also corresponds to the beginning of the adverse pressure
gradient at the upper wall.
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Figure 21. Streamwise evolution of the probability density function of the low-speed streaks
intensity at the lower wall (a) and the upper wall (b) evaluated with the Is-criterion. The
results are normalized by the maximum value of the probability along x. The average intensity
is indicated with a solid white line and the two black dash lines correspond to ± 1 standard
deviation.

Similar to the channel flow case, the probability of the low-speed streaks intensity
has been investigated using the Is criterion. The streamwise evolution of the
probability density function is shown for each wall in figure 21. The statistics exhibit
similar behaviour at the two walls. The streaks intensity increases smoothly in the
region of favourable pressure gradient and decreases rapidly under adverse pressure
gradients. The weakening of streaks intensity coincides approximately with the lift
up of their centre as noticed in figures 19 and 20. This seems to confirm that the
intensity and the wall distance of the streaks are rather correlated.

5.3. Pressure-gradient streak instability

Superimposing the respective mean flow profiles to the streak averages, the stability
computations have been performed for the resulting streak base flow Ū (y, z) nearby
the region of the turbulent kinetic energy peaks, i.e. around x = 0.22 for the lower
streaks and in the vicinity of x = 1.29 for the upper streak. The domain −0.218 � z �

0.218, 0 � y � 1 used for the stability computations (or, equivalently, in reference
wall units −134.5 � z⋆ � 134.5, 0 � y⋆ � 617) corresponds to the spanwise-box for the
detected streaks shown in figure 18. It has been checked that using Ny = 300 and
Nz = 50 collocation points in y and z, respectively, yields converged stability results
to three digits in the amplification rate ωi . The Reynolds number used in the stability
system is according to the turbulent flow simulations Re =12 600.

5.3.1. Upper wall streaks instability

As discussed in the case of the turbulent channel flow, the different criteria based
on the intensity of the low-speed streaks are somewhat arbitrary. In particular, no
clear connection between the intensity and a possible instability of streaks could be
assessed. The results seem however to indicate that the distance of the streak centre
from the wall may be an alternative criterion. By assuming that the regions of the
turbulent kinetic energy peaks in figure 15 are also those where the streak base flow
may be unstable, the streak base flows have been computed at x =1.29. Figure 22
shows the base flows corresponding to the average of sets of streaks formed according
to their distances from the wall. Five distinct sets have been considered, labelled S1–S5,
each one containing 20% of the streaks ranged according to increasing distance from
the wall (with S1 the 20% closest, S2 the 20–40% closest, etc. and S5 the 20% highest
streaks). The lines of inflection points are drawn as well and for all five sets of streaks
considered the spatial distribution of the inflection points with respect to z is similar.
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Figure 22. Contour plot of upper streak base flow at x = 1.29, for the conditional average
using the distance of the streak’s centre y⋆

c from the wall. Five distinct sets have been considered,
labelled S1–S5, each one containing 20% of the streaks ranged according to increasing distance
from the wall, S1 being the 20% closest, S2 the 20–40% closest, etc. and S5 the 20% highest
streaks. S1 (a), S2 (b), S3 (c), S4 (d ), S5 (e). The thick continuous line and thick dash lines
indicate the location of ∂2Ū/∂2y = 0 and ∂2Ū/∂2z =0, respectively.

However, differences occur for the inflection points with respect to the wall-normal
coordinate. While for the sets with streaks closest to the wall there is only one more
or less distorted line of inflectional points with respect to y close to the wall, for
higher streaks a second closed contour appears.

Figure 23 depicts the corresponding stability results and it can be seen that the
different streak base flows are indeed unstable. The most unstable streaks are those
closest to the wall and interestingly there is an unstable varicose as well as an unstable
sinuous mode. However, the maximum of the amplification rate of the varicose
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Figure 23. Streak instability growth rate ωi at the upper wall, for conditionally averaged
streak base flows, with respect to the streak’s distance from the wall, as function of the
wavelength in reference wall units (λ⋆) and (λ+). Streak base flow at x = 1.29; varicose
instability (a), sinuous instability (b), for set S1 (20% closest streaks �), set S2 (20–40% closest
streaks �), set S3 (�), set S4 (�), set S5 (20% highest streaks �). Varicose instability for total
average of streaks (�). (c): varicose instability for the average of the 20% lowest streaks at
x =0.88 (�), x = 1.14 (�) and x = 1.29 (�).

mode is about twice as high as its sinuous counterpart. When increasing the distance
from the wall, the amplification rates of the varicose mode decrease and the streaks
corresponding to set S4 are stable to varicose instability. The behaviour is different
for the instability of sinuous type. All five different streak base states are unstable,
the 20% closest streaks and the 20% highest streaks being unstable with comparable
amplification rates, as can be seen in figure 23. The total average of all the streaks has
been considered as well: in that case, only (an almost neutral) instability of varicose
type could be found (see � in figure 23a).

Focusing on the most unstable streak base flow formed with the average of the
20% streaks closest to the wall, the varicose instability, which is the dominant one,
has been computed for base flows upstream. As shown in figure 23, the instability
weakens upstream but is still present at x = 0.88 with however low amplification rates.
It is interesting to note that this location is close to the increase of the turbulent
kinetic energy at the upper wall (see figure 15).

These results clearly demonstrate that the streak’s distance from the wall is a
particularly sensitive parameter in connection with streak instability. Note that for
the present adverse-pressure-gradient wall turbulence, the base flow with the average
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Figure 24. Unconditionally averaged streak base flow at x = 1.29 (a). Growth rate ωi of the
varicose mode at fixed wavelength λ⋆ ≈ 300 at different x-locations for the unconditionally
averaged streak base flow (b).

of all the streaks is itself unstable, with respect to the varicose mode. This base flow
is shown in figure 24 (a) for x =1.29 and the amplification rates are shown as well,
for this unconditionally averaged streak base flow at different x locations for a fixed
perturbation wavelength λ⋆ ≈ 300 (which corresponds to the neutral instability result
at x ≈ 1.29, see figure 23). The total average base flow is seen to become stable slightly
upstream at x =1.29.

Isolines of the unstable mode structure are shown in figure 25, the real part of
the streamwise velocity component û being depicted for both the varicose as well
as sinuous mode, for the base flow with the 20% lowest streaks at x = 1.29. The
wavenumber is λ⋆ = 185, the corresponding amplification rates being ωi = 0.92 and
ωi = 0.23 (see figure 23). Figure 26 exhibits the corresponding three-dimensional
perturbation structures over one streamwise wavelength, the streamwise component
of the vorticity and the Q-criterion isosurface being shown. The vortex structure of
the varicose perturbation is counter-rotating and the Q-criterion isosurface is seen to
have a nice horseshoe-type structure.

5.3.2. Lower wall streak instability

The turbulent kinetic energy evolution along the lower wall with the bump exhibits
a peak only slightly downstream the bump summit (see figure 15) and this region
is explored addressing again the possibility of streak instability. Streak base flows
at x = 0.22 are depicted in figure 27 with the average of the 20% lowest streaks as
well as the 20% highest streaks. In contrast with the results at the upper wall, the
inflection points with respect to the wall-normal coordinate are almost homogeneously
distributed along the spanwise coordinate. The streak base flows using the other sets
of conditionally averaged streaks, using the distance criterion, as well as the total
average of the streaks look very similar and are not depicted here. This indicates that
at the lower wall, the inflectional mean velocity profile is the dominant part in the
streak base flow. The stability analysis (using again Ny = 300 and Nz = 50 collocation
points) has been performed and the results are depicted in figure 28. Only varicose
modes become unstable and the highest amplification rates ωi are reached for the
average with the streaks closest to the wall. Considering the 20–40% lowest streaks,
the corresponding base flow is seen to be almost marginally stable and for averages
with higher streaks the amplification rates again slightly increase at somewhat lower



Instability of streaks in wall turbulence 231

60

50

40

30

20

10

0

30

20

10

0

y⋆ y+

(a)

0 50 100–50

0 50–50

x = 1.29

x = 1.29

–100

z+

60

50

40

30

20

10

0

30

20

10

0

y⋆ y+

(b)

0 50 100–50

0 50–50

–100

z⋆

Figure 25. Real part of the streamwise perturbation velocity mode û at λ⋆ = 185 for the
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Figure 26. Three-dimensional structure of the streak perturbation at x = 1.29 upper wall and
λ⋆ ≈ 185 (see figure 23). Isosurface (±6.8 ωrms

x ) of the perturbation streamwise vorticity (a) and
Q-criterion isosurface (b) for the varicose instability (top) and sinuous instability (bottom).
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�), set S3 (�), set S4 (�) and set S5 (20% highest �). Total average (�).

wavelengths. The result for the average with the total set of streaks is also depicted (�
in figure 28) and is seen to be marginally stable. The perturbation streamwise velocity
mode for the streak base flow with the total average is depicted in figure 29, for the
most unstableperturbation wavelength λ⋆ ≈ 161 (or, equivalently, α = 24). The almost
homogeneous structure in z, besides the region near the centre, again represents the
footprint of the dominant mean velocity profile. The perturbation streamwise vorticity
mode is depicted as well. This mode structure is located very close to the wall and has a
finite width in the spanwise box, the structure being governed by the streak component
in the base flow which gives rise to a three-dimensional perturbation structure. The
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Figure 30. Three-dimensional structure of the almost-neutral lower streak perturbation at
x =0.22 and λ⋆ ≈ 161 (see figure 28). Isosurface (±8.5 ωrms

x ) of the perturbation streamwise
vorticity (a) and Q-criterion isosurface (b).

instability being varicose, the streamwise vorticity is anti-symmetric with respect to
z = 0, whereas the streamwise velocity component is symmetric. The corresponding
three-dimensional perturbation structure over one streamwise wavelength is shown in
figure 30. In contrast with the varicose perturbation at the upper wall (see figure 26),
the Q-isosurface is homogeneously distributed in the spanwise direction, again as the
consequence of the dominant mean velocity profile which generates homogeneous (in
z) spanwise vorticity.

To precisely assess the unstable character of the mean velocity profile component
U (y) in the streak base flow, a one-dimensional stability computation has been
performed, using U (y) as base flow (i.e. for the stability system of Orr–Sommerfeld
type, computing the modes depending only on y). The results at different x locations
are depicted in figure 31 (+) and the mean velocity profile is indeed unstable. The
amplification rates are compared with the streak base flow computations (×), using
the total average of the streaks at the different x-locations at the lower wall. The
wavelength has been fixed at λ⋆ ≈ 160 which is close to the most unstable wavenumber
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Figure 31. Instability growth rate ωi at the most unstable wavelength λ⋆ ≈ 160 at different
x-locations for the lower streak base flow (×). +: growth rates for the one-dimensional mean
velocity profiles. �: growth rates for the one-dimensional mean velocity profiles with νT (y).

for the total average streak. The growth rates are seen to increase almost linearly
with x, the mean base flow being slightly more unstable than the streak base flow.

It has to be emphasized that, contrary to the lower wall result, the mean velocity
profiles at the upper wall proved to be stable. This may be attributed to the weaker
adverse pressure gradient at the upper wall. The slope of the wall-normal derivative
of the mean streamwise velocity at different x locations at the lower wall is depicted
in figure 32, showing that a pronounced local maximum (the inflection point) enters
the flow domain downstream the bump summit x = 0. At the upper wall however, the
profile-slope maximum (not depicted) is less pronounced and remains much more in
the vicinity of the wall.

Recently, mean flow stability computations have been performed in turbulent
boundary layers by Cossu, Pujals & Depardon (2009) or in the turbulent channel flow
by del Álamo & Jiménez (2006), adding an eddy-viscosity in the stability equations
for the turbulent mean velocity profile. Such models have been analysed in the past
for instance by Reynolds & Hussain (1972). The eddy-viscosity νT (y) is used instead
of the Reynolds stress in this model and it is the solution of (by considering the
averaged streamwise momentum equation)

(
1

Re
+ νT (y)

)
∂U

∂y
= u2

τ +

∫ y

0

(
U

∂U

∂x
+ V

∂U

∂y
+

∂P

∂x

)
. (5.1)

In the present investigation, all mean quantities are available and the νT (y) profile
can be computed. A similar approach to compute νT (y) for a modelled turbulent
boundary layer (without pressure gradient) is used in Cossu et al. (2009).

For the data in the vicinity of x = 0.22, the νT (y) increases up to y⋆ ≈ 80 in
reference wall units and has been kept constant outside this inner region. The results
of the stability computations adding νT (y) are shown in figure 31 (filled square). The
eddy-viscosity is seen to slightly damp the perturbation, the results being however
similar to those considering only the molecular viscosity in the stability equations. It
is however doubtful that there is a rational grounding to use νT (y) when considering
a streak base flow depending on y and z. Therefore, in the present investigation,
only the molecular viscosity associated with the Reynolds number, used in the direct
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numerical simulation, has been used for the streak base flow stability problem (as, for
instance, in Schoppa & Hussain 2002).

6. Discussion and conclusions

For zero-gradient-pressure boundary layers, the structures resulting from streak
instabilities have been addressed experimentally, among others, by Asai et al. (2002).
There is evidence that symmetric (varicose) streak instability modes lead to the
formation of hairpin vortices, whereas sinuous mode instabilities give rise to quasi-
streamwise vortices with vorticity of alternate sign. More recently, Brandt & de Lange
(2008) provided evidence for symmetric and antisymmetric breakdown due to streak
interaction. In our curved channel flow, wall turbulence direct numerical simulation
data are available for stronger, at the lower wall, and weaker adverse pressure
gradients. Addressing streak instability and considering the total average of the
streaks which have been detected, the streak base flows proved to become unstable
at some streamwise location with respect to varicose modes. Considering however
conditional averages for the streak base flow, using as a criterion the distance of the
streak’s centre from the wall, at the upper wall sinuous modes proved to become
unstable too. At both walls, the averages of streaks the closest to the wall (the
20% closest) exhibit the highest amplification rates for varicose modes and there is
evidence of a relation between the increase of the amplification rates when progressing
along the wall and turbulent kinetic energy peaks observed in the direct numerical
simulation results. At the upper wall, with the weaker adverse pressure gradient,
the streak base flow with the average of the highest streaks exhibits wall-normal
inflection point located on a closed contour in the (y, z) plane. In this respect,
the base flow characteristics (see figure 22d and e) are reminiscent of the streak
averages considering the most intense or the highest streaks in the turbulent zero-
pressure-gradient channel flow (see figure 13) and only the sinuous mode prevails for
these base flows. At the lower wall with the stronger adverse pressure gradient, only
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Figure 33. Visualization of a well-defined coherent structure at the lower wall in the region
of instability. (a) streamwise vorticity with light grey colour for negative and dark grey colour
for positive values (left); iso-value of the Q-criterion (right). A streak is present in front of the
structures, a portion of which is being visualized with its skeleton. (b) coherent structure events
along the spanwise direction for 0.4 � x � 1.41 (the arrows point at Q-isosurfaces, coloured
with the streamwise vorticity).

unstable varicose modes are found, no matter what average for the streak base flow
is considered. Also, in that case, the instability increases precisely and quite abruptly
at the x-location immediately prior to the dominant kinetic energy peak shown in
figure 15. Three-dimensional structures have been extracted from the direct numerical
simulation database and the result is shown in figure 33. An individual streak
skeleton is depicted (figure 33a) near the lower wall and it appears to be the main
coherent structure down to x = 0.78 where indeed a hairpin-type streamwise vortex
emerges. The Q-isosurface is shown as well and there is hence evidence of symmetric
(varicose) breakdown of the streak into a coherent structure of counter-rotating
streamwise vortices. Very similar varicose structures have, for instance, been reported
in Brandt, Schlatter & Henningson (2004) in a transitional boundary layer subject to
free-stream turbulence. The sudden formation of hairpin-type vortices is a recurring
event along the spanwise direction as seen in figure 33(b). Indeed, the arrows in the
figure point at those structures, depicted as Q-isosurface coloured by the streamwise
vorticity.

In our stability analysis, the streak instability starts at some distance upstream the
location where the hairpin vortices emerge. Here, a temporal stability analysis has
been performed using the locally parallel flow assumption. It is expected that the
instability is of convective nature (see Brandt et al. 2003) and the temporal growth
is hence in relation with a spatial growth. Consequently, the coherent structure has
to grow to some amplitude downstream before it becomes visible in the simulation
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results. The size of the hairpin vortex is approximately �x⋆ ≈ 200, the spanwise width
being �z⋆ ≈ 150. Interestingly, this is the order of magnitude of both the spanwise
size of the perturbation streamwise vorticity mode (depicted in figure 29) and the
most unstable wavelength λ⋆ ≈ 161 (see figure 28).

The corresponding three-dimensional perturbation structure is shown in figure 30
and the streamwise vorticity distribution is seen to be reminiscent of the hairpin-type
vortex structure detected in the simulation. The Q-criterion isosurface is depicted as
well which however bears no resemblance to the turbulent quantity in the simulation
(see figure 33). Indeed, as we have discussed previously, near the lower wall the
mean velocity profile contributes to the instability which, in contrast to the real flow,
artificially generates spanwise vorticity homogeneously distributed in the spanwise
direction.

The attempt to clearly identify a precise location where coherent vortex structures,
for instance, of hairpin-type, appear at the upper wall was less successful. At the
upper wall, the instability is much more governed by the different possible averages
considering specific sets of streaks. Furthermore, the stability analysis with the total
streaks average predicts a less abrupt onset of instability at the upper wall, as seen
in figure 24. An example of the three-dimensional perturbation structure is shown
in figure 26, for a case where both a sinuous and a varicose mode is unstable. Both
types of structures, the counter-rotating structure and the sinuous type with alternate
vorticity, are likely to be tangled up in the direct numerical simulation data and can
hardly be detected individually.

One may draw the general conclusion that in the APG flow considered, the turbulent
kinetic energy exhibits characteristic peaks at both walls which clearly coincide with
the production of intense coherent vortices. Indeed, the detection procedure shows
that the turbulent flow field upstream the energy peak is marked by elongated low-
speed streaks. Base flows formed with averages of the streaks superimposing the
mean velocity profile become precisely unstable in the region of the energy peaks.
However, there is no definite averaged streak base model, the type and strength of
instability depending, in particular for the upper-wall weak pressure-gradient flow, on
the specific set of streaks considered. In this respect, the streak’s distance from the wall
appears as an essential parameter. Of prime importance for the type of instability are
the more or less homogeneously (with respect to the spanwise coordinate) distributed
inflection points in the wall-normal coordinate for the streak base flow.

While at the upper wall (with a weaker pressure gradient), the stability results are
dominated by the streak’s contribution to the base flow, for the strong adverse pressure
gradient near the lower curved wall the mean velocity component in the streak base
flow also contributed to the sudden onset of the instability. These different stability
results provide strong evidence that in the present APG wall turbulence, the averaged
streak instability dynamics is related to the local onset of strong production of kinetic
energy. This behaviour is different from what is observed for zero-pressure-gradient
channel flow. In that case, modal instability is possible only for streaks extracted from
the simulation data with some threshold amplitude, or for very specific set of streaks,
and transient growth mechanisms possibly dominate (Schoppa & Hussain 2002; Asai
et al. 2007).

One may conjecture whether the reported results are generic for adverse-pressure
wall turbulence. Note that characteristic turbulent energy peaks seem to be a general
feature in the presence of APG (see Shah et al. 2010). To connect this behaviour
to streak breakdown will certainly have to be interpreted in the light of turbulence
modelling. Indeed, the mean turbulent velocity gradients are at the heart of Reynolds-
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averaged Navier–Stokes modelling, which is unlikely to be reliable in the presence of
turbulence production peaks as a result of a streak instability mechanism.
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